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Abstract
We consider the scattering of n classical particles interacting via pair potentials
which are assumed to be ‘long-range’, i.e. of order O(r−α) as r tends to infinity,
for some α > 0. We define and focus on the ‘free region’, the set of states lead-
ing to well-defined and well-separated final states at infinity. As a first step, we
prove the existence of an explicit, global surface of section for the free region.
This surface of section allows us to prove the smoothness of the map sending a
point to its final state and to establish a forward conjugacy between the n-body
dynamics and free dynamics.

Keywords: scattering, Hamiltonian dynamics, Møller transformation

(Some figures may appear in colour only in the online journal)

1. Main results and set-up

1.1. Main results

Consider n classical particles moving in d-dimensional Euclidean space under the influence
of a potential which is the sum of pair potentials. If the pair potentials die off appropriately at
infinity then we expect that, within any widely separated fast-moving configuration of parti-
cles, the individual particles will move almost along straight lines. In this case it makes sense
to talk about ‘scattering’. See for example [DG, Sim, He, Hu1], and [Hu2]. We will prove
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new facts regarding the relation between initial conditions and scattering data at infinity. The
most surprising of these is explicit criteria (1.9) which guarantee the escape to asymptotic free-
dom. See theorem 1.10. Other facts, summarized by theorems 1.12 and 1.14, extend and refine
results previously only known for short range potentials to the case of long-range potentials
(see definition 1.1).

1.2. Setup and notation for n-body dynamics and potential decay

A configuration q specifies the locations of all n masses, so that q = (q1, . . . , qn) ∈ R
dn with

qa ∈ R
d. Thus our configuration space is

M :=R
dn
q , or M̂ :=R

dn
q \Δ, (1.1)

depending on whether or not our pair potentials Vi, j = Vi, j(qi − q j) have singularities at
collision qi = qj; here

Δ := {q = (q1, . . . , qn) ∈ R
dn
q |qi = q j for some i �= j} (1.2)

is the collision set, also known as the ‘fat diagonal’. Δ will also play an important role in the
velocity space.

Configurations evolve in time according to Newton’s equations

miq̈i = −∇qiV , i = 1, . . . , n, mi > 0 the masses, (1.3)

which we will formulate in the usual way in phase space, using momenta pi = miq̇i, so that
p = (p1, . . . , pn) ∈ R

dn
p . Thus our phase space P is

P :=T∗M = R
dn
p × R

dn
q , or P̂ := T∗M̂ = R

dn
p × (Rdn

q \Δ) (1.4)

endowed with its canonical symplectic form. Identify R
dn with R

n ⊗ R
d, let

M := diag(m1, . . . , mn) ⊗ 1ld

be the mass matrix, seen as an (invertible symmetric) operator on R
dn
p . Newton’s equations can

be rewritten as Hamilton’s equations

ṗ = −∇qV , q̇ = M−1 p,

with Hamiltonian H : P → R (or P̂ → R),

H(p, q) :=K(p) + V(q), (1.5)

where the potential energy is assumed to be of the form

V(q) :=
∑

1�i< j�n

Vi, j(qi − q j),

where the pair potentials Vi, j satisfy V j,i = Vi, j and Vi,i = 0 for all i, j, and where K is the usual
kinetic energy

K(p) :=
n∑

i=1

‖pi‖2

2mi
=

1
2
〈p, p〉M−1 , 〈p, p′〉M−1 :=

〈
p,M−1p′

〉
.
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From now on we will use multi-index notation for partial derivatives.

Definition 1.1. A pair potential Vi, j ∈ C2(Rd\{0},R) is

• Long range if for some α > 0

∂γVi, j(q) = O
(
‖q‖−α−|γ|

) (
‖q‖→∞, γ ∈ N

d
0, |γ| � 2

)
(1.6)

(if needed, Vi, j will then also be called an α-potential),
• Short range if (1.6) is valid for some α > 1,
• Finite range if the Vi, j have bounded support.

The potential V(q) =
∑

Vi, j(qi − q j) is called long range, etc, if all its pair potentials Vi, j

have the corresponding property.

Caveats 1.2. According to this established terminology, the following implications hold:

finite range =⇒ short range =⇒ long range.

We apologize for the counterintuitive nature of the terminology. It is standard in scattering
literature. Also note that a finite range potential V typically does not have bounded support
within R

dn. Rather, its support is contained in a neighbourhood of the fat diagonal Δ. ♦

Example 1.3 (Celestial mechanics and electrostatics).
In celestial mechanics and electrostatics we have Vi, j(Q) = Ii, j

‖Q‖ with respectively
Ii, j = −mim j and Ii, j = ZiZ j for the charges Zi ∈ R\{0}. These potentials are long range, lying
on the boundary of the space of short range potentials. ♦

Remark 1.4 (Strong forces near collisions).
By definition, so-called strong force potentials satisfy

∂γVi, j(q) = O
(
‖q‖−α−|γ|

) (
‖q‖→ 0, γ ∈ N

d
0, |γ| � 2

)
, (1.7)

for some α � 2 (cf (1.6) as q →∞). Variationally speaking, this condition is most important
in the opposite ‘ultraviolet’ regime of short distances, ‖qi − qj‖ � 1, rather than our current
‘infrared regime’ of long distances. Imposing the strong force condition on attractive forces
guarantees that any collision solution has infinite action and so is a simple way to exclude
collision solutions as candidate minimizers when using the direct method of the calculus of
variations to achieve various types of solutions (e.g. periodic ones). See [Poi], [Gord], [Moore],
[Mbraids]. ♦

1.3. Asymptotic freedom

Our first goal is to define the free region of phase space, leading to motions along which mutual
distance eventually increase linearly with time, as in the free flow, where bodies do not interact.

This definition relies on the prior concept of asymptotic velocity.

Definition 1.5. The (forward, resp. backward) asymptotic shape or velocity of a state x ∈ P
is the limit in R

dn, if it exists, is

v±(x) := lim
t→±∞

q(t)
t

,

where x(t) = (q(t), p(t)) is the integral curve through x at t = 0.
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We are interested in motions for which v+ /∈ Δ.

Definition 1.6. The state x is forward free if v+(x) exists and v+(x) ∈ R
dn\Δ. We call

F+ := {x ∈ P|v+(x) ∈ R
dn\Δ}

the subset of P of forward free states. Correspondingly, the subset F− is the set of states x
which are backward free, i.e. v−(x) ∈ R

dn\Δ.
We will sometimes refer to trajectories passing through F+ as escape orbits.

Remark 1.7 (Clusters). Those motions x(t) for which v+(x) exists but for which v+(x) ∈
Δ break up into k < n clusters, each cluster composed of those particles whose indices i share
a common asymptotic velocity: v+i = v+j . The dynamics within a cluster of size c can be
as complicated as that of the general c-body problem. The clusters interact with each other
like a free k-body system. (See Marchal–Saari [MS], however not in the sense of asymptotic
completeness, see [DG, section 5.10].) ♦

Example 1.8 (Celestial mechanics). Chazy [Cha] showed that collision-free solutions
for n = 3 gravitating bodies fall into one of seven possibilities, regarding their final behaviour
in the future.

• Bounded, parabolic, parabolic–elliptic and oscillating motions have zero asymptotic
velocity.

• Hyperbolic–elliptic and hyperbolic–parabolic motions have asymptotic velocity belong-
ing to Δ\{0}.

• Hyperbolic motions are free. So their asymptotic velocity is in R
3d\Δ.

So, here hyperbolicity equates to freedom. For more bodies, new types of final motions
occur, notably the ‘non-collision singularities’, see Gerver [Ge] and Xia [Xia]. But it remains
true that every collision-free solution has asymptotic velocities v± in both time directions
provided we allow velocities to take values in the one point compactification of R

dn [MS,
theorem 1]. (For example, for initial conditions x leading to non-collision singularities we
have limt→T±(x)

‖q(t)‖
t = ∞, where T+(x) ∈ (0,∞] and T−(x) ∈ [−∞, 0) are the escape times

beyond which the solution fails to exist.) ♦

The precise structure of F+ is not obvious. Yet, by flowing F+ along integral curves, we
will reach an open subset of P, which we can characterize explicitly. Let⎧⎪⎪⎨⎪⎪⎩

vi :=m−1
i pi

qi, j := ‖qi − q j‖ , qmin :=mini< j qi, j , qmax :=maxi< j qi, j,

vi, j := ‖vi − v j‖ , vmin :=mini< j vi, j , vmax :=maxi< j vi, j

and let α, δ and C be three positive parameters.

Definition 1.9. The finally free region (with parameters α, δ and C) is

F+
loc :=

{
x = (p, q) ∈ P| v2

min > C
qmax

qα+1
min

, 〈vi − v j, qi − q j〉 > (1 − δ)vi, jqi, j,

(1 + 2δ)
qk,l

vk,l
>

qi, j

vi, j
, (i �= j, k �= l)

}
. (1.8)
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Notations F+ and F+
loc are meant to mimic the classical notations W+ and W+

loc for the
unstable manifold and the local unstable manifold of a hyperbolic set.

Notice that F+
loc, like F+, is invariant w.r.t. the symplectic lift of the diagonal action of the

Euclidean group on configuration space R
dn.

The following theorem justifies that our definition of F+ matches our initial goal, and also
justifies the notation F+

loc.

Theorem 1.10. For any long range potential V, there exist appropriate parameters α, δ
and C such that F+

loc is forward invariant and such that a state x ∈ P is in F+ if and only if its
forward orbit eventually enters F+

loc.

The theorem follows from theorem 2.2 below. The proof will actually show that the
boundary ∂F+

loc is a (C0) surface of section of the flow restricted to F+. Notice that F+ =⋃
t�0Φ−t

(
F+

loc

)
, where F+

loc is open and Φ−t is smooth, whence the following.

Corollary 1.11. F+ is a non-empty open subset of P.

The asymptotic velocity map (1.5) enjoys regularity on F+.

Theorem 1.12 (Asymptotic velocity map on F+). Assume that V is a long-range
potential whose pair potentials are Ck, k � 2. Then the components of the map v+ : F+ →
R

dn\Δ form a Ck−1 complete set of commuting first integrals. Moreover, for fixed v∗ ∈ R
dn\Δ

the space of all forward orbits x(t) for which v+(x(t)) = v∗ has the structure of an affine space
modelled on the (nd − 1)-dimensional vector space v⊥∗ .

The regularity of v+ follows from item (a) of theorem 3.3. That components of v+ Poisson
commute is clear. That v+ is a surjective submersion, and the assertion on the structure of its
fibres follows from item (d) of theorem 5.3 below.

Earlier results 1.13 (Smoothness of scattering data). Smoothness of the scattering
data and in particular of the asymptotic velocity map x �→ v+(x) has been achieved under
various assumptions:

• In [Gu], Gutkin proved continuity of scattering data for a class of n-particle systems on
the line with repulsive interactions.

• Later, Fusco and Oliva proved in [FO] a result that implies smoothness of asymptotic
momentum and even integrability for repulsive Coulombic potentials.

• More recently, Duignan et al [DMMY] prove that the map x → v+(x) is real analytic on
F+

loc for the Newtonian potential. Their proof appears to still hold for any real analytic long
range potential. ♦

1.4. Comparison with free flows

In order to study the asymptotic behavior of the dynamics on F+, one strategy would be to
compactify the phase space, as in [DMMY] for the N-body problem. Such a compactification
is hard to define in full generality. Another strategy, chosen here, is to compare the dynamics
to a model integrable free dynamics.

Write

for the flow defined by our n-body system. We have used the broken arrow notation for the
map Φ to indicate that the domain of the map need not be all of Rt × P, thus allowing for
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the incomplete flows like the flows that occur for potentials such as Newton’s or Coulomb’s
which have singularities. The curve t �→ Φt(x), where defined, is a solution to our Hamilton’s
equations having initial condition x ∈ P.

The free flow Φ(0), on the other hand, is the flow whose projected curves are the lines t �→
at + c:

Φ(0) : Rt × P → P , Φ(0)
t (p, q) = (p, q + tM−1 p) (1.9)

and is generated by the free Hamiltonian H0 = K. Let

F0 = F+
0 :=

{
(p, q) ∈ P|v = M−1 p /∈ Δ

}
. (1.10)

Theorem 1.14. Let V be a short-range (α, k)-potential with α > 1 and k � 2 (see definition
2.1).

Then the dynamics Φ on F+ is conjugate to the free dynamics Φ(0): there exists a Ck−1

symplectomorphism Ω : F0 → F+ such that

Ω ◦ Φ(0)
t = Φt ◦Ω (∀t � 0).

This is the qualitative contents of theorem 4.2 below.
An analogous theorem to (1.12) holds for long-range potentials. Instead of comparing the

given flow with the free flow, we must compare it with an integrable, time dependent ‘Dollard
Hamiltonian’ HD(p, t) = K(p) + V((

√
1 + t2)p) (which does not depend on q!). See theorem

5.3 for precise statements.

