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Abstract
In this work we analyse the asymptotic behaviour of the solutions of
the p-Laplacian equation with homogeneous Neumann boundary condi-
tions posed in bounded thin domains as Rε =

{
(x, y) ∈ R

2 : x ∈ (0, 1) and
0 < y < εG

(
x, x/εα

)}
for some α > 0. We take a smooth function G : (0, 1) ×

R �→ R, L-periodic in the second variable, which allows us to consider locally
periodic oscillations at the upper boundary. The thin domain situation is estab-
lished passing to the limit in the solutions as the positive parameter ε goes to
zero and we determine the limit regime for three case: α < 1, α = 1 andα > 1.
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1. Introduction

Partial differential equations on thin domains (domains in which the size in some directions
is much larger than the size in others) appear naturally in biological systems and industrial
applications [13, 14, 24]. In most of the applications, the boundary of those domains is not
perfectly flat and one can see irregularities. Then, the influence of such boundary distortions
might not be neglected because its effect on the effective equation of the considered system,
even far from the rough boundary, can be meaningful [1, 9, 11]. This motivates researchers to
employ different homogenization techniques and try to determine the effective flow behaviour
on a lower-dimensional domain which captures the influence of the geometry, roughness and
thickness of the perturbed domain on the solutions of such singular boundary value prob-
lems. The obtained equations are then suitable for numerical simulations and provide rigorous
justification of various natural phenomenon seen in such complex systems.

A simple manner to consider such irregularities is to study domains of type

Qε =
{

(x, y) ∈ R
2 : x ∈ (0, 1) and 0 < y < εg

( x
εα

)}
for ε > 0,

where g is a positive, bounded and periodic function satisfying some regularity hypothesis and
ε > 0 is a small parameter which goes to zero. Thereby, in the limit ε→ 0, the open set Qε

degenerates to the unit interval presenting oscillatory behaviour on the upper boundary (see
for instance [1, 3, 5, 18–22] where similar approach are performed).

The periodic rough boundary considered above is certainly a first step, but usually not
enough, since most of the irregularities present in real applications are not periodic. In this
work we are interested in the following family of rough thin domains

Rε =
{

(x, y) ∈ R
2 : x ∈ (0, 1) and 0 < y < εGε (x)

}
for ε > 0, (1.1)

where

Gε(x) = G
(

x,
x
εα

)
,

for some parameter α > 0 with function G satisfying the conditions given by hypothesis (H)
set in section 2. This kind of domain perturbation is called in the literature locally periodic thin
domain and it is illustrated in figure 1 below.

As an example, one can consider Gε(x) = a(x) + b(x)g(x/εα) where a, b : (0, 1) → R are
C1-piecewise positive functions and g : R→ R is a L-periodic function of class C1 also posi-
tive. This includes the case where a, b are positive constants recovering the perturbed regions
discussed for instance in [3, 5]. Notice that in the case in which α = 0, we also recover the
open sets considered in [13] where evolution equations on thin domains without roughness
were studied. We observe that the hypothesis (H) considered here is as general as possible for
our framework.

In a unified way, we treat the three cases of roughness that can be modelled by the parameter
α > 0. We analyse our boundary value problem for 0 < α < 1, α = 1 and α > 1, which rep-
resents weak, resonant and strong harshness on the upper boundary respectively. In each case,
we have a different effective equation featuring the roughness induced effects on the perturbed
model for small values of the parameter ε.

Several references treat issues related to the effect of thickness and rough boundaries on the
feature of the solutions of partial differential equations. Indeed, thin structures with oscillating
boundaries appear in many fields of science: fluid dynamics (lubrication), solid mechanics
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Figure 1. A locally periodic thin channel with rough boundary.

(thin rods, plates or shells) or even physiology (blood circulation). Therefore, analysing the
asymptotic behaviour of models set on thin structures understanding how the geometry and
the roughness affect the problem is of considerable current interest in applied science. In these
directions, let us mention [7, 10, 15, 21] and references therein.

In this paper, we are interested in analysing the asymptotic behaviour of the solutions of a
p-Laplacian equation given by{

−Δpuε + |uε|p−2uε = f ε in Rε

|∇uε|p−2∇uεηε = 0 on ∂Rε
, (1.2)

where ηε is the unit outward normal vector to the boundary ∂Rε,
1 < p < ∞ with p−1 + p′−1 = 1, and

Δp· = div
(
|∇ · |p−2∇·

)
,

denotes the p-Laplacian differential operator. We also assume f ε ∈ Lp′ (Rε) is uniformly
bounded.

Such quasilinear equations play an important role in applications, given the fact that many
models cannot be described by linear equations. In this sense, considering the p-Laplacian
equation becomes natural. Moreover, the p-Laplacian is strongly related to non-Newtonian
fluids, which arise in many applications related to polymer processing, hydrology, food pro-
cessing, turbulent filtration, glaciology (see e.g. [6, 16, 17, 25]). Here, differently from many
works [11, 12], we deal also with the case 1 < p < 2, which is the most relevant range of p in
applications (e.g. [6]) and, of course, the case p � 2.

We improve the results from [3] (where the Laplacian operator in locally periodic thin
domains were considered) dealing with the p-Laplacian equation for any p ∈ (1,∞). Moreover,
we are improving our previous results from [2] where the purely periodic case in bidimensional
thin regions were studied. It is worth noticing that the techniques developed in [2, 3] cannot
be directly applied in this case. On the one hand, the results concerning the unfolding operator
obtained in [4] do not guarantee strong convergence in Lp for the unfolding operator applied
on solutions of quasilinear operators. On the other hand, the analysis performed in [3] just
works on L2-spaces. Our goal here is to overcome this situation. We discretize the oscillating
region passing to the limit using uniform estimates on two parameters: one associated to the
roughness, and other given by the variable profile of the thin domain. In this way, a continuous
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Figure 2. A piecewise periodic thin domain.

dependence property for the solutions with respect to the function G in Lp-norms is crucial and
it is obtained in theorem 4.1. We point out that these techniques also work for the dimension
reduction from three-dimensional thin sets to two-dimensional ones. The main change is in
the limit problem. In 3D, we somehow lose the explicit p-Laplacian form, as in the unidimen-
sional limit, but, clearly, the monotonicity of this limit operator is preserved (it will be done in
a forthcoming work).

Notice that our work also goes a step further from [23] where the p-Laplacian operator
is studied in standard thin domains. Let us emphasize that the standard thin domains were
previously introduced and rigorously studied in the paper [13] of Hale and Raugel where the
continuity of the family of attractors set by a semilinear parabolic equation in thin domains
was considered.

According to [1] and references therein, it is expected that the sequence uε will converge to a
function of just one variable x ∈ (0, 1) satisfying a one-dimensional equation of the same type.
Combining boundary perturbation techniques [3–5] and monotone operator analysis [17], we
identify the effective limit model of (2.1) at ε = 0.

The paper is organized as follows. In section 2 we state the main result of the paper. In
section 3, we introduce some notations and state some basic results which will be needed in
the sequel. In section 4, we prove the continuous dependence of the solutions in Lp-spaces
with respect to the function G uniformly in the parameter ε > 0 improving [3, theorem 4.1]
from L2 to Lp-spaces. In section 5, we perform the asymptotic analysis of (1.2) in piecewise
periodic thin domains (that is, in thin domains set by functions G which are piecewise constants
in the first variable x, and L-periodic in the second one). See figure 2 below which illustrates
piecewise periodic open sets.

Next, we provide in section 6 the proof of the main result of the paper (namely theorem
2.1) as a consequence of the analysis performed in the previous sections. Finally, we discuss
in section 7, the convergence of the resolvent and semigroup associated to the equation (1.2)
under the additional assumption p � 2. As we will see, it is obtained combining the classical
result [8, theorem 4.2] and our main result theorem 2.1. Furthermore, we include an appendix
where the dependence of the auxiliary solution v on admissible functions G is analysed.

2. Hypothesis on function G and the main result

First, recall that the variational formulation of (1.2) is given by
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∫
Rε

{
|∇uε|p−2∇uε∇ϕ+ |uε|p−2uεϕ

}
dx dy

=

∫
Rε

f εϕ dx dy, ϕ ∈ W1,p(Rε). (2.1)

Moreover, existence and uniqueness of the solutions are guaranteed by Minty–Browder’s
theorem setting a family of solutions uε.

Next, we state the main hypothesis on function G setting the main conditions on our rough
thin domain Rε introduced in (1.1).

Let G : (0, 1) × R �→ R be a function satisfying that there exist a finite number of points

0 = ξ0 < ξ1 < · · · < ξN−1 < ξN = 1,

such that G : (ξi−1, ξi) × R→ (0,∞) is C1 and such that G, ∂xG and ∂yG are uniformly bounded in
(ξi−1, ξi) ×R getting limits when we approach ξi−1 and ξi. Further, we assume there exist two constants
G0 and G1 such that

0 < G0 � G(x, y) � G1, ∀(x, y) ∈ (0, 1) ×R,

and a real number L > 0 such that G(x, y + L) = G(x, y) for all (x, y) ∈ (0, 1) × R.3

As we will see, the homogenized limit equation is a one-dimensional p-Laplacian equation
with variable coefficients q(x) and r(x). It assumes the following form{

−
(
q(x)|u′|p−2u′)′ + r(x)|u|p−2u = f̂ in (0, 1),

u′(0) = u′(1) = 0,

where the homogenized coefficients are given by

q(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
L

∫
Y∗(x)

|∇v|p−2∂y1v dy1 dy2, if α = 1,

1〈
1/Gp′−1(x, ·)

〉p−1

(0,L)

, if α < 1,

G0(x) = min
y∈R

G(x, y), if α > 1,

and

r(x) =
|Y∗(x)|

L
= 〈G(x, ·)〉(0,L).

(2.2)

We emphasize here the dependence of the function q(x) with respect to the parameter α > 0
and variable x ∈ (0, 1) which generalizes our previous work [2]. The function f̂ is the weak
limit of f̂ ε in Lp′ (0, 1) with f̂ ε defined by the family of known forcing terms f ε ∈ Lp′(Rε) in
the following way

f̂ ε(x) =
1
ε

∫ εG(x,x/εα)

0
f ε(x, y)dy.

3 G(x, ·) is a L-periodic function for each x ∈ (0, 1).
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|Y∗(x)| denotes the Lebesgue measure of the representative cell

Y∗(x) = {(y1, y2) : 0 < y1 < L, 0 < y2 < G(x, y1)} ,

which also depends on variable x ∈ (0, 1). The function v used to set the homogenized
coefficient q(x) in (2.2) is the unique solution of the problem

∫
Y∗(x)

|∇v|p−2∇v∇ϕ dy1 dy2 = 0 ∀ϕ ∈ W1,p
# (Y∗(x)), 〈ϕ〉Y∗(x) = 0,

(v − y1) ∈ W1,p
# (Y∗(x)) with 〈(v − y1)〉Y∗(x) = 0

,

(2.3)

where

W1,p
# (Y∗(x)) = {ϕ ∈ W1,p(Y∗(x)) : ϕ|∂leftY∗(x) = ϕ|∂rightY∗(x)},

is the space of periodic functions on the horizontal variable y1, and 〈ϕ〉O denotes the average
of any function ϕ ∈ L1

loc(RM) on measurable sets O ⊂ R
M .

