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Abstract
Tumor segmentation in oncological PET is challenging, amajor reason being the partial-volume
effects (PVEs) that arise due to low system resolution andfinite voxel size. The latter results in tissue-
fraction effects (TFEs), i.e. voxels contain amixture of tissue classes. Conventional segmentation
methods are typically designed to assign each image voxel as belonging to a certain tissue class. Thus,
thesemethods are inherently limited inmodeling TFEs. To address the challenge of accounting for
PVEs, and in particular, TFEs, we propose a Bayesian approach to tissue-fraction estimation for
oncological PET segmentation. Specifically, this Bayesian approach estimates the posteriormean of
the fractional volume that the tumor occupies within each image voxel. The proposedmethod,
implemented using a deep-learning-based technique, wasfirst evaluated using clinically realistic 2D
simulation studies with known ground truth, in the context of segmenting the primary tumor in PET
images of patients with lung cancer. The evaluation studies demonstrated that themethod accurately
estimated the tumor-fraction areas and significantly outperformedwidely used conventional PET
segmentationmethods, including aU-net-basedmethod, on the task of segmenting the tumor.
In addition, the proposedmethodwas relatively insensitive to PVEs and yielded reliable tumor
segmentation for different clinical-scanner configurations. Themethodwas then evaluated using
clinical images of patients with stage IIB/III non-small cell lung cancer fromACRIN6668/RTOG
0235multi-center clinical trial. Here, the results showed that the proposedmethod significantly
outperformed all other consideredmethods and yielded accurate tumor segmentation on patient
imageswithDice similarity coefficient (DSC) of 0.82 (95%CI: 0.78, 0.86). In particular, themethod
accurately segmented relatively small tumors, yielding a highDSCof 0.77 for the smallest segmented
cross-section of 1.30 cm2.Overall, this study demonstrates the efficacy of the proposedmethod to
accurately segment tumors in PET images.

1. Introduction

Reliable segmentation of oncological PET images is Required for tasks such as PET-based radiotherapy planning
and quantification of radiomic and volumetric features fromPET images (Zaidi et al 2009, Jha et al 2017,Mena
et al 2017, Cook et al 2018). However, tumor segmentation in PET is challenging for several reasons such as
partial-volume effects (PVEs), systemnoise, and large variabilities in the shape, texture, and location of tumors
(Foster et al 2014). Tumor segmentation can be performed by having trained readers delineate the tumors
manually. However,manual delineation is both labor- and time-intensive, and suffers from intra- and inter-
reader variability (Foster et al 2014). To address these issues, computer-aided segmentationmethods have been
developed. These includemethods based on thresholding, region growing, boundary detection, and stochastic
modeling (Kass et al 1988, Foster et al 2014, Sridhar et al 2014, Layer et al 2015). However, thesemethods suffer
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from limitations, such as requiring user inputs, sensitivity tomodel assumptions (Belhassen andZaidi 2010),
and limited ability to account for PVEs. Learning-basedmethods (Blanc-Durand et al 2018, Zhao et al 2018)
have been developed to address these issues.While thesemethods have demonstrated promise, they typically
requiremanual delineations for training, which are likely affected by PVEs. Thus, accounting for PVEs remains
an important challenge in accurate delineation of PET images.

The PVEs in PET arise from two sources, namely the limited spatial resolution of PET system and the finite
voxel size in the reconstructed image (Soret et al 2007). The limited spatial resolution leads to blurred tumor
boundaries. Thefinite voxel size results in voxels containing amixture of tumor and normal tissue. This
phenomenon is referred to as tissue-fraction effects (TFEs) (Rousset et al 2007). A recently developed deep-
learning (DL)-based technique (Leung et al 2020) has attempted to account for PVEs arising due to the low
system resolution.However, thismethod is not able to account for the TFEs. This shortcoming arises because
thismethod, similar to conventional classification-based segmentationmethods, is not designed or trained to
model TFEs. Instead, thismethod is designed and trained on the task of classifying each voxel in an image as
belonging to a single region.Note that while these learning-basedmethods can output a probabilisticmeasure of
a voxel belonging to a region, that probability is unrelated to TFEs. Similarly, other probabilistic techniques,
such as simultaneous truth and performance level estimation technique (Dewalle-Vignion et al 2015), can yield a
probabilistic estimate of the true segmentation. However, again, this probabilistic estimate has no relation to
TFEs. Fuzzy PET segmentationmethods have attempted to account for TFEs by assigning different fuzzy levels
to voxels that are partially occupied by the tumor (Hatt et al 2007, 2009). However, the goal of thesemethods is
not to directly estimate the tumor-fraction volumewithin each voxel. Thus, they are not able to explicitly
model TFEs.

To address the challenge of accounting for PVEs, and in particular, TFEs, while performing tumor
segmentation in PET, in thismanuscript, we propose a Bayesian approach to tissue-fraction estimation.
Specifically, the segmentation problem is posed as a task of estimating the fractional volume that the tumor
occupies within each voxel of an image. Through this strategy, we are able to explicitlymodel TFEs. The
proposedmethodwas developed in the context of segmenting the primary tumor in [18F]fluorodeoxyglucose
(FDG)-PET images of patients with lung cancer.

In the next section, we develop a theoretical formalism for the proposedmethod.Our evaluation of the
method using both clinically realistic simulations and clinical images of patients with stage IIB/III non-small cell
lung cancer (NSCLC) fromACRIN 6668/RTOG0235multi-center clinical trial, is then presented in section 3,
followed by the results of this evaluation, discussions, and conclusions.

2.Method

2.1. Theory
Consider a PET system imaging a radiotracer distribution, described by a vector ( )rf , where ( )r = x y z, ,
denotes the spatial coordinates.We denote the tracer uptake in the tumor by ( )rfs . The rest of the regions are
referred to as background, and uptake in the background is denoted as ( )rfb . Thus, the tracer uptake can be
representedmathematically as follows:

( ) ( ) ( ) ( )r r r= +f f f . 1b s

Wedefine a support function for the tumor region as ( )rs , i.e.

⎧
⎨⎩

( )
( )

( )r
r

=
>

s
f1, if 0.

0, otherwise.
2s

The radiotracer emits photons that are detected by the PET system, yielding projection data. Reconstruction
with the projection data yields the reconstructed image, denoted by anM-dimensional vector f̂ . Thus, the
mapping from the tracer distribution to the reconstructed image is given by the operator ( )Q   : M

2
3 .

Denote the PET systemby a linear continuous-to-discrete operator, and let the vectorn describe the
Poisson-distributed noise. Denote the reconstruction operator, quite possibly nonlinear, by. The eventual
reconstructed image is given in operator notation as follows:

ˆ ( )= +f f n. 3

In the reconstructed image, denote the volume of each voxel byV and define the voxel function as ( )rfm , i.e.

