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Abstract. Ovarian cancer has the lowest survival rate among all gynecologic cancers

due to predominantly late diagnosis. Optical Coherence Tomography (OCT) has been

applied successfully to experimentally image the ovaries in vivo; however, a robust

method for analysis is still required to provide quantitative diagnostic information.

Recently, texture analysis has proved to be a useful tool for tissue characterization;

unfortunately, existing work in the scope of OCT ovarian imaging is limited to only

analyzing 2D sub-regions of the image data, discarding information encoded in the full

image area, as well as in the depth dimension. Here we address these challenges by

testing three implementations of texture analysis for the ability to classify tissue type.

First, we test the traditional case of extracted 2D regions of interest; then we extend

this to include the entire image area by segmenting the organ from the background.

Finally, we conduct a full volumetric analysis of the image volume using 3D segmented

data. For each case, we compute features based on the grey-level co-occurrence matrix

and also by introducing a new approach that evaluates the frequency distribution in

the image by computing the energy density. We test these methods on a mouse model

of ovarian cancer to differentiate between age, genotype, and treatment. The results

show that the 3D application of texture analysis is most effective for differentiating

tissue types, yielding an average classification accuracy of 78.6%. This is followed by

the analysis in 2D with the segmented image volume, yielding an average accuracy
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Three-dimensional texture analysis for OCT images of the ovaries. 2

of 71.5%. Both of these improve on the traditional approach of extracting square

regions of interest, which yield an average classification accuracy of 67.7%. Thus,

applying texture analysis in 3D with a fully segmented image volume is the most

robust approach to quantitatively characterizing ovarian tissue.

PACS numbers: 87.85.Pq

Keywords : optical coherence tomography, texture analysis, ovarian cancer

Submitted to: Phys. Med. Biol.

1. Introduction

Despite concerted efforts to improve patient outcomes, ovarian cancer remains the

deadliest gynecologic malignancy in the United States. Ovarian cancer is not

particularly common, with an incidence of approximately 22,000 per year in the US.

However, the disease maintains a high mortality rate, with median five-year survival

less than 45% (Barnholtz-Sloan et al., 2003), due to a high proportion of advanced

disease at the time of presentation. In fact, a substantial majority of patients have

already experienced spread of their disease to local or distant tissues at initial diagnosis,

corresponding to FIGO stages III or IV, and conferring a significantly poorer prognosis

(Maringe et al., 2012). This insidious pattern of disease progression has led to strong

interest in the area of ovarian cancer screening, with the goal of identifying asymptomatic

tumors in their early stages and allowing more effective treatment. Screening modalities

that have been investigated include physical examination, transvaginal ultrasound

(TVUS), and serum tumor marker measurement (most commonly CA-125) (Carlson,

2017). Annual bimanual pelvic examination has been shown to have little value as

a screening test, with low sensitivity leading to a positive predictive value (PPV) of

only 1% in an asymptomatic screening population (Ebell et al., 2015). Ultrasound

examination provides favorable sensitivity and specificity, but also does not reach

adequate PPV in screening populations (Menon et al., 2009; van Nagell et al., 2011).

Although tumor markers such as CA-125 have utility in monitoring response to

treatment in previously diagnosed cancers, it is not useful as a screening test. Only

80% of early stage ovarian cancers produce an elevation in CA-125, and multiple

other conditions can produce elevated levels, leading to poor sensitivity and specificity

(Bast, 2003), and may prove to be useful strategies for identifying ovarian cancer in

asymptomatic women. However, at this time the US Preventive Services Task Force

continues to recommend no routine screening in average-risk patients (Moyer, 2012).

There remains a strong need for a high-quality, minimally invasive modality for effective

detection of early-stage ovarian malignancies.
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Three-dimensional texture analysis for OCT images of the ovaries. 3

Optical coherence tomography (OCT) is an interferometric imaging technique first

introduced in 1991 by (Huang et al., 1991) that yields depth-resolved, high-resolution

images of tissue, providing information about the tomography and microstructure.

Historically, OCT has been applied with much success to biological imaging in the

human eye (Swanson et al., 1993; Hee et al., 1995; Abràmoff et al., 2010), the lung

(Tsuboi et al., 2005; Otte et al., 2013), the esophagus (Lightdale, 2013), the coronary

artery (Ferrante et al., 2013; Abdolmanafi et al., 2017), in addition to a number of

other organs including the ovaries (Hariri et al., 2010; Wang, 2015; Drexler et al.,

2014). The physical principle of OCT systems is similar to that of ultrasound, except

that OCT systems measure time-resolved backscattered light instead of sound waves

(Schmitt, 1999). In a typical OCT configuration, a low-coherence infrared light source

is coupled into a Michelson interferometer. The reference arm light is reflected by a

mirror, while the sample arm light is focused onto the sample. The back-reflected

light from the reference and sample arms is combined and directed to a wavelength-

resolved detector. The depth-resolved reflectance of the sample is encoded in the

spectral frequency information on the detector, which can be recovered with a Fourier

transform. By scanning the beam across the sample, two- and three-dimensional images

can be acquired. Both the axial and lateral resolution depend on the source wavelength,

which commonly is in the range of 800 - 1300 nm. The axial resolution also depends

on the bandwidth of the source, whereas the lateral resolution is determined by the

numerical aperture of the focusing lens (Wang, 2015). Depending on the application,

an OCT system can be designed for a specific axial and lateral resolution; typically

these are on the order of several microns. A complicating factor of OCT is the depth

dependence of the system performance. Lateral resolution varies throughout the image

depth; furthermore, the signal is attenuated due to absorption and scattering, and the

axial resolution is effectively degraded in deeper tissue, as the assumption of single-

scattering becomes less true. Ultimately, this leads to the image statistics varying as a

function of depth, which can frustrate attempts at quantitative analysis. Despite these

drawbacks, OCT is an effective approach to characterizing tissue microstructure. In

particular, OCT has been demonstrated to image a wealth of microstructural features

in the ovaries, including the stroma, epithelium, and collagen, which show great potential

for disease diagnostics and tissue classification (Hariri et al., 2010; Wang, 2015; Welge

et al., 2014; Brewer et al., 2004; Watanabe et al., 2015)

