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Abstract
Vessel segmentation is a critical task for various medical applications, such 
as diagnosis assistance of diabetic retinopathy, quantification of cerebral 
aneurysm’s growth, and guiding surgery in neurosurgical procedures. Despite 
technology advances in image segmentation, existing methods still suffer 
from low accuracy for vessel segmentation in the two challenging while 
common scenarios in clinical usage: (1) regions with a low signal-to-noise-
ratio (SNR), and (2) at vessel boundaries disturbed by adjacent non-vessel 
pixels. In this paper, we present an automated system which can achieve 
highly accurate vessel segmentation for both 2D and 3D images even under 
these challenging scenarios. Three key contributions achieved by our system 
are: (1) a progressive contrast enhancement method to adaptively enhance 
contrast of challenging pixels that were otherwise indistinguishable, (2) a 
boundary refinement method to effectively improve segmentation accuracy 
at vessel borders based on Canny edge detection, and (3) a content-aware 
region-of-interests (ROI) adjustment method to automatically determine the 
locations and sizes of ROIs which contain ambiguous pixels and demand 
further verification. Extensive evaluation of our method is conducted on both 
2D and 3D datasets. On a public 2D retinal dataset (named DRIVE (Staal 2004 
IEEE Trans. Med. Imaging 23 501–9)) and our 2D clinical cerebral dataset, 
our approach achieves superior performance to the state-of-the-art methods 
including a vesselness based method (Frangi 1998 Int. Conf. on Medical 
Image Computing and Computer-Assisted Intervention) and an optimally 
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oriented flux (OOF) based method (Law and Chung 2008 European Conf. 
on Computer Vision). An evaluation on 11 clinical 3D CTA cerebral datasets 
shows that our method can achieve 94% average accuracy with respect to 
the manual segmentation reference, which is 23% to 33% better than the 
five baseline methods (Yushkevich 2006 Neuroimage 31 1116–28; Law and 
Chung 2008 European Conf. on Computer Vision; Law and Chung 2009 
IEEE Trans. Image Process. 18 596–612; Wang 2015 J. Neurosci. Methods 
241 30–6) with manually optimized parameters. Our system has also been 
applied clinically for cerebral aneurysm development analysis. Experimental 
results on 10 patients’ data, with two 3D CT scans per patient, show that our 
system’s automatic diagnosis outcomes are consistent with clinicians’ manual 
measurements.

Keywords: vessel segmentation, signal-to-noise ratio, contrast enhancement, 
circle of Wills, retinal vessels, aneurysm development analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

Segmentation of vascular structures is an important task in many medical applications. For 
instance, for cerebral aneurysm diagnosis and treatment planning, segmenting arteries and 
their bifurcations in the Circle of Willis, and quantifying their changes over a span of time is 
a key to facilitate cerebral aneurysm detection and development analysis (Yu et al 2015). In 
diabetic retinopathy (DR) screening, vessels’ abnormalities are key symptoms for DR detec-
tion and severity classification. In neurosurgical procedures, vessels which give indications 
of where the blood supply of a lesion is drawn from and drained to serve as landmarks and 
guidelines to the lesion during surgery.

Technology advancement in medical imaging, such as computed tomography angiogra-
phy (CTA) and magnetic resonance angiography (MRA), has stimulated explosive growth 
of medical data. Consequently, automatic vessel segmentation becomes increasingly neces-
sary in order to minimize laborious manual operations and inter-/intra-variability in manual 
segmentation among clinicians, and in turn to facilitate more efficient and precise diagnosis. 
There have been a number of research efforts on automated vessel segmentation over years, 
each of which has distinct strengths. Approaches proposed in Fridman et al (2004) and Volkau 
et al (2005) leverage deformable models for 3D vascular segmentation. Active contour imple-
mented based on the level set technique (Yushkevich et al 2006, Hernandez and Frangi 2007, 
Lauric et al 2010, Shang et al 2011, Tian et al 2014, Yang et al 2014, Zhao et al 2015) is one 
of the most popular techniques in this category. A major advantage of active contour is the 
capability of handling topology changes and adapting to shapes of complex vessel structures, 
yielding high effectiveness for vessel segmentation. Several efforts have been made for further 
performance improvement. For instance, Nain et al (2004) proposed to utilize a ball measure-
ment as a shape prior to penalize local widening of contours and to maintain the shape elonga-
tion. Yushkevich et al (2006) developed ITK-SNAP to provide a user-friendly interface and 
live feedback to facilitate parameter selection of active contours for medical image segmenta-
tion. However, both methods require extensive manual parameter tuning to achieve a satisfac-
tory result. In addition, these methods apply a single parameter setting globally to all pixels in 
the entire image data, yielding sub-optimal performance due to the inhomogeneous intensity 
and contrast of vessel data. Recent efforts (Yang et al 2014) have been made to simplify and 
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automate the parameter settings to achieve optimized performance for various medical data 
and different levels of image quality. However, the evolution of a deformable surface depends 
largely on the image quality; active contour based methods usually fail to accurately extract 
the entire vessels due to an image’s low SNR, random noises, image artifacts and disturbances 
arising from neighboring non-vessel pixels.

Recently, atlas-based methods have been applied as an efficient tool for cerebral vascular 
segmentation. An atlas is a combination of original images (i.e. the atlas templates) and the 
corresponding segmentation labels (i.e. the atlas labels). A registration method is first applied 
to the atlas templates and a target image, and then the atlas labels are propagated to the target 
image (Passat et al 2005, Pohl et al 2007, Cabezas et al 2011, Bustamante et al 2015). Despite 
accurate segmentation for the majority of vessel pixels, altas-based methods require massive 
manual labels and data collection for vessels of various sizes, from aorta or blood capillaries, 
which is laborious and time consuming. In addition, they often lack the flexibility in local fine 
tuning of vessel boundaries.