⎧
⎨⎩

( ) ( )r
rf =

m1, if lies within the voxel of the PET image.

0, otherwise.
4m

th
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The fractional volume that the tumor occupies in themth voxel, denoted by vm, is given by

( ) ( ) ( )r r rò f=v
V

d s
1

. 5m m
3

Our objective is to design amethod that estimates this quantity vm from the reconstructed image f̂ for allM
voxels. Denote the estimate of vm by v̂m. Further, denote theM-dimensional vector {v1, v2,K, vM} by v, and
denote the estimate of v by v̂ .

Estimating v from the reconstructed image is an ill-posed problemdue to the null spaces of the and
operator. Thus, we take a Bayesian approach to estimate v̂ .Wefirst need to define a cost function that penalizes
deviation of v from v̂ . A common cost function is the ensemblemean squared error (EMSE), which is themean
squared error averaged over noise realizations and the true values v. However, in our case, the variable v̂m is
constrained to lie within 0, 1, and the EMSE loss does not directly incorporate this constraint. In contrast, using
the binary cross-entropy (BCE) loss as the penalizer allows us to incorporate this constraint on v̂m directly, as also
suggested inCreswell et al (2017). The BCE loss between vm and v̂m, denoted by ( ˆ )l v v,m mBCE , is given by

( ˆ ) ( ˆ ) ( ) ( ˆ ) ( )= - - - -l v v v v v v, log 1 log 1 . 6m m m m m mBCE

Wedefine our cost function ( ˆ)C v v, as the negative of aggregate BCE loss over all voxels averaged over the

joint distribution of true values v and noise realizations f̂ . The cost function is then given by

( ˆ ) ˆ (ˆ ) ( ˆ )

ˆ (ˆ) ( ∣ˆ) ( ˆ ) ( )

ò ò
ò ò

=- å

=- å

=

=

C d d l v v

d d l v v

v v f v f v

f f v v f

, pr , ,

pr pr , , 7

M M
m
M

m m

M M
m
M

m m

1 BCE

1 BCE

where in the second stepwe have expanded (ˆ )f vpr , using the conditional probability. Inserting equation (6)
into (7), we obtain

⎡
⎣⎢

⎤
⎦⎥

( ˆ ) ˆ (ˆ) ( ∣ˆ) ( ˆ ) ( ) ( ˆ ) ( )ò ò å= + - -
=

C d d v v v vv v f f v v f, pr pr log 1 log 1 . 8M M

m

M

m m m m
1

To estimate the point at which this cost function isminimized, we differentiate the cost functionwith respect
to the vector v̂ and set that equal to zero. Because (ˆ)fpr is always nonnegative, the cost function isminimized by
setting the derivative of inner integral in equation (8) equal to zero, i.e.

⎡
⎣⎢

⎤
⎦⎥ˆ

( ∣ˆ) ( ˆ ) ( ) ( ˆ ) ( )ò å¶
¶

+ - - =
=

d v v v v
v

v v fpr log 1 log 1 0. 9M

m

M

m m m m
1

This is then equivalent to performing component-wise differentiation and setting each differentiated
component to 0 (Barrett andMyers 2013). For themth component of equation (9), we get

ˆ
( ∣ˆ) ( ˆ ) ( ) ( ˆ )

ˆ
( ∣ˆ) ( ˆ ) ( ˆ ) ( ˆ )

( )

ò

ò

¶
¶

+ - -

=
¶
¶

- - + -

=

v
dv v v v v v

v
dv v v v v v

f

f

pr log 1 log 1

pr log log 1 log 1

0. 10

m
m m m m m m

m
m m m m m m

Since ( ∣ˆ)ò =dv v fpr 1m m , the solution to equation (10), denoted by v̂m*, is given by

ˆ ( ∣ˆ) ( )ò=v dv v vfpr . 11m m m m*

Equivalently, in vector notation, we get

ˆ ( ∣ˆ) ( )ò= dv v v f vpr , 12M*

which is simply the posterior-mean estimate of v. Note that the same estimator is obtainedwhen the cost
function is the EMSE between v and v̂ . Thus, byminimizing the cost function in equation (8), we obtain an
optimal estimator that achieves the lowestmean squared error among all possible estimators.We can further
show that this estimator is unbiased in a Bayesian sense (proof provided in appendix B).

In summary, we have shown that by developing an optimization procedure thatminimizes the cost function
defined in equation (8), we obtain a posterior-mean estimate of the tumor-fraction volumes in each voxel of the
reconstructed image. This estimator yields the lowestmean squared error among all possible estimators.
Further, this estimator is unbiased in a Bayesian sense.
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2.2. Implementation of the proposed technique
While we have developed the theoretical formalism in 3D, in thismanuscript, themethodwas implemented and
evaluated on a simplified per-slice basis. Thus, for each pixel in the 2D reconstructed image, the optimizer was
designed to yield the posteriormean estimate â* of the true tumor-fraction area (TFA), whichwe denote by a.
We nowdescribe the procedure to implement this optimizer.

Estimating theposteriormean â* requires sampling from theposterior distribution ( ∣ˆ)a fpr . Sampling from this
distribution is challenging as this distribution is high-dimensional anddoesnot have aknownanalytical form.To
address this issue, the proposedmethodwas implementedusing a supervised learning-based approach. Specifically,
an encoder–decodernetworkwas constructed, as shown infigure 1.During the trainingphase, this network is
providedwith apopulationofPET images, and the corresponding ground-truthTFAmap, i.e. the vector a for each
image, as described in section2.1.Thenetwork, byminimizing the cost functiondefined in equation (8)over this
populationof images, becomes trained to yield theposterior-mean estimate of a given the inputPET image.

The network architecture is similar to those for estimation tasks, such as image denoising (Creswell et al 2017)
and image reconstruction (Nath et al2020). To summarize, thenetwork is partitioned into a contracting and an
expansivepath. The contracting path learns the spatial information from the input PET images and the expansive
pathmaps the learned information to the estimatedTFAmap for each input image. Skip connectionswith
element-wise additionwere applied to feed the features extracted in the contracting path into the expansivepath to
stabilize the training and improve the learning performance (Mao et al2016). In thefinal layer, thenetwork yields
the estimate of theTFAs. Adetailed descriptionof thenetwork architecture is provided in appendixA (tableA1).

As outlined in section 1, the goal of theproposedmethod is to explicitlymodel theTFEswhile performing
tumor segmentation.Our training strategy andnetwork architecture are specifically designed for this goal by
defining the ground truth as theTFAs for each image.We contrast this to the conventionalDL-based segmentation
methods, where, in the ground truth, each pixel is exclusively assigned to the tumor or thenormal tissue class and
thenetwork is trained to classify eachpixel as either tumoror background. Further, asmentioned above, while the
conventionalDL-basedmethods canoutput a probabilistic estimate for each image pixel, this estimate is only a
measure of classification uncertainty, and thus hasno relation toTFEs, unlike theproposedmethod.