While OCT provides an abundance of information about tissue health,

quantitatively analyzing three-dimensional OCT data of the ovaries is challenging due

to the scaling of processing time with higher-dimensional data, the depth-dependent

processes described above, the presence of speckle noise (Schmitt et al., 1999), and

also the large biological variation inherent to the ovaries. While recent advances in

computing have enabled the rapid processing of large datasets, determining a robust

analytic method that yields relevant pathological information remains a major objective.

One potential approach is to characterize the microstructural features using texture

analysis. Previously, texture analysis has been applied in medical imaging to classify
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Three-dimensional texture analysis for OCT images of the ovaries. 4

different tissue types, in some cases with over 90% accuracy (Gossage et al., 2003;

Miller and Astley, 1992; Mostaço-Guidolin et al., 2013). It follows that analyzing the

texture of OCT images can potentially yield quantitative diagnostic information. With

this approach, two major sources of texture features arise in OCT images: first is

the biological composition of the tissue. In particular, collagen is a major source of

scattering in tissue that changes throughout the progression of cancer (Wang, 2015;

Saidi et al., 1995; Jacques, 1996). The physiological structure of the ovaries, such as the

corpora lutea, contain a rich network of collagen, giving texture analysis high potential

for tissue health assessment. Another source of texture in OCT images is the speckle

inherent to the imaging modality (Schmitt et al., 1999). While speckle is a general

characteristic of partially coherent imaging, previous work has shown that the speckle

can be characterized with texture analysis and differentiate material media (Gossage

et al., 2006). In this study, the imaging specifications are tuned such that changes in

speckle are not the primary source of texture features; thus, we focus on assessing the

texture changes introduced by disruption in the collagen matrix and microstructures.

Other scattering processes introduced by the biological changes throughout disease

progression will influence the texture as well (Beauvoit et al., 1995; Wilson et al., 2015;

Jacques, 2013), making texture an attractive target for potentially differentiating objects

and tissue types.

Texture analysis in image processing is a general method to describe the local

variations in image brightness. Often used in conjunction with the concept of tone, which

is related to the varying levels of image brightness, texture characterizes the spatial

distribution of the tones in an image (Haralick et al., 1973). A number of techniques

have been developed for texture analysis of images, which can be generally categorized

into three groups: statistical, spectral, and structural methods. Statistical methods are

based on analyzing image histograms by computing their statistical moments and other

properties (Haralick, 1979). These approaches are best suited to characterize features

such as inhomogeneity and contrast. Spectral methods apply autocorrelation and

Fourier analysis to evaluate periodic features of an image. Finally, structural approaches

decompose the image into a set of sub-patterns, arranged according to certain placement

rules. To date, there has been an abundance of work investigating the application of

different texture analysis methods to volumetric medical imaging (Depeursinge et al.,

2014). Unfortunately, very little of this work has been focused on OCT; furthermore, the

existing body of literature is either confined to two-dimensional (2D) analysis (Gossage

et al., 2003, 2006; St-Pierre et al., 2017), or applied to retinal OCT imaging (Quellec

et al., 2010; Kafieh et al., 2013). In particular, by confining the analysis to 2D, critical

pathological information could be discarded; therefore, applying three-dimensional (3D)

texture analysis could be a powerful diagnostic tool to aid physicians. A further

challenge is the selection of the image area to analyze. Traditionally, this is done by

selecting a square area within the region of interest. Unfortunately, due to the irregular

shape of the organs, this may discard valuable information that is not captured within

the selection, leading to higher variance in the analysis. Moreover, the manual selection
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Three-dimensional texture analysis for OCT images of the ovaries. 5

of regions of interest can be time consuming for volumetric data, which would not lend

itself well to applications in computer-aided diagnosis.

Here, we address these challenges by conducting 3D texture analysis on OCT

images of a mouse model of ovarian cancer. We apply and compare three different

approaches to texture analysis techniques in both 2D and 3D to examine which is has

the highest accuracy for tissue classification. In all three cases, we compute features

based on analyzing the Grey level co-occurrence matrix, as well as using a new method

to parameterize the frequency distribution of an image. First we test the performance

of the traditional approach relying on extracting 2D square regions of interest. We then

apply the analysis to 2D images with a fully segmented organ area. Finally, the analysis

is extended to 3D, where the fully segmented organ volume is considered. To the best

of our knowledge, this is the first such study to employ these methods in 3D to analyze

the ovaries. In this manuscript, we first describe the OCT system and mouse model

used to in the experiment. Then, we provide an overview of the image pre-processing

and texture analysis methods, followed by the classification scheme. We then report the

results of the three types of analysis, showing that the 3D application of texture analysis

yields higher classification accuracy than either of the 2D cases, providing features that

can be used to differentiate between mouse populations with high statistical significance

(p < 0.001). These results suggest that texture analysis may be useful as an aid for

ovarian cancer screening.