It is worth noticing that problem (2.3) is well posed for each x ∈ (0, 1), due to
Minty–Browder’s theorem, and then, the coefficient q(x) is also well defined. Further, q(x) is a
positive function setting a well posed homogenized equation. Indeed, since v is the solution of
(2.3), there exists ψ ∈ W1,p

# (Y∗(x)) with 〈ψ〉Y∗(x) = 0 for each x ∈ (0, 1) such that v = y1 + ψ
and then

0 <

∫
Y∗(x)

|∇v|p dy1 dy2 =

∫
Y∗(x)

|∇v|p−2∇v∇(y1 + ψ) dy1 dy2

=

∫
Y∗(x)

|∇v|p−2∂y1v dy1 dy2 = Lq(x).

The main result of the paper is the following:

Theorem 2.1. Let uε be the solution of (1.2) with f ε ∈ Lp′ (Rε) uniformly bounded. Suppose
that

f̂ ε(x) =
1
ε

∫ εG(x,x/εα)

0
f ε(x, y)dy,

satisfies f̂ ε ⇀ f̂ weakly in Lp′(0, 1).
Let u ∈ W1,p(0, 1) be the unique solution of the homogenized equation

∫ 1

0

{
q(x)|u′|p−2u′ϕ′ + r(x) |u|p−2uϕ

}
dx =

∫ 1

0
f̂ϕ dx, ∀ϕ ∈ W1,p(0, 1),

where the homogenized coefficients q(x) and r(x) depend on the parameter α > 0 and are
given by the expression (2.2).

Then,
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L
|Y∗(x)|ε

∫ εG(x,x/εα)

0
uε(x, y)dy ⇀ u weakly in Lp (0, 1) ,

and

ε−1/p‖uε − u‖Lp(Rε) → 0, as ε→ 0.

As mentioned before, we are improving the results from [3] where the Laplacian operator
in locally periodic thin domains were considered. We recover them taking p = 2 in theorem
2.1. Moreover, we also have improved our previous results from [2] where the purely periodic
case in bidimensional thin regions were studied to the p-Laplacian operator where constant
homogenized coefficients are obtained. Here, since we are considering locally periodic thin
domains, variable homogenized coefficients can be produced. The main step in the proof is to
pass to the limit in the solutions with the representative cell depending on variable x ∈ (0, 1)
assuming different orders of roughness (different values for the parameter α > 0). To do that,
we discretize the oscillating thin region passing to the limit using uniform estimates on two
parameters: one associated to the roughness, and other given by the variable profile of the thin
domain. In this way, a continuous dependence property for the solutions with respect to the
function G in Lp-norms is crucial and it is shown in theorem 4.1 below.

3. Basic facts and the unfolding operator

In this section, we introduce some basic facts, definitions and results concerning to the unfold-
ing method making some straightforward adaptations to our propose. First, let us just recall
some basic properties to the p-Laplacian which can be found for instance in [17].

Proposition 3.1. Let x, y ∈ R
n.

• If p � 2, then

〈|x|p−2x − |y|p−2y, x − y〉 � cp|x − y|p.

• If 1 < p < 2, then

〈|x|p−2x − |y|p−2y, x − y〉 � cp|x − y|2(|x|+ |y|)p−2 � cp|x − y|2(1 + |x|+ |y|)p−2.

Corollary 3.1.1. Let ap : Rn → R
n such that ap(s) = |s|p−2s, 1

p +
1
p′ = 1. Then, ap is the

inverse of ap′ . Moreover,

• If 1 < p′ < 2 (i.e. p � 2), then∣∣∣|u|p′−2u − |v|p′−2v
∣∣∣ � c|u − v|p′−1.

• If p′ � 2 (i.e. 1 < p < 2), then∣∣∣|u|p′−2u − |v|p′−2v
∣∣∣ � c|u − v|(|u|+ |v|)p′−2 � c|u − v|(1 + |u|+ |v|)p′−2.

Proposition 3.2. Let x, y ∈ R
n and p � 1. Then,

|y|p � |x|p + p|x|p−2x · (y − x).
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Moreover,

|y|p � |x|p + p|x|p−2x · (y − x) + cp|y − x|p if p � 2,

|y|p � |x|p + p|x|p−2x · (y − x) + cp|x − y|2(1 + |x|+ |y|)p−2 if 1 < p < 2.

From now on, we use the following rescaled norms

|||ϕ|||Lp(Rε) = ε−1/p||ϕ||Lp(Rε)∀ϕ ∈ Lp(Rε), 1 � p < ∞,

|||ϕ|||W1,p(Rε) = ε−1/p||ϕ||W1,p(Rε)∀ϕ ∈ W1,p(Rε), 1 � p < ∞.

For completeness we may denote |||ϕ|||L∞(Rε) = ||ϕ||L∞(Rε).
Next, we get the following uniform bound for the solutions of (1.2):

Proposition 3.3. Consider the variational formulation of our problem:

∫
Rε

{
|∇uε|p−2∇uε∇ϕ+ |uε|p−2uεϕ

}
dx dy =

∫
Rε

f εϕ dx dy, ϕ ∈ W1,p(Rε),

(3.1)

where f ε satisfies

||| f ε|||Lp′ (Rε) � c,

for some positive constant c independent of ε > 0. Then,

|||uε|||Lp(Rε) � c, |||uε|||W1,p(Rε) � c,∣∣∣∣∣∣∣∣∣|∇uε|p−2∇uε

∣∣∣∣∣∣∣∣∣
Lp′ (Rε)

� c.

Proof. Take ϕ = uε in (3.1). Then,

||uε||pW1,p(Rε)
=

∫
Rε
{|∇uε|p + |uε|p} dx dy � || f ε||Lp′ (Rε)||uε||Lp(Rε).

Hence,

|||uε|||W1,p(Rε) � c.

Therefore, the sequence uε and |∇uε|p−2∇uε, are respectively bounded in Lp(Rε) and
(Lp′(Rε))2 under the norm |||·|||. �

3.1. Unfolding operator

Here, we present the unfolding operators for thin domains in the purely and locally periodic
settings. We rewrite it to our context in order to simplify our proofs. They were first introduced
in [4, 5] where details and proofs can be found.
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3.1.1. The purely periodic unfolding. Let Gi : R→ R be a L-periodic function, lower semicon-
tinuous satisfying 0 < g0,i � Gi(x) � g1,i with g0,i = minx∈R Gi(x) and g1,i = supx∈R Gi(x) for
any i = 1, . . . , N. Now consider the thin region

Rε
i = {(x, y) ∈ R : ξi−1 < x < ξi, 0 < y < εGi(x/ε)} .

The basic cell associated to Rε
i is

Y∗
i =

{
(y1, y2) ∈ R

2 : 0 < y1 < L and 0 < y2 < Gi(y1)
}
.

By

〈ϕ〉O :=
1
|O|

∫
O
ϕ(x) dx,

we denote the average of ϕ ∈ L1
loc(R

2) for any open measurable set O ⊂ R
2. We also set

functional spaces which are defined by periodic functions in the variable y1 ∈ (0, L). Namely

Lp
#(Y∗

i ) = {ϕ ∈ Lp(Y∗
i ) : ϕ(y1, y2) is L-periodic in y1},

Lp
#

(
(0, 1) × Y∗

i

)
= {ϕ ∈ Lp((0, 1) × Y∗

i ) : ϕ(x, y1, y2) is L-periodic in y1},

W1,p
# (Y∗

i ) = {ϕ ∈ W1,p(Y∗
i ) : ϕ|∂leftY∗

i
= ϕ|∂rightY∗

i
}.

For each ε > 0 and any x ∈ (ξi−1, ξi), there exists an integer denoted by
[

x
ε

]
L such that

x = ε
[ x
ε

]
L
L + ε

{ x
ε

}
L

where
{ x
ε

}
L
∈ [0, L).

We still set

Ii
ε = Int

⎛⎝ Ni
ε⋃

k=1

[kLε+ ξi−1, (k + 1)Lε+ ξi−1]

⎞⎠ ,

where Ni
ε is largest integer such that εL(Ni

ε + 1) + ξi−1 � ξi, as well

Λi
ε = (ξi−1, ξi)\Ii

ε = [εL(Ni
ε + 1) + ξi−1, ξi),

Rε
0i =

{
(x, y) ∈ R

2 : x ∈ Ii
ε, 0 < y < εGi

( x
ε

)}
,

Rε
1i =

{
(x, y) ∈ R

2 : x ∈ Λi
ε, 0 < y < εGi

( x
ε

)}
.

Now we can introduce the unfolding operator. In the sequel, we point out its main properties.

Definition 3.4. Let ϕ be a Lebesgue-measurable function in Rε
i . The unfolding operator T i

ε

acting on ϕ is defined as the following function in (ξi−1, ξi) × Y∗
i

T i
ε ϕ(x, y1, y2) =

⎧⎨⎩ϕ
(
ε
[ x
ε

]
L
L + εy1, εy2

)
, for (x, y1, y2) ∈ Ii

ε × Y∗
i ,

0, for (x, y1, y2) ∈ Λi
ε × Y∗

i .

Proposition 3.5. The unfolding operator satisfies the following properties:
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(a) T i
ε is linear;

(b) T i
ε (ϕψ) = T i

ε (ϕ)Tε(ψ), for all ϕ, ψ Lebesgue measurable in Rε
i ;

(c) ∀ϕ ∈ Lp(Rε
i ), 1 � p � ∞,

T i
ε (ϕ)

(
x,
{ x
ε

}
L
,

y
ε

)
= ϕ(x, y),

for (x, y) ∈ Rε
0i.

(d) Let ϕε ∈ L1(Rε
i ). Then,

1
L

∫
(ξi−1,ξi)×Y∗

i

T i
ε (ϕ)(x, y1, y2)dx dy1dy2 =

1
ε

∫
Rε

0i

ϕ(x, y)dx dy

=
1
ε

∫
Rε

i

ϕ(x, y)dx dy − 1
ε

∫
Rε

1i

ϕ(x, y)dx dy;

(e) Let (ϕε) be a sequence in Lp(Rε
i ), 1 < p � ∞with the norm ||ϕε||Lp(Rε

i ) uniformly bounded.
Then,

1
ε

∫
Rε

1i

|ϕε|dx dy → 0.

( f ) Let (ϕε) be a sequence in Lp(ξi−1, ξi), 1 � p < ∞, such that

ϕε → ϕ strongly in Lp(ξi−1, ξi).

Then,

T i
ε ϕε → ϕ strongly in Lp

(
(ξi−1, ξi) × Y∗

i

)
.

Proof. See [5, proposition 2.5]. �
The above result sets several basic and somehow immediate properties of the unfolding

operator. Property four will be essential to pass to the limit when dealing with solutions of
differential equations since it allow us to transform any integral over the thin sets depending
on the parameter ε and function Gi into an integral over the fixed set (ξi−1, ξi) × Y∗

i .

3.1.2. Locally periodic unfolding. Next we set the locally periodic unfolding operator dis-
cussing some properties that will be needed in the sequel.

Definition 3.6. We define the locally periodic unfolding operator Tlp
ε acting on a measurable

function ϕ, as the function Tlp
ε ϕ defined in (0, 1) × (0, L) × (0, G1) by expression

Tlp
ε ϕ(x, y1, y2) = ϕ̃

(
εα

[ x
εα

]
L + εαy1, εy2

)
for (x, y1, y2) ∈ (0, 1) × (0, L) × (0, G1),

where ·̃ denotes the extension by zero to the whole space.