Earlier results 1.15. In 1927 Chazy ([Cha, chapter 5]) used the term ‘hyperbolic’ in the
classification the long-time behaviour of solutions in the long range case of celestial mechanics.
He established an analytic asymptotic expansion near infinity for his hyperbolic solutions with
initial terms

q(t) = at + b log(t) + c +O
(
log(t)/t

)
; b = +∇V(a) as t →∞ (1.11)

Later, Saari [Sa, section 8], and Marchal and Saari [MS, section 10] extended and clarified
Chazy’s results, focussing on how cluster energies and angular momenta approach their limits.
Here ‘cluster’ refers to the situation where v+ ∈ Δ. The ‘clusters’ are the subsets of mass
indices i, for which v+i = v+j .

The log(t) term in Chazy’s expansion equation (1.11) is an essential consequence of the
1/r-nature of the Newtonian (or Coulomb) potential. On the other hand, hyperbolic solutions
for short range potentials satisfy

q(t) = at + c + o(1), as t →+∞. (1.12)

Simon [Sim] proved the validity of this expansion for the two-body problem using the Møller
transform (as used in section 4), or, as he called it, the wave transformation.

Recently Maderna and Venturelli [MV] investigated forward hyperbolic motions for n-
body problem using variational and weak KAM methods. And Duignan et al set up [DMMY]
an approach to hyperbolic motions and scattering for the n-body problem which relies on a
McGehee-style compactification of phase space which adds fixed points at infinity whose stable
manifold correspond to forward hyperbolic solutions. ♦
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1.5. Summary: main notations

v±(x)-Asymptotic velocity of state x (definition 1.5).
P-Phase space (equation (1.4)).
P̂-Phase space when collision singularities present (equation (1.4)).
F±-Forward and backward free regions (definition 1.6).
F̂±-As above, but when collision singularities present (definition (3.10)).
F+

loc-Forward finally free region (definition 1.9).
F0-Free region of the free flow (equation (1.10)).
Φ(0)

t -Free flow (equation (1.9)).
Φt-n-body flow (subsection 1.4).
Φ̂t-n-body flow when collisions present.

2. Do we know when we are free?

For simplicity, we first consider long-range potentials V which are non-singular at the origin
i.e. C2 on R

dn. Many properties which hold for these potentials also hold for singular long
range potentials (e.g. the gravitational n-body potential). This will be proved in section 5.

Equip the vector space of long range α-potentials V ∈ C2(Rdn,R) (see definition 1.1),
α > 0, with the seminorm

‖V‖(α) := ‖M−1‖ maxi< j∈N sup
q∈Rd\{0}

‖q‖α+1‖∇Vi, j(q)‖. (2.1)

Typically, pair potentials are C2 or smoother, often even analytic. In order to describe a section
of the flow in restriction to F+, we will need a C2 seminorm estimate of the potential and
later, scattering estimates will be improved using Ck-seminorms, with k ∈ N, k � 2. We now
introduce such seminorms.

Definition 2.1. An (α, k)-potential V is a potential whose pair potentials Vi, j ∈ Ck(Rd,R)
fullfill

∂γVi, j(q) = O
(
‖q‖−α−|γ|

)
(γ ∈ N

d
0, |γ| � k). (2.2)

On the space of (α, k)-potentials we define

‖V‖(α,k) := ‖M−1‖
∑

i< j∈N

∑
γ∈Nd

0 ,|γ|=k

sup
q∈Rd\{0}

‖q‖α+k|∂γVi, j(q)| (2.3)

(so that ‖V‖(α) = ‖V‖(α,1)).

The inessential factor ‖M−1‖ = m−1
min for mmin := min(m1, . . . , mn) simplifies formulae.

Recall the definition of the free region

F+ =
{

x ∈ P|v+(x) ∈ R
dn\Δ

}
. (2.4)

F+ depends on the details of the (generally non-integrable) flow, and hence implicitly on the
precise form of the potential V , so general properties of the free region are hard to grasp.
Surprisingly, there is an explicit surface of section of the flow restricted to F+ which bounds a
positive-invariant subset F+

loc ⊂ F+ having the property that every orbit in F+ must eventually
enter F+

loc.
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We still assume that V is a non-singular α-potential. Let δ and C with

0 < δ � δ0 := min(α/(4 + α), 1/5), C := 16 dn‖V‖(α,2)/δ. (2.5)

Define F+
loc by (1.8), with our chosen values of α, δ and C. The three inequalities assert

• The dominance of the interparticle kinetic energy over potential energy
• The near-parallelism of interparticle distances and velocities
• That interparticle distances are nearly proportional to interparticle velocities.

This tells us what the motion of free particles eventually looks like. For example, landing
in F+

loc yields the simple propagation estimates (2.6).

Theorem 2.2 (Final free region).

(a) F+
loc is forward invariant: Φt(F

+
loc) ⊆ F+

loc for t � 0.
(b) F+

loc is a subset of F+.
(c) For any x0 ∈ F+ there is a time t such that Φ(t, x0) ∈ F+

loc.
(d) For x0 ∈ F+

loc the distance between the particles i < j ∈ N increases approximately
linearly:

1
2
vi, j(0) t � qi, j(t, x0) − qi, j(0, x0) � 3

2
vi, j(0) t (t ∈ [0,∞)) . (2.6)

As already mentioned, the boundary of F+
loc is thus a C0 surface of section of the flow

restricted to the free region.

Example 2.3 (Two bodies). We already remarked that F+
loc is invariant under Euclidean

transformations. So in particular F+
loc = T∗

R
d × F̃+

loc, the Cartesian product referring to the
separation of centre of mass and internal motion.

In the case n = 2, in the coordinates q1, x = q2 − q1, v1 and w = v2 − v1 the equations of
F+

loc reduce to ⎧⎨⎩‖w‖2 >
C

‖x‖α
〈w, x〉 > (1 − δ)‖w‖‖x‖.

So, we see that F̃+
loc (with coordinates (x,w)) is fibred over Rd\{0} (coordinate x), with fibre

diffeomorphic to the cylinder [1,∞) × Sd−1 (coordinate w); see figure 1. ♦

Remark 2.4 (Topology of the final free region). AlthoughΔ andRdn are contractible,
the space Rdn\Δ onto which ∂F+

loc projects is topologically rich:

(a) For d = 1, there is a homeomorphism R
n\Δ ∼= R

n × Sym(n).
(b) For d = 2, the fundamental group of R2n\Δ is the coloured braid group on n strands and

its cohomology ring is made up of the n − 1-fold product of boquets of circles. See Arnold
[Ar]. ♦

In order to prove theorem 2.2, we will use the following lemma, where we denote by 〈·〉 a
smoothened version of the absolute value:

〈q〉 =
√

q2 + 1.
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Figure 1. Fiber over q1 − q2 of ˜F+
loc in the n = 2 case.

Lemma 2.5.

(a) For α > 0 and q � 0,

1
α
〈q〉−α �

∫ ∞

q
〈q̃〉−α−1 dq̃ �

(
1
α
+ 1

)
〈q〉−α. (2.7)

(b) If V is an α-potential (see (1.6)),

‖V‖(α) � ‖V‖(α,1)

and, if V is an (α, k + 1)-potential (see (2.2)) with k � 1,

‖V‖(α,k) � d‖V‖(α,k+1).

Proof.

(a) We show (2.7) by multiplying every term by 〈q〉α. Then the term F :=A/B with
A(q) :=

∫ ∞
q 〈q̃〉−α−1 dq̃ and B(q) := 〈q〉−α in the middle of (2.7) is monotone decreasing

on [0,∞), since F′
F = A′

A − B′
B , and (noting that q̃ � q)

A′

A
(q) = −

(∫ ∞

q

(
〈q〉
〈q̃〉

)α+1

dq̃

)−1

and
B′

B
(q) = −

(∫ ∞

q

(
〈q〉
〈q̃〉

)α+1 〈q〉 q̃
q 〈q̃〉 dq̃

)−1

.

d
dq

∫ ∞

q
〈q̃〉−α−1 dq̃ = −〈q〉−α−1 < −〈q〉−α−1 q

〈q〉 = α−1 d
dq

〈q〉−α.

8025



Nonlinearity 34 (2021) 8017 J Fejoz et al

So the decay of
∫ ∞

q 〈q̃〉−α−1dq̃ is steeper than d
dq

Q−α

α for Q = 〈q〉. But
∫ ∞

q 〈q̃〉−α−1 dq̃ is

asymptotic to α−1〈q〉−α as q →+∞, so limq→∞ F(q) = 1
α

. The upper bound is F(0) =∫ π/2
0 sin (θ)α−1 dθ < 1

α + 1, since for

(1) α � 1, we have sin(θ)α−1 � min(θα−1, 1) so that F(0) � 1
α
+ π

2 − 1,
(2) α � 1, F(0) <

∫ π/2
0

[
θα−1 + θ

π/2

(
1 − ( π2 )α−1

)]
dθ = (π/2)a(1/a − 1/2) + π/4.

(b) The estimate ‖V‖(α) � ‖V‖(α,1) simply follows from ‖x‖2 � ‖x‖1 for x ∈ R
d .

For an (α, k + 1)-potential V , γ ∈ N
d
0 with |γ| = k and q ∈ R

d\{0}

‖q‖α+k|∂γVi, j(q)| = ‖q‖α+k

∣∣∣∣∫ ∞

1
〈∇∂γVi, j(tq), q〉 dt

∣∣∣∣
� ‖q‖α+k

d∑
�=1

∫ ∞

1
|∂(γ+e�)Vi, j(tq)| ‖q‖ dt

� ‖q‖α+k
d∑

�=1

sup
r∈Rd\{0}

‖r‖α+k+1|∂(γ+e�)Vi, j(r)|

×
∫ ∞

‖q‖
q̃−α−k−1 dq̃

=
1

α+ k

d∑
�=1

sup
r∈Rd\{0}

‖r‖α+k+1 |∂(γ+e�)Vi, j(r)|,

for e� ∈ N
d
0 with (e�)k = δk,�. So

‖V‖(α,k) = ‖M−1‖
∑

i< j∈N

∑
|γ|=k

sup
q∈Rd\{0}

‖q‖α+k |∂γVi, j(q)| � d ‖V‖(α,k+1). �

Proof of theorem 2.2. We will repeatedly use the symbol Xi, j for the relative accelerations

Xi, j : Rdn → R
d , Xi, j(q) :=

∑
k∈N\{i}

∇Vi,k(qi − qk)
mi

−
∑

k∈N\{ j}

∇V j,k(q j − qk)
m j

between the ith and jth particle, and the estimate

‖Xi, j(q)‖ � 2(n − 1)
‖V‖(α)

qα+1
min

(i < j ∈ N). (2.8)

Throughout the proof we also use that, by lemma 2.5 (b),

C � 8n‖V‖(α)/δ. (2.9)

(a) F+
loc is open, since it is defined by strict inequalities among continuous functions on phase

space. To prove that F+
loc is forward invariant, it is sufficient to show that the Hamiltonian

vector field points inwards along its boundary ∂F+
loc. Thus we will show that the differ-

ence of the sides of each inequality has positive time derivative at instants at which that
inequality becomes an equality.
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Note that on F+
loc the phase space functions qi, j and vi, j have positive values and are thus

smooth. For qmin, qmax, vmin and vmax, which are only Lipschitz continuous, we consider
the distributional derivative.

(1) On F+
loc the time derivative relating to the first inequality in (1.8) is positive, since

d
dt
v2

min � −2vminmaxi< j∈N‖v̇i − v̇ j‖,

see e.g. Lieb and Loss [LL, corollary 6.18] for the weak gradient of the minimum of
functions. Thus

d
dt

(
v2

min − C
qmax

qα+1
min

)
� C(α+ 1)

qmax

qα+2
min

(1 − δ)vmin − 2vminmaxi< j∈N‖Xi, j(q)‖ − C
vmax

qα+1
min

� C

(
(α+ 1)(1 − δ)

vmin

qmin
− δ/4

vmin

qmax
− vmax

qmax

)
qmax

qα+1
min

� C
(
(α+ 1)(1 − δ) − δ/4 − (1 + 2δ)

) vmin qmax

qα+2
min

= C

(
α(1 − δ) − 13

4
δ

)
vmin qmax

qα+2
min

> 0.

The factor 1 − δ in the first inequality follows from the second line of (1.8). The
second inequality follows from (2.8) and (2.9). The factor 1 + 2δ in the second to
last line follows from the third line of (1.8).

In the final inequality we used that δ ∈
(
0, min(α/(4 + α), 1/5)

]
:

(i) For α ∈ (0, 1] we obtain α(1 − δ) − 13
4 δ � 3α

4(4+α) > 0.
(ii) For α ∈ (1,∞] we get α(1 − δ) − 13

4 δ � 4
5α− 13

20 � 3
20 .