Another category of approaches is based on vessel enhancement filters which assign a 
filtering score to each individual pixel based on local information around the pixel, the score 
indicates the likelihood of this pixel being part of a vessel. Based on these response scores, 
a classifier then assigns each pixel as either a vessel or a non-vessel pixel (Frangi et al 1998, 
Law and Chung 2008, 2009, González et  al 2009, Rigamonti and Lepetit 2012, Becker 
et al 2013, Rigamonti et al 2013, Annunziata et al 2015, Wang et al 2015a). Several vessel 
enhancement filters have been developed in recent years. One of the most notable filters is 
the vesselness filter proposed by Wang et al (2015a) based on the Hessian matrix. This filter 
computes the Hessian matrix for each pixel based on information within a small neighborhood 
of the pixel. The eigenvalues of the Hessian matrix are used to differentiate among plane-, 
blob- and tubular-like structures, and the corresponding eigenvectors indicate the vessel ori-
entation at this pixel. A multi-scale strategy is applied in order to detect vessels of different 
sizes. Rather than relying on the Hessian matrix, several methods proposed to utilize the local 
distribution of gradient vectors. For instance, Bauer and Bischof (2008) proposed to utilize the 
eigenvalues of the gradient vectors’ covariance matrix for local structure analysis. In Bauer 
and Bischof (2008), Bauer et al replaced the multi-scale computation of the gradient vectors 
by the gradient vector flow (GVF), and then applied the Frangi’s vesselness measure on the 
GVF to detect the centrelines of vessels. In Law and Chung (2008) the authors proposed to 
use optimally oriented flux (OOF) (Law and Chung 2008) to detect curvilinear structures such 
as vessels. OOF relies on the measure of gradient flux through the boundary of local spheres. 
Compared to the Hessian-based filters, OOF is generally more robust against the disturbances 
induced by adjacent structures. Recent studies pointed out that real vascular structures do not 
always conform to an ideal tubular shape model and unconformity to the model can greatly 
degrade the segmentation accuracy based on handcrafted vessel filters. To address this prob-
lem, several methods (Bauer and Bischof 2008, González et al 2009, Rigamonti and Lepetit 
2012, Becker et al 2013, Rigamonti et al 2013, Wang et al 2015b) have been proposed to learn 
vessel shapes from a large set of vessel images. For instance, Agam and Wu (2005) proposed 
probabilistic vessel models which are learned based on eigenvalue analysis of the structure 
tensor. The learned vessel models can enhance vessel junctions yet suppressing nodules. In a 
similar fashion, González et al (2009) learned rotational features based on steerable filters to 
represent filaments from a set of training data. Based on these learned rotational features, an 
SVM classifier assigns pixels as vessel or non-vessel pixels. Experimental results demonstrate 
that the learned models in González et al (2009) can not only detect ideal curvilinear struc-
tures but also non-ideal filament structures, some of which, such as junctions, could not be 
modeled previously. Inspired by González et al (2009), a series of enhancements (Rigamonti 
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and Lepetit 2012, Becker et al 2013, Rigamonti et al 2013) were made, including adding 
more filters in addition to the steerable filters for training vessel models, and leveraging more 
advanced machine learning techniques for vessel versus non-vessel pixels classification. A 
comprehensive survey of vessel enhancement and segmentation methods can be found in 
Fraz et al (2012) and Kirbas and Quek (2004). However, both handcrafted and learned filters 
still rely on analysis of image gradients or high-order derivatives (Roychowdhury et al 2015) 
which are usually sensitive to noise. Poor image quality arising from low intensity contrast 
and low SNRs could result in ambiguous responses for those filters, and in turn yield inac-
curate vessel segmentation.

In this study, we develop an automated vessel segmentation system which is based on filter-
based methods and primarily focuses on addressing the limitations of existing methods under 
the following two challenging, and commonly occurred, scenarios: (1) in regions with low 
contrast and low SNR, and (2) at vessel boundaries which are also very close to non-vessel 
tissues with similar intensity values to those of vessels’. To this end, this paper makes the fol-
lowing three contributions:

 1. A progressive contrast enhancement method that focuses on improving visibility of chal-
lenging pixels progressively by excluding a subset of pixels, which have been identified 
as vessel pixels with a high confidence in previous iterations, from contrast enhance-
ment in the subsequent iterations. Compared to existing contrast enhancement methods 
(Zuiderveld 1994) which process all pixels with equal emphasis within a particular region, 
the proposed method eliminates the potential disturbance arising from ‘known’ pixels in 
each iteration and places more emphasis on the remaining ‘unknown’ pixels which are 
difficult to handle and yet to be classified. As a result, our approach can better capture 
subtle vessel information in low contrast, low SNR regions. To further suppress noises 
in low SNR regions, we propose shape-weighed contrast enhancement to emphasize the 
contributions of vessel-like pixels and de-emphasize the impact of noises in the contrast 
enhancement procedure. The idea behind this strategy is based on the complementary 
characteristics between the shape information and the intensity information and hence the 
chance of having both large shape responses and intensity values for a non-vessel pixel is 
much smaller than for a vessel pixel.

 2. A boundary refinement method which refines segmentation results nearby vessel 
boundaries based on Canny edge detection. Specifically, Canny edge detection is applied 
to localize potential vessel boundaries. A verification map is then generated based on 
the detected edges to determine whether a pixel is between two vessel boundaries or is 
outside a vessel. False positives which are non-vessel pixels while mis-classified as vessel 
pixels in the previous step can now be filtered out based on the verification map.

 3. A content-aware ROI adjustment method which automatically adjusts the locations and 
sizes of ROIs for further contrast enhancement and verification. In particular, our method 
checks the continuity and shape consistency of a vessel along the centerline of the seg-
mented vascular structure. Sub-regions encompassing disconnected vessel segments or 
sudden shape changes are identified as suspicious regions including segmentation errors 
arising from low contrast and SNR. These regions are hence fed to progressive contrast 
enhancement module for further processing and verification. Compared to existing con-
trast enhancement methods (Zuiderveld 1994) which partition an image into equal-sized 
grids using a pre-determined grid size, our method adaptively adjusts the ROI’s loca-
tion and size according to the content and requirement in each iteration, yielding better 
enhancement results.

X Yang et alPhys. Med. Biol. 62 (2017) 3757
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We conducted extensive experiments to demonstrate the performance of the proposed sys-
tem. First, we compared our method with the state-of-the-art filter-based methods: vessel-
ness based method (Frangi et al 1998) and the optimally oriented flux (OOF) based method 
(Law and Chung 2008) on two datasets—a public 2D retinal dataset (i.e. DRIVE (Staal et al 
2004)) and a 2D clinical cerebral dataset collected by us. Experimental results demonstrate 
that our approach achieves superior performance to the two methods mentioned above. We 
then extended our method for 3D segmentation and conducted experiments on 11 clinical 3D 
CTA datasets, each of which includes a complete Circle of Wills. The results produced by our 
system matched well, with an average accuracy of 94%, with manual segmentation results, 
which is 23% to 33% better than the five baseline methods (Frangi et al 1998, Yushkevich 
et al 2006, Law and Chung 2008, Wang et al 2015a) using manually optimized parameters. 
Finally, we applied our system for quantitative analysis of cerebral aneurysm development. 
Experimental results based on 10 patients’ data, with two separate 3D CT scans for each 
patient acquired about six months apart, demonstrated that the diagnosis produced by our 
system is highly consistent with clinician’s manual measurement, exhibiting its great potential 
for clinical application.