As in classical periodic homogenization, we have the unfolding operator reflecting two
scales. The macroscopic one, denoted by x which gives the position in the interval (0, 1), and
the microscopic scale given by (y1, y2) which sets the position in the cell (0, L) × (0, G1). How-
ever, due to the locally periodic oscillations of the domain Rε, the definition given here differs
from the usual ones. In this case, we do not have a fixed cell that describes the domain Rε which
makes the extension by zero needed.
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Theorem 3.7. Let ϕε ∈ W1,p(Rε) for 1 < p < ∞ such that ‖|ϕε‖|W1,p(Rε) is uniformly
bounded. Then, there exists ϕ ∈ W1,p(0, 1) such that, up to subsequences,

Tlp
ε ϕε ⇀ ϕχ(0,1)×Y∗(x),

weakly in Lp ((0, 1) × (0, L) × (0, G1)) where χ(0,1)×Y∗(x) is the characteristic function of the set

{(x, y) ∈ R
2 : x ∈ (0, 1) and y ∈ Y∗(x)}.

Proof. See [4, theorem 3.14]. �

Remark 3.1. We point out that the convergence above cannot be improved because of the
definition of locally periodic unfolding operator.

Proposition 3.8.

(a) Let ϕ ∈ L1(Rε). Then,

1
L

∫
(0,1)×(0,L)×(0,G1)

Tlp
ε ϕ(x, y1, y2)dx dy1 dy2 =

1
ε

∫
Rε
ϕ(x, y)dx dy.

(b) Let ϕ ∈ Lp(0, 1). Then,

Tlp
ε ϕ→ χ(0,1)×Y∗(x)ϕ strongly in Lp ((0, 1) × (0, L) × (0, G1)) .

Proof. See [4]. �

Proposition 3.9. Let ϕε ∈ Lp(Rε) such that

Tlp
ε ϕε ⇀ χ(0,1)×Y∗(x)ϕweakly in Lp ((0, 1) × (0, L) × (0, G1)) ,

where ϕ(x, y1, y2) = ϕ(x). Then,

L
ε

∫ εGε(·)

0
ϕε(·, y)dy ⇀ |Y∗(·)|ϕweakly in Lp(0, 1).

Proof. Notice that

1
L

∫
(0,1)×(0,L)×(0,G1)

Tlp
ε ϕεT

lp
ε ψ(x)dx dy1 dy2

→ 1
L

∫
(0,1)×(0,L)×(0,G1)

ϕ(x)ψ(x)χ(0,1)×Y∗(x)dx dy1 dy2,

for all ψ ∈ Lp′(0, 1).
By the proposition 3.8, we have
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1
L

∫
(0,1)×(0,L)×(0,G1)

Tlp
ε ϕεT

lp
ε ψ(x)dx dy1 dy2

=
1
ε

∫
Rε
ϕε(x, y)ψ(x)dx dy

=

∫ 1

0

(
1
ε

∫ εGε(x)

0
ϕε(x, y)dy

)
ψ(x)dx,

and

1
L

∫
(0,1)×(0,L)×(0,G1)

ϕ(x)ψ(x)χ(0,1)×Y∗(x)dx dy1 dy2

=
1
L

∫ 1

0
|Y∗(x)|ϕ(x)ψ(x)dx,

for all ψ ∈ Lp′(0, 1).
Thus,

1
ε

∫ εGε(x)

0
ϕε(x, y)dy ⇀

1
L
|Y∗(x)|ϕ(x),

weakly in Lp(0, 1). �

4. A domain dependence result

In this section we analyse how the solutions of (1.2) depends on the function Gε. Let us take

Gε(x) = G
(

x,
x
εα

)
and Ĝε(x) = Ĝ

(
x,

x
εα

)
,

satisfying hypothesis (H) and considering the associated thin domains Rε and R̂ε by

Rε =
{

(x, y) ∈ R
2 : x ∈ (0, 1), 0 < y < εGε(x)

}
and

R̂ε =
{

(x, y) ∈ R
2 : x ∈ (0, 1), 0 < y < εĜε(x)

}
.

Now, let uε and ûε be the solutions of (1.2) for the domains Rε and R̂ε respectively with
f ε ∈ Lp′ (R2). We have the following result.

Theorem 4.1. Let Gε and Ĝε be piecewise C1 functions satisfying (H) with

‖Gε − Ĝε‖L∞(0,1) � δ.

Assume also f ε ∈ Lp′(R2) satisfying ‖ f ε‖Lp(R2) � 1.
Then, there exists a positive real function ρ : [0,∞) �→ [0,∞) such that

‖|uε − ûε‖|pW1,p(Rε∩R̂ε)
+ ‖|uε‖|pW1,p(Rε\R̂ε)

+ ‖|ûε‖|pW1,p(R̂ε\Rε)
� ρ(δ), (4.1)

with ρ(δ) → 0 as δ → 0 uniformly for all ε > 0.
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Remark 4.1. The important part of this result is that the function ρ(δ) does not depend on
ε. As we will see, it only depends on the positive constants G0 and G1.

In order to prove theorem 4.1, we use the fact that uε and ûε are minimizers of the functionals

Vε(ϕ) =
1

pε

∫
Rε

(
|∇ϕ|p + |ϕ|p

)
dx dy − 1

ε

∫
Rε

f εϕ dx dy

V̂ε(ϕ̂) =
1

pε

∫
R̂ε

(
|∇ϕ̂|p + |ϕ̂|p

)
dx dy − 1

ε

∫
R̂ε

f εϕ̂ dx dy

, (4.2)

that is,

Vε(uε) = min
ϕ∈W1,p(Rε)

Vε(ϕ) and V̂ε(ûε) = min
ϕ̂∈W1,p(R̂ε)

V̂ε(ϕ̂).

We will need to evaluate the minimizers plugging them into different functionals. For this, we
set the following operators introduced in [3]:

P1+η : W1,p(U) �→ W1,p (U(1 + η))(
P1+ηϕ

)
(x, y) = ϕ

(
x,

y
1 + η

)
, (x, y) ∈ U(1 + η),

(4.3)

where

U(1 + η) =
{

(x, (1 + η)y) ∈ R
2 : (x, y) ∈ U

}
, (4.4)

and U ⊂ R
2 is an arbitrary open set. We also consider the following norm in W1,p(U)

‖w‖p

W1,p
1+η(U)

=
1

1 + η

[
||w||pLp(U) + ||K1+η∇w||pLp(U)

]
, (4.5)

where

K1+η =

(
1 0
0 1 + η

)
.

We can easily see that

‖w‖p
W1,p(U)

= ‖P1+ηw‖p

W1,p
1+η

(U(1+η))
, (4.6)

and

1
1 + η

‖w‖p
W1,p(U)

� ‖w‖
W1,p

1+η
(U)

� (1 + η)‖w‖p
W1,p(U)

as η � 0.

Also, we need the following result about the behaviour of the solutions near the oscillating
boundary.

Lemma 4.2. Let uε be the solution of problem (1.2) and let P1+η be the operator given
by (4.3). Then, there exists a positive function ρ = ρ(p, η) satisfying ρ(p, η) → 0 as η → 0,
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such that

‖|uε‖|p
W1,p

(
Rε\Rε

(
1

1+η

)) + ‖|uε‖|pW1,p(Rε(1+η)\Rε) + ‖|P1+ηuε − uε‖|pW1,p(Rε)

� ρ(p, η),

for 1 < p < ∞.

Proof. Since η > 0, we have that Rε
(

1
1+η

)
⊂ Rε. Then,

V(uε) =
1
p
‖|uε‖|pW1,p(Rε)

− 1
ε

∫
Rε

f εuε dx dy

=
1
p
‖|uε‖|p

W1,p
(

Rε\Rε
(

1
1+η

)) +
1
p
‖|uε‖|p

W1,p
(

Rε
(

1
1+η

))

− 1
ε

∫
Rε

f εuε dx dy

=
1
p
‖|uε‖|p

W1,p
(

Rε\Rε
(

1
1+η

)) +
1
p
‖|P1+ηuε‖|p

W1,p
1+η(Rε)

− 1
ε

∫
Rε

f εuε dx dy

� 1
p
‖|uε‖|p

W1,p
(

Rε\Rε
(

1
1+η

)) +
1

p(1 + η)
‖|P1+ηuε‖|pW1,p(Rε)

− 1
ε

∫
Rε

f εuε dx dy. (4.7)

Now, let us first assume p � 2. We use the notations of corollary 3.1.1 to simplify proofs.
By proposition 3.2, (4.2) and (2.1) for ϕ = P1+ηuε − uε, we get

‖|P1+ηuε‖|pW1,p(Rε)
� ‖|uε‖|pW1,p(Rε)

+
p
ε

∫
Rε

[
ap(∇uε)∇

(
P1+ηuε − uε

)
+ ap(uε)

(
P1+ηuε − uε

)]
dx dy + cp‖|P1+ηuε − uε‖|pW1,p(Rε)

= pV(uε) +
p
ε

∫
Rε

f εuε dx dy +
p
ε

∫
Rε

f ε
(
P1+ηuε − uε

)
dx dy

+ cp‖|P1+ηuε − uε‖|pW1,p(Rε)

= pV(uε) +
p
ε

∫
Rε

f εP1+ηuε dx dy + cp‖|P1+ηuε − uε‖|pW1,p(Rε)
. (4.8)

Putting together (4.7) and (4.8), we obtain
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V(uε) �
1
p
‖|uε‖|p

W1,p
(

Rε\Rε
(

1
1+η

)) +
1

p(1 + η)
‖|P1+ηuε‖|pW1,p(Rε)

− 1
ε

∫
Rε

f εuε dx dy

� 1
p
‖|uε‖|p

W1,p
(

Rε\Rε
(

1
1+η

)) +
1

1 + η
V(uε)

+
1

ε(1 + η)

∫
Rε

f εP1+ηuε dx dy +
cp

1 + η
‖|P1+ηuε − uε‖|pW1,p(Rε)

− 1
ε

∫
Rε

f εuε dx dy.

Consequently

η

1 + η
V(uε) �

1
p
‖|uε‖|p

W1,p
(

Rε\Rε
(

1
1+η

))

+
1
ε

∫
Rε

f ε
[

P1+ηuε

(1 + η)
− uε

]
dx dy +

cp

1 + η
‖|P1+ηuε − uε‖|pW1,p(Rε)

,

which implies

1
p
‖|uε‖|p

W1,p
(

Rε\Rε
(

1
1+η

)) +
cp

1 + η
‖|P1+ηuε − uε‖|pW1,p(Rε)

� η

1 + η
V(uε) +

1
ε

∫
Rε

f ε
[

uε −
P1+ηuε

(1 + η)

]
dx dy. (4.9)

Now, let us analyse the integral:

1
ε

∫
Rε

f ε
[

uε −
P1+ηuε

(1 + η)

]
dx dy.