2. Methods

2.1. OCT System

Three dimensional OCT imaging was completed with a swept source OCT system

(OCS1050SS, Thorlabs). The system operates in non-contact mode with a central

wavelength of 1040 nm and spectral bandwidth of 80 nm. A central wavelength of

1040 nm was chosen to balance penetration depth with resolution; while other common

systems operate around 1310 nm, which penetrates more deeply, we chose a slightly

shorter wavelength of 1040 nm to enable increased resolution. This allows us to capture

textural features, while retaining good penetration depth. The axial scan rate was 16

kHz and the power on the sample was measured as 0.36 mW . The system was set to

average 4 axial scans to increase the signal-to-noise ratio. The OCT system has 11 µm

transverse resolution and 9 µm axial resolution in tissue with an approximate NA of

0.055 (focal length of 36 mm). Imaging volume was (x lateral) 4 mm × (y lateral) 4

mm × (z axial) 2 mm deep and 750 × 752 × 512 pixels (pixel size of approximately 5

µm × 5 µm). The image volume was exported as a series of 2D en face (x− y) images

or slices, and saved to disk as 16-bit .tif image files.
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Three-dimensional texture analysis for OCT images of the ovaries. 6

2.2. Mouse Model

For this experiment, we used a transgenic mouse model in which females spontaneously

develop bilateral epithelial ovarian cancer. The TgMISIIR-TAg (TAg) mouse was

obtained from Dr. Denise Connolly and colleagues at Fox Chase Cancer Center

(Connolly et al., 2003; Quinn et al., 2010). Male TAg mice were breed to female

C57Bl/6 (Wild Type) mice. This resulted in producing offspring expressing either the

TAg or Wild Type geneotype. Female offspring of both geneotypes were injected with

Vehicle (sesame oil) or 4-Vinylcyclohexene diepoxide (VCD) dissolved in sesame oil at a

concentration of 80 mg/kg for 20 days beginning at post-natal day seven. VCD was used

to destroy preantral follicles, resulting in early ovarian failure. VCD has previously been

used as a model for menopause (Romero-Aleshire et al., 2009). Mice were sacrificed at

four and eight weeks for imaging, which was performed within 30 minutes of explant.

The ovaries were rinsed with saline and covered with sterile surgical lubricant (Surgilube,

HR Pharmaceuticals, York PA). Our previous investigations, as well as experience on

this project support the assertion that OCT images have minimal changes over a 30

minute post-explant period. There should be minimal to no noticeable changes in tissue

structure over the time required for transfer. Our previous investigations support this,

as we saw minimal changes in signal over the same period of time. For brevity, we refer

to different groups in figures by abbreviating (age-genotype-treatment). For example,

4WV refers to four weeks of age, Wild Type genotype treated with VCD and 8TS refers

to eight weeks of age, TAg genotype treated with sesame oil.

With this procedure, we have eight different groups to compare (2x2x2 for age,

genotype and treatment). Four mice in each group were imaged; each of the two ovaries

are analyzed, resulting in eight samples per group except for the four-week Tag mouse

injected with sesame oil, for which seven mice were analyzed, resulting in fourteen

samples (Table 1). Within these eight groups we have three distinct class designations:

age, genotype and treatment. This poses an interesting challenge for class separation

based on image analysis, as we expect the structure of the ovary to change due to each

of these three processes. Firstly, we expect the TAg mice to spontaneously develop

ovarian cancer; however, this likely will not be visible until the mice are eight weeks

old. Secondly, the mice treated with VCD will undergo major physiological and visible

tissue changes including reduction in the number of follicles, as the treatment will mimic

menopause. Attempting to classify these images based on image content provides a

unique challenge, as the biological variation among each group may not be quantifiable

using the same feature set; thus this provides a more complex challenge in classification

than a binary comparison.

2.3. Image Preprocessing

All images (both 2D and 3D) were first filtered with a median filter (3 pixel kernel),

followed by a Gaussian filter (kernel sigma = 0.5 pixel) to minimize the influence of

noise. The median filter removes single-pixel speckle noise, and the Gaussian filter
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Three-dimensional texture analysis for OCT images of the ovaries. 7

Table 1. Number of ovaries harvested and imaged for each of the different mouse

groups. Two ovaries were harvested for each mouse.

Age 4 Week 8 Week

Treatment VCD Sesame oil VCD Sesame oil

Genotype Wild Type 8 8 8 8

TAg 8 14 8 8

suppresses high frequency noise. 2D analysis proceeded by selecting one en face OCT

image slice from the superficial region of each ovary. For the first approach, we tested the

performance of the traditional method using manually-extracted 2D square regions of

interest (Figure 1a). Four regions of interest for each ovary were selected using ImageJ

with no overlap, each measuring 85 × 85 pixels (425 × 425 µm) (Rasband, 2012).

These regions were selected at random, but regions of fat and dark regions with no

signal were excluded. The size of these squares was chosen to ensure that the 4 regions

of interest could be contained entirely within the area of the smallest ovary. Images are

normalized to range between a value of zero and one. This ensures that the texture

features are independent of total signal strength. While the noise in the system (speckle

and shot noise) depends on the signal level, the features due to tissue morphology will

be independent.

The second two approaches involved analyzing the full image area (2D) and volume

(3D) of the image data corresponding to the ovary. We first segmented the image to

separate the organ from the background using ImageJ. The entire image stack for an

ovary was loaded into the program. We located the first image at the most superficial

location where the ovaries were visible and the image is not occluded by artifacts such

as strong surface back reflections (approximately 40 µm deep). A mask was then drawn

around the ovaries using the Create Mask tool (Figure 1a). The result was a binary

mask where the value was one within the drawn region of interest and zero elsewhere.

The mask was saved to disk, and the process was repeated approximately every ten

slices until the average brightness within the ovary dropped below 20% of that recorded

from the first superficial image. Once this step was complete, the segmentation mask

was linearly interpolated between each slice to account for the sampling step of ten slices

(Figure 1). Then the mask was applied to the image stack to isolate approximately only

the ovarian tissue. For the 2D case, analysis was conducted on each slice individually,

while for the 3D case, the entire image volume was analyzed simultaneously.