2. Method

Figure 1 illustrates the framework of our vessel segmentation system. Given an input image, 
conventional vessel enhancement filtering, such as the vesselness or OOF, is first applied to 
enhance the vessel regions in the image. Three steps are then iteratively employed for progres-
sive contrast enhancement (section 2.1): (1) identifying distinguishable pixels which can be 
labeled as vessels or non-vessels with a high confidence, (2) removing the identified vessel/
non-vessel pixels from the image, and (3) enhancing contrast of the remaining challenging 
pixels which are difficult to be classified in the current iteration. This process iterates until no 
more fine-vessel pixels can be detected (i.e. the number of pixels removed in an iteration is 
sufficiently small) or a limit on the iteration count is reached. After each iteration of progres-
sive contrast enhancement, pixels with labels of a high confidence are further verified by a 
boundary refinement process (section 2.2), and the pixels which pass the boundary refine-
ment process are included in the segmentation pixel set. After progressive contrast enhance-
ment converges, the candidate set of segmented vessel pixels is obtained. We check each 
vessel’s continuity along the vessel’s direction and the consistency of vessel’s diameter in a 
small neighborhood. If there are disconnected vessel segments or sudden changes in a vessel’s 
thickness, the corresponding ROI is considered to encompass suspicious vessel segments and 

Figure 1. The framework of automated vessel segmentation system, which includes 
three key components: (1) progressive contrast enhancement, (2) boundary refinement 
and (3) content-aware ROI adjustment.

X Yang et alPhys. Med. Biol. 62 (2017) 3757
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then sent back to progressive contrast enhancement for further processing and verification. In 
the following, we provide details of each step.

2.1. Progressive contrast enhancement

Given an input vessel image enhanced after vessel filtering, we first detect distinguishable 
pixels that can be identified as non-vessels/vessels with a high confidence. Specifically, we 
set two strict thresholds TH and TL. Pixels whose filtering responses are greater than TH or 
smaller than TL are classified as vessel and background pixels respectively. The remaining 
pixels whose responses fall within the range of TH and TL are considered as ‘unknown’ and 
their labels will be determined in a later step. TH and TL are selected to ensure that over 95% 
vessel pixels and non-vessel pixels of the training images can be correctly classified respec-
tively. Once pixel classification in this iteration completes, we remove ‘known’ pixels from 
further consideration in future iterations. For the remaining ‘unknown’ pixels, we partition 
the image into regular-sized grids and for each grid x we generate a normalized histogram of 
the remaining ‘unknown’ pixels (i.e. the probability distribution) with a bin for each possible 
intensity px(i):

= = …p i
i

x
i L

number of pixels with intensity

total number of remaining pixels in
0, 1, ,x ( )          

           
   (1)

where L is the total number of gray levels in the image (typically 256). To enhance the con-
trast of each grid, we stretch out the corresponding probability distribution to a wider and 
more uniform distribution of intensity values according to a transformation function defined 
as equation (2),

= × −T i i Lround cdf 1x( ) ( ( ) ( )) (2)

where icdfx( ) is the cumulative distribution function (CDF) defined as equation (3),

∑=
=

i p j i Lcdf , 0x
j

i

x
0

( ) ( )    ⩽ ⩽ (3)

Based on the transformation function, each pixel with intensity i in region x will be mapped to 
a pixel with intensity T(i) in the histogram equalized region y which has a flat histogram with 
a linearized CDF across the entire range, for a constant K.

=i Kcdf ix( ) (4)

Conventional histogram equalization methods, such as CLAHE, generate intensity distribu-
tion based on all pixels within a region. It is common that both small vessels and large vessels 
exist in a region and the distribution is easily dominated by large vessels which are visually 
clear in an image and can be easily classified. As a result, the contrast of small vessels cannot 
be sufficiently enhanced. Reducing the grid size could limit the vessel size differences in a grid 
and in turn alleviate this problem. However, a small grid size also increases the chance that 
few vessels exist in a grid and thus contrast enhancement in such a grid over-amplifies noises. 
Figure 2(a) shows the contrast-enhanced result of a retinal vessel image based on CLAHE. A 
small region which contains both small vessels and part of a larger vessel is highlighted using 
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a red rectangle and show the verification map of this region together with its probability distri-
bution before enhancement. From the probability distribution we observed that there are more 
vessel pixels within the intensity range of [55, 95] in figure 2(a) than in figure 2(b), yielding a 
greater icdfx( ) value at intensity i for figure 2(a) which is the intensity value for small vessels. 
As a result, small vessels will have a greater intensity value T(i) after enhancement and in turn 
yield a smaller intensity differences between small vessels and background. In comparison, 
our method performs enhancement only on ‘unknown’ pixels, thus more pixels in the fine 
vessels can be better enhanced and detected. By comparing the enlarged enhanced region and 
its verification map in figures 2(a) and (b) we can clearly observe that our method can provide 
much better visibility for small vessels and greatly reduce noises in the verification map. 
Once some of the remaining pixels can be easily classified with high confidence based on (Th  
and TL), we excluded them for further consideration. Such procedure iterates until no more 
fine-vessel pixels can be detected or a limit on the iteration count is reached.

Figure 2. Contrast enhancement results based on (a) CLAHE and (b) the 2nd round 
progressive contrast enhancement on an exemplar retinal image. A small region including 
both challenging pixels (i.e. subtle vessels) and part of a larger vessel is denoted by 
a red rectangle. An enlarged version of the region and the corresponding verification 
map are displayed on the right. The probability distribution of the original region is 
displayed underneath. The probability distribution shows that fewer small vessel pixels 
are within the intensity range of [55, 95] in (b) than in (a), yielding smaller intensity 
values for small vessels after enhancement and greater intensity differences between 
small vessels and background. As a result, our progressive contrast enhancement can 
better improve visibility and obtain a more accurate verification map for small vessels. 
The parameter settings for CLAHE are the same for both (a) and (b) where the clip 
limit  =  30 and the region size  =  ×50 50.

X Yang et alPhys. Med. Biol. 62 (2017) 3757
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To further improve the progressive enhancement performance, we integrate local geomet-
ric structures with the intensity information for normalized histogram construction and equali-
zation. The underlying idea behind is that the local geometric structure around each pixel is 
a discriminating and complementary feature to the intensity information for differentiating 
vessel pixels from random noises. Combining the local shape information with intensity can 
better suppress random noises since for noise pixels the chance of is less likely that noise 
pixels have having similar values of both shape responses and intensity as vessel pixels is 
quite small. Based on this idea, we propose to use normalized local shape information S(xm) 
obtained from vessel enhancement filtering (e.g. vesselness or OOF) to weight contribution of 
each pixel to the histogram construction, as shown in equation (5).

+ = λi S x iHist 0 256m( ) ( ( ))      ⩽ ⩽ (5)

where xm is the mth pixel in region x, and λ is used to adjust the impact of the weights. Since 
we normalize S(xm) to the range of [0, 1], larger λ results in smaller impact of weighting and 
vice versa. We tried λ value exhaustively and found that λ = 0.8 provides the best segmen-
tation accuracy in our training data and hence is used as our default value. The probability 
distribution can be calculated according to equation (6),

=
∑ λp i

i

S x

Hist

x m
( ) ( )

( ( )) (6)

Pseudo code 1 summarizes the process of our shape-weighted progressive contrast enhancement.