To do this, notice that

uε(x, y) − (P1+ηuε)(x, y) = uε(x, y) − uε

(
x,

y
1 + η

)
=

∫ y

y
1+η

∂yuε(x, s)ds,

which implies

|uε(x, y) − (P1+ηuε)(x, y)| �
[∫ y

y
1+η

|∂yuε(x, s)|pds

]1/p(
ηy

(1 + η)

)1/p′

,

putting the power p, multiplying by 1/ε, integrating between 0 and εGε(x) and using that
(y/(1 + η), y) ⊂ (εGε(x)), we get

1
ε

∫ εGε(x)

0
|uε(x, y) − (P1+ηuε)(x, y)|pdy �

[
1
ε

∫ εGε(x)

0
|∂yuε(x, s)|pds

]

×
(

η

1 + η

)p−1 (εGε(x))p

p
.
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Thus, we have

‖|uε − P1+ηuε‖|Lp(Rε) � ‖|∂yuε‖|Lp(Rε)

(
η

1 + η

)1/p′ G1

p1/p
,

for ε < 1. Consequently, we get

∣∣∣∣1
ε

∫
Rε

f ε
[

uε −
P1+ηuε

(1 + η)

]
dx dy

∣∣∣∣
� η

ε(1 + η)

∫
Rε
| f εuε|dx dy +

1
ε(1 + η)

∫
Rε
| f εuε − f εP1+ηuε| dx dy

� η

1 + η
‖| f ε‖|Lp′ (Rε)‖|uε‖|Lp(Rε) + ‖| f ε‖|Lp′ (Rε)‖|∂yuε‖|Lp(Rε)

× η1/p′

(1 + η)1+1/p′
G1

p1/p
. (4.10)

Hence, due proposition 3.3, (4.9) and (4.10), one gets

1
p
‖|uε‖|p

W1,p
(

Rε\Rε
(

1
1+η

)) + cp‖|P1+ηuε − uε‖|pW1,p(Rε)

� η

1 + η
c +

η

1 + η
c +

η1/p′

(1 + η)1+1/p′ c

� cη + cη1/p′ . (4.11)

On the other hand, we have

V(uε) =
1
p
‖|uε‖|pW1,p(Rε)

− 1
ε

∫
Rε

f εuε dx dy

=
1
p
‖|P1+ηuε‖|p

W1,p
1+η

(Rε(1+η))
− 1

ε

∫
Rε

f εuε dx dy

=
1
p
‖|P1+ηuε‖|p

W1,p
1+η(Rε(1+η)\Rε)

+
1
p
‖|P1+ηuε‖|p

W1,p
1+η(Rε)

− 1
ε

∫
Rε

f εuε dx dy

� 1
p(1 + η)

[
‖|P1+ηuε‖|pW1,p(Rε(1+η)\Rε))

+ ‖|P1+ηuε‖|pW1,p(Rε)

]
− 1

ε

∫
Rε

f εuε dx dy.

Hence, due to (4.8), we get
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V(uε) �
1

p(1 + η)

[
‖|P1+ηuε‖|pW1,p(Rε(1+η)\Rε))

+ ‖|P1+ηuε‖|pW1,p(Rε)

]
− 1

ε

∫
Rε

f εuε dx dy

� 1
p(1 + η)

‖|P1+ηuε‖|pW1,p(Rε(1+η)\Rε))
+

1
(1 + η)

V(uε)

+
1

(1 + η)ε

∫
Rε

f εP1+ηuε dx dy + cp‖|P1+ηuε − uε‖|pW1,p(Rε)

− 1
ε

∫
Rε

f εuε dx dy,

and then,

1
p(1 + η)

‖|P1+ηuε‖|pW1,p(Rε(1+η)\Rε))
+ cp‖|P1+ηuε − uε‖|pW1,p(Rε)

� η

1 + η
V(uε) +

1
ε

∫
Rε

f ε
(

uε −
P1+ηuε

(1 + η)

)
dx dy.

Thus, due proposition 3.3 and (4.10), we get for p > 2 that

1
p
‖|P1+ηuε‖|pW1,p(Rε(1+η)\Rε) + cp‖|P1+ηuε − uε‖|pW1,p(Rε)

� cη + cη1/p′. (4.12)

Notice that to the case p > 2, we have mainly estimated the term |x − y|p. Now, for the case
1 < p < 2, we have to estimate (1 + |x|+ |y|)p−2|x − y|2 in view of propositions 3.1 and 3.2.
Indeed, we can argue as in (4.11) and (4.12), to get, for 1 < p < 2 that

1
p
‖|uε‖|p

W1,p
(

Rε\Rε
(

1
1+η

)) +
cp

ε

∫
Rε
|∇P1+ηuε −∇uε|2

(
1 + |∇P1+ηuε|

+ |∇uε|
)p−2

dxdy +
cp

ε

∫
Rε
|P1+ηuε − uε|2

(
1 + |P1+ηuε|+ |uε|

)p−2
dx dy

� cη + cη1/p′ , (4.13)

and

1
p
‖|P1+ηuε‖|pW1,p(Rε(1+η)\Rε) +

cp

ε

∫
Rε
|∇P1+ηuε −∇uε|2

(
1 + |∇P1+ηuε|

+ |∇uε|
)p−2

dx dy +
cp

ε

∫
Rε
|P1+ηuε − uε|2

(
1 + |P1+ηuε|+ |uε|

)p−2
dx dy

� cη + cηp−1.

Now, notice that
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‖|P1+ηuε − uε‖|pW1,p(Rε)
d

�
(

1
ε

∫
Rε
|∇P1+ηuε −∇uε|2

(
1 + |∇P1+ηuε|+ |∇uε|

)p−2
dx dy

)p/2

·
[

1
ε

∫
Rε

(
1 + |∇P1+ηuε|+ |∇uε|

)p
dx dy

](2−p)/2

+

(
1
ε

∫
Rε
|P1+ηuε − uε|2

(
1 + |P1+ηuε|+ |uε|

)p−2
dx dy

)p/2

·
[

1
ε

∫
Rε

(
1 + |P1+ηuε|+ |uε|

)p
dx dy

](2−p)/2

.

Finally, putting together the last inequality and (4.13), we also obtain

1
p
‖|uε‖|p

W1,p
(

Rε\Rε
(

1
1+η

)) + ‖|P1+ηuε − uε‖|pW1,p(Rε)

� cη + cη1/p′ +
[
cη + cη1/p′

]p/2
,

for 1 < p < 2 finishing the proof. �
Now, we are in condition to show theorem 4.1.

Proof of theorem 4.1. Taking η = δ/G0, we get under condition ‖Gε − Ĝε‖ � δ that

Rε

(
1

1 + η

)
⊂ R̂ε ⊂ Rε(1 + η) and R̂ε

(
1

1 + η

)
⊂ Rε ⊂ R̂ε(1 + η).

(4.14)

Applying lemma 4.2, we get

‖|uε‖|pW1,p(Rε\R̂ε)
� ‖|uε‖|p

W1,p
(

Rε\Rε
(

1
1+η

)) � cρ(η) and

‖|uε‖|pW1,p(R̂ε\Rε)
� ‖|uε‖|p

W1,p
(

R̂ε\R̂ε
(

1
1+η

)) � cρ(η).
(4.15)

Now, let us focus to the first term of (4.1). We have

Vε(uε) � Vε

((
P1+ηûε

)
|Rε

)
=

1
p
‖|
(
P1+ηûε

)
|Rε‖|W1,p(Rε) −

1
ε

∫
Rε

f ε
(
P1+ηûε

)
|Rεdx dy

� 1
p
‖|P1+ηûε‖|W1,p(R̂ε(1+η)) −

1
ε

∫
R̂ε

f εP1+ηûεdx dy

+
1
ε

∫
R̂ε\Rε

f εP1+ηûεdx dy. (4.16)

But from the definition of P1+η (see (4.3)) and a change of variables, we get

‖|P1+ηûε‖|pW1,p(R̂ε(1+η)) � (1 + η)‖|ûε‖|pW1,p(R̂ε). (4.17)
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From lemma 4.2 we get

1
ε

∫
R̂ε

f ε
(
P1+ηûε − ûε

)
dx dy � ‖| f ε‖|Lp′ (R̂ε)‖|P1+ηûε − ûε‖|Lp(R̂ε)

� cρ(η)1/p. (4.18)

Also, by (4.14), (4.15) and lemma 4.2, we obtain

1
ε

∫
R̂ε\Rε

f εP1+ηûε dx dy � ‖| f ε‖|Lp′ (R̂ε)‖|P1+ηûε‖|Lp(R̂ε\Rε) � cρ(η)1/p. (4.19)

Hence, using (4.2), (4.16), (4.17), proposition 3.3, (4.18) and (4.19), we get

Vε(uε) �
(1 + η)

p
‖|ûε‖|pW1,p(R̂ε) −

1
ε

∫
R̂ε

f εP1+ηûε dx dy

+
1
ε

∫
R̂ε\Rε

f εP1+ηûε dx dy

= (1 + η)V̂ε(ûε) +
(1 + η)

ε

∫
R̂ε

f εûε dx dy − 1
ε

∫
R̂ε

f εP1+ηûεdxdy

+
1
ε

∫
R̂ε\Rε

f εP1+ηûε dx dy

= (1 + η)V̂ε(ûε) +
η

ε

∫
R̂ε

f εûε dx dy +
1
ε

∫
R̂ε

f ε(ûε − P1+ηûε)dx dy

+
1
ε

∫
R̂ε\Rε

f εP1+ηûε dx dy

� (1 + η)V̂ε(ûε) + η‖| f ε‖|Lp′ (R̂ε)‖|ûε‖|Lp(R̂ε) + cρ(η)1/p

= (1 + η)V̂ε(ûε) + ρ̄(η), (4.20)

where ρ̄ denotes a function such that ρ̄(η) → 0 as η → 0.
On the other hand, by (4.2), (4.5), (4.6), (4.14) and proposition 3.2, we get, for p � 2,

Vε(uε) =
1
p
‖|uε‖|pW1,p(Rε)

− 1
ε

∫
Rε

f εuε dx dy

=
1
p
‖|P1+ηuε‖|p

W1,p
1+η

(Rε(1+η))
− 1

ε

∫
Rε

f εuε dx dy

� 1
p(1 + η)

‖|P1+ηuε‖|pW1,p(R̂ε)
− 1

ε

∫
Rε

f εuε dx dy

� 1
p(1 + η)

[
‖|ûε‖|pW1,p(R̂ε)

+
p
ε

∫
R̂ε

(
ap(∇ûε)∇(P1+ηuε − ûε)

+ ap(ûε)(P1+ηuε − ûε)
)

dx dy + cp‖|P1+ηuε − ûε‖|pW1,p(R̂ε)

]
− 1

ε

∫
Rε

f εuε dx dy
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=
1

p(1 + η)

[
pV̂(ûε) +

p
ε

∫
R̂ε

f εûε dx dy +
p
ε

∫
R̂ε

f ε(P1+ηuε − ûε)dx dy

+ cp‖|P1+ηuε − ûε‖|pW1,p(R̂ε)

]
− 1

ε

∫
Rε

f εuε dx dy

=
1

(1 + η)
V̂(ûε) +

1
ε

∫
R̂ε

f ε
1

1 + η
P1+ηuε dx dy − 1

ε

∫
Rε

f εuε dx dy

+
cp

p(1 + η)
‖|P1+ηuε − ûε‖|pW1,p(R̂ε)

. (4.21)

Now, due (4.10), a Hölder’s inequality and lemma 4.2, we obtain∣∣∣∣1
ε

∫
R̂ε

f ε
1

1 + η
P1+ηuε dx dy − 1

ε

∫
Rε

f εuε dx dy

∣∣∣∣
�

∣∣∣∣1
ε

∫
R̂ε\Rε

f εP1+ηuε dx dy

∣∣∣∣+ ∣∣∣∣1
ε

∫
Rε\R̂ε

f εP1+ηuε dx dy

∣∣∣∣
+

∣∣∣∣ 1
(1 + η)ε

∫
Rε

f εP1+ηuε dx dy − 1
ε

∫
Rε

f εuε dx dy

∣∣∣∣
� cρ(δ)1/p. (4.22)

First, one can put together (4.20) and (4.21), and then use (4.22) to lead us to

cp

p(1 + η)
‖|P1+ηuε − ûε‖|pW1,p(R̂ε)