2.4. Texture Analysis

We apply two methods of texture analysis to extract features from the acquired

images. First is based on constructing and analyzing the Grey-level co-occurrence matrix

(GLCM) (Haralick et al., 1973). The GLCM is a spatial histogram that describes the

distribution of grey-level values in an image. Each entry in the GLCM, p(i, j|d, θ),
corresponds to the probability of a pixel with a grey-level of (i) being a distance (d)
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Three-dimensional texture analysis for OCT images of the ovaries. 8

Figure 1. The ovaries are manually segmented from the image background, selecting

regions of interest (ROIs) both as square areas and as the entire ovary (a). The

segmentation is done throughout the tissue depth (b), which is then interpolated to

yield the 3D segmentation. This gives rise to three types of ROIs: 2D square, 2D

segmented and 3D segmented (c).

pixels away from a neighboring pixel with a grey-level of (j) in the (θ) direction (Figure

2a). With an image quantized into Ng grey levels, the GLCM is an Ng × Ng matrix.

For a two dimensional image, four directions for (θ) are possible: 0 degree, 45 degree,

90 degree, 135 degree (Figure 2b). Treating the three-dimensional case gives rise to an

additional nine directions in addition to these four to total thirteen (Figure 2c). In this

study, we fix (d) at one pixel, and compute the GLCM in 2D using the four relevant

directions and in 3D with all thirteen possible directions.

From the GLCM, we compute thirteen texture features originally proposed by
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Three-dimensional texture analysis for OCT images of the ovaries. 9

Figure 2. The GLCM is constructed by measuring the probability of two pixel values

i and j occurring a distance d from one another (a). This can be done for four different

directions in 2D (b), and thirteen directions total for 3D (c ).

(Haralick et al., 1973) to describe the texture of an image as follows:

Angular Second Moment =
∑
i

∑
j

p(i, j)2, (1)

Contrast =

Ng−1∑
n=0

n2

Ng∑
i=1

Ng∑
j=1

p(i, j); n = |i− j|, (2)

Correlation =
∑
i

∑
j

(ij)p(i, j)− µxµy
σxσy

, (3)

where µx, µy, σx, σy are the mean and standard deviations of px and py, the marginal

probability density functions;

Sum of Squares: Variance =
∑
i

∑
j

(i− µ)2p(i, j), (4)

Inverse Difference Moment =
∑
i

∑
j

1

1 + (i− j)2
p(i, j), (5)

Sum Average =

2Ng∑
i=2

ipx+y(i), (6)

where x and y are the row and column indices of the GLCM and px+y(i) is the

probability of the two indices summing to x+ y;

Sum Entropy = fs = −
2Ng∑
i=2

px+y(i) log(px+y(i)), (7)

Sum Variance =

2Ng∑
i=2

(i− fs)2px+y(i), (8)

Entropy = −
∑
i

∑
j

p(i, j) log(p(i, j)), (9)
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Three-dimensional texture analysis for OCT images of the ovaries. 10

Difference Variance =

Ng−1∑
i=0

i2px−y(i), (10)

Difference Entropy = −
∑
i

∑
j

px−y(i) log(px−y(i)), (11)

IMC 1 =
Sxy − Sxy1

max(Sx, Sy)
, (12)

IMC 2 = (1− exp(−2(Sxy2 − Sxy)))1/2 (13)

where IMC is the Information Metric of Correlation, Sxy is the Entropy in 9,

Sx and Sy are the entropies of px and py, Sxy1 = −
∑

i

∑
j p(i, j) log(px(i)py(i)), and

Sxy2 = −
∑

i

∑
j px(i)py(j) log(px(i)py(i)).

We compute the thirteen features using (1) (2) for each GLCM corresponding to

the thirteen possible directions for (θ). We then average the features for the thirteen

directions to produce a single set of features; by averaging over the different directions,

we effectively create rotationally-invariant features, which is important when dealing

with unconstrained objects such as biological tissue.

These features can be interpreted physically to understand what properties of the

image are quantified. Here we describe five of the most common features used to describe

image texture. The Angular Second Moment, also known as energy (1), is found by

summing the squared values in the GLCM; this feature thus is a high value when the

image has a small number of intensity distributions or is homogeneous, e.g, the GLCM

has a few, large entries. The entropy (9), introduced by (Shannon, 1948), describes

the inhomogeneity of the image. By multiplying the GLCM entries by their logarithm,

smaller values are amplified, thus having the opposite effect of the Energy feature. Both

the contrast and variance (2 and 4) are well-known statistical parameters that measures

the variations in tone by providing higher weight to GLCM entries that are far from the

diagonal. Essentially the opposite of variance, the inverse-difference moment amplifies

the diagonal entries of the GLCM. Physically, this corresponds to a high feature value

for low-contrast areas, such as large patches of uniform grey-level. Each of the other

13 Haralick features provides additional information regarding image texture, and are

described in (Haralick et al., 1973).