2.2. Boundary refinement

Precisely localizing vessel boundaries is important for quantitative analysis of vessel abnormal-
ities. For instance, to analyze the growth of a cerebral aneurysm, we usually register the aneu-
rysm and surrounding segmented vessels from two CT scans which are acquired at two different 
times. Then, we calculate the vessel thickness difference and aneurysm volume difference of 

Pseudo code 1 Shape-weighted progressive contrast enhancement.

Input: Original image I, vessel enhancement image Ive

 Parameters Th, TL, λ, grid size ×k k
Output: Segmentation result
 Procedure: shape-weighted progressive contrast enhancement
 Partition I into equal-sized ×k k( ) grids X{ }
 for =x X{ } do
 Initialize P{ } as all pixels in x
 while (!converge) do
   for =m P{ } do
    Update shape-weighted histogram according to equation (5)
   end for
     Calculate the cumulative distribution function according to equations (3) and (6)
    =I Histogram equalizationpe    according to equations (1)–(3)
    (Ipe is the enhanced image in this iteration)
    =P P I T TPixel classification, , ,pe h Lvessel back[{ } { }]   ( )
    ( P P,vessel back[{ } { }] are labelled pixels with high confidence)
    Remove Pvessel{ }, Pback{ } from P{ }
 end while
end for

X Yang et alPhys. Med. Biol. 62 (2017) 3757
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the two scans. Incorrectly localizing vessel boundaries result in errors in estimating the vessel 
thickness and aneurysm volume, and in turn lead to misdiagnosis. In this study, we develop 
an effective and robust boundary refinement method based on Canny edge detection. First, 
we apply Canny (Canny 1986) to localize a set of edge pixels = |E E E is an edge pixeli i{          } 
as potential vessel boundaries. As shown in figure 3(a) where we overlay the detected Canny 
edges (i.e. the blue pixels) with the vessel segmentation. In the figure, white, red and green 
pixels indicate true vessel pixels, false vessel pixels and miss detected vessel pixels in the seg-
mentation, respectively. Clearly, most canny edge pixels correctly locate at real vessel boundar-
ies, forming ‘classification planes’ to exclude false vessel pixels from the true segmentation.

Second, we design a simple yet effective method to construct a verification map for pre-
cisely localizing vessel boundaries and excluding false positives (i.e. non-vessel pixels mis-
takenly classified as vessel pixels with high confidence in the previous step) which are outside 
a vessel tube and close to vessel boundaries. Specifically, for every non-edge pixel ∉P E, 

we construct two vectors: (1) a vector 
→
PEi  pointing from P to a nearby canny edge pixel Ei, 

and (2) a normalized gradient vector at pixel Ei, i.e. 
 →

E

gradEi

i
. Assuming that vessel pixels are 

generally darker than the background, the result of the dot product between the two vectors 

= ⋅
→ →

F PEp E i
gradEi

i
 is greater than zero if P locates inside a vessel tube (i.e. the angle between 

the two vectors are smaller than �90 ); otherwise the dot product result is negative (as shown in 
figure 3(c)). For every edge pixel ∈P E, the corresponding value of Fp is 0.

A verification map based on a single edge pixel Ei could be sensitive to noises. To improve 
the robustness, for every pixel P we consider a set of the canny edge pixels ∈E Ri{ } near P 
and sum up the weighed dot products according to equation (7) (as illustrated in figure 3(c)).

⎯ →⎯⎯⎯⎯⎯ ⎯ →⎯⎯
∑= ⋅
∈

F
w

E
PEgrad ,p

E R

E

i
E i

i

i

i (7)

The range R affects the number of neighboring pixels for computing Fp. In our experi-
ment, it is automatically determined based on the greatest diameter of all segmented vessels 
in the first iteration. Such setting can guarantee that all true vessel pixels can have at least one 
edge pixel E for computing Fp. In addition, large vessels with greatest diameter can be easily 
segmented correctly in the first iteration. The weight wEi is calculated based on a Gaussian 
distribution centered at P as shown in equation (8), where x y,P P( ), x y,E Ei i

( ) are coordinates of 

Figure 3. (a) Segmented vessels based on vesselness filtering overlaid with detected 
canny edges. True positives, false positives and canny edge pixels are denoted by white, 
red and blue colors respectively. (b) Illustration of the verification map. Pixels reside 
inside a vessel, outside a vessel and at vessel boundary are denoted by green, white and 
red colors respectively. (c) Illustration of the verification map construction.
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pixels P and Ei, and σ is the standard deviation of the Gaussian distribution. Accordingly, edge 
pixels which are further away from pixel P have a smaller impact on Fp than those closer to P.
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The sigma value affects the final segmentation performance. We experimentally tested a range 
of configurations to search for one which achieves the greatest segmentation accuracy and 
based on the experimental results we set sigma to 2.5. Based on FP we can construct a verifica-
tion map Vp according to equation (9).
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In other words, for each image we can construct a verification map Vp with the same size as 
the input image and each entry of the map is a value of quadruples −1, 0, 1, null{ } (as shown 
in figure 3(b)), where 1 (green) and  −1 (white) indicate pixels inside and outside a vessel tube, 
respectively. A 0 (red) denotes a pixel at the boundary and null (black) indicates pixels far 
from any edges and thus unnecessary to be examined in the current iteration.

Based on the verification map Vp we can refine the segmentation result at regions which locate 
outside a vessel tube and are very close to vessel boundaries. Specifically, for every pixel which 
was identified as a vessel pixel in the previous step while was labeled as  −1 on the verification 
map, we re-classify it as negative (i.e. a non-vessel pixel) and merge it into the final segmentation 
results. The segmentation result after verification won’t be changed unless it violates the shape 
continuity and consistency rule, as shown in figure 1. It is also possible to re-label the segmen-
tation results for pixels which are labeled as 1 on the verification map while were identified as 
non-vessel pixels. However, in the specific experiment we conducted, we did not re-label these 
pixels as we observed that mis-segmentation is primarily caused by false positives (as shown in 
figure 3(a)), not false negatives. This phenomenon, however, is dependent on the classification 
thresholds TH and TL used in the previous segmentation step. A smaller (larger) TH (TL) could 
result in more false positives (false negatives) and in turn re-labeling either or both of false posi-
tives and negatives based on the verification map may become necessary. In practice, if we allow 
users to tune the TH and TL values, the usage of a verification map should be adjusted accordingly 
to exclude either false positives or false negatives from re-labeling for an optimized performance.

2.3. Content-aware ROI adjustment

Dividing an image into equal-sized grids and applying a predetermined parameter setting to all 
grids basically ignores image content within a grid for contrast enhancement. For grid regions 
which contain non-vessel tissues those are spatially close to (or even attached to) vessels and 
share similar intensity values as vessels, such an approach usually results in insufficient enhance-
ment to separate vessel pixels from non-vessel pixels. Therefore, adaptively adjusting an ROI’ 
size and location according to the image content is necessary for such challenging cases. In this 
section, we present our content-aware ROI adjustment method to address this problem.