� η2 + 2η
1 + η

V̂ε(ûε) + ρ(δ)1/p + ρ̄(δ),

which implies that

‖|P1+ηuε − ûε‖|pW1,p(R̂ε)
� ρ̂(δ), (4.23)

for p � 2, where ρ̂(η) is a nonnegative function that tends to zero as η → 0.
From lemma 4.2, we have ‖|uε − P1+ηuε‖|pW1,p(Rε)

� cρ(δ). It follows from (4.23) that

‖|uε − ûε‖|pW1,p(Rε∩R̂ε)
� ρ̃(δ),

for p � 2, where ρ̃(η) is a nonnegative function that tends to zero as η → 0.
For 1 < p < 2, we can perform analogous argument to obtain

cp

p(1 + η)

[
1
ε

∫
Rε
|∇P1+ηuε −∇uε|2

(
1 + |∇P1+ηuε|+ |∇uε|

)p−2
dx dy

+
1
ε

∫
Rε
|P1+ηuε − uε|2

(
1 + |P1+ηuε|+ |uε|

)p−2
dx dy

]
� η

1 + η
V̂ε(ûε) + ρ(δ)1/p,

which gives us

‖|uε − ûε‖|pW1,p(Rε∩R̂ε)
� ρ̃(δ),

where ρ̃(η) is a nonnegative function which tends to zero as η → 0. �
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Remark 4.2. It follows from (4.23) that there exists ρ : [0,∞) �→ [0,∞) such that

‖|P1+δ/G0uε − ûε‖|pW1,p(R̂ε)
� ρ(δ),

with ρ(δ) → 0 as δ → 0 uniformly in ε and any piecewise C1 functions Gε and Ĝε uniformly
bounded with ‖Gε − Ĝε‖L∞(0,1) � δ and f ε ∈ Lp′ (R2) satisfying ‖ f ε‖Lp′ (R2) � 1.

5. The piecewise periodic case

Now, we analyse the limit of {uε}ε>0 assuming the upper boundary of Rε is piecewise periodic.
More precisely, we assume G satisfies (H) being independent on the first variable in each

interval (ξi−1, ξi).
We suppose that G satisfies

G(x, y) = Gi(y) in x ∈ Ii = (ξi−1, ξi) for any y ∈ R, (5.1)

with Gi(y + L) = Gi(y) for all y ∈ R. Moreover, we assume the function Gi(·) is C1 for all
i = 1, . . . , N and there exist 0 < G0 < G1 such that miny∈R Gi(y) = G0

i � Gi(·) � G1 for all
i = 1, . . . , N.

Notice that the domain Rε can now be rewritten as

Rε =

(
N⋃

i=1

Rε
i

)
∪
(

N−1⋃
i=1

{(ξi, y) : 0 < y < εmin{Gi−1(ξi/ε), Gi(ξi/ε)}}
)

,

(5.2)

with

Rε
i = {(x, y) ∈ R : ξi−1 < x < ξi, 0 < y < εGi(x/ε)} .

See figure 2 which illustrates this piecewise periodic thin domain.
Before proving the main result of this section, let us recall an important result proved, for

instance, in [21]. It is concerned to the purely periodic thin domain situation.

Proposition 5.1. Assume G satisfies the condition (5.1) and let uε be the solution of (1.2)
with f ε satisfying ||| f ε|||Lp′ (Rε

i ) � c for some c > 0 independent of ε > 0. Suppose that

f̂ ε(x) =
1
ε

∫ εGi(x/εα)

0
f ε(x, y)dy ⇀ f̂ weakly in Lp′ (ξi−1, ξi).

If α = 1, then there exists (ui, ui
1) ∈ W1,p(ξi−1, ξi) × Lp((0, 1); W1,p

# (Y∗
i )) such that

⎧⎪⎪⎨⎪⎪⎩
T i
ε uε → ui strongly in Lp((ξi−1, ξi); W1,p(Y∗

i )),

T i
ε (∂xuε) ⇀ ∂xui + ∂y1ui

1(x, y1, y2) weakly in Lp
(
(ξi−1, ξi) × Y∗

i

)
,

T i
ε

(
∂yuε

)
⇀ ∂y2 ui

1(x, y1, y2) weakly in Lp
(
(ξi−1, ξi) × Y∗

i

)
,
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with

∂xui(x)∇yv
i(y1, y2) = (∂xui(x), 0) +∇yui

1(x, y1, y2),

where ∇y· =
(
∂y1 ·, ∂y2 ·

)
and vi is the solution of the auxiliar problem∫

Y∗
i

∣∣∇vi
∣∣p−2∇vi∇ϕ dy1 dy2 = 0, ∀ϕ ∈ W1,p

#,0(Y∗
i ),

(vi − y1) ∈ W1,p
#,0(Y∗

i ),

where W1,p
#,0(Y∗

i ) denotes the subspace of W1,p
# (Y∗

i ) of functions with zero average.

Ifα < 1, then there exists (ui, ui
1) ∈ W1,p(ξi−1, ξi) × Lp

(
(ξi−1, ξi); W1,p

# (Y∗
i )
)

with ∂y2 u1 = 0

such that

T i
ε uε → ui strongly in Lp

(
(ξi−1, ξi); W1,p(Y∗

i )
)

T i
ε ∂xuε ⇀ ∂xu + ∂y1ui

1 weakly in Lp
(
(ξi−1, ξi) × Y∗

i

)
,

and

∂y1 ui
1(x, y1) = ∂xui

⎛⎜⎝ 1

Gp′−1
i (y1)

〈
1/Gp′−1

i

〉
(0,L)

− 1

⎞⎟⎠ .

If α > 1, then there exists an unique ui ∈ W1,p(ξi−1, ξi) such that

T i
ε uε → ui strongly in Lp((ξi−1, ξi); W1,p(Y∗

i )),

Πεu
+
ε → ui strongly in W1,p(Ri−),

T i
ε (|∇u+

ε |p−2∂xu+
ε ) ⇀ 0 weakly in Lp

(
(ξi−1, ξi) × Y∗

i+

)
,

where

Ri− =
{

(x, y) ∈ R
2 : x ∈ (ξi−1, ξi), 0 < y < G0

}
,

Y∗
i+ =

{
(y1, y2) ∈ R

2 : 0 < y1 < L, G0 < y2 < Gi(y1)
}

,

and the scaling operator Πε : Lp((ξi−1, ξi) × (0, εG0)) → Lp(Ri−) is defined by

Πε(ϕ)(x, y) = ϕ(x, εy) ∀(x, y) ∈ Ri−.

Also, we denote by u+
ε = uε|Rε

i \{(ξi−1,ξi)×(0,εG0)} and u−
ε = uε|(ξi−1,ξi)×(0,εG0).

Proof. It follows from [21, theorems 3.1, 4.1 and 5.3]. �

Remark 5.1. We point out that the results in [21] are proved in the unit interval. Here, we
just rewrite it to (ξi−1, ξi). The limit problems are stated in the next result.

Now, we are in condition to show the following result.
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Theorem 5.2. Suppose G satisfies the assumption (5.1) and let uε be the solution of problem
(1.2) with f ε ∈ Lp′(Rε) and ||| f ε|||Lp′ (Rε) � c, for some c > 0 independent of ε > 0. Suppose
the function

f̂ ε(x) =
1
ε

∫ εG(x, x
εα )

0
f (x, y)dy,

satisfies f̂ ε ⇀ f̂ weakly in Lp′(0, 1).
Then, if α = 1, there exist u ∈ W1,p(0, 1) and ui

1 ∈ Lp((ξi−1, ξi); W1,p
# (Y∗

i )) such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
T i
ε uε → u strongly in Lp((ξi−1, ξi); W1,p(Y∗

i )),

T i
ε (∂xuε) ⇀ ∂xu + ∂y1ui

1(x, y1, y2) weakly in Lp
(
(ξi−1, ξi); W1,p(Y∗

i )
)

,

T i
ε

(
∂yuε

)
⇀ ∂y2 ui

1(x, y1, y2) weakly in Lp
(
(ξi−1, ξi); W1,p(Y∗

i )
)

and u is the unique solution of the problem∫ 1

0

{
q(x)|u′|p−2u′ϕ′ + r(x) |u|p−2uϕ

}
dx =

∫ 1

0
f̂ϕ dx, ϕ ∈ W1,p(0, 1), (5.3)

where q, r : (0, 1) →R are piecewise constant functions such that

q(x) = qi and r(x) = ri for x ∈ (ξi−1, ξi),

with the homogenized constants ri and qi given by

qi =
1
L

∫
Y∗

i

|∇vi|p−2∂y1v
i dy1 dy2 and ri =

|Y∗
i |

L
, (5.4)

where Y∗
i is the basic cell associated to Rε

i

Y∗
i =

{
(y1, y2) ∈ R

2 : 0 < y1 < L and 0 < y2 < Gi(y1)
}

,

and vi is the solution of the auxiliary problem∫
Y∗

i

∣∣∇vi
∣∣p−2∇vi∇ψ dy1 dy2 = 0, ∀ψ ∈ W1,p

# (Y∗
i ), 〈ψ〉Y∗

i
= 0

(vi − y1) ∈ W1,p
# (Y∗

i ), 〈v − y1〉Y∗
i
= 0.

(5.5)

If α < 1, then there exists (u, ui
1) ∈ W1,p(0, 1) × Lp

(
(ξi−1, ξi); W1,p

# (Y∗
i )
)

with ∂y2 ui
1 = 0 such

that

T i
ε uε → u strongly in Lp

(
(ξi−1, ξi); W1,p(Y∗

i )
)

,

T i
ε ∂xuε ⇀ ∂xu + ∂y1ui

1 weakly in Lp
(
(ξi−1, ξi) × Y∗

i

)
.

Also, u is the unique solution of the problem (5.3) with

q(x) = qi and r(x) = ri for x ∈ (ξi−1, ξi), (5.6)
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where

qi =
1

L
〈

1/Gp′−1
i

〉p−1

(0,L)

and ri =
|Y∗

i |
L

.

If α > 1, then there exists a unique u ∈ W1,p(0, 1) such that

T i
ε uε → u strongly in Lp((ξi−1, ξi); W1,p(Y∗

i )),

Πεu
+
ε → u strongly in W1,p(Ri−),

T i
ε (|∇u+

ε |p−2∂xu+
ε ) ⇀ 0 weakly in Lp

(
(ξi−1, ξi) × Y∗

i+

)
.

Furthermore, u is the unique solution of the problem (5.3) with

G0(x) = G0
i for x ∈ (ξi−1, ξi) and r(x) =

|Y∗
i |

L
.

Proof. By (5.2), we can rewrite (2.1) taking into account the partition {ξi}N
i=1 getting

N∑
i=1

∫
Rε

i

{
|∇uε|p−2∇uε∇ϕ+ |uε|p−2uεϕ

}
dx dy

=

∫
Rε

f εϕ dx dy, ϕ ∈ W1,p(Rε). (5.7)

Hence, we obtain from (5.7) (with test functions ϕ(x, y) = ϕ(x) ∈ W1,p(0, 1)) and proposition
3.5 that

N∑
i=1

∫
Rε

i

[∫
(ξi−1,ξi)×Y∗

i

T i
ε

(
|∇uε|p−2∇uε

)
T i
ε∇ϕ dx dy1 dy2

+
L
ε

∫
Rε

1i

|∇uε|p−2∇uε∇ϕ dx dy +
∫

(ξi−1,ξi)×Y∗
i

T i
ε

(
|uε|p−2uε

)

×T i
ε ϕ dx dy1 dy2 +

L
ε

∫
Rε

1i

|uε|p−2uεϕ dx dy

]
=

L
ε

∫
Rε

f εϕ dx dy.