2.5. Frequency Analysis

We compute a second set of features by analyzing the magnitude of the discrete Fast

Fourier transform (FFT) of the image, both in 2D and 3D. For both cases, the FFT

of the image data is calculated and stored in a matrix where the central value in the

matrix represents the DC frequency component. We then integrate the magnitude of the

spatial frequencies in a disk centered at the origin (Figure 3a). The value is normalized

to the total signal magnitude, representing the percentage of the total signal contained

in a given disk. The radius of this disk is then increased iteratively and the total signal
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Three-dimensional texture analysis for OCT images of the ovaries. 11

proportion is recorded until the radius has reached 80% of the maximum, beyond which

values are very small, and may contain mainly noise. Any artifacts caused by the edge

introduced by the segmentation are also mitigated, as the edge would be characterized

by very high spatial frequencies. This is effectively the cumulative distribution function

of the energy density; taking the difference between the values for any two radii gives

the proportion of energy contained within a specific frequency band. By differentiating

the cumulative distribution function, we produce a distribution of the energy density as

a function of spatial frequency. Images that are highly homogeneous would have higher

energy density associated with lower spatial frequencies. On the other hand, images with

more inhomogeneity would have more energy density corresponding to higher spatial

frequency. We conducted an analogous procedure for the 3D case; however, as a pixel in

the axial direction (z) is a smaller physical distance than the en-face axes (x, y), the area

of integration was taken as an ellipse, where each radius for each axis was normalized

by the total axis length (Figure 3b).

Figure 3. The frequency analysis is done by integrating the fractional energy in a

disk centered at the origin of coordinates for the FFT (a). The radius of the disk is

increased until reaching 80% of the maximum value. For the 3D case, the disk becomes

an ellipse, scaled by the axis lengths in x, y and z (b).

We then parameterize the distribution by fitting the energy density curve to the

following equation:

y = αe−βx, (14)

where x is spatial frequency and y is the energy density. The frequency distribution

is thus described by the two features α and β, which are combined with the thirteen

Haralick features to create feature vectors with fifteen elements total. The choice of a

decaying exponential was arbitrary, but visually a good fit to the data. These feature

vectors were normalized along each feature axis to a value between 0 and 1 for the
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Three-dimensional texture analysis for OCT images of the ovaries. 12

training set. The analyses were completed in Python using a computer with an Intel

Core I-4710HQ CPU (2.50 GHz) and 16 GB DDR3L memory.

2.6. Selection of Feature Subsets

Once feature vectors were created, redundant features were removed by calculating

the correlation matrix for the feature set. For each pair of features which was highly

correlated (correlation > 0.85) (Lingley-Papadopoulos et al., 2008), one feature from

the set was removed. For each correlated pair, we removed the feature which yielded

a higher average p-value using a students t-test to discriminate between the groups.

Significance was set at p < 0.05.

It is well-documented in the literature that the combination of two features may

yield high performance even when the individual features do not perform well (Lingley-

Papadopoulos et al., 2008; Duda et al., 2001).However, it is also understood that

there is some optimal number of features that balances the information content and

probability of error; thus, including an excessive number of features can in fact reduce

the performance compared to the careful selection of a subset. We exhaustively tested

the classification performance of feature subsets consisting of five or fewer features, as

the literature suggests that high performance can typically be achieved with two to five

features (Lingley-Papadopoulos et al., 2008; St-Pierre et al., 2017).

Several criteria exist to evaluate how well a set of features can separate different

classes within a cluster of data. Here we use the criteria of the trace of the ratio of the

between-class scatter (SB) and within-class scatter (Sw), which has previously been used

to this effect with much success (Lingley-Papadopoulos et al., 2008). The within-class

scatter Sw(i) for cluster i represents variance of the data points within cluster i, and

can be calculated as (Duda et al., 2001):

Sw(i) =
∑
j

(xj −mi)(xj −mi)
T , (15)

where mi is the mean vector for cluster i, and x is the set of j points in cluster i.

The total within-class scatter Sw for a group of clusters is the sum of the within-class

scatter across all clusters Sw =
∑
Sw(i).

Conversely, the between-class scatter SB for a group of classes represents the

variance separating the clusters, and may be calculated as

SB =
∑
i

ni(mi −m)(mi −m)T , (16)

where m is the mean vector for the entire data set, mi is the mean vector for

cluster i, and ni is the number of points in class i. For both Sw and SB, the result is an

N×N matrix (where N is the number of features) describing the variance between each

features for the data within each class (Sw) and between each class (SB). Thus, taking

the ratio of SB to Sw will yield a value that is large when a given feature is consistent

(low variance) within a class and different (high variance) between each class. Taking
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Three-dimensional texture analysis for OCT images of the ovaries. 13

the trace of this ratio is equivalent to summing the magnitude of the eigenvectors,

which represent the principal components of the matrix. In this case, these eigenvalues

quantify how well a given set of features will separate two classes. Thus, maximizing

this value increases the separability of the classes.

2.7. Classification

To classify the data, we use linear discriminant analysis (Welling, 2009), which has

previously been applied in the scope of medical image classification (Lin et al., 2010;

Reshetov et al., 2016). This approach is closely tied to the criteria used to select the

feature subsets. To obtain the linear discriminants, we solve the generalized eigenvalue

problem for the matrix S−1
W SB. After this decomposition, we are left with a set of

eigenvectors and eigenvalues; in this case, the eigenvectors essentially represent the

axes which have highest variance between classes. The magnitude of each eigenvector

represents how suitable a given axis is for class separation. Following this decomposition,

we reduce the dimension of the problem by selecting the top three eigenvectors, which

we found account for at least 99% of the variance in every case. We then transform the

data to this new subspace and find the optimal decision boundary, which we generate by

fitting the class conditional densities to the data and using Bayes rule; here we assume

a Gaussian probability density distribution for each class. To validate the model, we

use leave-one-out cross-validation, which is a well-documented method to evaluate the

accuracy of such a model. This validation is conducted by iteratively removing a single

data point, training the model on the remaining points and then testing the removed

sample. By iterating through every point, we maintain independence of the test and

training data since the training set never includes the point which is tested. There are

eight groups, but only certain comparisons are necessary. We performed 12 comparisons:

for a given age and treatment, the difference between genotypes, for a given treatment

and genotype, the difference between ages, and for each genotype and age, the difference

between treatments.