Once progressive contrast enhancement and boundary refinement are completed, we could 
obtain a candidate set of segmented vessel pixels. For true vessel pixels, they usually obey two 
rules: (1) they are spatially connected, i.e. one vessel pixel is among the 8 (or 26) neighbors of 
another vessel pixel in the 2D (or 3D) segmented vessel structure, and (2) the diameter of a vessel’s 
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cross section should not change drastically. Based on these two rules, we check the candidate 
set and identify suspicious pixels which could be false positives and false negatives for further 
verification. Specifically, we first calculate the centreline of the segmented vessel structure based 
on distance transform and non-maximum suppression (as shown in figures 4(a) and 5). Along 
the vessel’s centreline, we uniformly sample a list of points for shape consistency check (i.e. the 
diameter or the area of a vessel’s cross section should remain similar within a short distance along 
the vessel’s direction). For 3D data, the distance between two sample points is determined based 
on the thickness between two slices of the CT or MRI scan. At each sample point, we calculate the 
area of the cross section of the transverse plane and the vessel segment, and the angle between the 
centreline and the transverse plane (as shown in figure 5(a)). Then the area of the cross section of 
the vessel segment at the corresponding point can be computed according to equation (10):

α= ×i iArea cos Areavessel Tplane_vessel( ) ( ) (10)

For each sample point i, we check whether its Area ivessel( ) is significantly greater or smaller 
than −iArea 1vessel( ) at its previous sample point i  −  1, i.e. δ− − >i iArea Area 1vessel vessel∥ ( ) ( )∥ , 

Figure 4. Illustration of ROI adjustment based on shape continutity and consistence 
(a) Cross section of an original ROI (i.e. grid region x) for enhancement. The red dots 
denote the central points of two vessel segments. (b) If there is shape inconsistency or 
spatial disconnectivity detected in an ROI, the size and location of a ROI is adaptively 
adjusted to encompassing a vessel where the inconsistency and/or disconnectivity 
occur. The quality of the ROI is improved for further verification and segmentation. 
The adjusted ROI is propagated for further examination. (c) Segmentation of an internal 
carotid artery (ICA) based on ROI adjustment.

Figure 5. Illustration of our shape consistency check.
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where δ is a predefined threshold. Abrupt increase or decrease in a vessel’s cross sectional area 
at sample point i indicates incorrect segmentation containing nearby non-vessel tissues or mis-
detection of vessel tissues due to poor image quality at slice i (as shown in figure 4(b)). For those 
cases, we select an ROI encompassing the vessel segments at slice i  −  1 and propagate the loca-
tion and size of the ROI to the slice i (as denoted by the green rectangle in figure 4(b)). Progressive 
contrast enhancement is performed within the ROI region, pixel classification based on double 
thresholding and boundary refinement are then applied to the enhanced ROI region in order to 
revise the previous segmentation results (as shown in figure 4(c)). If a segmentation that was a 
single connected component in the original slice i and can be separated in the enhanced image, 
meanwhile there is one connected component in i having a consistent shape with the previous 
slice i  −  1, then the remaining connected components are removed as false positives. Once the 
segmentation result is revised at slice i, it can be further used to guide the shape consistency and 
connectivity check at sample point i  +  1. This process continues until it reaches the last slice.

Similarly, for 2D data we calculate the centreline of a vessel segment and then at each 
sample point i we find a cross line which is perpendicular to the centreline passing the sample 
point and intersects with the two vessel boundaries (as shown in figure 5(b)). Accordingly, 
the length of the cross line iLenvessel( ) indicates the diameter at the sample point i. If 

δ− − >i iLen Len 1vessel vessel∥ ( ) ( ) ∥, where δ is a predefined threshold, an abrupt shape change 
is detected at sample i, implying potential segmentation errors nearby. Once such a case is 
detected, we select an ROI encompassing vessel segments which include both sample points i 
and i  −  1 as well as four extra sample points which are spatially adjacent to i and i  −  1 along 
the centreline and have a consistent shape (i.e. a similar length of the cross line) with either i 
or i  −  1 (as shown in figure 5(b)). Afterwards, progressive contrast enhancement is applied to 
the ROI region, followed by pixel classification and boundary refinement as described above.

The main reason why the segmentation performance can be further enhanced by selecting 
ROIs around suspicious pixels and performing further enhancement within the selected ROIs 
is because in the previous progressive contrast enhancement step, the image is partitioned into 
equal-sized grids without considering the content in each grid (as denoted by yellow grids in 
figure 4(b)). As a result, it is possible to partition pixels of a vessel into different grids, result-
ing in degradation of contrast enhancement’s performance. By checking the shape consistency 
and vessel’s connectively, we can adjust ROIs so as to encompassing a complete vessel seg-
ment and hence yield better enhancement and segmentation.

3. Results

This study, approved by a local institutional review board, consists of evaluation of two 2D 
datasets and one 3D dataset. The images used for evaluation includes a public 2D retinal data-
set named DRIVE (Staal et al 2004), a 2D clinical cerebral dataset, and a 3D dataset includ-
ing 11 clinical CTA cerebral data. In the following, we first describe each of the datasets, the 
evaluation metric, followed by the results and analysis. In addition, we applied our system to 
a clinical application—quantitative analysis of cerebral aneurysm development—to demon-
strate the effectiveness of our method for real clinical usage.

3.1. Evaluation on 2D datasets

3.1.1. Datasets. We first evaluated our method on a publicly available dataset, called DRIVE 
(Staal et al 2004), which includes 40 2D RGB retinal scans for comparative studies on ves-
sel segmentation in retinal images. The size of each image is ×768 584 and each pixel of 
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the image was represented using 3 colour channels, 8 bits per channel. Each image has two 
ground-truth segmentations obtained by manual delineation from two experts. Among the 
40 images, 20 of them were used for training and the rest were used for testing. We test our 
approach on the testing images of DRIVE. Figures 7(a) and (b) show an exemplar image and 
one ground truth image from DRIVE.

In addition to DRIVE, we also examined the performance of our method on two 2D clinical 
cerebral vessel data. The data was obtained by digital subtraction angiography (DSA), repre-
sented using 8 bits grayscale TIFF format. The size of each image is ×560 414. For quantita-
tive evaluation, we also asked two experts to manually delineate vessels for each image.

The primary focus of this paper is to improve the segmentation accuracy in two challeng-
ing scenarios: (1) regions with low SNRs, and (2) at vessel boundaries disturbed by adjacent 
non-vessel pixels. Therefore, the ground-truth data should facilitate the evaluation for such 
challenging cases. To this end, we divided all pixels in each ground-truth image into two 
parts: (1) easy vessel pixels which can be correctly classified as vessels by both baseline 
methods, and (2) challenging vessel pixels which are incorrectly labeled as background by 
at least one baseline method. In this experiment, we implemented a vesselness-based method 
and an OOF-based method as our baselines (details about the baselines will be elaborated in 
section 3.1.3). The threshold for binary classification is set to ensure a precision over 95%. 
Figures 7(c) and (d) illustrate the easy and challenging vessel pixels of a ground truth image of 
DRIVE, respectively. Obviously, challenging pixels mainly locate around vessel boundaries 
and at small vessels with very low contrast to its surrounding background.