By proposition 5.1, we can pass to the limit in each subinterval (ξi−1, ξi). If we assume α � 1,
we obtain

N∑
i=1

∫ ξi

ξi−1

∫
Y∗

i

[
(|∇yv

i|p−2∂y1v
i)|∂xui|p−2∂xui∂xϕ+

∣∣ui
∣∣p−2

uiϕ
]

dx dY

= L
∫ 1

0
f̂ϕ dx,

which is equivalent to
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N∑
i=1

∫ ξi

ξi−1

{[∫
Y∗

i

|∇yv
i|p−2∂y1v

idY

]
|∂xui|p−2∂xui∂xϕ+ |Y∗

i |
∣∣ui

∣∣p−2
uiϕ

}
dx

= L
∫ 1

0
f̂ϕ dx, (5.8)

for all ϕ ∈ W1,p(0, 1).
For α < 1, proposition 5.1 guarantees

N∑
i=1

∫ ξi

ξi−1

∫
Y∗

i

∣∣∣∣∣∣∣
∂xui

Gp′−1
i (y1)

〈
1/Gp′−1

i

〉
(0,L)

∣∣∣∣∣∣∣
p−2

×

⎛⎜⎝ ∂xui

Gp′−1
i (y1)

〈
1/Gp′−1

i

〉
(0,L)

⎞⎟⎠ ∂xϕ dx +

N∑
i=1

∫ ξi

ξi−1

∫
Y∗

i

∣∣ui
∣∣p−2

uiϕ dx

= L
∫ 1

0
f̂ϕ dx. (5.9)

Since (p′ − 1)(p− 1) = 1, (5.9) can be rewritten as

N∑
i=1

∫ ξi

ξi−1

⎡⎢⎣∫ L

0

1

Gi(y1)
〈

1/Gp′−1
i

〉p−1

(0,L)
Gi(y1)dy1

⎤⎥⎦ |∂xui|p−2∂xui∂xϕ dx

+

N∑
i=1

∫ ξi

ξi−1

|Y∗
i |
∣∣ui

∣∣p−2
uiϕ dx = L

∫ 1

0
f̂ϕ dx. (5.10)

Hence, for any α � 1, it follows from (5.4), (5.6), (5.8) and (5.10) that

∫ 1

0

[
q(x)|∂xu|p−2∂xu∂xϕ+ r(x)|u|p−2uϕ

]
dx =

∫ 1

0
f̂ϕ dx, ∀ϕ ∈ W1,p(0, 1),

(5.11)

with

u(x) = ui(x) a.e. in (ξi−1, ξi),

where the functions ui are given by proposition 5.1. Notice that qi > 0 for each i. Indeed, by
(5.5), we can take (vi − y1) ∈ W1,p

#,0(Y∗
i ) as a test function in such way that

qi =
1
L

∫
Y∗

i

|∇vi|p−2∇vi
(
(1, 0) +∇vi − (1, 0)

)
dy1 dy2

=
1
L

∫
Y∗

i

|∇vi|pdy1 dy2 > 0.
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Consequently, we obtain from the Minty–Browder’s theorem that the problem (5.11) has
a unique solution in W1,p(0, 1), and then, we can conclude that u ∈ W1,p(0, 1) proving the
theorem for α � 1.

Now, let us assume α > 1. Then, from (5.7) and proposition 3.5, we obtain that

N∑
i=1

[
1
L

∫
(ξi−1,ξi)×Y∗

i+

T i
ε

(
|∇uε|p−2∇uε

)
T i
ε∇ϕi dx dy1 dy2

+
1
ε

∫
Rε

1i+

|∇uε|p−2∇uε∇ϕi dx dy+
∫

Ri−
|Πε∇uε|p−2Πε∇uεΠε∇ϕ dx dy

+
1
L

∫
(ξi−1,ξi)×Y∗

i

T i
ε

(
|uε|p−2uε

)
T i
ε ϕi dx dy1 dy2 +

1
ε

∫
Rε

1i

|uε|p−2uεϕi dx dy

]

=
1
ε

∫
Rε

f εϕi dx dy,

where Πε is the scaling operator introduced in proposition 5.1. Hence, by proposition 5.1, we
can pass to the limit taking test functions ϕ(x, y) = ϕ(x) ∈ W1,p(0, 1). We obtain

N∑
i=1

[∫
Ri−

|∂xu|p−2∂xu∂xϕ dx +
1
L

∫
(ξi−1,ξi)×Y∗

i

|u|p−2uϕ dx

]
=

∫ 1

0
f̂ϕ dx,

for all ϕ ∈ W1,p(0, 1) with

u(x) = ui(x) a.e. in (ξi−1, ξi),

where the functions ui are given by proposition 5.1. Thus,∫ 1

0

[
G0(x)|∂xu|p−2∂xu∂xϕ+ r(x)|u|p−2uϕ

]
dx =

∫ 1

0
f̂ϕ dx, ∀ϕ ∈ W1,p(0, 1). (5.12)

As G0 > 0, it follows from Minty–Browder’s theorem that (5.12) is well posed. Hence, we
get that u ∈ W1,p(0, 1) is the unique solution concluding the proof of the theorem. �

6. The locally periodic case

In this section, we provide the proof of our main result, theorem 2.1.

Proof of theorem 2.1. Using proposition 3.3 and theorem 3.7, there is u0 ∈ W1,p(0, 1) such
that, up to subsequences,

Tlp
ε uε ⇀ χu0 weakly in Lp ((0, 1) × (0, L) × (0, G1)) , (6.1)

where χ is the characteristic function of (0, 1) × Y∗(x).
We show that u0 satisfies the Neumann problem (5.3). To do this, we use a kind of dis-

cretization argument on the oscillating thin domains. We first proceed as in [3, theorem 2.3]
fixing a parameter δ > 0 in order to set a piecewise periodic function Gδ(x, y) satisfying (5.1)
and 0 � Gδ(x, y) − G(x, y) � δ in (0, 1) × R.
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Let us construct this function. Recall that G is uniformly C1 in each of the domains
(ξi−1, ξi) × R. Also, it is periodic in the second variable. In particular, for δ > 0 small enough
and for a fixed z ∈ (ξi−1, ξi) we have that there exists a small interval (z − η, z + η) with
η depending only on δ such that |G(x, y) − G(z, y)|+ |∂yG(x, y) − ∂yG(z, y)| < δ/2 for all
x ∈ (z − η, z + η) ∩ (ξi−1, ξi) and for all y ∈ R. This allows us to select a finite number of
points: ξi−1 = ξ1

i−1 < ξ2
i−1 < · · · < ξr

i−1 = ξi with ξr
i−1 − ξr−1

i−1 < η in such way that Gδ(x, y) =
G(ξr

i−1, y) + δ/2 defined for x ∈ (ξr
i−1, ξr+1

i−1 ) and y ∈ R satisfies |∂yG
δ(x, y) − ∂yG(z, y)| � δ

in (ξr
i−1, ξr+1

i−1 ) × R. Notice that this construction can be done for all i = 1, . . . , N. In particu-
lar, if we rename all the constructed points ξk

i by 0 = z0 < z1 < · · · < zm = 1, for some m =
m(δ), we get that Gδ(x, y) = Gδ

i (y) for (x, y) ∈ (zi−1, zi) × R and i = 1, . . . , m is a piecewise
C1-function which is L-periodic in the second variable y.

Finally, we set Gδ
ε(x) = Gδ(x, x/εα), for any α > 0, considering the following domains

Rε,δ = {(x, y) : x ∈ (0, 1), 0 < y < εGδ
ε(x)}.

In such domains, if we assume α = 1, we obtain from theorem 5.2 that, for each δ > 0 fixed,
there exist uδ ∈ W1,p(0, 1) and ui,δ

1 ∈ Lp((ξi−1, ξi); W1,p
# (Y∗

i )) such that the solutions uε,δ of (1.2)

in Rε,δ satisfy

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T δ
ε uε,δ → uδ strongly in Lp((zi−1, zi); W1,p(Y∗

i )),

T δ
ε

(
∂xuε,δ

)
⇀ ∂xuδ + ∂y1ui,δ

1 (x, y1, y2) weakly in Lp
(
(zi−1, zi); W1,p(Y∗

i )
)

,

T δ
ε

(
∂yuε,δ

)
⇀ ∂y2 ui,δ

1 (x, y1, y2) weakly in Lp
(
(zi−1, zi); W1,p(Y∗

i )
)

,

T δ
ε (|∇uε,δ|p−2∇uε,δ) ⇀ qδap(∂xuδ) weakly in Lp

(
(zi−1, zi) × Y∗

i

)2
.

(6.2)

On the other side, if we assume α < 1, we get that, for each δ > 0 fixed, there exist uδ ∈
W1,p(0, 1) and ui,δ

1 ∈ Lp((ξi−1, ξi); W1,p
# (Y∗

i )) with ∂y2ui,δ
1 = 0 in such way that the solutions uε,δ

of (1.2) in Rε,δ satisfy

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T δ
ε uε,δ → uδ strongly in Lp((zi−1, zi); W1,p(Y∗

i )),

T δ
ε

(
∂xuε,δ

)
⇀ ∂xuδ + ∂y1ui,δ

1 (x, y1, y2) weakly in Lp
(
(zi−1, zi); W1,p(Y∗

i )
)

,

T δ
ε (|∇uε,δ|p−2∇uε,δ) ⇀ qδap(∂xuδ) weakly in Lp

(
(zi−1, zi) × Y∗

i

)2
.

Finally, if we take α > 1, we have that

T δ
ε uε,δ ⇀ uδ weakly in Lp((ξi−1, ξi); W1,p(Y∗

i )),

Πδ
εu

+
ε,δ → uδ strongly in W1,p(Ri−),

T δ
ε (|∇u+

ε,δ|p−2∂xu+
ε,δ) ⇀ 0 weakly in Lp

(
(ξi−1, ξi) × Y∗

i+

)
.

Furthermore, we have that uδ is the unique solution of the Neumann problem
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∫ 1

0

{
qδ(x)|(uδ)′|p−2(uδ)′ϕ′ + rδ(x) |uδ|p−2uδϕ

}
dx

=

∫ 1

0
f̂ϕ dx, ∀ϕ ∈ W1,p(0, 1), (6.3)

with

qδ(x) =
1
L

N−1∑
i=1

χIi (x)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
Y∗

i

|∇vi|p−2∂y1v
i dy1 dy2 if α = 1,

1〈
1/Gp′−1

i

〉p−1

(0,L)

if α < 1,

qδ(x) =
N−1∑
i=1

χIi (x)G0
i and rδ(x) =

N−1∑
i=1

χIi (x)
|Y∗

i |
L

if α > 1. (6.4)

χIi is the characteristic function of (ξi−1, ξi) and vi is the solution of (5.5) in Y∗
i which is given

by

Y∗
i =

{
(y1, y2) ∈ R

2 : 0 < y1 < L and 0 < y2 < Gi(y1)
}
.