(2) The time derivative of the left-hand side of the second inequality

〈vi − v j, qi − q j〉 − (1 − δ)vi, jqi, j > 0

in (1.8) is positive, too. This is trivial if ‖V‖(α) = 0, that is, V = 0. Otherwise

d
dt

(
〈vi − v j, qi − q j〉 − (1 − δ)vi, jqi, j

)
� v2

i, j − 〈Xi, j(q), qi − q j〉 − (1 − δ)
(
v2

i, j + ‖Xi, j(q)‖qi, j

)
� δC

qmax

qα+1
min

− 2(n − 1)
‖V‖(α)qmax

qα+1
min

(2 − δ)

� (8n − 2(n − 1)(2 − δ))
‖V‖(α)qmax

qα+1
min

> 4n
‖V‖(α)qmax

qα+1
min

> 0.

For the third line we used the first inequality of (1.8) and (2.8), and (2.9) for the last
line.
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(3) Concerning the third inequality in (1.8), as dqk,l
dt ∈ [(1 − δ)vk,l, vk,l] (using the second

inequality in (1.8)), at value zero of (1 + 2δ) qk,l
vk,l

− qi, j
vi, j

its time derivative is estimated
as follows:

d
dt

(
(1 + 2δ)

qk,l

vk,l
− qi, j

vi, j

)
� (1 + 2δ)(1 − δ) − 1 − ((1 + 2δ)qk,l‖Xk,l(q)‖+ qi, j‖Xi, j(q)‖)/v2

min

� δ − 2δ2 − 2(n − 1)(1 + δ)
‖V‖(α)qmax

v2
min qα+1

min

> δ(1− 2δ) − 4n(1 + δ)
‖V‖(α)

C
� δ(1 − 2δ) − 1

2
(1+δ)) � δ

(
3
5
− 6

10

)
= 0.

(b) We now prove item (d), before items (b) and (c). Throughout the proof of item (d) we will
use that we already proved positive invariance of F+

loc (item (a)). We adopt the notation
f̃ (t) := f ◦ Φ(t, x0) for a phase space function f , with x0 ∈ F+

loc.
For F := 1

2 q̃ 2
i, j and t � 0 we get from (1.8) that

F′(t) � (1 − δ)q̃i, j(t)ṽi, j(t) (2.10)

and

F′′(t) � (1 − δ)
[
ṽ 2

i, j(t) − q̃i, j(t)‖X̃i, j(t)‖
]
� (1 − δ)(1 − δ/4)ṽ 2

i, j(t) �
19
25

ṽ 2
i, j(t).

(2.11)

The second inequality in (2.11) is valid, since by (2.8), (2.9) and (1.8)

q̃i, j(t)‖X̃i, j(t)‖ � q̃i, j(t)2(n − 1)
‖V‖(α)

q̃α+1
min (t)

� 1
4

C
q̃i, j(t)

q̃α+1
min (t)

δ � δ

4
ṽ2

min(t).

(2.12)

The third inequality in (2.11) follows from 0 � δ � 1/5.
There exists a maximal T ∈ (0,+∞] so that∥∥(ṽi(t) − ṽ j(t)

)
−

(
ṽi(0) − ṽ j(0)

)∥∥2 � 1
6
ṽ2

i, j(0) (t ∈ [0, T)) . (2.13)

Thus
(

1 −
√

1/6
)2
ṽ2

i, j(0) � ṽ2
i, j(t) �

(
1 +

√
1/6

)2
ṽ2

i, j(0) within this time interval, and

by (2.10), (2.11) this implies

F(t) = F(0) +
∫ t

0

(
F′(0) +

∫ s

0
F′′(τ )dτ

)
ds

� F(0) + (1 − δ)q̃i, j(0)ṽi, j(0)t +
19
25

∫ t

0

∫ s

0
ṽ 2

i, j(τ )dτ ds

� 1
2

q̃ 2
i, j(0) +

4
5

q̃i, j(0)ṽi, j(0)t +
19
50

(
1 −

√
1/6

)2
ṽi, j(0)2t2. (2.14)
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Conversely by the first line in (2.14) and (2.12) with δ � 1/5,

F(t) � F(0) + q̃i, j(0)ṽi, j(0)t +
21
20

∫ t

0

∫ s

0
ṽ2

i, j(τ )dτ ds

� F(0) + q̃i, j(0)ṽi, j(0)t +
21
40

(
1 +

√
1/6

)2
ṽ 2

i, j(0)t2.

These two estimates prove both inequalities in (2.6) for time t ∈ [0, T).
(c) Next we start by showing that T = +∞ in (2.13). With the rescaled time parameter

s(t) :=
ṽi, j(0)
2q̃i, j(0)

t , q̃i, j(t) � q̃i, j(0) 〈s(t)〉 ,

since by (2.14), q̃ 2
i, j(t) = 2F(t) � q̃ 2

i, j(0) + 1
4 ṽi, j(0)2t2.

Note that by definition (1.8) of F+
loc the scaling factors ṽi, j(0)

2q̃i, j(0) are, up to a factor 1 + δ,
independent of the index pair (i, j). So by applying (2.13), (2.8), and (1.8) with (2.9) in
succession, ∥∥(ṽi(t) − ṽ j(t)

)
−

(
ṽi(0) − ṽ j(0)

)∥∥2

= −2
∫ t

0

〈
ṽi(τ ) − ṽ j(τ ) −

(
ṽi(0) − ṽ j(0)

)
, X̃i, j(τ )

〉
dτ

� 2√
6
ṽi, j(0)

∫ ∞

0
‖X̃i, j(τ )‖ dτ

� 4√
6

(n − 1) ṽi, j(0)‖V‖(α)
∫ ∞

0
q̃min(τ )−α−1 dτ

� 8√
6

(n − 1) ṽi, j(0)‖V‖(α) (1 + δ)q̃max(0)

q̃α+1
min (0)ṽi, j(0)

∫ ∞

0
〈s〉−α−1 ds

�
√

6
5

ṽ 2
i, j(0) δ

∫ ∞

0
〈s〉−α−1 ds

�
√

6
5

ṽ 2
i, j(0) min

(
1/5,

α

4 + α

) √
πΓ(α/2)

2Γ((1 + α)/2)

�
√

6π
50

ṽ 2
i, j(0) < ṽi, j(0)2/6,

since min
(

1/5, α
4+α

) √
πΓ(α/2)

2Γ((1+α)/2) attains its maximal value π/10 for α = 1. This shows

that in (2.13) T = +∞. Thus by (2.13) the velocity differences stay bounded away from
zero (ṽi, j(t) � 1

2 ṽi, j(0) > 0 for all t � 0) so that the initial condition x0 ∈ F+
loc is in F+.

(d) Let x0 ∈ F+. We want to show that the orbit through x0 ultimately enters the finally free
region F+

loc, defined in (1.8) by three families of inequalities.
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In particular

ṽmin(t) � (1 − 1
4
δ)v+min(x0) > 0 (t � t0).

As
∥∥∥(q̃i(t) − q̃ j(t)

)
−

∫ t
t0

(ṽi(s) − ṽ j(s))ds
∥∥∥ = q̃i, j(t0),∥∥(q̃i(t) − q̃ j(t)

)
− (t − t0)

(
vi(x0) − v j(x0)

)∥∥ � δ/4(t − t0)v+min(x0) + q̃i, j(t0). (2.16)

So vmin(x)2 > C qmax (x)
qmin (x)α+1 for x :=Φ(t, x0), t � t0 large. This is the first condition in the

definition (1.8) of F+
loc.

(4) By definition, v+(x0) exists and v+(x0) /∈ Δ. It follows that for any δ ∈ (0, δ0] there
exists a time t0 such that for

v+min(x0) := min
1�i< j�n

‖v+i (x0) − v+j (x0)‖ > 0

‖ṽk(t) − v+k (x0)‖ � 1
8
δv+min(x0) (k ∈ N, t � t0). (2.15)

(5) Concerning the second condition, similarly by (2.16), for t large

〈ṽi(t) − ṽ j(t), q̃i(t) − q̃ j(t)〉 � (1 − δ)ṽi, j(t)q̃i, j(t)

(6) For the third condition,

(1 + 2δ)
q̃k,l(t)
ṽk,l(t)

>
q̃i, j(t)
ṽi, j(t)

( i < j, k < l ∈ N).

This shows that Φt(x0) ∈ F+
loc for all t sufficiently large. �

3. Regularity of the asymptotic velocity

We move on to the regularity of the asymptotic velocity map v+ : x �→ v+(x).

Theorem 3.1 ([DG, theorem 5.4.1]). Let the potential V ∈ C2(Rdn,R) be long range.
Then the asymptotic velocity v+(x) exists for all x ∈ P.

The map v+ : P → R
dn is Borel-measurable, but may be discontinuous.

Example 3.2 (Discontinuity of the asymptotic velocity). Take d = 1 and n = 2 and
a non-negativepair potential V1,2 ∈ C2

c (R,R) which has compact support, and a non-degenerate
unique maximum V(0) > 0 in the centre of mass system. Then the origin is the unique fixed
point and is hyperbolic.All trajectories except the hyperbolicfixed point and the four associated
separatrix solutions have |q| →∞ as |t| →∞ and their velocity q̇ is locally constant as |t| tends
to ∞. So one sees that v+ is defined on the whole phase space R

2 and that its discontinuity
locus is the stable manifold of the hyperbolic fixed point. ♦

We will see that in restriction to the free region F+ the map v+ is continuous and even
differentiable. We will use the notation

p+(x0) = Mv+(x0) = lim
t→∞

p(t).
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Theorem 3.3. Let V be an (α, k)-potential.

(a) The map v+ : F+ → R
dn is of class Ck−1.

(b) Quantitatively, if x0 = (p0, q0) ∈ F+
loc, for multi-indices δ := (β, γ) ∈ N

dn
0 × N

dn
0 with

|δ| ≡ |β|+ |γ| � k − 1 and partial derivatives: ∂δ
x0

:= ∂β
p0
∂γ

q0
we get

∂δ
x0

(p+(x0) − p0) = O
(
‖V‖(α,k)vmin(x0)−1−|β|〈qmin(x0)〉−α−|γ|

)
. (3.1)

Remark 3.4 (Variants). The constant in the order estimate (3.1) is independent of V . Using
the first condition in the definition (1.8) of F+

loc, we obtain the weaker estimate

∂δ
x0

(p+(x0) − p0) = O
(
vmin(x0)+1−|β|〈qmin(x0)〉−|γ|

)
.

Similarly, instead of (4.4), we would have the weaker estimate

∂δ
X0

(Q0 − q0) = O
(
vmin(X0)−|β|〈qmin(X0)〉1−|γ|

)
(where X0 = Ω(x0) = (Q0, P0) stands for the image of x0 by the Møller transformation, as
defined in section 4).

These estimates depend on the norm ‖V‖(α,k) of the potential only indirectly, via the phase
space region F+

loc where they apply. ♦

Proof of theorem 3.3. We use the shorthands qmin := qmin(x0), vmin := vmin(x0) and con-
tinue to use the notation f̃ (t) := f ◦ Φ(t, x0) for a phase space function f .

• To prepare for the proof of claim 1, we first estimate the initial value problem for long-
range potentials. As V is an (α, k)-potential, the flow

Φ ∈ Ck−1(R× P, P).

For derivatives ∂δ
x0

w.r.t. initial conditions x0 with 1 � |δ| � k − 1, like in [Kn, section 6]
we use the integral representation of the trajectory

q(t, x0) = q0 +M−1

(
tp0 −

∫ t

0

∫ s

0
∇V (q(τ , x0)) dτ ds

)
(t ∈ [0,∞)) .

By a standard dominated convergence argument (see, e.g., Elstrodt [El, theorem IV.5.7])
its deviation from free motion is controlled by

∂δ
x0

(
q(t, x0) − (q0 + tM−1 p0)

)
= −

∫ t

0

∫ s

0
M−1∂δ

x0
∇V (q(τ , x0)) dτ ds

= −
|δ|∑

N=1

M−1
∑

δ(1)+···+δ(N)=δ

|δ(i)|>0

∫ t

0

∫ s

0
DN∇V (q(τ , x0))

×
(
∂δ(1)

x0
q(τ , x0), . . . , ∂δ(N)

x0
q(τ , x0)

)
dτ ds. (3.2)
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Due to the N = 1 term this is only an implicit equation for ∂δ
x0

q(t, x0). To transform it

into an explicit equation, we thus consider for λ > 0 the real Banach space
(
Ĉ, ‖ · ‖λ

)
,

Ĉ :=

{
w ∈ C

(
[0,∞),Rdn

) ∣∣∣∣∣ ‖w‖λ := sup
t�0

‖w(t)‖/〈λt〉 < ∞
}

, (3.3)

noting that Ĉ is independent of the choice of λ. Define the linear operator Q ≡ Qx0 by

Q(w)(t) :=M−1
∫ t

0

∫ s

0
D∇V (q(τ , x0))w(τ ) dτ ds (t � 0), (3.4)

Using (2.6) and (2.3), the operator norm is estimated by

‖Q‖λ := sup
w:‖w‖λ=1

‖Q(w)‖λ � ‖V‖(α,2)sup
t�0

∫ t
0

∫ s
0 (qmin +

1
2vminτ )−2−α〈λτ〉 dτ ds

〈λt〉

� ‖V‖(α,2)

λ2q2+α
min

sup
t�0

∫ t
0

∫ s
0 〈τ〉−1−α dτ ds

〈t〉 .