3. Results and Discussion

In this section, we present the results of computing the features using both the GLCM

approach and the frequency analysis. We do so to illustrate that some individual features

yield high statistical significant between groups, while others do not. In particular, we

emphasize that the 3D analysis yields, on average, higher statistical significant for more

groups than the 2D analogs. Following this, we present the results of the classification,

beginning by inspecting the distribution of features determined to be most appropriate,

followed by the resulting linear discriminant analysis, ultimately showing that the 3D

application of texture analysis is most appropriate for tissue classification.
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Three-dimensional texture analysis for OCT images of the ovaries. 14

3.1. GLCM Features

The results of computing the features from the GLCM in 2D (manually extracted

squares) are illustrated in Figure 4 for a representative set of features. Using these

features to perform pairwise comparison between different mouse groups, we see that

the most effective feature is the inverse difference moment, which shows statistical

significance for three different comparisons. Unfortunately, while the other features

show significance for a select few comparisons, the majority of comparisons have no

parameter that provides a statistically significant measure of difference. We observed

similar results for the 2D analysis using the entire ovary.

Evaluating the results in 3D, we see marked improvement over the 2D analog. In

this case, we observed that for pairwise comparison between most groups, more than

one feature can be used to distinguish the groups with high statistical significance.

Figure 5 illustrates a representative set of features that show high potential for tissue

classification. Entropy, for example can be used in seven different pairwise comparisons.

Broad features such as entropy compliment other more specific features that are effective

for a subset of groups, such as the difference variance for age or difference entropy for

treatment.

While we see tremendous improvement over the 2D analysis, it is not possible

to distinguish between all groups, even with 3D analysis. In particular, no feature

provided a statistically significant difference between genotype for both 4 week and 8

week mice treated with sesame oil. It is possible that this difficulty may be a result of

the large changes introduced by age and treatment, which effectively mask variations

that would be observed by the different genotype. Another potential cause may be

the lack of any biological variability. It is possible that these mouse groups do not

exhibit significant structural changes between one another, thus leading to very similar

values for the texture features (Figure 6a,b). Hence, this would result in the features

being a poor classifier between the two groups. In contrast, we observe that many

parameters are significant for differentiating between Wild Type and TAg mice at 8

weeks treated with VCD (Figure 6c,d). This suggests that this mouse population likely

has undergone a fundamental biological change that can be quantified with texture

analysis. These results are highly encouraging and indicate that texture features can

be used to quantitatively assess and classify tissue in the ovaries. With the large

number of relevant features, it remains a challenge to determine which features are

most diagnostically relevant and robust.

3.2. Frequency Analysis

Example fits of the energy density as a function of spatial frequency are illustrated

in Figure 7, which illustrates that the energy density is distributed differently for 4

week and 8 week wild type mice treated with VCD. The results for parameterizing

the energy density as a function of frequency for all eight groups are illustrated in

Figure 8 for both 2D and 3D. We observe statistical significance for a number of
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Three-dimensional texture analysis for OCT images of the ovaries. 15

Figure 4. Representative features from the 2d application of the GLCM. The

parameters of angular second moment (a), correlation (b), variance (c) and inverse

difference moment (d) proved to be the most statistically significant for differentiating

the mouse groups. Error bars are given by the standard deviation of the result

evaluated over the population of mice. Significance levels are represented by a triangles

for age groups, + for genotypes and * for treatments, with one and two symbols for p

<0.05 and p < 0.01, respectively.

different comparisons using the parameters. The same comparisons consistently produce

statistically significant results in both 2D and 3D, indicating that these groups exhibit

the highest degree of change in the frequency content.

We find that the there is little correlation between the feature value of alpha and

beta between the 2D and 3D calculation. Furthermore, while there are more, and

more highly significant, differences between groups, with 3D, the results are not highly

superior to 2D analysis, as was observed with the GLCM. Also, some comparisons are

significant in 2D but not in 3D. This may indicate that the frequency distribution in

2D is shaped fundamentally different than in 3D; while we observed minimal fitting

error, it still may be more appropriate to parameterize the distribution using a different

functional form. Nevertheless, the results shown here indicate that there is a quantifiable

change in the frequency distribution as the underlying biology changes.
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Figure 5. Representative features from the 3D application of the GLCM. Entropy is a

powerful feature for differentiating all groups (a). Individually, difference variance (b)

is useful for age, while difference entropy is powerful for treatment (c) and sum average

provides statistical significance for genotype (d). Error bars are given by the standard

deviation of the result evaluated over the population of mice. Significance levels are

represented by a triangles for age groups, + for genotypes and * for treatments, with

one and two symbols for p <0.05 and p < 0.01, respectively.

3.3. Feature Selection

Of the fifteen original features (thirteen texture, two frequency), three pairs of features

were found to share correlations with one another. In particular, we found high

correlation between the inverse difference moment and the angular second moment, the

sum variance and sum of squares: variance, and between the entropy and sum entropy.

In each case, the feature with the higher average p-value across all twelve comparisons

was removed. Using the trace metric to select the best features for discrimination, we

find that the selected features are distributed relatively uniformly across the set (Figure

9). This illustrates how some features may not be suitable taken alone; however, these

features may be relevant when taken with other complimentary features.