Thenetworkwas trained via theAdamoptimization algorithm (KingmaandBa2014). In the various
experimentsmentioned later, thenetworkhyperparameterswere optimizedon a training set viafive-fold cross
validation.Thenetwork trainingwas implemented inPython3.6.9, Tensorflow1.14.0, andKeras 2.2.4. Experiments
were performedonaLinuxoperating systemwith twoNVIDIATitanRTXgraphics processingunit cards.

3. Evaluation

Evaluating the proposedmethod requires access to ground truthwhere either the ground-truth TFAmap or a
surrogate for the true TFAmap, such as tumor delineations defined by trained readers, are known. In section 3.2,
wefirst evaluated the proposedmethod using clinically realistic simulation studies, where the ground-truth TFA
mapwas known. In these studies, the support of tumor can be described at a very high resolution, simulating
( )rs in equation (2). From this high-resolution description, the true TFAwithin each image pixel can be
computed using equation (5), thus providing the TFAmap. Realistic simulation studies alsomodel imaging
physics and variability in patient populations. Thus, these studies provide a rigorousmechanism to evaluate the
method.However, we recognize that simulation studiesmay have limitations inmodeling all aspects of system

Figure 1. Illustration of the developed optimization procedure by constructing an encoder–decoder network. Conv.: convolutional
layer; BN: batch normalization; ReLU: rectified linear unit.
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instrumentation, patient physiology, and patient-population variability, especially inmulti-center settings,
accurately. Thus, it is important to assess the performance of themethod using patient studies, ideally with
multi-center trial data. For this purpose, in section 3.3, we evaluated the proposedmethod on clinical images
from theACRIN 6668/RTOG0235multi-center clinical trial, where trained-reader-defined segmentations
were used as the surrogate ground truth.Wefirst describe the performancemetrics used to quantitatively
evaluate the proposedmethod.

3.1. Evaluationmetrics
Since the proposedmethod is an estimation-based segmentation approach, our evaluation used performance
metrics for both the task of estimating the true TFAmap and of segmenting the tumor.

3.1.1. Evaluation on estimation performance
Performance on the estimation taskwas evaluated using the EMSEbetween the true and estimated TFAmaps.
EMSEprovides a combinedmeasure of bias and variance over the distribution of true values and noise
realizations, and is thus considered as a comprehensive figure ofmerit for estimation tasks (Barrett and
Myers 2013). The error in the estimate of the TFAmaps and the tumor areawas quantified using the pixel-wise
EMSE and normalized area EMSE, respectively. Denote 〈K〉X as the expected value of the quantity in the
brackets when averaged over the randomvariableX. The pixel-wise EMSE is given by

‐ ˆ ( )ˆ∣ = -a aPixel wise EMSE . 13
f a a

2
2

The normalized area EMSEdenotes the EMSEbetween the true and estimated areas of each tumor, normalized
by the true areas. The true and estimated areas, denoted byA and Â, are given by the 1norms of a and â ,
respectively. The normalized area EMSE is then given by

∣ ˆ ∣ ( )
ˆ∣

=
-A A

A
Normalized area EMSE . 14

A Af

2

2

Wehave shown (equation (B4) in appendix B) that the proposedmethod yields an unbiased estimate of a in a
Bayesian sense. To verify this, the ensemble-average bias was computed. This term, denoted by b, is anM-
dimensional vector ¼b b b, , , M1 2 , with themth element of the vector quantifying the average bias of the estimated
TFAwithin themth pixel. Consider a total ofP tumor images andNnoise realizations for each tumor image. Let
amnp and âmnp denote the true and estimated TFAwithin themth pixel for the nth noise realization in the pth

tumor image. Themth component of ensemble-average bias, bm, is then given by

ˆ ( )å å= -
= =

b
P N

a a
1 1

. 15m
p

P

n

N

mnp mnp
1 1

The proximity of the elements of b to 0would indicate that the estimator was unbiased in a Bayesian sense.

3.1.2. Evaluation on segmentation performance
The proposedmethod estimates the TFAwithin each pixel, which is a continuous-valued output. For evaluation
of segmentationmethods that yield such non-binary output, as in Taha andHanbury (2015), the spatial-
overlap-basedmetrics can be derived based on the four cardinalities of confusionmatrix, namely the true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). The four cardinalities are given
by

ˆ ˆ

ˆ ˆ ( )

å å

å å

= = -

= - - = -

= =

= =

a a a a

a a a a

TP min , FP max , 0

TN min 1 , 1 FN max , 0. 16

m

M

m m
m

M

m m

m

M

m m
m

M

m m

1 1

1 1

The spatial-overlapmetric ofDice similarity coefficient (DSC) and Jaccard similarity coefficient (JSC)were used
tomeasure the agreement between the true and estimated segmentation. TheDSC and JSC are defined as

( )=
+ +

=
+ +

DSC
2TP

2TP FP FN
, JSC

TP

TP FP FN
. 17

Higher values ofDSC and JSC indicate higher segmentation accuracy. Thesemetrics were reported asmean
valueswith 95%confidence intervals (CIs). Statistical significancewas assessed via a paired sample t-test, with a
p-value< 0.01 inferring statistically significant difference.
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Wealso qualitatively evaluated the performance of the proposedmethod on the task of estimating the TFA
map. For this purpose, ground-truth and estimated tumor topographicmapswerefirst constructed from the
true and estimated TFAmaps using the contour function inMATLAB (MathWorks, Natick,Mass). Specifically,
the tumor topographicmap shows the topography of the TFAmap bymeans of isocontours. Then, isocontours
corresponding to the true and estimated TFAmapswere plotted for the TFA values of 0, 1/3, 2/3, and 1. ATFA
of 0 implies that no areawithin that pixel contains the tumor, while a TFA of 1 implies that the entire pixel area is
the tumor.

3.2. Evaluation of the proposedmethod using clinically realistic simulation studies
This evaluation studywas conducted in the context of segmenting the primary tumor in FDG-PET images of
patients with lung cancer. The study quantitatively evaluated the accuracy of themethod, compared themethod
to existing techniques, studied the sensitivity of themethod to PVEs, and also studied the performance of the
method for different clinical-scanner configurations. In each evaluation, clinically realistic simulated PET
imageswith known ground-truth tumor properties were generated, as described in section 3.2.1. The generated
datawas split into training and test sets. The proposedmethodwas trained and cross-validated using the training
set. The performance of themethodwas then evaluated using the independent test set. The evaluation study used
clinical images, was retrospective, IRB-approved, andHIPAA-compliant with awaiver of informed consent.