Using lemma 2.5 in the last inequality and setting

λ :=
1
2
vmin/qmin

yields

‖Q‖λ � 4(1 + 1/α)
‖V‖(α,2)

v2
minqα

min

.

which shows that Q maps Ĉ into itself. We want to prove that for all x0 ∈ F+
loc the opera-

tor norm of Qx0 is strictly smaller than one for a suitable λ. By definition (1.8) of F+
loc the

operator is a contraction:

‖Q‖λ � 4(1 + 1/α)
16πdn max(1, 1/α)

� 1
2πdn

< 1.

Thus (3.2) can be transformed into

(𝟙+Q)(∂δ
x0

q)(t) = ∂δ
x0

(q0 + tM−1 p0) − M−1

×
|δ|∑

N=2

∑
δ(1)+···+δ(N)=δ

|δ(i)|>0

∫ t

0

∫ s

0
DN∇V (q(τ , x0))

×
(
∂δ(1)

x0
q(τ , x0), . . . , ∂δ(N)

x0
q(τ , x0)

)
dτ ds (3.5)

with the invertible operator 𝟙+Q on Ĉ. As on the rhs of (3.5) only partial derivatives of
order |δ(i)| < |δ| appear, we can perform an induction in |δ|.

Assume that for all δ′ = (β′, γ ′) ∈ N
dn
0 × N

dn
0 with 1 � |δ′| � |δ| − 1

‖∂δ′
x0

q(·, x0)‖λ = O
(
vmin(x0)−|β′|qmin(x0)1−|γ′|

)
. (3.6)
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This assumption is satisfied for |δ′| = 1, since then the sum on the rhs of (3.5) equals zero.
Then by (2.6) and (3.6) the terms on the rhs of (3.5) fullfill∥∥∥∥M−1

∫ t

0

∫ s

0
DN∇V (q(τ , x0))

(
∂δ(1)

x0
q(τ , x0), . . . , ∂δ(N)

x0
q(τ , x0)

)
dτ ds

∥∥∥∥
� ‖V‖(α,N+1)

∫ t

0

∫ s

0
q(τ , x0)−α−N−1

N∏
i=1

‖∂δ(i)

x0
q(τ , x0)‖ dτ ds

� ‖V‖(α,N+1)
∫ t

0

∫ s

0

(
qmin(x0) +

1
2
vmin (x0)t

)−α−N−1

×
N∏

i=1

(
‖∂δ(i)

x0
q(·, x0)‖λ 〈λτ〉

)
dτ ds

� C0‖V‖(α,N+1) vmin(x0)−|β| q−α−|γ|−1
min

∫ t

0

∫ ∞

0
〈λτ〉−α−1 dτ ds

� C1‖V‖(α,N+1)v
−2−|β|
min q1−α−|γ|

min 〈λt〉 . (3.7)

For x0 ∈ F+
loc that term is bounded above by (see (1.8)) Cδv

−|β|
min q1−|γ|

min 〈λt〉,4 proving the
induction step for (3.6).

• We prove the momentum estimate in (3.1) for no partial derivative w.r.t. initial condi-
tions (δ = 0), which holds for all long range potentials. By the propagation estimate (2.6)
uniformly in t � 0

‖M−1( p̃(t) − p̃(0))‖

�
∫ t

0
‖M−1∇V(q̃(s))‖ ds � ‖V‖(α,1)

∫ t

0

(
qmin +

1
2
vmins

)−α−1

ds

� ‖V‖(α,1)

1
2vmin

∫ ∞

0
(qmin + s)−α−1 ds � 2 ‖V‖(α,1)

α vmin qα
min

. (3.8)

Lemma 2.5 was applied in the last step. By the same estimate, which is locally uniform in
x0,

v+(x0) = M−1 p+(x0) = M−1 lim
t→∞

p̃(t)

exists and is continuous in x0 ∈ F+.
• For multi-index δ ∈ N

2dn
0 of norm 1 � |δ| � k − 1 the momentum estimate

‖M−1∂δ
x0

( p̃(t) − p̃(0))‖ � C2‖V‖(α,k)v
−1−|β|
min q−α−|γ|

min

� Cδv
+1−|β|
min q−|γ|

min (3.9)

is derived like the position estimate in and after (3.7). We infer that at x0 ∈ F+
loc asymptotic

velocity v+ is k − 1 times continuously differentiable. This proves item (b).

4 δ of Cδ does not refer to the multi-index δ ∈ N
2dn
0 , but to the constant in theorem 2.2. It is chosen as δ := min(δ0,α −

1) in the short range case (α > 1) and δ := δ0 if 0 < α � 1.
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As the flow Φ ∈ Ck−1(R× P, P) and by property 3 of theorem 2.2, the same statement
is true for x0 ∈ F+. This proves item (a). �

In [He, lemma II.2], Herbst noted for n = 2 that for long range potentials the limit
limt→∞ (q2(t, x) − q1(t, x)) exists, if the asymptotic velocities coincide. His—perhaps aston-
ishing—result immediately generalizes to the n-body case. To see this, we modify (1.6), setting

F̂± :=
{

x ∈ P̂|v±(x) exists, and v±(x) /∈ Δ
}
. (3.10)

Lemma 3.5. For a long range potential V, consider initial conditions x(i)
0 ≡

(
p(i)

0 , q(i)
0

)
∈

F̂± (i = 1, 2), whose asymptotic momenta p±
(

x(i)
0

)
coincide. Then

a± := lim
t→±∞

(
q(t, x(2)

0 ) − q(t, x(1)
0 )

)
(3.11)

exists. More precisely, although the estimate p (t, x0) − p± (x0) = O(|t|−α) is in general
optimal in the t →±∞ limit,

p
(

t, x(2)
0

)
− p

(
t, x(1)

0

)
= O(|t|−1−α) and q

(
t, x(2)

0

)
− q

(
t, x(1)

0

)
= a± +O(|t|−α).

(3.12)

Finally, if a± = 0, then x(1)
0 = x(2)

0 .

Proof.

• To begin with, the estimate p(t, x0) − p±(x0) = O(|t|−α) follows from (3.8) and the
propagation estimate (2.6), and its optimality from

1
2

〈
p±(x0),M−1p±(x0)

〉
=

1
2

〈
p(t, x0),M−1p(t, x0)

〉
+ V (q(t, x0)) .

• The second estimate in (3.12) and (3.11) follow by integration from the first estimate in
(3.12).

• To derive it and the last statement, we argue like in [He, lemma II.2]. That is, we note that
by (1.1) the force fullfills the estimate

‖∇V(q1) −∇V(q2)‖ = O
(
‖q1 − q2‖ · min (‖q1‖, ‖q2‖)−2−α

)
,

which then leads to (3.12). �
We can also apply theorem 3.3, which is formulated for non-singular potentials, to the

unregularized Hamiltonian flow with an (α, k)-potential V : M̂ → R.
The point is, some x’s end in collision, so have no well-defined asymptotic velocity. As

in definition 1.6, the phase space regions F̂± ⊆ P̂ are open. The escape time T±(x0) for ini-
tial conditions x0 lying in F̂± are ±∞ whereas T− (T+) are still upper (respectively lower)
semicontinuous.

Corollary 3.6 (Asymptotic velocities for singular potentials).

(a) Forα > 0 and (α, k)-potentials V ∈ Ck(M̂,R), see (2.3), the restricted asymptotic velocity
maps v± are Ck−1 over F̂±.
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(b) So for (−α)-homogeneous potentials, that is

V(q) :=
∑

1�i< j�n

Ii, j

‖qi − q j‖α
. (3.13)

the asymptotic velocities v± are smooth on F̂±.

Proof.

(a) The flow is Ck−1 on its domain and if x0 ∈ F+ then there is a time t � 0 so that Φt(x0) ∈
F+

loc. The norm ‖V‖(α,2) defined in (2.3) for non-singular pair potentials (and appearing in
theorem 2.2) can actually be used for singular pair potentials, too, since it excludes the
argument 0 in the supremum. Then by theorem 3.3 (a) the restriction of the asymptotic
velocity v+ to F+ is a Ck−1 with values in R

dn.
(b) V in (3.13) has finite ‖V‖(α,k) norm for any k ∈ N. �

4. The Møller conjugacy (short range)

We will now show that for a short range potential the flow and the free flow are conjugate,
using the so-called Møller transformation.

If the potential is short range (α > 1 in (1.6)), then we can establish the asymptotics

q(t) = at + b +O
(
t1−α

)
as t →+∞

for forward free solutions, see equation (4.4) below. The vector a is v+(x0) if
x0 := (Mq̇(0), q(0)) is the initial condition for q(t). The vector b is something like the ‘impact
parameter’ found in standard treatments of classical scattering. We would like to think of
a, b ∈ R

dn as initial conditions at t = +∞.
One way to formalize this idea is via the Møller transformation, which compares the given

flow to that of a free particle.

Definition 4.1. The (forward) Møller transformation, where the (pointwise) limit exists, is
the map . Similarly the backward Møller trans-

formation is Ω− := limt→−∞Φ−t ◦ Φ0
t , where the limit exists.

See figure 2 for a depiction of the forward and backward Møller transformations. We have
continued to use the broken arrow notation in the definition of the Møller transformation to
allow ourselves vagueness about its domain. We repair this vagueness now. Moreover, these
transformations provide us with conjugacy in the short range case.

Theorem 4.2 (Møller transformation). If the (α, k)-potential V is short range (α > 1 in
definition 2.1), then

(a) For F+
0 and F+ defined in (1.10) respectively in (2.4), the Møller transformation

Ω = lim
t→+∞

Φ−t ◦ Φ0
t : F+

0 → F+ (4.1)

exists and is a Ck−1 symplectomorphism intertwining Φt with Φ(0)
t :

Ω ◦ Φ(0)
t = Φt ◦ Ω (t ∈ R). (4.2)
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Figure 2. Above: potential V. Below: level lines of the Hamiltonian H and of the kinetic
energy T (dashed); and the corresponding Møller transformations.

(b) If |δ| � k − 1, x0 = (p0, q0) ∈ F+
loc and Ω(x0) = X0 = (P0, Q0) then the inverse Møller

transformation Ω−1 satisfies the regularity estimates:

∂δ
X0

(P0 − p0) = O
(
‖V‖(α,k)vmin(X0)−1−|β|〈qmin(X0)〉−α−|γ|

)
, (4.3)

∂δ
X0

(Q0 − q0) = O
(
‖V‖(α,k)vmin(X0)−2−|β|〈qmin(X0)〉1−α−|γ|

)
. (4.4)

We will deal with long range (α, k)-potentials with α ∈ (1/2, 1] later; we will show
existence of modified ‘Dollard’ Møller transformations in theorem 5.3, indicating how to
generalize this to α ∈ (0, 1].

Let us pause to see how theorems 2.2 and 4.2 are related. Suppose that Ω(A, B) = x0 ∈
F+. We claim that A = Mv+(x0) where v+(x0) /∈ Δ is x0’s asymptotic velocity of definition
1.5 and described in theorem 1.10. Inverting, we have Ω−1(x0) = (A, B) and Ω−1 = limt→∞
Φ0

−t ◦ Φt. Write Φt(x0) = (p(t, x0), q(t, x0)) and set p(∞) = Mv+(x0) = A. Theorem 1.10 tells
us that for t large we have p(t, x0) = A + o(1). Now the momentum p is constant under the free
flow so that for large t we haveΦ0

−t ◦ Φt(x0) = (A + o(1), Q(x0; t)). Letting t →∞ kills the o(1)
term and yields the claim: Ω−1(x0) = (A,∗ ).
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Proof of theorem 4.2.

• We now prove for (α, k)-potentials V of short range (α > 1) pointwise existence and
smoothness properties of the Møller transformation.

Thus let X0 = (P0, Q0) ∈ F0 and write Q̃(t) :=Q0 +M−1P0t for the corresponding free
solution. (See (1.9).) Define the map

FX0,T ≡ F : D̂ → C
(
[T,∞),Rdn

)
(Fr)(t) = −M−1

∫ ∞

t

∫ ∞

s
∇V

(
(Q̃ + r)(τ )

)
dτ ds (4.5)

on the complete metric space

D̂ ≡ D̂X0,T :=

{
r ∈ C

(
[T,∞),Rdn

) ∣∣ ‖r‖ := sup
t�T

‖r(t)‖ � 1
2

qmin (X0)

}
.

(4.6)

By the short range assumption on V the map F is well-defined, and any function u = F (r)
in its image satisfies limt→∞u(t) = 0.