Now, we pass to the limit in (6.3) as δ → 0. From lemmas A.1 and A.2, we have the uniform
convergence of qδ and rδ to q and r where

q(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
L

∫
Y∗(x)

|∇v|p−2∂y1v dy1 dy2 if α = 1,

1
L

1〈
1/G(x, ·)p′−1

〉p−1

(0,L)

if α < 1,

G0(x) = min
y∈R

G(x, y) if α > 1

and r(x) =
|Y∗(x)|

L
. (6.5)

Notice that q(x) > 0. Furthermore, we have that the solutions uδ ∈ W1,p(0, 1) of (6.3) are uni-
formly bounded in δ. Thus, there exists u∗ ∈ W1,p(0, 1) such that uδ ⇀ u∗ weakly in W1,p(0, 1)
and strongly in Lp(0, 1). Indeed, we have the strong convergence

uδ → u∗ in W1,p(0, 1). (6.6)

To prove this, we set the following norm

‖ · ‖p
Lp
δ
(0,1)

=

∫ 1

0
qδ| · |pdx.

By proposition 3.1 and equation (6.3), we get for ϕ = uδ − u∗ and p � 2 that

‖(uδ)′ − (u∗)′‖p
Lp
δ

(0,1)
� c

∫ 1

0
qδ
[
ap

(
(uδ)′

)
− ap

(
(u∗)′

)] [
(uδ)′ − (u∗)′

]
dx

= c
∫ 1

0
( f̂ − ap(uδ))(uδ − u∗)dx − c

∫ 1

0
qδap

(
(u∗)′

)
×
[
(uδ)′ − (u∗)′

]
dx → 0.

2501



Nonlinearity 35 (2022) 2474 J C Nakasato and M C Pereira

Hence, using the equivalence of norms, we get

‖(uδ)′ − (u∗)′‖Lp(0,1) � ‖(uδ)′ − (u∗)′‖Lp
δ

(0,1) → 0,

as δ → 0, which implies (6.6). Thus, we have that u∗ ∈ W1,p(0, 1) satisfies∫ 1

0

{
q(x)|(u∗)′|p−2(u∗)′ϕ′ + r(x) |u∗|p−2u∗ϕ

}
dx =

∫ 1

0
f̂ϕ dx, (6.7)

for all ϕ ∈ W1,p(0, 1) and p � 2. For 1 < p < 2, one can show using similar arguments.
Now, let us see that u∗ = u0 in (0, 1) where u0 is given by (6.1). Let η be a positive small

number and let ϕ ∈ C∞
0 (0, 1). Notice that∫ 1

0
(u0 − u∗)ϕdx =

∫ 1

0

(
u0 −

L
|Y∗(x)|ε

∫ εGε(x)

0
uε(x, y)dy

)
ϕ(x)dx

+

∫ 1

0

(
L

|Y∗(x)|ε

∫ εGε(x)

0
uε(x, y)

− P1+δ/G0 uε,δ(x, y)dy
)
ϕ(x)dx

+

∫ 1

0

(
L

|Y∗(x)|ε

∫ εGε(x)

0
P1+δ/G0uε,δ(x, y)

− uδ(x)dy
)
ϕ(x)dx

+

∫ 1

0

(
L

|Y∗(x)|ε

∫ εGε(x)

0
uδ(x) − u∗(x)dy

)
ϕ(x)dx, (6.8)

where P1+δ/G0 is the operator defined in (4.3).
Now, due to definition (4.3), notation (4.4) and an appropriated change of variables, we get∫ 1

0

(
L
ε

∫ εGε(x)

0
P1+δ/G0uε,δ(x, y) − uδ(x)dy

)
ϕ(x)dx

� c‖|P1+δ/G0uε,δ − uδ‖|Lp(Rε)

� c‖|P1+δ/G0uε,δ − uδ‖|Lp(Rε,δ (1+δ)) = c‖|uε,δ − uδ‖|Lp(Rε,δ ),

for some c > 0 independent of δ and ε > 0. Thus, we can rewrite (6.8) as∣∣∣∣∫ 1

0
(u0 − u∗)ϕdx

∣∣∣∣ � ∣∣∣∣∫ 1

0

(
u0 −

L
ε

∫ εGε(x)

0
uε(x, y)dy

)
ϕ(x)dx

∣∣∣∣
+ c‖|uε − P1+δ/G0uε,δ‖|Lp(Rε) + c‖|uε,δ

− uδ‖|Lp(Rε,δ ) + c‖uδ − u∗‖Lp(0,1).

From (6.2) and remark 4.2, we can take δ > 0 small enough such that

‖|uε − P1+δ/G0 uε,δ‖|Lp(Rε) � η and ‖|uε,δ − uδ‖|Lp(Rε,δ ) � η, (6.9)

uniformly in ε > 0. Also, from (6.6), we can choose ε1 > 0 such that ‖|u∗ − uδ‖|Lp(0,1) � η for
0 < ε < ε1.
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Moreover, from (6.1) and proposition 3.9, we have∫ 1

0

(
u0 −

L
|Y∗(x)|ε

∫ εGε(x)

0
uε(x, y)dy

)
ϕ(x)dx → 0, as ε→ 0.

Therefore, there exists ε2 > 0 such that∣∣∣∣∫ 1

0

(
u0 −

L
|Y∗(x)|ε

∫ εGε(x)

0
uε(x, y)dy

)
ϕ(x)dx

∣∣∣∣ � η,

whenever 0 < ε < ε2. Hence, setting ε = min{ε1, ε2} we get∣∣∣∣∫ 1

0
(u0 − u∗)ϕ dx

∣∣∣∣ � 4η.

Since ϕ and η are arbitrary, we conclude that u∗ = u0.
Finally, let us see that the convergence

‖|uε − u0‖|Lp(Rε) → 0, (6.10)

holds. Notice that

‖|uε − u0‖|Lp(Rε) � ‖|uε − P1+δ/G0uε,δ‖|Lp(Rε) + ‖|P1+δ/G0uε,δ

− uδ‖|Lp(Rε) + ‖|uδ − u0‖|Lp(Rε).

Hence, we can argue as in (6.9) getting (6.10) from (6.2), remark 4.2 and (6.6). And then, we
conclude the proof of the theorem. �

7. Convergence of the resolvent and semigroups

In this section, we show the convergence of the resolvent and semigroup associated to the p-
Laplacian operator given by the equation (1.2) under the additional condition p � 2. For that,
let us first consider the operator Mε : Lp(Rε) �→ Lp(0, 1) given by

Mε f ε(x) =
1
ε

∫ εG(x,x/εα)

0
f ε(x, y)dy.

Next, let Aε : W1,p(Rε) → (W1,p(Rε))′ and A0 : W1,p(0, 1) → (W1,p(0, 1))′ be given by

〈Aεu, v〉ε =
1
ε

∫
Rε

{
|∇u|p−2∇u∇v + |u|p−2uv

}
dx dy

〈A0u, v〉0 =

∫ 1

0

{
q(x)|∂xu|p−2∂xu∂xv + r(x)|u|p−2uv

}
dx.

(7.1)

We consider the L2-realization of Aε and A0, that is,

D(Aε,2) =
{

u ∈ W1,p(Rε) : Aεu ∈ L2(Rε)
}

) ,

Aε,2u = Aεu, ∀u ∈ D(Aε,2), and

D(A0,2) =
{

u ∈ W1,p(0, 1) : A0u ∈ L2(0, 1)
}

) ,

A0,2u = A0u, ∀u ∈ D(A0,2).
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Then, for any p � 2, λ > 0 and forcing terms f ε ∈ L2(Rε), we can consider the following
problems

(I + λAε)uε = f ε, (7.2)

and

(I + λA0)u = f̂ , (7.3)

which are well posed (existence and uniqueness of solutions) by the Minty–Browder’s
theorem. Notice that here, we are using the dual products 〈·, ·〉ε and 〈·, ·〉0 from W1,p(Rε) and
W1,p(0, 1) respectively to set the equations (7.2) and (7.3).

Hence, with the additional conditions ‖| f ε‖|L2(Rε) uniformly bounded and Mε f ε ⇀ f̂
weakly in L2(0, 1), it follows from theorem 2.1 that the family of solutions defined by (7.2)
converges to the solution of (7.3) as ε→ 0. Consequently, we obtain the convergence of the
resolvent operators defined by the equation (1.2). In fact, we have for any λ > 0 that

‖|(I + λAε)−1 f ε − (I + λA0)−1 f̂‖|L2(Rε) = ‖|uε − u‖|L2(Rε) → 0 as ε→ 0.

In the next, let us obtain the convergence of the semigroup associated to the equations (7.2)
and (7.3). As we will see, it is a consequence of [8, theorem 4.2, p 120]. First, let us write the
resolvent operators convergence in appropriate spaces. For this purpose, we use the unfolding
operator. We have

〈Aεu,w〉ε =
1
L

∫
W
|Tlp

ε ∇u|p−2Tlp
ε ∇uTlp

ε ∇w + |Tlp
ε u|p−2Tlp

ε uTlp
ε v dx dY

= 〈Tlp
ε Aεu, Tlp

ε w〉 = 〈Bεu,w〉, (7.4)

where W = (0, 1) × (0, L) × (0, G1) and 〈·, ·〉 is the dual product in W1,p(W ). Next,

〈A0u,w〉0 =
1
L

∫
W

[
|∂xu∇̃yv|p−2∂xu∇̃yv∂xw + χY∗ |u|p−2uw

]
dx dY

= 〈B0u,w〉. (7.5)

Notice that

D(B0) ⊂ D(Bε), ∀ε > 0.

It remains to observe that

(I + λBε)−1 f → (I + λB0)−1 f ∀ f ∈ D(B0),

wich holds due to theorem 2.1.
Therefore, thanks to Neveu–Trotter–Kato theorem, the semigroup Sε(t) associated to −Bε

satisfies

Sε(t) f → S(t) f , ∀ f ∈ D(B0),

where S(t) is the semigroup associated to −B0. We have the following theorem.
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Theorem 7.1. Assume p � 2 and consider the operators Aε and Bε defined respectively by
(7.1) and (7.4). Then,

(a) For any f ε ∈ L2(Rε) with ‖| f ε‖|L2(Rε) uniformly bounded and Mε f ε ⇀ f̂ weakly in
L2(0, 1), we have

‖|(I + λAε)−1 f ε − (I + λA0)−1 f̂‖|L2(Rε) → 0, as ε→ 0.

(b) The semigroup Sε(t) associated to{
∂tuε + Bεuε = f ,

uε(0, x, y) = u0
ε(x, y),

satisfies

Sε(t) f → S(t) f , ∀ f ∈ D(B0),

where S(t) is the semigroup associated{
∂tu + B0u = f ,

u(0, x) = u0(x),

with B0 given by (7.5).

Appendix A

In the proof of the main result, we used qδ → q uniformly to obtain (6.7). Recall that qδ and
q are given by (6.4) and (6.5) respectively. Here we prove such convergence. For this sake, let
us first set

A(M) =
{

G ∈ C1(R) : G is L − periodic, 0 < G0 � G(·) � G1with |G′(s)| � M
}
. (A.1)

Hence, for any Ḡ ∈ A(M), we can consider the problem∫
Y∗

Ḡ

|∇v̄|p−2∇v̄∇ϕ dy1 dy2 = 0, ∀ϕ ∈ W1,p
#,0(Y∗

Ḡ) (A.2)

where W1,p
#,0(Y∗

Ḡ) is the space of functions W1,p
# (Y∗

Ḡ) with zero average,

Y∗
Ḡ =

{
(y1, y2) ∈ R

2 : 0 < y1 < L, 0 < y2 < Ḡ(y2)
}

,

and we are looking for solutions v̄ such that (v̄ − y1) ∈ W1,p
#,0(Y∗

Ḡ).
Now, for any Ḡ, G ∈ A(M), let us consider the following transformation

L : Y∗
G �→ Y∗

Ḡ

(z1, z2)→ (z1, F(z1)z2) = (y1, y2)
,
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where

F =
Ḡ
G
.