3.2.1. Generating realistic simulated PET images
The simulation strategy advances on a previously proposed approach to simulate PET images (Leung et al 2020).
Briefly, in thefirst step, realistic tumor-tracer distributionwas simulated at a very high resolution, so that the
simulated tumor can be described potentially as a continuous object, equivalent to fs(r) in equation (1), except
that r= (x, y) is a 2D vector. Specifically, the pixel size in the simulated tumor imagewas 0.13 mm.This was 1/32
of the resolution in the patient image. The shapes, sizes, and intensities of simulated tumorswere sampled from
the corresponding distribution derived from clinical images, so that the simulated tumors had variabilities as
observed in patient populations. An advancement on the approach proposed in Leung et al (2020)was to
simulate intra-tumor heterogeneity using a stochastic lumpy objectmodel (Rolland andBarrett 1992). Existing
clinical PET images containing the lung region butwith no tumor present were selected as templates to ensure
tumor-background realism and account for inter-patient variability. The projection data for the simulated
tumor and backgroundwere generated using a PET simulation software (Leung et al 2020). Since the simulated
tumor had higher resolution compared to the background, we had different projectionmodels for the tumor
and background separately. The projection data for the tumor and backgroundwere then added, enabling the
impact of image reconstruction on the tumor appearance and noise texture to be inherently incorporated (Ma
et al 2017). Reconstructionwas performed using a 2Dordered subset expectationmaximization (OSEM)
algorithm.Wehave validated the realism of the images simulated using this approach (Liu et al 2021). Detailed
simulation and reconstruction parameters will be provided for each of the studiesmentioned below.

3.2.2. Evaluating accuracy of the proposedmethod and comparing to other segmentationmethods
Wequantitatively compared the proposedmethod to several commonly used semi-automated PET
segmentationmethods, including 40%SUV-max thresholding (Sridhar et al 2014), active-contour-based
Snakes (Kass et al 1988), andMarkov random fields-Gaussianmixturemodel (Jha et al 2010, Layer et al 2015).
Themethodwas also compared to a fuzzy segmentationmethod, namely the fuzzy local informationC-Means
(FLICM) clustering algorithm (Krinidis andChatzis 2010). Further, themethodwas compared to aU-net-based
PET segmentationmethod (Leung et al 2020). The ground truth for training this U-net-basedmethodwas
defined such that each voxel was classified as either tumor or background. For all the semi-automated
segmentationmethods, the tumor locationwas provided bymanually generating a rectangular region of interest
containing the tumor. In contrast, the proposed andU-net-basedmethod did not require anymanual input and
were fully automated.

To generate the simulated images for this study, following the procedure in section 3.2.1, we used 318 2D
slices from32 patients for the background portion of the image. The simulated PET systemhad a spatial
resolution of 5 mm full width at halfmaximum (FWHM). The projection datawere reconstructed using the
OSEMalgorithmwith 21 subsets and 2 iterations, similar to the PET reconstruction protocol for the patient
images. The reconstructed pixel sizewas 4.07 mm× 4.07 mm. The networkwas trained and cross-validated
using 9540 images withfive-fold cross validation. Evaluationwas then performed on 2070 completely
independent test images, whichwere generated using 69 2D slices from7patients.
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3.2.3. Evaluating sensitivity of the proposedmethod to PVEs
To conduct this evaluation, similar to Le Pogam et al (2011) and Leung et al (2020), we studied the performance
of themethod as a function of tumor area. For this purpose, all test images were grouped based on the range of
the true tumor area. Specifically, the tumor areas were binnedwith a binwidth of 2 cm2. For each test image,
PVEs-affected tumormaskswere generated by applying a rectangular filter to the ground-truth tumormask,
following the strategy in Leung et al (2020). Thisfiltermodeled the resolution degradation due to the forward
projection and the reconstruction process. The tumor areameasured using the proposedmethod and the PVEs-
affected tumor area in all the test imageswere obtained and divided by the true tumor area. A ratio of unity
would indicate that the outputwas insensitive to PVEs. A ratio lower or higher than unity would indicate an
underestimation or overestimation of the true tumor area, respectively, showing that the segmentation output
was affected by PVEs (DeBernardi et al 2009).

3.2.4. Evaluating accuracy of the proposedmethod for different clinical-scanner configurations
For this purpose, we simulated two PET systemswith configurations similar to the Siemens Biograph 40 and
BiographVision scanners. The PET images reconstructed from these two scanners had different pixel sizes, as
dictated by the protocol. The Biograph 40 generated images of 128× 128 pixels, while the BiographVision
generated images of 192× 192 pixels. Details of the PET scanner acquisition and reconstruction parameters are
provided in appendix A (table A2). Clinical PET images of patients with lung cancer were obtained from these
scanners. Using these clinical scans and following the simulation procedure described in section 3.2.1, a total of
5520 and 6120 simulated PET imageswere generated for each scanner, respectively. These were used for
optimizing and training the network.Next, the trained networkwas tested on 1200 and 1320 independent
simulated images, respectively. The performance of the proposedmethodwas also compared to theU-net-based
method.

3.3. Evaluation of the proposedmethod using clinicalmulti-center PET images
Wenext evaluated the proposedmethod using clinical PET images. For this purpose, we used de-identified
patient data from theACRIN 6668/RTOG0235multi-center clinical trial (Machtay et al 2013), (Kinahan et al
2019), available fromTheCancer Imaging Archive (Clark et al 2013). In this evaluation study, FDG-PET images
of 78 patients with inoperable stage IIB/III NSCLCwere included. Detailed patient demographics with clinical
characteristics are provided in appendix A (table A3). As inMachtay et al (2013), the standard imaging protocol
involved recommended dose level from10 to 20mCi and image acquisition beginning 50–70min after FDG
injection. PET images were acquired fromACRIN-qualified clinical scanners (Scheuermann et al 2009), with
attenuation, scatter, random, normalization, decay, and deadtime correction applied in the reconstruction
protocol. For all the 78 patients, the PET images were of size 128× 128, with the pixel size ranging from4.69 to
5.47 mm.Detailed reconstruction parameters are provided in appendix A (table A4).

Evaluation of the proposedmethodwould require the knowledge of true TFAmaps. For this purpose, a
board-certified nuclear-medicine physician (J.C.M)withmore than 10 years of experience in reading PET scans
identified the primary tumor of each patient by reviewing the PET, CT, and fused PET/CT images along axial,
sagittal, and coronal planes usingMIMEncore (MIMSoftware, version 6.9.3). The radiologist was asked to
delineate a continuous (un-pixelated) boundary for each identified tumor. For each tumor, the radiologist drew
an external tumor boundary and considered thewhole volumewithin that boundary as belonging to the tumor
class. Aworkflowwas created inMIM to assist the radiologist with this delineation task. The radiologist used a
MIM-based edge-detection tool to segment the tumor in 3Don the fused PET/CT image, by placing the cursor
at the center of the tumor and dragging it out until the three orthogonal guiding lines reached the tumor
boundary. The radiologist then examined and adjusted the segmentation tomake itmore accurate and also
account for PVEs. Thismanual segmentationwas continuous and allowed for a voxel to consist of amixture of
tumor and normal tissues. The segmentationwas saved at a higher resolution than that of the PET image.