Interestingly, while we see a roughly even feature distribution for classification,

many of these features did not yield significant p-values for differentiating between

classes individually. This validates the expectation that some features are only relevant
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Figure 6. Representative images of the ovaries for mice at 4 weeks treated with sesame

oil for wild type (a) and TAg (b) genotypes. There is very little observable differences

between the two, leading to very similar texture features. In contrast, wild type (c)

and TAg (d) mice at 8 weeks while treated with VCD show clear differences, reflected

in the variation among texture features.

for separation when combined with other complimentary features, further motivating

the use of dimension reduction techniques such as LDA or principal component analysis.

After computing the linear discriminants, we found that in every case, at least 95% of the

variance was contained in the first two linear discriminants. Once the data is projected

onto these axes, we could observe clear class separation when investigating age (Figure

9), treatment (Figure 9) and genotype (Figure 9). While projecting into two dimensions

is useful to illustrate the class separability, we retain the top three linear discriminants

during classification, which accounted for over 99% of the variance for each case.
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Three-dimensional texture analysis for OCT images of the ovaries. 18

Figure 7. The energy density is distributed differently as a function of frequency for

different mouse groups, for example 4 week (magenta + symbols) and 8 week (orange

dots) wild type mice treated with VCD. Fitting these curves to a two-parameter model

yields an additional two features for analysis. The curves shown here are for the 3D

analysis

3.4. Classification

The classification results are summarized in Table 2. We see that applying texture

analysis in 3D yields the highest accuracy on average, with an overall accuracy of

78.6%. This is followed by 2D analog using the entire area of the segmented ovary, with

an accuracy of 71.5%. Both of these cases exceed the performance of the traditional

approach, which uses 2D manually-extracted square regions of interest, yielding an

accuracy of 66.7%. These results indicate that, while manually-extracted regions of

interest may intentionally omit artifacts, the additional information contained within the

full segmentation provides a higher degree of classification accuracy. Full segmentation,

including information around the edges of the ovaries, may lead to the increased

classification accuracy if physiological changes begin around the edges of the organ,

or in the adjacent fallopian tubes, which is often the case in ovarian cancer (George

et al., 2016). Furthermore, the substantial improvement in classification rate with 3D

implies that relevant information is encoded in the depth dimension of the image data.

These results are encouraging; however, several challenges remain before bringing

the approach toward practical implementation as a physician aid. First, while the mouse

model used here is an interesting and unique classification problem, the classification of

tissue health is the ultimate goal for such a tool. Here, the mouse genotype is used as a
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Figure 8. Frequency analysis results for 2D (a,b) and 3D (c,d). In both cases, the

distribution is described using two parameters: α (a,c) and β (b,d). Error bars are

given by the standard deviation of the result evaluated over the population of mice.

Significance levels are represented by a triangles for age groups, + for genotypes and

* for treatments, with one, two, and three symbols for p <0.05, p < 0.01, and p <

0.0001, respectively.

Table 2. Classification results for each of the three tested approaches for each pairing

of classes as well as the overall performance. On average, the 3D method yields the

highest classification accuracy, followed by the 2D analysis of the segmented image

area.
2D Squares 2D Segmented 3D Segmented

Ages 0.7376 0.6291 0.7940

Genotypes 0.5708 0.7292 0.8403

Treatments 0.6985 0.7872 0.7372

Overall 0.6779 0.7151 0.7860
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Figure 9. Histogram of the frequency with which features were selected (a). From

the best features, the linear discriminants were computed and the data were projected

onto these axes. Examples for which the data can be separated with high accuracy

with only 2 linear discriminants for age (b), genotype (c) and treatment (d). Red lines

are a visual aid to illustrate the axis of discrimination.

proxy for disease, since the TAg genotype is used to induce ovarian cancer. Considering

this, the classification results for genotype are of particular interest, where we see the

3D analysis is superior. Other classification approaches exist; in particular, machine

learning algorithms have shown great success in recent years for tissue classification.

While highly accurate, these are often tuned to a specific system configuration, reducing

the ability to generalize the results. Furthermore, these often require a large amount

of data for training. As our study was focused on generally assessing texture analysis

for characterizing ovarian tissue, we chose to select a more general statistical model

for classification. Nevertheless, using machine learning for classification remains an

interesting avenue to investigate, and remains an objective of future work.

Second, developing an automated segmentation protocol is essential for streamlining

the procedure. We see that using the fully segmented image area for both 2D and

3D analysis is superior to extracting regions of interest, thus a rapid and robust

segmentation algorithm would greatly improve the utility of the process. Lastly, a

major obstacle is the depth-dependent signal levels due to tissue absorption. Of the

image depth captured in OCT, only a subset (approximately 0.5 mm) of the image

data is relevant and of high enough quality to be used in analysis. In this study, we

determine the boundaries by selecting the first image with no artifacts such as back
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reflections and the final image by finding where the mean signal inside the ovary drops

to a prescribed level (20% of original). While this is suitable to conduct the study

presented here, an evaluation of the optimal range of depth to include in the analysis

would advance the approach toward clinical application by minimizing the noise included

in the computations, thus reducing variance and maximizing the statistical power.

Another challenge that remains in the scope of clinical application is obtaining

motion-free data. The respiratory rate of a human is significantly slower than mice;

therefore it is possible that a patient could hold their breath for a short amount of time,

allowing 3D scanning to take place. Due to the small field of view, visualizing the entire

ovary would involve probing the tissue at multiple locations, requiring several breath

holds. Another potential solution is to develop a probe that is in contact with the ovary,

mitigating motion artifacts in the tissue region of interest.

We have demonstrated that the effectiveness of texture analysis for classifying tissue

type in OCT images of ovarian tissue can be enhanced by conducting the analysis in

three-dimensions. In particular, we introduce three concepts that improve upon what

little work has been done to-date to apply texture analysis in this regime. In summary,

these contributions include:

(i) Utilizing the depth information in the images by computing texture parameters

for all thirteen possible directions in a three-dimensional volume of data. We

demonstrate that this increases classification rates over the 2D analog by

approximately 7%.