3.1.2. Evaluation metric. We used the recall-precision curve to evaluate overall segmentation 
performance on the 2D datasets by varying the threshold parameter for binary classification. 
As mentioned in section 2.1, we focus our evaluation on challenging pixels, thus we exclude 
easy vessel pixels from the precision-recall calculation. Specifically, recall is defined as the 
number of challenging true positives (i.e. challenging pixels which are labeled as vessel pixels 
in both ground truth and the segmented image) divided by the total number of challenging 
vessel pixels in the ground-truth. Precision is defined as the number of challenging true posi-
tives divided by the total number of challenging pixels that are identified as vessel pixels in 
the segmented image, as shown in equations (11) and (12),

=
−TP TP

Recall
challenging vessel pixels in ground truth

easy

          (11)

=
−TP TP

Precision
challenging vessel pixels in segmented image

easy

          (12)

The larger the area under the curve, the better the performance of a method.

3.1.3. Experimental setup. Any existing vessel enhancement method can be used for the first 
step of our segmentation framework (as shown in the orange block of figure 1). In this study, 
we experimented with two popular methods, i.e. multi-scale vesselness and multi-scale OOF, 
which have been widely-recognized for their good performance for vessel segmentation and 
are open sourced for a fair comparison. We utilized the ITK SDK for the implementation of 
multi-scale vesselness and the package from Optimally Oriented Flux implementation (2013) 
for the implementation of OOF. For each filter, we manually tuned parameters to obtain the 
best performance. Such parameters are then used throughout the entire evaluation process. 
For both filters, we used identical parameters for multi-scale processing, i.e. the minimum 
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and maximum standard deviations of Gaussian are set to 0.5 and 5, respectively, and the total 
number of scales is set to 10.

We compared our method, i.e. vesselness with all proposed techniques (Pro-
vesselness  +  BR  +  CA), with the two baseline methods: vesselness, OOF, as well as four var-
iants of our methods: vesselness with boundary refinement (i.e. vesselness  +  BR), OOF with 
boundary refinement (OOF  +  BR), vesselness with progressive enhancement and boundary 
refinement (Pro-vesselness  +  BR), and OOF with progressive enhancement and boundary 
refinement (Pro-OOF  +  BR).

3.1.4. Results. Figures 6(a) and (b) show the comparison results on DRIVE and the cerebral 
data respectively. Three main observations can be made from the results:

 (1) By comparing the performance of vesselness (the blue curves) and vesselness  +  BR 
(the light green curves) we observe that boundary refinement can greatly improve the 
precision when the recall is relatively small (i.e. the recall is less than 75% in (a) and 
less than 70% in (b)). We believe that the performance gain is because our boundary 
refinement (BR) can effectively remove false positives arising from random noises and 
the disturbing objects adjacent to vessel boundaries. As the recall increases over a certain 
point, BR could adversely decrease the precision. We believe the large error is induced by 
incorrectly-detected edge pixels by canny, including miss detected true edges of vessels 
and mistakenly detecting edges on noises, especially in regions with low contrast and low 
SNRs. Incorrect edge pixels may lead to errors in the verification map, yielding incorrect 
removal of true vessel pixels. As a result, reducing the threshold cannot improve the recall 
any more while reduce the precision. Similar results can be observed by comparing the 
results of OOF (the red curves) and OOF  +  BR (the purple curves) for both datasets.

 (2) By comparing the performance of vesselness (the blue curves), vesselness  +  BR (the 
light green curves) and Pro-vesselness  +  BR (the light blue curves), we observe that Pro-
vesselness  +  BR outperforms the other two methods over the entire range. In particular, 
for large recall (i.e. greater than 70%) progressive contrast enhancement can help greatly 
boost the precision of vesselness  +  BR. The result demonstrates the effectiveness of pro-
gressive contrast enhancement for improving the contrast and SNR in regions with poor 

Figure 6. Recall-precision curves obtained for (a) the retinal vessel data and (b) the 
cerebral vessel data. Experimental results show that our method with the three proposed 
techniques (i.e. Pro-Vesselness  +  BR  +  CA) outperforms all other methods over the 
entire range. (a) Result comparison on retinal vessel data. (b) Result comparison on 
cerebral vessel data.
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quality, which could in turn increase the detection rate of vessels in those regions. Similar 
results can be also observed for methods based on OOF.

 (3) By comparing the performance of Pro-vesselness  +  BR (the light blue curves) and Pro-
vesselness  +  BR  +  CA (the pink curves) we observe that for the DRIVE dataset adding 
content-aware ROI adjustment can further improve the performance. This is because for 
regions which include small vessels, exudates, and haemorrhage points, adjusting the  
ROI region so as to exclude the majority of non-vessel pixels can improve the contrast 

Figure 7. Illustration of segmentation results on an exemplar retinal image. (a) The 
original image. (b) A ground truth image. (c) and (d) indicate easy and challenging 
vessel pixels of the ground truth image. (e)–(i) show the segmentation results of four 
methods in which pro-vesselness  +  BR achieves the best performance. (a) Original 
image. (b) Ground truth. (c) Easy vessel pixels. (d) Challenging vessel pixels.  
(e) Vesselness. Recall: 57.3%, precision: 33%. (f ) OOF. Recall: 57.6%, precision: 38%. 
(g) Vesselness  +  BR. Recall: 57.3%, precision: 43%. (h) Pro-vesselness  +  BR. Recall: 
72.2%, precision: 41%. (i) Pro-vesselness  +  BR  +  CA. Recall: 74.6%, precision: 43%.
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enhancement performance and meanwhile remove false positives. Therefore, the 
curve obtained by Pro-vesselness  +  BR  +  CA is superior to that achieved by Pro-
vesselness  +  BR. For the cerebral DSA dataset, the two curves almost overlap. This is 
because DSA images do not highlight bone tissues that are very close to vessels; there-
fore, little improvement can be obtained by adjusting ROI regions.

Figures 7(e)–(i) show the segmentation results for a retinal image based on different methods. 
We omit the results for OOF  +  BR and Pro-OOF  +  BR as their results are similar to those 
of vesselness  +  BR and Pro-vesselness  +  BR. For vesselness, OOF and vesselness  +  BR 
(as shown in figures 7(e)–(g)), we manually tuned the threshold so that the recalls for the 
three methods are similar (57%  ∼  58%). Accordingly, vesselness  +  BR achieves 10% and 
5% greater precision than vesselness and OOF respectively. Further integrating progressive 
contrast enhancement into the system can improve the recall by another 10%  ∼  15% and 
meanwhile maintain a similar precision (as shown in figure  7(h)). After applying content-
aware ROI adjustment, shown in figure 7(i), the recall and precision can be further improved 
by 2.4% and 2% respectively.