From thismanual segmentation, we obtained a discrete version of the tumormask, s(r), as defined in
equation (2), for each 2DPET slice and at a higher resolution than the PET image. Specifically, the pixel size in
the tumormaskwas 1/8 of that in the PET image. This resolutionwas chosen sincemore fine sampling did not
cause changes in the definition of the tumormask. Let this high-resolutionmanual segmentation be anN-
dimensional vector (N>M), wherewe recall thatMwas the dimension of the PET image. Denote the pixel
function in this high-resolution space by ( )f rn

manual , following the similar definition in equation (4). Define an
N-dimensional vectorψ(r)with each element of this vector defined as

⎧
⎨⎩

( ) ( )y =
n

r
1 if pixel in the manual segmentation is assigned to tumor class.

0 otherwise.
18n

Denote the pixel area of the PET image byA.We computed the ground-truth TFAwithin each image pixel as
follows:
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a
A
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n

N

n n m
1

2 manual

where the integral computes the fractional area that nth pixel in themanual segmentation occupies within the
mth pixel of the PET image. The networkwas then trained to estimate the posteriormean of am for themth
image pixel, following the training strategy described in section 2.2.

The networkwas trained and cross-validated using 565 2D slices from61 out of 78 patients. The trained
networkwas then evaluated on 140 completely independent 2D slices from the remaining 17 patients. The
performance of the proposedmethodwas compared to the other segmentationmethods, described in
section 3.2.2, both quantitatively and qualitatively, using the procedure andmetrics described in section 3.1.2.

4. Results

4.1. Evaluation of the proposedmethod using clinically realistic simulation studies
4.1.1. Evaluating accuracy of the proposedmethod and comparing to other segmentationmethods
Quantitatively, the proposedmethod significantly outperformed (p< 0.01) all other consideredmethods,
including theU-net-basedmethod, on the basis of the pixel-wise EMSE, normalized area EMSE,DSC, and JSC
(figure 2, table A5 in appendix A). The proposedmethod yielded the lowest pixel-wise EMSE, the lowest
normalized area EMSEof 0.02, the highest DSCof 0.90 (95%CI: 0.90, 0.91), and the highest JSC of 0.83 (95%CI:
0.83, 0.84). In addition, all the elements of the ensemble-average biasmapwere close to 0, providing the evidence
that themethod yielded an unbiased Bayesian estimate of the TFAmap, as shown in section 2.1. Further, the
proposedmethod accurately segmented relatively small tumors, and in particular, yielded highDSCof 0.84 for
the smallest segmented tumor axial cross-section of 0.88 cm2 in area. The diameter of this tumorwas
approximately twice the FWHMof the system resolution.

Wenext qualitatively show the performance of the proposedmethod on the task of estimating the TFAmap,
following the procedure described in section 3.1.2.Wefirst illustrate the procedure to obtain the isocontours
from the ground-truth and estimated TFAmaps for a representative tumor (figure 3).We then followed this
procedure to obtain the isocontours from the TFAmaps for different cases. Infigure 4, the comparisons between
the true and estimated isocontours for representative slices at four different TFA values are shown.We observe
that the proposedmethod yielded isocontours close to the true isocontours at different considered TFA values.
In addition, themethod yielded accurate segmentation for different tumor types, including thosewith
substantial intra-tumor heterogeneity as best observed infigures 4(b)–(d).

Figure 2.Evaluation result using clinically realistic simulation studies: (a) the pixel-wise EMSEbetween the true and estimated tumor-
fraction areas; (b) the normalized area EMSEbetween themeasured and true tumor areas (plot displayed in log scale on y-axis for
better visualization); (c) the ensemble-average bias of the proposedmethod; the (d)Dice similarity coefficient and (e) Jaccard
similarity coefficient between the true and estimated segmentations.
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4.1.2. Evaluating sensitivity of the proposedmethod to PVEs
Figure 5 shows that themethod yielded percent area overlap close to 100% for all considered tumor sizes,
including small tumors with axial cross-section less than 2 cm2. For these smaller tumors, the diameter was
approximately less than 3 times the FWHMof the system resolution. This was unlike the PVEs-affected tumor
areas, which, as expected, were significantly overestimated for smaller tumors. In addition, the proposed
method yielded highDSC and JSC for these small tumors, indicating accurate segmentation performance.
Further, the proposedmethod significantly outperformed theU-net-basedmethod.Overall, these results

Figure 3. Illustration of the procedure to obtain isocontours from the ground-truth TFAmap and the TFAmap estimated by the
proposedmethod.

Figure 4.Evaluation result using clinically realistic simulation studies: comparison between the estimated isocontours using the
proposedmethod (green) and the ground-truth isocontours (red), defined from set of points at four TFA values (0, 1/3, 2/3, 1).
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demonstrate the relative insensitivity of the proposedmethod to PVEswhen segmenting relatively small tumors.
Further, figure 6 shows that the proposedmethod consistently yielded lower pixel-wise EMSE and lower area
EMSEnormalized by the true tumor areas, compared to theU-net-basedmethod. The proposedmethod also
yielded higherDSC and JSC for all tumor sizes.

Figure 5.Evaluation result using clinically realistic simulation studies: (a) qualitative comparison between the isocontours generated
from the PVEs-affected TFAmaps and the isocontours generated from the estimatedTFAmaps using the proposedmethod. The
isocontours were defined as the set of points with TFA equal to 0.5. (b)Quantitative evaluation of the sensitivity of the proposed
method to PVEs. Results obtained using theU-net-basedmethod are also shown.

Figure 6.Evaluation result using clinically realistic simulation studies: effects of varying the tumor size on the task of (a) estimating the
tumor-fraction areas, (b) estimating thewhole tumor areas, and (c), (d) segmenting the tumor. Plots (a), (b) are displayed in log scale
on y-axis for better visualization.
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4.1.3. Evaluating accuracy of the proposedmethod for different clinical-scanner configurations
Figure 7 shows the comparison of the segmentation accuracy between the proposed and theU-net-based
method for two different clinical-scanner configurations, as described in section 3.2.4. The proposedmethod
significantly outperformed theU-net-basedmethod for both clinical settings, on the basis of pixel-wise EMSE,
normalized area EMSE,DSC, and JSC.