(ii) By first segmenting the images to isolate the relevant image volume, we avoid the

need to select a square region of interest to analyze. This provides a more true

representation of the image content, leading to a more representative analysis and

improving classification rates.

(iii) We introduce a new approach to frequency analysis that does not rely on isolating

individual frequency bands. We characterize the frequency distribution by first

computing the energy density as a function of radial frequency. By fitting this

distribution to a functional form, we parameterize the full frequency content, which

we see yields features with high statistical significance.

4. Conclusion

In this manuscript, we assess three implementations of texture analysis for the ability

to classify ovarian tissue. First, we test the traditional case of analyzing 2D square

regions of interest; then we extend this to include the entire image area by segmenting

the ovary from the background. Finally, we conduct a full 3D analysis of the image

volume using 3D segmented data. For each case, we compute features based on the

grey-level co-occurrence matrix and also by parameterizing the frequency distribution

in the image by computing the energy density. We use a transgenic mouse model

that spontaneously develops ovarian cancer and attempt to use texture features to
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differentiate between age, genotype, and treatment. The results indicate that the 3D

application of texture analysis is most effective for differentiating tissue types, yielding

an average classification accuracy of 78.6%. This is followed by the analysis in 2D with

the segmented image volume, yielding an average accuracy of 71.5%. Both of these

improve on the traditional approach of extracting square regions of interest, which yield

an average classification accuracy of 67.8%. Considering these results, we conclude that

applying texture analysis in 3D with a fully segmented image volume is the most robust

approach to characterize ovarian tissue. We also find that the features derived from

the frequency distribution yield high statistical significance, suggesting that the method

proposed here is an effective approach to quantitative tissue characterization.
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Appendix I: Tabulated Feature Data

Table 3. Tabulated data for 2D GLCM texture features shown in Figure 4. Values

are quoted as means ± standard deviations.

Group
Sum of Squares:

Variance
Correlation Energy

Inverse Difference

Moment

4WV 15.413 ± 5.607 0.8459 ± 0.0473 0.004448 ± 0.001552 0.4133 ± 0.0350

8WV 21.953 ± 7.185 0.7947 ± 0.0574 0.003733 ± 0.001300 0.3767 ± 0.0321

4WS 15.205 ± 2.192 0.8288 ± 0.0456 0.004214 ± 0.000812 0.4071 ± 0.0155

8WS 13.607 ± 2.668 0.8397 ± 0.0473 0.004621 ± 0.000895 0.4202 ± 0.0197

4TV 14.195 ± 4.419 0.8594 ± 0.0271 0.004282 ± 0.001137 0.4188 ± 0.0300

8TV 13.283 ± 1.187 0.8184 ± 0.0363 0.004952 ± 0.000782 0.4216 ± 0.0159

4TS 15.051 ± 2.336 0.8289 ± 0.0417 0.004231 ± 0.000753 0.4082 ± 0.0167

8TS 14.131 ± 1.661 0.8473 ± 0.0378 0.004190 ± 0.000716 0.4139 ± 0.0131

Table 4. Tabulated data for 3D GLCM texture features shown in Figure 5. Values

are quoted as means ± standard deviations.

Group Entropy
Difference Variance

(x 1E4)*
Difference Entropy Sum Average

4WV 12.5039 ± 0.2944 1.650 ± 0.1436 4.7823 ± 0.1157 151.801 ± 51.111

8WV 12.8917 ± 0.3332 1.384 ± 0.2142 5.0411 ± 0.1988 145.328 ± 34.672

4WS 13.0166 ± 0.1442 1.383 ± 0.1019 4.9718 ± 0.0944 167.511 ± 7.806

8WS 12.6742 ± 0.4114 1.565 ± 0.2439 4.8238 ± 0.1843 173.803 ± 27.752

4TV 12.8208 ± 0.1053 1.429 ± 0.1038 4.9233 ± 0.1023 173.615 ± 34.096

8TV 13.1429 ± 0.1458 1.385 ± 0.1051 4.9576 ± 0.0995 204.549 ± 9.824

4TS 12.9653 ± 0.1991 1.373 ± 0.1507 4.9722 ± 0.1316 170.821 ± 17.812

8TS 12.7475 ± 0.3325 1.557 ± 0.1620 4.8330 ± 0.1408 181.164 ± 13.558

Table 5. Tabulated data for the 2D and 3D frequency-based texture features shown

in Figure 8. Values are quoted as means ± standard deviations.
2D 3D

Group α (x 1E3) β α (x1E2) β

4WV 6.341 ± 0.503 0.2299 ± 0.0537 1.329 ± 0.0536 0.2706 ± 0.0414

8WV 7.038 ± 1.237 0.1633 ± 0.0745 1.245 ± 0.0333 0.3154 ± 0.0344

4WS 5.940 ± 0.281 0.2613 ± 0.0161 1.323 ± 0.0532 0.2761 ± 0.0350

8WS 6.456 ± 0.171 0.2780 ± 0.0105 1.346 ± 0.0580 0.2703 ± 0.0449

4TV 6.704 ± 0.632 0.2382 ± 0.0681 1.330 ± 0.0299 0.2606 ± 0.0225

8TV 6.433 ± 0.212 0.2657 ± 0.0139 1.345 ± 0.0222 0.2590 ± 0.0095

4TS 6.064 ± 0.264 0.2594 ± 0.0228 1.318 ± 0.0333 0.2799 ± 0.0212

8TS 6.419 ± 0.239 0.2784 ± 0.0062 1.383 ± 0.0378 0.2395 ± 0.0206
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