We search for solutions r of the fixed point problem r = FX0 (r). Out of such a fixed
point r we will build Ω(X0). First, observe that if r is such a fixed point then

q := Q̃ + r (4.7)

satisfies Newton’s equations q̈(t) = −M−1∇V (q(t)) and is asymptotic to Q̃. When X0 ∈
F+

loc ⊆ F0, then by (2.6) and (4.6) the interparticle distances q̃i, j(τ ) � 1
2 (qi, j + vi, jτ ). Thus,

using (2.3) ∥∥∥M−1∇V
(

(Q̃ + r)(τ )
)∥∥∥ � ‖V‖(α)

〈
1
2

(qmin + vminτ )

〉−1−α

(τ � 0).

So by lemma 2.5
∥∥∥M−1

∫ ∞
s ∇V

(
(Q̃ + r)(τ )

)
dτ

∥∥∥ � 2‖V‖(α)

vmin

〈
1
2 (qmin + vmins)

〉−α
and

‖(Fr)(t)‖ � 2‖V‖(α)

(α−1)v2
min

〈
1
2 qmin

〉1−α � 8d‖V‖(α,1)

(α−1)v2
min

( 1
2 qmin)1−α � 1

2 qmin, as X0 ∈ F+
loc (see (1.8))

and δ � α− 1. So F maps D̂ into itself.
Next we show that F is a contraction on D̂. So let r(0) �= r(1) ∈ D̂. Then∥∥F (

r(0)
)
−F

(
r(1)

)∥∥
‖r(0) − r(1)‖ �

∫ ∞

0

∫ ∞

s

∫ 1

0

∥∥∥M−1D∇V
(

(Q̃ + r(ρ))(τ )
)∥∥∥ dρ dτ ds

with r(ρ) := (1 − ρ)r(0) + ρ r(1). The right-hand side is majorized by

‖V‖(α,2)
∫ ∞

t

∫ ∞

s

〈
1
2

(qmin + vi, js)

〉−2−α

dτ ds � 2‖V‖(α,2)

α(1 + α)v2
i, jq

α
min

� δ

16dn
< 1.

By Banach’s theorem FX0 has a unique fixed point r. Evaluating the corresponding
solution Q̃(t) + r(t) to Newton’s equations appropriately at t = 0 yields the value of the
Møller transformation on X0. Indeed we claim that

Ω(X0) = (P0 +Mṙ(0), Q0 + r(0)) .
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To see this, we approach the problem of approximating r(t) ‘from the other end of time’
as follows. Write

Φ−T ◦ Φ(0)
T (X0) =

(
P0 +M(ṙ(T))(0), Q0 + r(T)(0)

)
.

Then the solution r(T) : [0, T] → R
dn to Newton’s equations with initial position r(T )(0)

and initial velocity ṙ(T)(0) is the unique fixed point of the map

F (T) : D̂(T) → D̂(T), (F (T)r(T))(t) = −M−1
∫ T

t

∫ T

s
∇V

(
(Q̃ + r)(τ (T))

)
dτ ds

on

D̂(T) :=

{
r ∈ C

(
[0, T],Rdn

)
|maxt∈[0,T]‖r(t)‖ � 1

2
qmin (X0), r(T) = ṙ(T) = 0

}
,

and by uniqueness of the original fixed point r we must have that

r(t) = lim
T→+∞

r(T)(t) , ṙ(t) = lim
T→+∞

ṙ(T)(t) (t � 0).

To see that Møller transformation is defined on all of F0, observe that for any X0 ∈ F+

we have, eventually, for large enough times h that Φ(0)
h (X0) ∈ Floc, at which point we have

just seen that Ω
(
Φ(0)

h (X0)
)

exists. Then observe by inspecting the definition of the limits

that Ω(X0) = Φ−h ◦ Ω ◦ Φ(0)
h (X0).

As a locally uniform limit the Møller transformation is continuous on F+. The inter-
twining relation (4.2) follows, since the flows are R-actions, or alternatively by re-
arranging the just-proved relationship, Ω = Φ−h ◦ Ω ◦ Φ(0)

h valid for all sufficiently large
h in a neighborhood of any X0.

• To investigate the degree of smoothness of Ω+, instead of the operator (3.4) related to the
initial value problem, we now use the operator P ≡ PX0 , with

P(w)(t) := −M−1
∫ ∞

t

∫ ∞

s
D∇V

(
Q̃(τ )

)
w(τ ) dτ ds (t � 0), (4.8)

on the Banach space Cb([0,∞),Rdn) of bounded curves. Its operator norm is majorized
by

‖PX0‖ � ‖V‖(α,2)
∫ ∞

0

∫ ∞

s

〈
Q̃(τ )

〉−2−α

dτ ds

� ‖V‖(α,2)
∫ ∞

0

∫ ∞

s

〈
1
2

(qmin + vmins)

〉−2−α

dτ ds

� 22+α

α
‖V‖(α,2)q−α

minv
−2
min � 22+α

α

δ

16dn
< 1

if α � 3. For larger α one uses the forward flow into F+
loc, where the mutual distances

increase and thus qmin effectively becomes larger, resulting in ‖PX0‖ < 1, too. So we can
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invert Id − PX0 in order to solve for |δ| � k − 1

∂δ
X0

r(t, X0) = −
∫ ∞

t

∫ ∞

s
M−1∂δ

X0
∇V (q(τ , X0)) dτ ds

= −
|δ|∑

N=1

M−1
∑

δ(1)+···+δ(N)=δ

|δ(i) |>0

∫ ∞

t

∫ ∞

s
DN∇V (q(τ , X0))

×
(
∂δ(1)

X0
q(τ , X0), . . . , ∂δ(N)

X0
q(τ , X0)

)
dτ ds (4.9)

with the shorthand q = Q̃ + r in a way similar to (3.5). This shows (4.4) and finishes the
proof of claim 2.

As C1-limit of the symplectomorphisms Φ−t ◦ Φ(0)
t the Møller transformation Ω+ is

a symplectomorphism onto its image. But this image coincides with F+, by its mere
definition (2.4) and by reversing the roles of the two flows.

So claim 1 is also true. �

Remark 4.3 (Møller transform).
The standard reference for the Møller transform is section 5 of [DG] by DEREZIńSKI and

GéRARD. In the case of finite-range interactions HUNZIKER, in [Hu1, Hu2] proved that the
Møller transform exists and used it to establish asymptotic completeness of finite range interac-
tions. This asymptotic completeness includes the decomposition of solutions into independent
clusters where ‘cluster’ has the meaning alluded to above.

Hunziker viewed the Møller transform as the classical version of the quantum Møller trans-
form, or wave map, defined as the limit of exp(−itH)exp(itH0) as t →∞. Here H = H0 + V is
the quantum version of our Hamiltonian so that H0 corresponds to a multiple of the Laplacian
on R

dn .
Soon afterwards, SIMON [Sim] used the method to establish asymptotic completeness for

the classical two-body problem with short range interactions provided the second derivative of
the potential decays appropriately. In an appendix Simon exhibited the necessity of his second
derivative decay conditions by constructing a potential for which his decay conditions failed
and which admits two distinct hyperbolic solutions asymptotic to the same free solution. Thus
Ω−1(x0) = Ω−1(y0) for x0, y0 not lying on the same orbit, so that whatever Ω is, it is at least
‘two-valued’ and not a well-defined map.

DEREZIńSKI and GéRARD, among many other results, established the existence and
invertibility of the Møller transformation for potentials of superexponential decrease in [DG,
section 5.10].

♦

5. The Dollard–Møller conjugacy (long range)

The gravitational and Coulomb potentials are long range but not short range so the Møller trans-
formation fails to exist for them. Dollard [Do] discovered that by modifying the comparison
free dynamics in a time-dependent way he could define a modified Møller transformation which
existed for long range potentials. We will call his modified transformation the Dollard–Møller
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transformation. It will yield the asymptotics

p(t) = Mv + o(1)

q(t) = vt + W(t,Mv) + b + o(1)

with v = v+(x(0)) and W(t,Mv) = o(t) as t →+∞

valid for all escape solutions x(t) = (p(t), q(t)) and all long-range potentials (0 < α � 1 in
(1.6)), whether they have singularites or not. See equation (5.3) for the relation between W
and the potential V . This assertion on asymptotics follows from the existence of the inverse
Dollard–Møller transformation Ω−1, part (a) of (5.3). See remark 5.5 for a sketch of a proof
of a derivation of (5.1) from part (a). The asymptotic velocity v occurring in the asymptotics
(5.1) is given by Ω−1(x(0)) = (v, β) for some β. The ‘impact parameter’ b, projected onto v⊥

represents the affine orbital parameter described in part (c) of (5.3) below.

Definition 5.1. The Dollard dynamics ΦD
t,s (see (5.9)) associated with a potential V on R

dn

is the non-autonomous flow defined by the time dependent Dollard Hamiltonian

HD :=K + H̃D : Rt × F0 → R

given by

HD(t, p, q) =
1
2
〈p,M−1 p〉+ V

(
〈t〉M−1 p

)
where 〈t〉 =

√
1 + t2 (5.1)

The first term K of HD is the usual kinetic energy. Its second term H̃D
t (p, q) is the potential

turned into a function of momentum. HD is independent of q so the momentum p is constant
along the non-autonomous Dollard flow ΦD

t,s.

Example 5.2 (Newtonian case). Take the case of the Newtonian n-body problem, where
the potential is homogeneous of degree−1. Using 〈t〉 = t(1 + 1

2
1
t2 + · · · ) for t � 1 we see that

HD = 1
2 〈p,M−1 p〉+ V(〈t〉M−1 p) = 1

2 〈p,M−1 p〉+ 1
t V(M−1 p) +O(1/t3) for large t, where

the O(1/t3) term depends only on p. Then the ODEs to solve to find the Dollard flow are⎧⎨⎩q̇ = M−1 p+
1
t
∇V(M−1 p) +O(1/t3)

ṗ = 0

which integrate to yield precisely Chazy’s asymptotics (1.11) above. Compare with Chazy
[Cha, page 46], 1922. One could argue that the proper Dollard Hamiltonian (B.1) has Chazy’s
work as a precursor. ♦

Returning to a general V , we compute the time-dependent flow of HD, for initial time s ∈ R

and final time t ∈ R, to have the form:

ΦD
t,s(p, q) = ( p , q + (tv + W(t; p)) − (sv + W(s; p))) ((p, q) ∈ F0) . (5.2)

where

W : Rt × F0 → R
dn , W(t; p) =

∫ t

0
∇pV

(
〈s〉M−1 p

)
ds. (5.3)
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If V is an (α, k) potential then W ∈ Ck−1
(
Rt × F0,Rdn

)
, and

t �→ W(t; p) =

{
O(|t|1−α) , α ∈ (1/2, 1)

O(log(|t|)) , α = 1,
(|t| →∞).

Although the correction term W(t, p) to linear motion can go to infinity with t, we have that
W(t, p) = o(t), which is to say, that |t| � |W(t; p)| as t →∞. It will be crucial below that for
fixed p and t0,

W(t + t0, p) − W(t, p) → 0 as t →∞, (5.4)

as the reader can easily verify.
The asymptotic velocity of any Dollard solution curve ΦD

t,s(x0) with x0 = (p, q) is
v = M−1 p. All Dollard solutions (5.2) which share a fixed initial momentum p are translates
of one another:

ΦD
t,s

(
p, q(2)

)
− ΦD

t,s

(
p, q(1)

)
=

(
0, q(2) − q(1)

) (
s, t ∈ R, q(i) ∈ R

dn
)
.

For explicit computations of Dollard flows and comparison of the induced transformations
with Møller transformations see the appendices.

We will use the Dollard flow ΦD
0,t in place of the free flow Φ(0)

t in order to define a version
of the Møller transformation. However, collisions in backward time prevent us from defining a
direct Dollard–Møller transform on F̂+. The backward n-body flow Φ̂−t, t > 0, applied to some
points of F̂+ may not exist due to multi-body collisions in backwards time. To circumvent this
problem we instead define the inverse Dollard–Møller transformation, whose definition only
uses the forward flow, so that its domain can be taken to be F̂+.

(The reader may wish to refer to subsection 1.5 for notations.)

Theorem 5.3 (Dollard–Møller transformations). For long range (α, k)-potentials V
(see (2.3)) with α ∈ (1/2, 1] and collision singularities allowed, the following hold.

(a) The backward and forward inverse Dollard–Møller transformations

Ω−1,± := lim
T→±∞

ΦD
0,T ◦ Φ̂T , Ω−1,± : F̂± → F0 (5.5)

exist in the sense of locally uniform convergence.