4.2. Evaluation of the proposedmethod using clinicalmulti-center PET images
Quantitatively, the proposedmethod yielded reliable segmentationwithDSCof 0.82 (95%CI: 0.78, 0.86).
For 16 out of 17 test patients (94.2%), both the proposed andU-net-basedmethod yielded correct tumor
localization in all 2D slices.When considering the patient cases with correct tumor localization, as shown in
figure 8 (with details provided in table A6 in appendix A), the proposedmethod significantly outperformed
(p< 0.01) all other consideredmethods, yielding the lowest pixel-wise EMSE, the lowest normalized area EMSE
of 0.14, the highestDSCof 0.87 (95%CI: 0.85, 0.89), and the highest JSC of 0.74 (95%CI: 0.70, 0.78). In

Figure 7.Evaluation result using clinically realistic simulation studies: evaluation of the segmentation performance for different
clinical-scanner configurations on the basis of (a) pixel-wise EMSE, (b)normalized area EMSE, (c)Dice similarity coefficient, and (d)
Jaccard similarity coefficient.

Figure 8.Evaluation result using clinicalmulti-center PET images: (a) the pixel-wise EMSEbetween the true and estimated tumor-
fraction areas; (b) the normalized area EMSEbetween themeasured and true tumor areas (plot displayed in log scale on y-axis for
better visualization); the (c)Dice similarity coefficient and (d) Jaccard similarity coefficient between the true and estimated
segmentations.
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addition, the proposedmethod accurately segmented relatively small tumors and yielded highDSCof 0.77 for
the smallest segmented tumor axial cross-section of 1.30 cm2 in area.

Qualitatively, we observe infigure 9 that the proposedmethod yielded an accuratematch to the true
isocontours defined at different considered TFA levels, following the strategy in section 3.1.2with illustration in
figure 3. Further, figure 10 shows that themethod accurately segmented tumorswith small sizes (a), (e), tumors
with convex shape (b), (f), tumors surrounded by regionswith high uptake (c), (d), (g), (h), and tumorswith
substantial intra-tumor heterogeneity (b), (d), (f), (h).

5.Discussion

In thismanuscript, we proposed a Bayesian approach to tissue-fraction estimation for segmentation in
oncological PET. Conventional segmentationmethods are typically classification-based, i.e. classifying each
voxel in the image as belonging to a certain tissue class. Thus, thesemethods are inherently limited inmodeling
TFEs.While probabilistic techniques can provide estimates of probabilities that each image voxel belongs to a
tissue class, these probabilistic estimates are unrelated to TFEs.We address this inherent limitation by framing
the segmentation task as an estimation problem,where the fractional volume that the tumor occupies in each
voxel is estimated. Through this strategy, we are able to explicitlymodel the TFEswhile performing
segmentation.

Quantitatively, the proposedmethod yielded accurate performance on estimation of the ground-truth TFA
maps and on segmentation tasks, and significantly outperformed the considered segmentationmethods,
yielding the lowest pixel-wise EMSE and normalized area EMSE, and the highest DSC and JSC, as evaluated
using both clinically realistic simulation studies (figure 2) and clinical images frommulti-center trial data
(figure 8).With clinical images, themethod yielded aDSCof 0.82 (95%CI: 0.78, 0.86). Qualitatively, themethod
yielded isocontours of closematch to the ground-truth isocontours defined at different considered TFA values,
as we observe from the results infigures 4 and 9. Additionally, as shown infigure 3 for a representative tumor
with substantial intra-tumor heterogeneity, the proposedmethod correctly estimates the TFA value as unity for
pixels that arewithin the tumor boundary but have relatively low intensity. This observationwas consistent

Figure 9.Evaluation result using clinicalmulti-center PET images: comparison between the estimated isocontours using the proposed
method (green) and the ground-truth isocontours (red), defined as set of points at four TFA values (0, 1/3, 2/3, 1).
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across different heterogeneous tumors, showing the reliable performance of the proposedmethod evenwith
heterogeneous tumors.We believe that themethod is reliable in this scenario because themethod estimates the
TFAby computing the conditional expectation of the TFA in that pixel given the entire reconstructed PET
image, and not just the intensity of that pixel (equation (11)). All these results demonstrate the ability of the
method to accurately estimate the TFAwithin each image pixel and yield accurate tumor segmentations.

The isocontours defined based on certain choices of TFA values were shown only to visually illustrate the
performance of the proposedmethod on the task of estimating the TFAmap. The proposedmethod yields the
estimated TFAmap as the final output. This allows themethod to provide the end user, such as a physician or a
radiation oncologist, the ability to visualize the TFAswithin each PET-image pixel, which they can use tomake a
decision based on their clinical use-case scenario.

Further, theproposedmethoddemonstrated the ability to accurately segment relatively small tumors. In realistic
simulation-based evaluation studies, themethod yielded ahighDSCof 0.84 for the smallest segmented tumor,with
an axial cross-sectionof 0.88 cm2 andadiameter approximately twice the FWHMof the systemresolution.With
clinical images, for the smallest tumor axial cross-sectionof 1.30 cm2, themethodyielded aDSCof 0.77. This
accuracy in segmenting small tumors is especially important for clinical tasks such as radiotherapyplanning,where
an accurate segmentation for small tumors is crucial to protect normal organs fromradiations.

While theU-net-basedmethodhaddemonstrated the ability to account for PVEs arising due to the low system
resolution (Leung et al2020), the proposedmethod significantly outperformed thismethod, emphasizing the
significance ofmodeling theTFEs inPET segmentation.This need tomodelTFEswas alsodemonstrated in the
results of evaluationusing clinically realistic simulation studies,where theperformanceof themethodwas assessed
fordifferent clinical-scanner configurations (section4.1.3). For example, for thehigher-resolutionBiographVision
scanner, theTFEsmaybemoredominant compared to system-resolution-relatedblur.Weobserved infigure 7 that
theproposedmethodwasmore accurate compared to theU-net-basedmethod for this scanner. Further, for both
clinical-scanner configurations, the proposedmethodyielded similar performance in estimating theTFAs and
segmenting the tumor, indicating that themethodwas relatively insensitive to the changes in voxel size.

Our evaluation of the proposedmethodwith clinical images of patients with stage IIB/III NSCLC shows
that themethod, when trainedwith 61 patients, yielded a reliable segmentation performance withDSCof 0.82.
When considering patient cases where the tumorwas localized correctly by themethod (94.2%), theDSC
further improved to 0.87. These results demonstrate the accuracy of themethod in clinical settings andmotivate
further clinical evaluation of themethodwith even larger datasets andwith delineations defined bymultiple
readers. Further, themethod is general, and the resultsmotivate the evaluation of themethod for segmenting
tumors other than the primary tumors, including infiltrating tumors, and segmenting tumors at other stages of
the disease, includingmetastasis. In all these cases, themethodwould require the corresponding definition of

Figure 10.Evaluation result using clinicalmulti-center PET images: qualitative assessment of the performance of the proposed
method in estimating the TFAmaps for small tumors (a), (e), for tumors with convex shape (b), (f), for tumors surrounded by regions
with high uptake (c)–(h), and for tumors with substantial intra-tumor heterogeneity (b), (d), (f), (h). Isocontours were defined as set of
points at TFA = 0.5.
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the ground-truth TFAs, or a surrogate for the ground truth, such as those frommanual delineations performed
by trained readers.