The average runtime of our method for the DRIVE dataset is around 1 to 2 min for each 
image. The actual runtime depends on the variance of the vessel sizes. If the variance of the 
sizes among the vessels in a given image is large, more pixels will need contrast enhancement, 
resulting in longer runtime.

3.2. Evaluation on 3D datasets

3.2.1. Datasets. Our 3D dataset contains 11 CTA images, each of which contains a 3D image 
volume including both anterior cerebral circulation arteries (ACCA) and posterior cerebral 
circulation arteries (PCCA). Single aneurysm appears in 9 datasets, one located at the internal 
carotid artery (ICA), four located at the bifurcation of middle cerebral arteries (MCA) and the 
other four located at the tip of basilar arteries (BA). The acquisition of data was performed 
using a 64 detectors scanner with 120 kV/250–300 mA for amplier tube, 0.75 slice collima-
tion and slice spacing of 0.5 mm. A total of 63 ml of non-ionic contrast fluid was intravenously 
administrated at a rate of 3 ml s−1. The images were reconstructed on a ×512 512 volume with 
a square FOV of 18 cm, yielding an in-plane resolution of 0.35 mm.

3.2.2. Evaluation metric. We evaluated the segmentation accuracy using the Dice similarity 
coefficient (DSC), a widely used metric to evaluate segmentation algorithms for different 
medical image modalities. The DSC is defined as:

( ) =
× ∩
+

S G
S G

S G
DSC ,

2
 (13)

where S and G represent the sets of automatically segmented voxels and manually segmented 
voxels respectively; ⋅  denotes the set cardinality. The DSC ranges from 0, if S and G do 
not overlap at all, to 1, if S and G are identical. We compare our method including all three 
improvements with five baseline methods: the active contour with thresholding method (AC1) 
and the active contour with clustering method (AC2) (Yushkevich et al 2006), efficient flux 
(Law and Chung 2009), optimally oriented flux (Law and Chung 2008) (OOF), and the thresh-
olding method (Thresholding 2015) (Wang et al 2015a). We used the implementation in ITK-
SNAP for AC1 and AC2, the source code provided by the original authors for efficient flux and 
OOF. For Wang et al (2015a), we implemented it by ourselves and tried our best to duplicate 
their performance reported in Wang et al (2015a).
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3.2.3. Results. Table 1 summarizes the average DSC for all the methods. The average DSC 
achieved by our method is 94% which is 23%  ∼  33% greater than the other baseline methods.  
Figures 8(a)–(g) show segmentation results of an exemplar dataset obtained by different meth-
ods. We observe that results of the active contour, efficient flux, OOF and thresholding meth-
ods have many false positives at bone tissues since at those regions bone tissues are attached to 
ICA and have highly similar intensity values as ICA. Active contour with clustering achieves 
better results at ICA regions than the other four baseline methods; however, the segmented 
arteries are thinner than the ground truth, which could yield inaccurate measurements of aneu-
rysms in practice. In comparison, our method achieves accurate results for both ICA regions 
and vessel boundaries.

3.3. Application to cerebral aneurysm development analysis from 3D CTA images

We applied our method to quantitative analysis of cerebral aneurysm development from 3D 
CTA Images. In the following we briefly present details of methods for aneurysm develop-
ment analysis, data, followed by results.

3.3.1. Methods. For a patient diagnosed with cerebral aneurysm, a follow-up check was 
scheduled around six months after the initial CT scan. We segmented vessels as well as aneu-
rysms from these two cerebral CT scans captured at two different times. Then, we registered 
the two vessel segmentations to quantitatively analyse the development of cerebral aneurysms. 
Specifically, we utilized registration to align images of cerebral vessels acquired at different 
times and then we compared the registered images to obtain changes of vascular structures. 
In principal, aneurysms could grow bigger over time, resulting in differences between the 
registered images. Normal vessels, on the other hand, remain the same over time and thus 
yield little changes between corresponding regions on the registered images. By analysing 
differences between the registered images, we could quantitatively evaluate the development 
of the aneurysm.

The accuracy of the registration algorithm greatly affects the accuracy of aneurysm devel-
opment analysis, i.e. misalignment between images results in false alarms at normal vessel 
regions. There exist many methods for medical image registration. In this experiment, we 
employed an automatic non-rigid registration method based on mutual information (Yuksel 

Table 1. Comparison of segmentation methods.

Data Ours

AC1 
(Yushkevich 
et al 2006)

AC2 
(Yushkevich 
et al 2006)

Efficient flux 
(Law and 
Chung 2009)

OOF (Law 
and Chung 
2008)

Thresholding 
(Wang et al 
2015a)

1 0.95 0.68 0.65 0.58 0.63 0.58
2 0.93 0.75 0.46 0.76 0.76 0.64
3 0.95 0.69 0.63 0.61 0.60 0.59
4 0.97 0.66 0.49 0.64 0.61 0.58
5 0.89 0.63 0.71 0.64 0.61 0.65
6 0.96 0.78 0.73 0.77 0.79 0.71
7 0.92 0.68 0.47 0.71 0.73 0.62
8 0.91 0.78 0.76 0.65 0.67 0.69
9 0.95 0.72 0.68 0.71 0.73 0.56
10 0.93 0.67 0.46 0.68 0.68 0.60
11 0.93 0.78 0.66 0.68 0.70 0.63
Ave 0.94 0.71 0.61 0.68 0.68 0.62
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2005). We utilized B-spline basis functions to describe the Free Form Model for the non-
rigid registration. The B-spline functions are uniformly placed on a grid of control points. We 
utilized a 3-level multi-resolution strategy to reduce the computational cost of the non-rigid 
registration and for each level we set the distance between every two control points to 16.

3.3.2. Datasets. We collected 10 patients’ data; each patient has two scans acquired at two 
distinct time points. An average interval between the two acquisition time points is ±126.8 80.1 
d. All subjects have a single cerebral aneurysm. Based on radiologists’ manual segmentation 
and measurement, six patients’ aneurysms have obvious growth (i.e. indicated as set_grow 
in tables 2 and 3) and the sizes of the other four patients’ aneurysms were known to remain 
stable between the two time points (i.e. denoted as set_control in tables 2 and 3). All the data 
are acquired using the same configuration as described in section 3.2.1. To demonstrate that 

Figure 8. Exemplar segmentation results based on (a) manual segmentation, (b) our 
method, (c) AC1, (d) AC2, (e) efficient flux, (f) OOF, and (g) Thresholding 2015.

X Yang et alPhys. Med. Biol. 62 (2017) 3757



3775

our automatic image segmentation and registration tool is robust to different image qualities, 
we quantitatively characterize image quality based on the following metrics:

 • Vessel intensity mean and standard deviation (S.D.) which indicate the average and 
standard deviation of image intensity inside vessels. The intensity of vessels changes with 
the amount of contrast agent. In addition, due to inhomogeneity of the contrast agent, the 
intensity values inside vessels vary as well. Therefore, corresponding vascular pixels in 
CTA images scanned at different times could have different intensity values. The mean and 
the S.D. of the vessel intensity can well capture the intensity statistics at vascular locations.