(b) (1) These transformations conjugate the n-body flow on F̂± with the free flow

Ω−1,± ◦ Φ̂t = Φ(0)
t ◦ Ω−1,±. (5.6)

(2) For k � 3 the Ω−1,± are Ck−2-smooth symplectomorphisms onto their images.
(c) The analogue of (5.7) holds for Ω−1,± − Id:

If |δ| � k − 1, x0 = (p0, q0) ∈ F±
loc and Ω−1,±(x0) = X0 = (P0, Q0) then the following

regularity estimates hold:

∂δ
X0

(P0 − p0) = O
(
‖V‖(α,k)vmin(X0)−1−|β|〈qmin(X0)〉−α−|γ|

)
, (5.7)

∂δ
X0

(Q0 − q0) = O
(
‖V‖(α,k)vmin(X0)−2−|β|〈qmin(X0)〉1−α−|γ|

)
. (5.8)

(d) For any v ∈ R
dn\Δ, the space of orbits having asymptotic velocity v form an affine space

with underlying vector space the tangent space of the sphere Sdn−1 at v/‖v‖M.
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Proof. We will make use of the open subset F+
loc of P̂ defined by precisely the same conditions

as F+
loc in (1.8) with all points lying in P̂—the phase space points with no collisions. Note that

for α-homogeneous potentials, the conditions within (1.8) respect the homogeneity of kinetic
and potential energy.

• As both flows Φ̂ and ΦD
•,• are Ck−1-smooth on their maximal domains (D̂ for Φ̂ and Rt ×

Rs × F0 for ΦD
•,•), by theorem 2.2 (c) and its corollary 3.6 we can assume without loss of

generality that x0 = (p0, q0) ∈ F̂+
loc.

We consider the Dollard solution (5.2), t �→ ΦD
t,0(X) with initial value X ∈ F0 and denote

by XT(x0) the initial value with the property

ΦD
T,0 (XT(x0)) = Φ̂T(x0)

(
x0 ∈ F̂+

loc, T � 0
)
.

Since ΦD
•,• is the solution of a time dependent initial value problem, we have

ΦD
t,t = IdF0 and ΦD

t2,t1
◦ ΦD

t1,t0
= ΦD

t2,t0
(t, ti ∈ R), (5.9)

so that
(
ΦD

t1,t0

)−1
= ΦD

t0,t1
.

Proof of part 1 of the theorem.
In (5.5) we claim pointwise existence and local uniformity of the limit T →∞ of

Ω−1
T := (ΦD

T,0)−1 ◦ Φ̂T = ΦD
0,T ◦ Φ̂T . (5.10)

We compute, with v :=M−1 p denoting velocity, that

Ω−1
T (x0) =

(
p(T, x0), q(T, x0) − v(T, x0)T −

∫ T

0
∇pV

(
〈s〉M−1 p(T, x0)

)
ds

)
= (p(T, x0), q0 + r(T, x0)) , (5.11)

where

r(T, x0) :=
∫ T

0

[
v(s, x0)−v(T, x0)−∇pV

(
〈s〉M−1 p(T, x0)

)]
ds )

= M−1
∫ T

0

[∫ T

s
∇V (q(τ , x0)) dτ −〈s〉∇V

(
〈s〉M−1 p(T, x0)

)]
ds, (5.12)

see (5.2) and (5.3).
• We begin the proof of (5.5) by showing that

r+(x0) := lim
T→+∞

r(T, x0) = r(0, x0) + lim
T→+∞

∫ T

0
ṙ(t, x0)dt

exists. Therefore, we first estimate its T-derivative.

ṙ(T, x0) = −Tv̇(T, x0) − 〈T〉∇V
(
〈T〉M−1 p(T, x0)

)
+M−1

∫ T

0
〈s〉2D∇V

(
〈s〉M−1 p(T, x0)

)
ds M−1∇V (q(T, x0)) .

(5.13)
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The propagation estimate (2.6) and (3.8) imply that ‖p(T, x0) − p+(x0)‖ = O
(
〈T〉−α

)
and thus locally uniformly in x0 ∈ F̂+

loc

‖q(T, x0) − (q0 + v+(x0)T)‖ =

{O
(
〈T〉1−α

)
, α < 1

O (log(T)) , α = 1
.

(∗) For α ∈ (1/2, 1) the first line on the right-hand side of (5.13) equals

M−1
[
T∇V(q(T, x0)) − 〈T〉∇V

(
〈T〉M−1 p(T, x0)

)]
= TM−1

[
∇V(q(T, x0)) −∇V

(
〈T〉v(T, x0)

)]
+O

(
〈T〉−2−α

)
= TM−1

[
∇V

(
〈T〉v(T, x0) +O

(
T1−α

))
−∇V

(
〈T〉v(T, x0)

)]
+O

(
〈T〉−2−α

)
= O

(
〈T〉−2α

)
+O

(
〈T〉−2−α

)
= O

(
〈T〉−2α

)
,

since 〈T〉 − T = O
(
〈T〉−1

)
.

(∗) As d∇V
(
〈s〉M−1 p(T, x0)

)
= O

(
〈s〉−2−α

)
, for α ∈ (1/2, 1) the second line of (5.13)

has the order O
(
〈T〉1−α〈T〉−1−α

)
= O

(
〈T〉−2α

)
, too.

(∗) For α = 1 the orders of both lines in (5.13) are O
(
〈T〉−2 log(〈T〉)

)
.

• As r+(x0) = limT→+∞r(T, x0) exists, by the analogues of (5.12) and (5.13)

ri(T, x0) = r+i (x0) −
∫ ∞

T
ṙi(τ , x0)dτ = r+i (x0) +

1
mi

∑
j∈N\{i}

×
[∫ ∞

T

(
τ∇Vi, j

(
qi(τ , x0) − q j(τ , x0)

)
− 〈τ〉∇Vi, j

(
〈τ〉(vi(τ , x0) − v j(τ , x0))

))
dτ

−
∫ ∞

T

∫ ∞

τ

〈s〉2D∇Vi, j

(
〈s〉(vi(τ , x0) − v j(τ , x0))

) (
v̇i(τ , x0) − v̇ j(τ , x0)

)
ds dτ

]
.

(5.14)

When one substitutes the argument qi(τ , x0) − q j(τ , x0) in the second line of
(5.14), using q(τ , x0) = v(τ , x0)τ + W(τ ;Φτ (x0)) − r(τ , x0), then one obtains an integral
equation for r.

When we assume that r belongs to the complete metric space D̂X0,T defined in (4.6),
then the integrand is of orderO

(
τ−2α

)
for α ∈ (1/2, 1) and O

(
τ−2 log(τ )

)
forα = 1. So

from (5.14) we infer that r(T, x0) − r+(x0) is of order O
(
T1−2α

)
, resp. O

(
T−1 log(T)

)
.

As a function of r, the right-hand side of (5.14) is a contraction for T large, justifying the
assumption r ∈ D̂X0,T .

• As convergence is locally uniform on F̂+, by the parametrized fixed point theorem the
dependence of r on x0 is continuous. So the map r+ : F̂+ → R

dn is continuous, too.
Estimates of the derivatives w.r.t. this initial condition proceed like in the proof for the

short range case, that is, theorem 3.3 (c).
As stated in corollary 3.6, for (α, k)-potentials asymptotic velocity v+ ∈

Ck−1
(

F̂+,Rdn
)

. So by (5.11), Ω+,∗ is continuous, and as smooth as r+.

Note, however, that in (5.14) the second derivative of the long range potential V appears.
This is different from the case (4.5) of short range potentials, where only the first derivative
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is needed. Therefore, in comparison with part (a) of theorem 3.3, we lose one derivative
in part (b) of theorem 5.3.

• By lemma 3.5, Ω−1,± is one to one. So we can invert Ω−1,± on its image, yielding the
Møller transformation Ω±. We still have to prove that for any x0 = (p0, q0) ∈ F̂+

loc and its
image X ≡ X(x0) :=Ω+,∗(x0) the Møller transformation is of the form

Ω+(X) = lim
T→+∞

ΩT(X) for ΩT := Φ̂−T ◦ ΦD
T,0, (5.15)

which means to control the dependence of the fixed point r as a function of X instead of
x0. The analysis is similar to the previous bullet point so we omit it.

This completes the proof of item (a) of the proposition, i.e of (5.5).
Proof of part 2 of the theorem.
The intertwining property (5.6) follows by first noting that for Ω−1

T from (5.10)

Ω−1
T ◦ Φ̂t = (ΦD

0,T ◦ ΦD
T+t,0) ◦ Ω−1

T+t

follows by applying the groupoid property (5.9), and by (5.2),

ΦD
0,T ◦ ΦD

T+t,0(p, q) = (p, q + tv + W(T + t; p, q) − W(T; p, q)) .

Then limT→+∞ΦD
0,T ◦ ΦD

T+t,0 = Φ(0)
t , since using (5.3)

lim
T→+∞

(W(T + t; p, q) − W(T; p, q)) = lim
T→+∞

∫ T+t

T
∇pV

(
〈s〉M−1 p

)
ds = 0.

• As a locally uniform limit of symplectomorphisms ΩT in C1 norm, for k � 3 the Dol-
lard–Møller transformationΩ+ is a symplectomorphism onto its image. This is shown by
suitably modifying the proof of theorem 3.3

This completes the proof of item (b) of the proposition.

Proof of part 3 of the theorem.
The analogue of (5.7) follows from (3.1), as the Dollard dynamics (5.2) conserves momen-

tum. This completes the proof of item 3.
Proof of part 4 of the theorem.
The proof relies on lemma 5.8 below, the conjugacy relation (5.6) which forms part 3 just

proved, and the relation (5.17) proved below.
Let us write Pv for the space of all trajectories x(t) having v+(x(t)) = v where v /∈ Δ is

fixed. Let π⊥ : Rdn → v⊥ be the orthogonal projection so that π⊥(w) = w − (v〈w, v〉/|v|2).
Define a map

Pv × Pv → v⊥

(x, x(0)) �→ lim
t→∞

π⊥ ((q(t) − q(0)(t)) =: b(x, x(0)) ∈ v⊥∗ (5.16)

where we have written by x(t) = (p(t), q(t)), x(0)(t) = (p(0)(t), q(0)(t)) for two trajectories, i.e.
points in Pv . By lemma 5.8 this limit exists and is independent of where we start on the
orbits: shifting x(t) to x(t + t1) and x0(t) to x(0)(t + t0) yields limt→∞(q(t + t1) − q(0)(t + t0)) =
limt→∞(q(1)(t) − q(0)(t)) + (t1 − t0)v so leaves the map (5.16) unchanged.

Think of one of the orbits, x(0), as the ‘origin’ of Pv. Then we must show that the map (5.16),
viewed as a function of x alone, is onto, and that its image uniquely determines x up to a time
translation.
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It will be important to understand that x ∈ Pv iff Ω−1(x(0)) = (Mv, β) for some β. This is
an immediate consequence of

v+(x(t)) = v∗ ⇐⇒ Ω−1(x(0)) = (Mv∗, β), some β (5.17)

valid for all escape orbits x(t). To establish the validity of (5.17) recall that the free flow (or
the Dollard flow) does not change the momentum component. Write Ω−1(x(0)) = (Mv, β),
for some v, β. Let pr1 denotes the projection onto the momentum factor. Then we have

Mv = pr1Ω
−1(x(0)) = pr1Ω

−1(x(t)) = lim
t→∞

pr1Ω
−1(x(t))

according to the conjugacy relation. By (5.1) the momentum component of x(t) limits to
Mv+(x(0)) as t →∞. On the other hand, by part 3 of the theorem we are proving—the asymp-
totic near identity part, see (5.7), the map Ω−1 tends to the identity along escape orbits such as
x(t):

Ω−1(x(t)) = x(t) + o(1), as t →∞.

Indeed, the term qα
min appearing in estimate (5.7) tends to zero like t−α as t →∞. It follows

that limt→∞pr1Ω
−1(x(t)) = Mv+(x(0)), which establishes (5.17).

If Ω−1 is mapped onto F0, then the surjectivity of our map (5.16) would be immediate.
Ω−1 would map Pv onto the space of lines parallel to v according to (5.17) and the conjugacy
relation. And Ω, being the inverse of Ω−1, would be well-defined with domain all of F0 and
would map straight lines onto asymptotically free trajectories lying in F+. We could take x(0)(t)
to be Ω(�0(t)) where �0(t)) = (Mv, vt) corresponds to b = 0. Any x(t) ∈ Pv can be written, up
to translation, uniquely as Ω(Mv, vt + b) for some b ∈ v⊥. Moreover, both Ω and Ω−1 tend
to the identity along escape orbits so that the limit in (5.16) is the same as the limit achieved
using the free flow, and so would yield b = b(x, x(0)), and completing the proof.

Ω−1 is onto F0 for non-singular potentials V . To see this fact, observe that we can, in the
case of a non-singular potential, form Φ−t(x0) for any t and any x0. Incompleteness of the
backward flow due to collisions was the only thing which prevented the direct Dollard–Møller
map Ω, defined as the limit Φ−T ◦ ΦT

T,0 as T →∞, from existing and having domain all of F0.
The analysis we used in part 1 of the current theorem to insure the existence of Ω−1, defined
as the limit of ΦD

0,T ◦ Φ̂T as T →∞, carries through essentially verbatim to yield the existence
of Ω : F0 → F+ and that it is the inverse of our Ω−1.