The results obtainedwith the proposedmethod alsomotivate further evaluation of thismethod for PET-
based clinical applications that require tumor delineation such as PET-based radiotherapy planning (ElNaqa
et al 2009, Zaidi et al 2009). Further, the resultsmotivate evaluation of thismethod for the applications of
computing PET-based volumetricmarkers ofmetabolic tumor volume (MTV) and total lesion glycolysis (Chen
et al 2012, Ohri et al 2015), and radiomic features (Zhang et al 2017,Mena et al 2017, Cook et al 2018), each of
which are being evaluated as prognostic and predictivemarkers of therapy response. Such evaluation can be
performed using task-specific evaluation frameworks (Kupinski et al 2006, Jha et al 2012, 2017, Barrett et al
2010). In this context, our initial results in both clinically realistic simulation (figure 2(b)) and patient studies
(figure 8(b)) on estimating the tumor area indicate the promise of the proposedmethod on the task of
quantifyingMTVmore accurately than conventionalmethods.

Our study has some limitations. First, while the theory of the proposedmethodwas developed in the context
of 3D imaging, our evaluation studies were conducted on a per-slice basis. This helped to increase the size of
training data andwas computationally less expensive (Leung et al 2020). However, implementing themethod to
3D segmentation is relatively straightforward andwould require only slightmodifications to our network
architecture, such as the ability to be input 3D images and output 3D tumor-fraction volumemaps. Thus, the 2D
convolutional layers in the networkwould be replaced by 3D convolutional layers. The overall network design
would remain similar. In fact, in the ongoing study on using an extended version of thismethod for segmenting
3D single-photon emission computed tomography (SPECT) images, we have seen that a similar designwas
sufficient to perform 3D segmentation (Moon et al 2020, Liu et al 2021). The results shown here and in the
SPECT study suggest that the proposedmethodwill yield reliable performance for 3D tumor segmentation in
PET, and this is an area of further research. Additionally, in this study, the proposedmethodwas used to
segment the image into only two regions. However, themethod is general, and in the ongoing study of 3D
SPECT segmentation, we are applying thismethod to segment the images into seven different regions. Another
limitation is that our evaluation studies currently consider cases where only the primary tumor is present in an
image.However, again, themethod could be generalized to potentially segmentmultiple tumors present in the
same image slice. Confirming this thoughwould require additional evaluation studies. Further, respiratory
motion of the lung, whichmay also cause blurring of the tumormask, was not considered in the proposed
method. Extending themethod to account for lungmotion is also an important research area. Finally, the
method does not incorporate tumor information fromCT imageswhile segmenting PET images. Incorporating
information fromCT images can provide a prior distribution of the TFAs for the estimation task. Thus,
investigating the incorporation of CT images into the proposedmethod is another important research direction.

We evaluated ourmethod in the context of segmenting oncological PET images of patients with lung cancer
and demonstrated accurate tumor segmentation performance. Themethod is general and thus, these results
motivate the evaluation of themethod for other cancer types. However, segmenting tumors in the lung region
could be easier due to the scarce FDGuptake in the lung. In other cancer types, tumor-to-background intensity
ratiosmay be lower, whichmaymake the segmentation task challenging. For example, renal tumors often have
similar FDGuptake as the normal renal cortex. Further, theremay be situationswhere the FDGuptake in tumor
is lower than the background, such as photon-deficient tumors on the liver. Thus, before application to other
cancers, corresponding validation studies would be needed. Additionally, themethod can be extended to
segment PET images for other applications, such as those in cardiology and neurology. Further, themethod can
be extended to segment images fromother imagingmodalities that have low resolution, such as SPECT and
optical imaging, with ongoing efforts in SPECT (Moon et al 2020, Liu et al 2021).

6. Conclusion

In thismanuscript, we proposed a Bayesian approach to tissue-fraction estimation for oncological PET
segmentation.We theoretically demonstrated that the proposedmethod yields a posterior-mean estimate of
the tumor-fraction volume for each voxel in the PET image. Evaluation of themethod using clinically realistic
2D simulation studies demonstrated the capability of themethod to explicitlymodel TFEs by accurately
estimating the TFAs. Themethod significantly outperformed the considered commonly used PET
segmentationmethods, including aU-net-basedmethod. In addition, themethodwas relatively insensitive to
PVEs and demonstrated accurate segmentation performance for different clinical-scanner configurations.
Further, the proposedmethod demonstrated accurate performance in segmenting clinical images of patients
with stage IIB/III NSCLC, obtained from the ACRIN 6668/RTOG0235multi-center clinical trial data. For
this dataset, themethod yieldedDSC of 0.82 (95%CI: 0.78, 0.86). In conclusion, this study demonstrates
the efficacy of the proposedmethod for tumor segmentation in PET.Open-source codes for the proposed
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method and supplementary data is available at https://github.com/ziping-liu/A-Bayesian-approach-to-
tissue-fraction-estimation-for-oncological-PET-segmentation.git.
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AppendixA

The architecture of the encoder–decoder network designed for the proposedmethod is provided in table A1.
Details of the simulated PET systems used in the evaluation of proposedmethod for different clinical-

scanner configurations are given in table A2.
Patient demographics with clinical characteristics and reconstruction parameters of clinical scanners in the

ACRIN6668/RTOG0235multi-center clinical trial are provided in tables A3 andA4, respectively.
Evaluation results of the proposedmethod using clinically realistic simulation studies and clinical images

frommulti-center clinical trial are given in tables A5 andA6, respectively.

Table A1.Architecture of the encoder–decoder network.