The Jacobian matrix for L is

JL(z1, z2) =

(
1 0

F′(z1)z2 F(z1)

)
,

with det(JL) = F. Also, we can consider

L∇U =

(
1 −F′

F
z2

0 1/F

)
∇U =

(
∂z1U − F′

F
z2∂z2U,

1
F
∂z2 U

)
and

B∇U =

(
∂z1 U +

F′z2

F
∂z2 U,−F′z2

F
∂z1 U +

1
F2

[
1 + (z2F′)2

]
∂z2 U

)
.

It is not difficult to see that B = LTL.
Then, we can use the change of variables given by L to rewrite (A.2) in the region Y∗

G as∫
Y∗

G

|L∇v̄|p−2L∇v̄L∇
(ϕ

F

)
F dz1 dz2 = 0, ∀ϕ ∈ W1,p

#,0(Y∗
G). (A.3)

Notice that this problem still has unique solution v̄ ∈ W1,p(Y∗
G) with (v̄ − z1) ∈ W1,p

#,0(Y∗
G)

by Minty–Browder’s theorem.
By the coercivity of (A.3), we get

‖∇v̄‖p
Lp(Y∗

G) �
∫

Y∗
G

|L∇v̄|p−2L∇v̄L∇
( v̄

F

)
F dz1 dz2

= −
∫

Y∗
G

|L∇v̄|p−2L∇v̄L∇
( z1

F

)
F dz1 dz2

� c‖L∇v̄‖p−1
Lp(Y∗

G) � c‖∇v̄‖p−1
Lp(Y∗

G),

which means that the solutions are uniformly bounded by a constant independent on Ḡ and G.
Now, let us compare the solutions of (A.2) for Ḡ = G and (A.3). We need to analyse∫
Y∗

G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1 dz2

=

∫
Y∗

G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ − (1, 0) + (1, 0) −∇v)dz1 dz2. (A.4)

Notice that L(1, 0) = (1, 0). We will distribute the terms finding estimative for each one.
First, observe that for any test function ϕ ∈ W1,p

#,0(Y∗
G) in (A.3), we have

∫
Y∗

G

|L∇v̄|p−2L∇v̄L∇ϕ dz1 dz2 =

∫
Y∗

G

|L∇v̄|p−2L∇v̄ϕ

(
F′

F
, 0

)
dz1 dz2.

(A.5)

2506



Nonlinearity 35 (2022) 2474 J C Nakasato and M C Pereira

Now, take ϕ = (v̄ − z1) in (A.5). Then,∫
Y∗

G

|L∇v̄|p−2L∇v̄L∇(v̄ − z1)dz1 dz2

=

∫
Y∗

G

|L∇v̄|p−2L∇v̄(v̄ − z1)

(
F′

F
, 0

)
dz1 dz2. (A.6)

On the other side, we can compute∫
Y∗

G

|L∇v̄|p−2L∇v̄((1, 0) −∇v)dz1 dz2

=

∫
Y∗

G

|L∇v̄|p−2L∇v̄ ((1, 0) −∇v

+ L∇v − (1, 0) + (1, 0) − L∇v ) dz1 dz2

=

∫
Y∗

G

|L∇v̄|p−2L∇v̄(−∇v + L∇v)dz1 dz2

+

∫
Y∗

G

|L∇v̄|p−2L∇v̄L∇(z1 − v)dz1 dz2

= −
∫

Y∗
G

|L∇v̄|p−2L∇v̄(L− I)∇v dz1 dz2

+

∫
Y∗

G

|L∇v̄|p−2L∇v̄(z1 − v)

(
F′

F
, 0

)
dz1 dz2

, (A.7)

by (A.5) with ϕ = (z1 − v).
Next, take (v̄ − z1) ∈ W1,p

#,0(Y∗
G) as a test function in (A.2). Then,∫

Y∗
G

|∇v|p−2∇v(∇v̄ − (1, 0))dz1 dz2 = 0. (A.8)

Finally, due to (A.8), we have∫
Y∗

G

|∇v|p−2∇v(L∇v̄ − (1, 0))dz1 dz2

=

∫
Y∗

G

|∇v|p−2∇v(L∇v̄ − (1, 0))dz1 dz2

−
∫

Y∗
G

|∇v|p−2∇v(∇v̄ − (1, 0))dz1 dz2

=

∫
Y∗

G

|∇v|p−2∇v(L − I)∇v̄ dz1 dz2.

(A.9)

Hence, putting together (A.4), (A.6), (A.7), (A.8) and (A.9), we obtain
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∫
Y∗

G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1 dz2

=

∫
Y∗

G

|L∇v̄|p−2L∇v̄(v̄ − z1)

(
F′

F
, 0

)
dz1 dz2

−
∫

Y∗
G

|L∇v̄|p−2L∇v̄(L− I)∇v dz1 dz2

+

∫
Y∗

G

|L∇v̄|p−2L∇v̄(z1 − v)

(
F′

F
, 0

)
dz1 dz2

−
∫

Y∗
G

|∇v|p−2∇v(L − I)∇v̄ dz1 dz2. (A.10)

Now, one can apply Hölder and Poincaré–Wirtinger’s inequalities in (A.10) to obtain∫
Y∗

G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1 dz2

� ‖L∇v̄‖p−1
Lp(Y∗

G)‖∇v̄‖Lp(Y∗
G)

∥∥∥∥F′

F

∥∥∥∥
L∞

+ ‖L∇v̄‖p−1
Lp(Y∗

G)‖L − I‖L∞‖∇v‖Lp(Y∗
G)

+ ‖L∇v̄‖p−1
Lp(Y∗

G)‖∇v‖Lp(Y∗
G)

∥∥∥∥F′

F

∥∥∥∥
L∞

+ ‖∇v‖p−1
Lp(Y∗

G)‖L − I‖L∞‖∇v̄‖Lp(Y∗
G).

(A.11)

Note that ∥∥∥∥F′

F

∥∥∥∥
L∞

� c‖Ḡ − G‖C1 and ‖L − I‖L∞ � c‖Ḡ − G‖C1 . (A.12)

Also, ‖∇v‖Lp(Y∗
G), ‖∇v̄‖Lp(Y∗

G), ‖L∇v̄‖Lp(Y∗
G) and ‖L∇v‖Lp(Y∗

G) are uniformly bounded. Thus,
by (A.11)

∫
Y∗

G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1 dz2 � c‖Ḡ − G‖C1 .

(A.13)

If p � 2, we get from proposition 3.1 and (A.13) that

‖L∇v̄ −∇v‖p
Lp(Y∗

G) � c
∫

Y∗
G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1 dz2

� c‖Ḡ − G‖C1 .
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On the other side, if 1 < p < 2, we get from Hölder’s inequality, proposition 3.1 and (A.13),
that

‖L∇v̄ −∇v‖p
Lp(Y∗

G) � c

{∫
Y∗

G

[
|L∇v̄|p−2L∇v̄ − |∇v|p−2∇v

]
(L∇v̄ −∇v)dz1 dz2

}p/2

×
[∫

Y∗
G

(1 + |L∇v̄|+ |∇v|)p

](2−p)/2

� c‖Ḡ − G‖p/2
C1 ,

Therefore, for 1 < p < ∞, we have

‖L∇v̄ −∇v‖Lp(Y∗
G) � c‖Ḡ − G‖αC1 , (A.14)

where α = 1/2 if 1 < p < 2 and α = 1/p if p � 2.
Finally, since

‖∇v̄ −∇v‖Lp(Y∗
G) � ‖L∇v̄ −∇v̄‖Lp(Y∗

G) + ‖L∇v̄ −∇v‖Lp(Y∗
G),

we conclude by (A.14) and (A.12) that

‖∇v̄ −∇v‖Lp(Y∗
G) � c‖Ḡ − G‖C1 + c‖Ḡ − G‖αC1 .

We have the following lemma:

Lemma A.1. Let us consider the family of admissible functions G ∈ A(M) for some constant
M > 0 where A(M) is defined by (A.1).

Then, for each ε > 0, there exists δ > 0 such that if G, Ḡ ∈ A(M) with ‖Ḡ − G‖ � δ, then

‖∇v̄ −∇v‖Lp(Y∗
G) � c(ε+ εα),

where α = 1/2 if 1 < p < 2 and α = 1/p if p � 2 and c is a constant which depends only on
p, G0, G1.

In particular, we have that

|q(Ḡ) − q(G)| � c(ε+ εα),

where

q(Ḡ) =
∫

Y∗
Ḡ

|∇v̄|p−2∂y1 v̄ dy1 dy2,

and v̄ is the solution of (A.2) in the region Y∗
Ḡ set by Ḡ.

Lemma A.2. Let us consider the family of admissible functions G ∈ A(M) for some constant
M > 0 where A(M) is defined by (A.1). Then

q(G) =
1〈

1/Gp′−1
〉p−1

(0,L)

,

for any G, Ḡ ∈ A(M) with g �= Ḡ,

|q(G) − q(Ḡ)| � c‖G − Ḡ‖p−1,
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for a constant that depends on p, G0 and G1.

Proof. Notice that

q(G) − q(Ḡ) =
1〈

1/Gp′−1
〉p−1

(0,L)

− 1〈
1/Ḡp′−1

〉p−1

(0,L)

=

〈
1/Ḡp′−1

〉p−1

(0,L)
−
〈

1/Gp′−1
〉p−1

(0,L)〈
1/Gp′−1

〉p−1

(0,L)

〈
1/Ḡp′−1

〉p−1

(0,L)

.

Suppose that 1 < p < 2. Then, due to corollary 3.1.1, we get〈
1/Ḡp′−1

〉p−1

(0,L)
−
〈

1/Gp′−1
〉p−1

(0,L)

� c

∣∣∣∣〈1/Ḡp′−1
〉

(0,L)
−
〈

1/Gp′−1
〉

(0,L)

∣∣∣∣p−1

� c
L

∣∣∣∣∣
∫ L

0

Gp′−1(s) − Ḡp′−1(s)
Ḡp′−1(s)Gp′−1(s)

ds

∣∣∣∣∣
p−1

� c
L

∣∣∣∣∫ L

0
(1 + |Ḡ(s)|+ |G(s)|)p′−2|Ḡ(s) − G(s)|ds

∣∣∣∣p−1

� C‖G − Ḡ‖p−1,

where C is a positive constant that depends on p, G0, G1.
Now, suppose p � 2. Then, by corollary 3.1.1,〈

1/Ḡp′−1
〉p−1

(0,L)
−
〈

1/Gp′−1
〉p−1

(0,L)

� c

(
1 + |

〈
1/Ḡp′−1

〉
(0,L)

|+ |
〈

1/Gp′−1
〉

(0,L)
|
)p−2

×
∣∣∣∣〈1/Ḡp′−1

〉
(0,L)

−
〈

1/Gp′−1
〉

(0,L)

∣∣∣∣
� c

∣∣∣∣∣
∫ L

0

Gp′−1(s) − Ḡp′−1(s)
Ḡp′−1(s)Gp′−1(s)

ds

∣∣∣∣∣
� c

∣∣∣∣∫ L

0
|G(s) − Ḡ(s)|p−1ds

∣∣∣∣ � C‖G − Ḡ‖p−1.

Remark A.1. We remark that the result of the lemma above, works in a more general frame-
work, that is, the functions do not need to be in A(M). On the other hand, to perform the
discretization of the domain in the locally periodic case, in the previous section, we need the
hypothesis of A(M) functions defining the domains.
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