 • Non-vessel intensity mean and standard deviation (S.D.) which are used to capture the 
average and the standard deviation of image intensity outside the vessels.

 • Number of vessel pixels and non-vessel pixels which denote the number pixels inside 
and outside the vessels respectively.

Table 2. Image characteristic comparison between two images in a set.

Vessel intensity
Mean  ±  S.D.

Non-vessel
intensity
Mean  ±  S.D.

#Vessel
voxels

#Non-
vessel
voxelsData SNR Sizes

Set1- 1216  ±  70 1107  ±  367 7643 553 9657 1.88 [246,205,110]
control 1197  ±  60 1068  ±  372 6043 510 9557 2.28 [203,210,120]
Set2- 1219  ±  82 1121  ±  196 16 375 741 185 1.68 [118,107,60]
control 1242  ±  101 1135  ±  485 34 647 471 8553 1.80 [233,204,100]
Set3- 1280  ±  120 1073  ±  316 32 618 133 7492 3.53 [161,115,74]
control 1326  ±  139 1058  ±  230 36 859 124 9285 4.50 [157,128,64]
Set4- 1294  ±  135 1066  ±  87 35 493 460 211 3.86 [131,88,43]
control 1239  ±  99 1066  ±  94 21 530 407 815 2.99 [141,105,29]
Set5- 1268  ±  130 1067  ±  386 41 721 540 0149 3.75 [289, 269, 70]
grow 1316  ±  133 1119  ±  395 40 925 525 7225 3.25 [286, 285, 65]
Set6- 1215  ±  72 1075  ±  170 24 931 727 445 2.43 [141,116,46]
grow 1157  ±  57 968  ±  253 36 258 788 353 3.15 [151, 127, 43]
Set7- 1209  ±  64 1069  ±  423 37 447 101 008 43 2.46 [193,170,114]
grow 1250  ±  52 1090  ±  420 38 166 115 928 94 2.75 [204,181,90]
Set8- 1371  ±  146 1101  ±  224 18 471 419 965 4.38 [146,91,33]
grow 1298  ±  79 1099  ±  218 8030 394 054 3.34 [146,102,27]
Set9- 1253  ±  111 989  ±  345 31 602 113 4498 4.73 [156,115,65]
grow 1209  ±  84 980  ±  349 22 301 151 9109 4.19 [167,142,65]
Set10- 1262  ±  101 1071  ±  112 26 158 400 658 3.28 [114,96,39]
grow 1217  ±  71 1069  ±  87 25 355 454 498 2.58 [131,99,37]

Table 3. Aneurysm development analysis.

Data Set1- Set2- Set3- Set4- Set5- Set6- Set7- Set8- Set9- Set10-

control control control control grow grow grow grow grow grow

Growth 0.287% 0.617% 0.335% 0.438% 17.7% 25.7% 31.4% 15.5% 13.4% 10.7%
rate

Avg ±0.419 1.46% ±19.07 7.91%

X Yang et alPhys. Med. Biol. 62 (2017) 3757



3776

 • Signal-to-noise ratio (SNR) which is defined in equation (14) is a widely-used metric to 
evaluate image quality by comparing the vessel signal and background noises.

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= ×

∑

∑
∈

∈

I i

I i
SNR 10 log i

i
10

vessels
2

background
2

( )
  ( ) 

 (14)

 • Image size which denotes the 3-dimensional size of an image.

Table 2 summarizes the characteristics of our data. The datas SNR, the number of non-ves-
sel voxels and the size are quite different both among different patients and between 2 scans 
of the same patient, indicating different image qualities and different numbers of disturbing 
voxels in our testing dataset. In addition, for non-vessel voxels we observe that although 
the average intensity values are similar between two scans of a patient and among different 
patients’ data, the standard deviations are quite large and are different among different data. 
Large S.D. values yield intensity overlaps with vessel voxels, increasing the difficulty of accu-
rate segmentation.

3.3.3. Results. Table 3 summarizes the growth rate of aneurysm for each dataset. The 
growth group showed an average ±19.07 7.91% increase in the aneurysm volume, and the 
non-growth group showed an average ±0.419 1.46% increase in aneurysm volume. The dif-
ference in sample means between the growth group and the non-growth group was statisti-
cally significant (p 0.05⩽ ), i.e. for subjects whose aneurysms grow over time, the growth rate 
is obviously greater than those whose aneurysms are under control. For all cases, automated 
diagnosis based on our method is consistent with radiologists’ manual diagnosis, demonstrat-
ing the potential effectiveness of our system for automated aneurysm development analysis in 
clinical usage. Running on an Intel Core i7-4600U Processor at 2.7GHz, the average runtime 
for processing segmentation is ±29.6 25.4 s for processing segmentation and ±37.9 30.7 s 
for registration.

4. Conclusion

This paper presents a framework for accurate vessel segmentation in two challenging sce-
narios: in regions with low intensity contrast and low SNRs, and at vessel boundaries. To 
this end, we propose and validate three novel techniques: progressive contrast enhancement, 
boundary refinement and content-aware ROI adjustment. Progressive contrast enhancement 
iteratively improves visibility of challenging pixels (usually pixels of small vessels and/or 
at vessel boundaries) which were not distinguishable in previous iterations. By excluding 
easy vessel pixels which can be labeled with high confidence from further consideration in 
each iteration, more emphasis are placed on challenging vessel pixels and in turn are much 
better highlighted by CLAHE-based enhancement. Moreover, progressive contrast enhance-
ment de-emphasizes importance of pixels which are less likely to be vessels according to 
their shape responses in the enhancement procedure. Due to the complementary information 
provided by the intensity and the shape, this strategy can effectively suppress noises spread 
in a homogeneous background. To further reduce false positives around vessel boundaries, 
we propose boundary refinement which constructs a verification map based on canny edges. 
Additionally, an equal-sized griding strategy based on a predetermined grid size without con-
sidering the content could partition connected vessel pixels into different grids or including 
non-vessel pixels which have a similar intensity as vessels in the same grid. This partition 
strategy may greatly limit the amount of improvements achieved by contrast enhancement. 
To address this problem, we propose a content-aware ROI adjustment method which checks 
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the shape consistency and continuity of the segmented vessels, and adaptively adjust the loca-
tions and sizes of ROIs to contain suspicious pixels which might be incorrectly segmented in 
previous steps. Experimental results on both 2D and 3D datasets demonstrate that the three 
proposed techniques can greatly improve the performance of the state-of-the-art segmentation 
methods. A clinical application of our method—quantitative analysis of cerebral aneurysm 
development—demonstrates that our system provides consistent diagnosis with clinicians’ 
manual measurement, exhibiting its promising potential for clinical applications.
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