Layer type Filter size # offilters Stride Input size Output size

Layer 1 Conv. 3 × 3 32 1 × 1 168 × 168 × 1 168 × 168 × 32

Layer 2 Conv. 3 × 3 32 2 × 2 168 × 168 × 32 84 × 84 × 32

Layer 3 Conv. 3 × 3 64 1 × 1 84 × 84 × 32 84 × 84 × 64

Layer 4 Conv. 3 × 3 64 2 × 2 84 × 84 × 64 42 × 42 × 64

Layer 5 Conv. 3 × 3 128 1 × 1 42 × 42 × 64 42 × 42 × 128

Layer 6 Conv. 3 × 3 128 2 × 2 42 × 42 × 128 21 × 21 × 128

Layer 7 Conv. 3 × 3 256 1 × 1 21 × 21 × 128 21 × 21 × 256

Layer 8 Conv. 3 × 3 256 1 × 1 21 × 21 × 256 21 × 21 × 256

Layer 9 TransposedConv. 3 × 3 128 2 × 2 21 × 21 × 256 42 × 42 × 128

Layer 9 Skip connection (add layer 5) — — — 42 × 42 × 128 42 × 42 × 128

Layer 10 Conv. 3 × 3 128 1 × 1 42 × 42 × 128 42 × 42 × 128

Layer 11 TransposedConv. 3 × 3 64 2 × 2 42 × 42 × 128 84 × 84 × 64

Layer 11 Skip connection (add layer 3) — — — 84 × 84 × 64 84 × 84 × 64

Layer 12 Conv. 3 × 3 64 1 × 1 84 × 84 × 64 84 × 84 × 64

Layer 13 TransposedConv. 3 × 3 32 2 × 2 84 × 84 × 64 168 × 168 × 32

Layer 13 Skip connection (add layer 1) — — — 168 × 168 × 32 168 × 168 × 32

Layer 14 Conv. 3 × 3 32 1 × 1 168 × 168 × 32 168 × 168 × 32

Layer 15 Conv. 3 × 3 2 1 × 1 168 × 168 × 32 168 × 168 × 2

Output Softmax — — — 168 × 168 × 2 168 × 168 × 2

TableA2.Technical acquisition and reconstruction parameters of the
PET systems (FOV:field of view).

Parameters Biograph 40 Biograph vision

Transaxial FOV (mm) 550 700

Axial FOV (mm) 216 260

Reconstructionmethod OSEM OSEM

Subsets 21 21

Iterations 2 2

Crystal pitch (mm) 4.00 3.30

FWHM (mm)@1 cm 5.90 3.70

Voxel size (mm3) 4.30 × 4.30 × 4.25 3.65 × 3.65 × 3.27
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TableA3.Patient demographics with clinical characteristics.

Demographics/clinical characteristics Value Percent

Age:median (range) 67.5 (37–82) —

Sex Male 63% (49/78)
Female 37% (29/78)

Race White 90% (70/78)
African American 5% (4/78)

Asian 2.5% (2/78)
Other/Unknown 2.5% (2/78)

Performance status Fully active 41% (32/78)
Ambulatory 59% (46/78)

Clinical stage IIB 5% (4/78)
IIIA 55% (43/78)
IIIB 40% (30/78)

Chemotherapy regimen Carboplatin/paclitaxel 60% (47/78)
Cisplatin/etoposide 27% (21/78)

Other 12% (9/78)
Not available 1% (1/78)

Radiation dose < 50 Gy 1% (1/78)
50–60 Gy 8% (6/78)
60–70 Gy 58% (45/78)
� 70 Gy 27% (21/78)

Not available 6% (5/78)

TableA4.Reconstruction parameters of PET/CT systems used inACRIN6668/RTOG0235multi-center clinical trial. (DLYD: delayed
event subtraction; SING: singles-based correction;N/A: not available).

Parameter GE discovery ST GE discovery STE GEdiscovery RX CPS 1023 CPS 1024

Reconstructionmethod OSEM OSEM OSEM OSEM OSEM

Subsets N/A N/A N/A 8 8

Iterations N/A N/A N/A 2 2

Attenuation correction CT CT CT CT CT

Scatter correction Convolution

subtraction

Convolution

subtraction

Convolution

subtraction

Model-based Model-based

Randoms correction DLYD/SING SING SING DLYD DLYD

Pixel spacing (mm) 4.69 × 4.69

5.47 × 5.47

5.47 × 5.47 5.47 × 5.47 5.31 × 5.31 5.31 × 5.31

Slice thickness (mm) 3.27 3.27 3.27 2.50 3.38
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TableA5.Evaluation result using clinically realistic simulation studies: performance comparison between the proposedmethod and other considered segmentationmethods.

Metrics Proposed U-net-based MRF-GMM Snakes SUV40% max FLICM

Pixel-wise EMSE 2.04 17.00 25.64 43.63 27.13 30.26

Normalized area EMSE 0.02 0.49 4.07 8.55 1.34 1.78

DSC 0.90 (0.90, 0.91) 0.77 (0.77, 0.78) 0.73 (0.72, 0.74) 0.65 (0.64, 0.66) 0.64 (0.63, 0.65) 0.61 (0.60, 0.62)
JSC 0.83 (0.83, 0.84) 0.64 (0.64, 0.65) 0.60 (0.59, 0.60) 0.51 (0.50, 0.52) 0.50 (0.49, 0.51) 0.48 (0.47, 0.49)
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TableA6.Evaluation result using clinicalmulti-center PET images: performance comparison between the proposedmethod and other considered segmentationmethods on the basis of quantitative figures ofmerit. Results here are
reported for patient cases with correct tumor localization (94.2%).

Metrics Proposed U-net-based MRF-GMM Snakes SUV40% max FLICM

Pixel-wise EMSE 4.70 13.33 28.55 13.30 14.23 11.97

Normalized area EMSE 0.14 1.05 12.33 0.68 0.62 0.67

DSC 0.87 (0.85, 0.89) 0.79 (0.77, 0.82) 0.70 (0.68, 0.73) 0.78 (0.76, 0.80) 0.77 (0.75, 0.79) 0.79 (0.78, 0.80)
JSC 0.74 (0.70, 0.78) 0.63 (0.59, 0.67) 0.56 (0.53, 0.59) 0.65 (0.63, 0.68) 0.64 (0.62, 0.67) 0.67 (0.65, 0.69)
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Appendix B

In this appendix, we provide the proof of showing that the optimal estimatorminimizing the cost function in
equation (8) is unbiased in a Bayesian sense. To show this, we take the average of the estimate v̂* over the joint
distribution of noise realizations f̂ and true values v:

ˆ ˆ (ˆ ) ˆ

( ) ˆ (ˆ∣ ) ˆ

( ) ˆ (ˆ∣ ) ( ∣ˆ) ( )

ò ò
ò ò
ò ò ò

=

=

= ¢ ¢ ¢

d d

d d

d d d

v v f f v v

v v f f v v

v v f f v v v f v

pr ,

pr pr

pr pr pr , B1

M M

M M

M M M

* *

*

where in the second stepwe have expanded (ˆ )f vpr , using the conditional probability, and in the third stepwe
have inserted equation (12). By using the Bayes’ theorem and changing the order of integration, the above
equation becomes

ˆ ˆ (ˆ) ( ∣ˆ) ( ∣ˆ) ( )ò ò ò= ¢ ¢ ¢d d dv f f v v f v v v fpr pr pr . B2M M M*

Since ( ∣ˆ)ò =d v v fpr 1M , equation (B2) becomes

ˆ ˆ (ˆ) ( ∣ˆ) ( )ò ò= ¢ ¢ ¢d dv f f v v f vpr pr . B3M M*

Further, we can simplify the above equation using the law of total expectation and get

ˆ ( ) ( )ò= ¢ ¢ ¢ =dv v v v vpr . B4M*

Thus, the average value of the estimate is equal to the average true value, so that the estimator is unbiased in a
Bayesian sense.
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