We deal with the case of singular potentials by observing that Ω−1 does not actually have
to be onto, but only onto modulo the flow, in order for the argument two paragraphs above
to work. For any v∗ /∈ Δ and b ∈ v⊥∗ form (v∗, b) and denote its forward Dollard orbit by
ΦD

t,0(v∗, b) := yD(t; b), t∗ � t < ∞. Eventually, for t large enough, we will show that these Dol-
lard orbits lie in the image of Ω−1, and that moreover Ω−1 is invertible there. Then the entire
Dollard ray yD([t∗,∞); b) will lie in the image of Ω−1 and this will be enough. To this end, fix
any relatively compact neighborhood K of the origin in the full phase space R

dn × R
dn. Then

there is a t large enough so that Kt := yD(t) + K ⊂ F+
loc ⊂ F+. To see this, observe that as t

increases without bound the estimates of (1.9) must eventually hold since the qi occurring in
the estimate are equal to tv∗,i to leading order while the vi are v∗,i. It thus follows from theorem
1.14 that Kt ⊂ F+ for all sufficiently large t. Now, as we saw a few paragraphs above, part 3
( just proved; see also (5.7)) tells us that the mapΩ−1 on Kt is of the form Id + ht with ht = o(1)
as t →∞. As soon as t is large enough so that the Ck−1-norm of ht on Kt is less than 1 we have
that Ω−1 is invertible and that yD(t) ∈ Ω−1(Kt) ∩ Kt. We can let t increase since the estimates
only get better and in this way conclude that the entire future Dollard ray yD([t∗,∞); b) lies in
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the image of Ω−1, for some t∗ = t∗(v∗, b). Also Ω, the inverse of Ω−1 exists along the Dollard
ray. This analysis applies to any b, including b = 0. Now take v = v∗ take for the ‘origin’ of
our trajectory space Pv the solution x(0)(t) = Ω (yD(t; 0). Then

b(x, x(0)) = lim
t→∞

q(t) − q0(t) = lim
t→∞

pr2(yD(t; b) − yD(t; 0)) = b,

where pr2(p, q) = q is the projection onto configuration space. We have proved that the map
(5.16) is onto.

Finally, to see that the map x �→ b(x, x(0)) of (5.16) determines the trajectory x up to time
translation use that fact that the same map determines the trajectory up to time translation over
on the free side, and that the free and Newtonian limits are equal since Ω−1 tends to the identity
along escaping orbits. �

Remark 5.4. See also the remark in DEREZIńSKI and GéRARD [DG, p 24] regarding the
affine structure of the tangent space and part 4.

Remark 5.5 (Derivation of asymptotics (5.1)). Set ΦD
t = ΦD

t,0 so that Ω−1 =

limt→∞(ΦD
t )−1 ◦ Φt. It follows that for t large we have ΦD

t ◦ Ω−1 = Φt + o(1). But Ω−1

tends to the identity along escaping orbits x(t). This yields
ΦD

t (x(T)) = Φt(x(T)) + o(1) for T sufficiently large, t →∞ which is (5.1). ♦

Remark 5.6 (Homogeneous potentials). If V is a (−α)-homogeneous potential, then
for every k ∈ N, V is an (α, k)-potential. So in particular the Dollard–Møller transformation is
C∞-smooth. ♦

Earlier results 5.7.

(a) As we have indicated above, the assumptionα ∈ (1/2, 1] in theorem 5.3 can be relaxed, by
generalizing the two-body technique from Herbst [He]. The price to be payed is a Dollard
dynamics that is more involved than (5.2).

(b) Theorem 1 of SAARI [Sa] states for the gravitational n-body system that under a non-
oscillation assumption the centres of mass of clusters asymptotically either move like t �→
vt + D log(t) + o(log(t)), or their mutual distances are of order O(t2/3). As this allows
for non-trivial clusters, Saari’s result is not contained in the statement of theorem 5.3.
On the other hand, theorem 5.3 concerns general long range potentials and controls the
asymptotics of the flow, not just of individual orbits.

(c) As lemma 5.8 below shows, orbits with equal asymptotic momentum p+ synchronize
their relative positions, although their momenta p̃ approach p+ only slowly ( p̃(t) − p+ =
O(t−α)). See also HERBST [He, lemma II.2] for the case of potential scattering. ♦

Lemma 5.8 (Orbits with equal asymptotic velocity). For a long range potential V,

consider initial conditions x(i)
0 ≡

(
p(i)

0 , q(i)
0

)
∈ F̂± (i = 1, 2), whose asymptotic momenta

p+
(

x(i)
0

)
respectively p−

(
x(i)

0

)
coincide. Then

Ω−1,±
(

x(2)
0

)
− Ω−1,±

(
x(1)

0

)
=

(
0 , lim

t→±∞

(
q(t, x(2)

0 ) − q(t, x(1)
0 )

))
. (5.18)
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In particular, the limit on the right in (5.18) is finite when the x(i)
0 yield solutions having the

same asymptotic velocities (or momenta).

Remark 5.9 (Difference between long range and short range case). Note that the

limits limt→±∞

(
Φt

(
x(i)

0

)
− ΦD

t,0 ◦ Ω∗,±
(

x(i)
0

))
do not exist for (−α)-homogeneous potentials

and α ∈ (0, 1), see appendix C. ♦

Proof of lemma 5.8. With a± from (3.11) and Ωt from (5.15) we have

(0, a±)
(1)
= lim

t→±∞

(
p(t, x(2)

0 ) − p(t, x(1)
0 ) , q(t, x(2)

0 ) − q(t, x(1)
0 )

)
(2)
= lim

t→±∞

(
ΦD

t,0 ◦ Ω−1
t (x(2)

0 ) − ΦD
t,0 ◦Ω−1

t (x(1)
0 )

)
(3)
= lim

t→±∞

(
Ω−1

t (x(2)
0 ) − Ω−1

t (x(1)
0 )

)
def.
= Ω−1,±

(
x(2)

0

)
− Ω−1,±

(
x(1)

0

)
,

since

• By assumption p±
(

x(i)
0

)
= limt→±∞p

(
t, x(i)

0

)
coincide, and by lemma 3.5 a± =

limt→±∞

(
q(t, x(2)

0 ) − q(t, x(1)
0 )

)
exists, proving (1).

• Identity (2) follows from ΦD
t,0 ◦ Ω−1

t = ΦD
t,0 ◦ ΦD

0,t ◦ Φ̂t = Φ̂t, see (5.9).
• The Dollard dynamics ΦD, see (5.2), does not change momentum, which implies equality

of the first components in (3). Concerning the second components,

Q
(
−t, p

(
t, x(i)

0

))
= q

(
t, x(i)

0

)
−M−1 p

(
t, x(i)

0

)
t

−
∫ t

0
∇pV

(
〈s〉M−1 p

(
t, x(i)

0

))
ds

and
∥∥∥p

(
t, x(2)

0

)
− p

(
t, x(1)

0

)∥∥∥ = O(|t|−1−α), see (3.12). So

Q
(
−t, p

(
t, x(2)

0

))
− q

(
t, x(2)

0

)
= Q

(
−t, p

(
t, x(1)

0

))
− q

(
t, x(1)

0

)
+O(|t|−α),

proving (3). �
Finally we prove a property special to (−1)-homogeneous potentials: the existence of the

Dollard–Møller transformation and of asymptotes. This property does not extend to (1, k)-
potentials or to (−α)-homogeneous potentials, 0 < α < 1, as counterexamples on the half-line
show.

Proposition 5.10 (Asymptotes for (−1)-homogeneous potentials).
Let V be a (−1)-homogeneous potential and ΦD

•,• its Dollard flow (5.2).
Then for all initial conditions x0 ∈ F̂± there exist unique X±

0 ∈ F0 with

lim
t→±∞

(
ΦD

t,0(X±
0 ) − Φ̂t(x0)

)
= 0.

In fact, X±
0 = Ω∗,±(x0).

Proof. The proof crucially relies on appendix B. We show the result for the limit t →+∞
and omit the superscript ± of X±

0 . To make clear that α = 1 is the unique power with the
described property, we first allow for α-homogeneous potentials with α ∈ (1/2, 1].

8047



Nonlinearity 34 (2021) 8017 J Fejoz et al

We set x(t) ≡ (p(t), q(t)) := Φ̂t(x0) and X(t) ≡ (P(t), Q(t)) :=ΦD
t,0(X0) for the Dollard

flow with initial conditions X0 := Ω∗,+(x0) and show that the limit limt→+∞ (X(t) − x(t))
exists iff α = 1.

For all t ∈ R we have P(t) = p+(x0) = limt→+∞p(t). So we must consider

F(t) :=Q(t) − q(t) = Q0 + v+(x0)t +
∫ t

0
∇p+V

(
〈s〉M−1 p+(x0)

)
ds − q(t)

= Q0 + v+(x0)t + f α(t)M−1∇V
(
v+(x0)

)
− q(t),

(See appendix B.) Its time derivative equals for t > 0

Ḟ(t) = v+(x0) + 〈t〉−α M−1∇V
(
v+(x0)

)
− q̇(t)

= M−1

[∫ ∞

t
∇V (q(s)) ds + 〈t〉−α∇V

(
v+(x0)

)]
= M−1

[∫ ∞

t
∇V

(
v+(x0)s +O

(
s1−α log(s)

))
ds + 〈t〉−α∇V

(
v+(x0)

)]
= M−1

[∫ ∞

t
∇V

(
v+(x0)s

)
ds + 〈t〉−α∇V

(
v+(x0)

)]
+O

(
t−2α log(t)

)
=

[
〈t〉−α − α−1t−α

]
M−1∇V

(
v+(x0)

)
+O

(
t−2α log(t)

)
.

We used (−α)-homogeneity of V in the second to last equation. To avoid a distinction of
cases, we kept an O(log(t)) term, that is unnecessary if α ∈ (1/2, 1).

So if α = 1, then the first term is of order O
(
t−3

)
, and only in this case

limt→+∞ (Q(t) − q(t)) exists. Subtracting this limit from Q0, if non-zero, gives the unique initial
conditions of the Dollard flow that yield an asymptote.

However, for α = 1 we have limt→+∞ (Q(t) − q(t)) = 0: we just proved that the difference
of the momentum p(t) (which equals the momentum component of Ω∗,+

t (x0)) and of P(t) is of
order O

(
t−2 log(t)

)
. So the difference of the positions of the time t Dollard flow with initial

conditions (P0, Q0) := X0 = Ω∗,+(x0) and (Pt, Qt) :=Xt :=Ω∗,+
t (x0) is

Q(t) −
(
Qt + tM−1 p(t) + f1(t)∇p(t)V (M−1 p(t)

)
= [Q0 − Qt] +

[
v+(x0) −M−1 p(t)

]
t

+ sinh−1(t)
[
∇p+(x0)V

(
M−1 p+(x0)

)
−∇p(t)V

(
M−1 p(t)

)]
. (5.19)

By definition of the Dollard–Møller transformation limt→∞[Q0 − Qt] = 0, whereas[
v+(x0) −M−1 p(t)

]
t = O

(
t−1 log(t)

)
, and

sinh−1(t)
[
∇p+(x0)V

(
M−1 p+(x0)

)
−∇p(t)V

(
M−1 p(t)

)]
= O

(
log(t) · t−2 log(t)

)
.

So the difference (5.19) has limit zero. �
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6. On the scattering relation and map

When we replace limits t →∞ by t →−∞ we arrive at the analogous objects for backward
time, such as

v−(x0) = lim
t→−∞

q(t; x0)/t,

in definition 1.6. In this way we arrive at the backward time analogue of being ‘free’, which is
to be in the set

F− := {x ∈ P : the solution through x is backward free},

and the backward Möller transform

If x0 ∈ F− ∩ F+ then both v+(x0) and v−(x0) are defined, which leads us to the scattering
relation ∼s on R

dn\Δ under which v− ∼s v
+ if and only if there exists an x0 ∈ F− ∩ F+ such

that v−(x0) = v− and v+(x0) = v+. Borrowing from quantum mechanics, the ‘S-matrix’ or
scattering map is defined by

S :=Ω−1
+ ◦ Ω−.

S takes an ‘initial condition’ (p−, C−) at time t = −∞ to an x0 ∈ F− ∩ F+ and then
takes this x0 to the (p+, C+) at t = +∞ to which its solution corresponds. Observe that
p± = Mv±(x0) so that the projection of the graph of the scattering map onto its momentum
components p−, p+ yields the scattering relation (times the mass matrix M). We will leave
this work to future researchers or future times.

Remark 6.1 (Manifold at infinity). For an alternate construction of the scattering map
which is valid for long range potentials and in particular for the Newtonian potential, see
[DMMY]. In this version S is defined by adding a manifold at infinity and identifying the
asymptotic velocities v−, v+ with equilibrium points at infinity. ♦
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Appendices

In these appendices we go over some aspects of Dollard flows and the induced transformations
in a more leisurely fashion. Hamiltonians for homogeneous potential are computed in appendix
B. There we get two interesting surprises: first, that a solution to the Dollard dynamics admits
an asymptote if and only if the initial velocity a = M−1 p is a central configuration in the sense
of celestial mechanics. The second surprise is the appearance of hypergeometric functions. In
appendix C we show that for 0 < α < 1 one can actually define two Dollard dynamics. One
admits asymptotes but no Møller transformation. The other, essentially the one we use, admits
no asymptotes but does yield a Møller transformation. For α = 1 these two are equal, and this
happy coincidence gives the method more power here. See proposition 5.10.
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Appendix A. Precursors to Dollard–Møller

We explore two alternatives to the Møller transformation, by way of examples.

Example A.1 (Kepler–Møller transformation for the n-centre problem). After

regularization, the motion of a single particle in the n-centre potential V(q) := −
∑n

k=1
Zk

‖q−sk‖
with Zk ∈ R and sk ∈ R

3 leads to a complete, smooth flow Φ. By comparing the n-centre
flow with the regularized flow Φ(K) of the Kepler Hamiltonian H(K)(p, q) := 1

2‖p‖2 − Z∞
‖q‖ with

Z∞ :=
∑n

k=1Zk, we can define a modified Møller transformation which exist for all initial
values x with H(K)(x) > 0, and which is smooth. See [Kn, section 6]. ♦

In the case of the gravitational n-body problem we do not know of any time-independent
comparison Hamiltonian dynamics which yields an explicit integrable flow and also yields a
well-defined Møller transformation.

Example A.2 (Asymptotes and Galilean boosts). A positive asymptote for a solution
curve t �→ q(t, x) to Newton’s equations is, by definition, an affine line L+ ⊆ R

dn in configu-
ration space whose distance minq̃∈L+‖q(t) − q̃‖ to the solution curve vanishes as t →+∞. In
a similar manner we define a negative asymptote L− by insisting its distance to the solution
goes to zero as t →−∞. Assuming that the asymptotic velocities v±(x) of a solution exist and
are not zero, then limt→±∞‖q(t, x)‖ = ∞, and if an asymptote L exists, it is necessarily unique.
It is often the case that the asymptotes exist:

• Solutions corresponding to short range potentials V in the free region F+ (definition 1.6)
always have asymptotes. This follows from the existence of inverse Møller transformation,
proven in theorem 3.3 (c).

• Although the Kepler potential (or Newtonian two-body problem) is not short range, in the
centre of mass coordinates every Kepler hyperbola has asymptotes in both directions.

• Similarly, a particle moving along a bi-hyperbolic orbit under the influence of the grav-
itational or electrostatic potential due to n centres admits both positive and negative
asymptotes, see [Kn, section 6].

The space of oriented affine lines in Euclidean R
k is naturally diffeomorphic to the cotan-

gent bundle of the sphere Sk−1, and in particular can be equipped with a symplectic form. For
an n-body problem in d-dimensions, we have k = nd and may try to construct a substitute for
the Møller transformation by sending L−(x0) �→ L+(x0) ∈ T ∗Sk−1, where L±(x0) are the pos-
itive and negative asymptotes of the initial condition x0. With some luck, L±(x0) might exist
for all x0 ∈ F+ ∩ F− and we would then have our scattering map as a map between open sub-
sets T ∗Sk−1, a symplectomorphism even if the asymptotics of solutions depended sufficiently
smoothly on the initial condition x0. See for example [Kn, section 16].

Galilean boosts destroy the existence of asymptotes, so that we cannot expect asymptotes to
exist for general long range potentials. To see this destruction phenomenon, take for simplicity
n = 2, d = 1 and m1 = m2 = 1. The Newtonian two-body equations read q̈1 = (q2 − q1)/r3,
q̈2 = (q2 − q1)/r3 with r = |q1 − q2|.

The reduced mass is μ = 1/2 so that the corresponding Kepler problem becomes
ẍ = −2x/|x|3, x = q1 − q2. A hyperbolic solution q(t) = (q1(t), q2(t)) with asymptotic energy
1 in the centre of mass frame q1 + q2 = 0 will have asymptotics q1(t) = t + 2 log(t) + c +
o(1), q2(t) = −t − 2 log(t) − c + o(1).
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Apply the Galilean boost (qi, t) �→ (qi + tv, t) to this solution to obtain a new two-body
solution q̃ = (q̃1, q̃2) whose asymptotic expansion is

q̃1(t) = t + vt + 2 log(t) + c + o(1),

q̃2(t) = −t + vt − 2 log(t) − c + o(1).

Now, the signed distance between a point Q = (x, y) and a line L ⊆ R
2 is given by the affine

expression d(Q, L) = u · Q + e = ax + by + e where u = (a, b) is the unit vector perpendic-
ular to the direction of L and where e is the distance between L and (0, 0). Consequently the
signed distance between our putative L and our moving solution (q̃1(t), q̃2(t)) must have the
form

a(t + vt + 2 log(t)) + b(−t + vt − 2 log(t)) + e + o(1).

Expanding out we find that this signed distance has asymptotic expansion (a − b + 2v)t +
2(a − b)log(t) + e + o(1). For this distance to tend to zero with t we must have that a − b +
2v = 0 as well as a − b = 0 which is impossible if v �= 0. ♦

The latter example shows that we cannot use asymptotic affine lines to model scattering
for long range potentials. We do not know how to use a time independent model flow as a
replacement to free flow, or the Kepler flow of the previous example either.

Appendix B. Dollard and central configurations for homogeneous potentials

Take V to be one of the power law potentials of homogeneity −α, α ∈ (1/2, 1], as defined
by (3.13). These potentials are strictly long range, that is, they are long range and not short
range.5 The main interest is of course in the case α = 1, including gravitational or electrostatic
interactions.

We first note that, although the potential V is unbounded in our case, the statements of
theorem 3.3 concerning long-range pair interactions apply, since for any k ∈ N the norms (2.3)
are still finite for these homogeneous potentials.

The proper Dollard Hamiltonian V
(
〈t〉M−1 p

)
equals

H̃D
t (p, q) = 〈t〉−α

∑
1�i< j�n

Ii, j

‖vi − v j‖α
(t ∈ R), (B.1)

and for W, defined in (5.3), we explicitly get∫ t

0
∇pV

(
〈s〉M−1 p

)
ds =

∫ t

0
〈s〉−α ds ∇pV(M−1 p) = fα(t) ∇pV(M−1 p),

with fα ∈ C∞(R,R), f α(t) := t 2F1

(
1
2 , α

2 ; 3
2 ;−t2

)
being odd, and 2F1 denoting the hypergeo-

metric function. For α = 1 this simplifies to f 1(t) = sinh−1(t). Moreover,

∇pV(M−1 p) =

⎛⎝ ∑
k∈N\{1}

−αIk,1(vk − v1)
m1‖vk − v1‖α+2

, . . . ,
∑

k∈N\{n}

−αIk,n(vk − vn)
mn‖vk − vn‖α+2

⎞⎠ .

5 The (−α)-homogeneous potentials with α > 1 are of short range. So the time-independent kinetic Hamiltonian K
can be used for defining the Møller transformations.
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Recall the following definition, which actually does not demand that the potential be
homogeneous.

Definition B.1. A vector x ∈ R
dn \Δ is called a central configuration if it is linearly

dependent with respect to M−1∇V(x).

We see from the definition (5.3) of W and the last formulae above that for these (−α)-
homogeneous potentials the Dollard dynamics has an asymptote in the sense of example A.2
if and only if v is a central configuration.6

Appendix C. Dollard dynamics

The point of this appendix is to show that a Dollard dynamics cannot both lead to asymptotics
for the scattering solution and existence of Møller transformations. Our work here follows the
ideas of Herbst [He].

Forα = 1 the Hamiltonian (B.1) is a classical analogue of the quantum ansatz introduced by
Dollard in [Do]. For the potential scattering of two particles, Herbst translated Dollard’s ideas
to the classical case and generalized them to long range potentials in his interesting article
[He]. See also [DG, section 1.12].

Herbst actually describes two different natural definitions of a Dollard Hamiltonian for
(−α)-homogeneous potentials, when α ∈ (0, 1). We proceed to describe and analyse these in
the one-dimensional case (d = 1).

So consider the Hamiltonian flow of H : T∗
R

+ → R, H(p, q) := 1
2 p2 + V(q) with

V(q) := I/qα. For initial conditions x0 = (p0, q0) with velocity p0 > 0 and h :=H(p0, q0) > 0
the asymptotic velocity p+ equals

√
2h. By assuming α ∈ (1/2, 1), we avoid the necessity of

multiple iterations of integral equations, which would only blur the basic phenomenon.
As q̈ = αIq−1−α, in the large time asymptotics the solution has the form

q(t; p0, q0) = p+t − I
(
(q0 + p+t)1−α − q1−α

0

)
(1 − α)(p+)2

+ q0 + δqα(p+, q0) +O
(
t1−2α

)
, (C.1)

for α ∈ (1/2, 1), respectively

q(t; p0, q0) = p+t − I
(p+)2

log(1 + p+t/q0) + q0 + δq1(p+, q0) +O(t−1 log(t))

for α = 1, with limq0→∞δqα(p+, q0) = 0.

• We apply Herbst’s second method, leading to a Dollard type Møller transformation
(theorem III.1 of [He]). Thus we obtain a sequence of time dependent Hamiltonians
H(k)

t (p) := 1
2 p2 + U(k)(p, t) for

U(0)(p, t) := 0 , U(k+1)(p, t) :=V

(
pt +

∫ t

0
D1U(k)(p, s) ds

)
,

independent of q but dependent on the asymptotic velocity p. So

U(1)(p, t) =
I

(pt)α
, U(2)(p, t) = I

(
pt

(
1 − αI(pt)−α

(1 − α)p2

))−α

.

6 This has been noted independently by Alain Albouy (private communication with A.K.).
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For α ∈ (1/2, 1) the solutions of the Hamiltonian equations for H(k) are

q(0)(t; p+, q0) = p+t + q0 , q(1)(t; p+, q0) = p+t − α

1 − α

I
(p+)1+α

t1−α + q0; (C.2)

q(k) for k � 2 give corrections to q(1) with negative asymptotic order in t.
Now if one compares q(1) in (C.2) with the asymptotics (C.1) of the true solution, then

one notices in the term asymptotic to a multiple of t1−α an additional factor α.
Without much calculation, one sees that the inverse Møller transform (Ω+)−1 exists for

initial condition x0 := (p0, q0) with q0 := 0+: then by (C.1) the solution of the initial value
problem with Hamiltonian H equals

p(t; x0) = p+ − I
(p+)1+α

t−α +O(t−2α),

q(t; x0) = p+t − I
(1 − α)(p+)1+α

t1−α + δq +O(t1−2α).

Note that by our assumption α ∈ (1/2, 1) the function t �→ t−2α is in L1 ([1,∞)). For
x1 := (p1, q1) we have by (C.2)

q(1)(−t; x1) = −p1t +
αI

(1 − α)p1+α
1

t1−α + q1. (C.3)

Setting x1 := (p(t; x0), q(t; x0)), we get convergence of (C.3) as t →+∞.
• We now apply Herbst’s first method, leading to a solution whose difference to q(t; p0, q0)

converges as t →∞ (theorem II.1 of [He]). So we iteratively define functions z(k) of time
t and asymptotic momentum p by setting

z(k)(0, p) := 0 , ż(0)(t, p) := p and ż(k+1)(t, p) := p−
∫ ∞

t
F
(
z(k)(s, p)

)
ds,

with force F(q) := −∇V(q) = αIq−1−α. We obtain z(0)(t, p+) = p+t and

z(1)(t, p+) = p+t − 1
1 − α

I
(p+)1+α

t1−α. (C.4)

If we compare z(1) from (C.4) with (C.1), we see that the factors of the terms diverging
as t →+∞ agree. So here the solution (C.1) has a limit limt→∞

(
q(t; p0, q0) − z(1)(t, p+)

)
;

the same is true for the time derivatives. However, for (C.2) the corresponding limit does
not exist if α < 1.

Due to the appearance of the regularization 〈t〉 of |t|, the Hamiltonian dynamics generated
by our Dollard Hamiltonian (B.1) does not coincide with the ones of Herbst’s first or second
method. ♦

So we have seen that for general long range potentials a Dollard dynamics cannot both lead
to asymptotics for the scattering solution and Møller transformations.

A comparison of the α-dependence of q(1) in (C.2) and of z(1) in (C.4) as α ↗ 1 suggests
that both properties could coincide for α = 1, the Kepler potential. This is indeed the case, as
we see in the body of the paper, in proposition 5.10.

8053



Nonlinearity 34 (2021) 8017 J Fejoz et al

References

[Ar] Arnold V 1969 The cohomology ring of the colored braid group Math. Notes Acad. Sci. USSR
138 138–40

[Cha] Chazy J 1922 Sur l’allure du mouvement dans le problème des trois corps quand le temps
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