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Abstract
Building on the work by Ball et al (2015 MATEC Web of Conf. 33 02008),
Cesana and Hambly (2018 A probabilistic model for interfaces in a marten-
sitic phase transition arXiv:1810.04380), Torrents et al (2017 Phys. Rev. E 95
013001), in this article we propose and study a simple, geometrically con-
strained, probabilistic algorithm geared towards capturing some aspects of the
nucleation in shape-memory alloys. As a main novelty with respect to the algo-
rithms by Ball et al (2015 MATEC Web of Conf. 33 02008), Cesana and Hambly
(2018 A probabilistic model for interfaces in a martensitic phase transition
arXiv:1810.04380), Torrents et al (2017 Phys. Rev. E 95 013001) we include
mechanical compatibility. The mechanical compatibility here is guaranteed by
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using convex integration building blocks in the nucleation steps. We analytically
investigate the algorithm’s convergence and the solutions’ regularity, viewing
the latter as a measure for the fractality of the resulting microstructure. We
complement our analysis with a numerical implementation of the scheme and
compare it to the numerical results by Ball et al (2015 MATEC Web of Conf.
33 02008), Cesana and Hambly (2018 A probabilistic model for interfaces in a
martensitic phase transition arXiv:1810.04380), Torrents et al (2017 Phys. Rev.
E 95 013001).

Keywords: convex integration, avalanches, mechanical compatibility, shape-
memory alloys, probabilistic, geometrically constrained nucleation

Mathematics Subject Classification numbers: 74N05, 74A50, 74N15, 74B20,
74G65, 35Q74, 60G99.

(Some figures may appear in colour only in the online journal)

1. Introduction

Shape-memory alloys are materials displaying a striking thermodynamical behaviour on the
one hand and a rich mathematical structure on the other hand. Physically, these materials
undergo a first-order, diffusionless, solid-solid phase transformation in which symmetry is
reduced upon the passage from the high temperature phase, austenite, to the low tempera-
ture phase, martensite. This reduction of symmetry gives rise to various variants of martensite
in the low temperature regime.

Mathematically, these materials have been successfully described within the calculus of
variations by minimization problems of the form

minimize
∫
Ω

W (∇y,ϑ) dx, (1)

for instance, with prescribed displacement boundary conditions [Bal04, BJ92, Bal02, BJ89,
Bha03, Mül99]. Here Ω ⊂ R

n is the reference configuration, ϑ : [0,∞) → [0,∞) denotes
temperature and y : Ω→ R

n is the deformation describing how the reference configuration
is deformed. Defining R

n×n
+ to be the set of n by n matrices with positive determinant, the

stored energy function W : Rn×n
+ × [0,∞) →R+ describes the energetic cost of a deforma-

tion at a given temperature. Physical requirements on it are frame indifference, i.e. the fact
that

W(F) = W(QF) for all F ∈ R
n×n
+ , Q ∈ SO(n),

and material symmetry, i.e. the fact that

W(F) = W(FH) for all F ∈ R
n×n
+ , H ∈ P ,

where P denotes the (discrete) symmetry group which sends the austenite lattice into
itself.
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In particular, the zero set—or physically the set of exactly stress-free strains—associated
with W is typically of the form

K(ϑ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(ϑ)SO(n)Id for ϑ > ϑc,

N⋃
j=1

SO(n)U j(ϑc) ∪ SO(n)Id for ϑ = ϑc,

N⋃
j=1

SO(n)U j(ϑ) for ϑ � ϑc.

Here the matrices U j(ϑ) ⊂ R
n×n
+ are obtained through conjugation of U1(ϑ) by elements fromP

and represent the N variants of martensite, while α(ϑ) : R+ → R+ models the thermal expan-
sion of the underlying lattice depending on temperature, with the convention that α(ϑc) = 1.
In order to study low energy configurations of (1), a common strategy [BJ89, Bha03, CDK07,
DM95, Kir03, Kir98, Rül16a, Rül16b, Sim17] is to first study exactly stress-free deformations
by investigating the differential inclusion

∇y ∈ K(ϑ). (2)

While the study of the minimization problem (1) has proved very successful and
influential, e.g. in predicting interfaces between variants of martensite and scaling laws
[BJ92, KM94, KKO13, KK11, Con00, CO12, CO09, Rül16b], it is often the case that the
dynamics of the phase transition play an important role in the formation of the complex
microstructures observed in experiments (see e.g., [SCD13] and related comments in [DP19a]).
Indeed, observed microstructures are often the result of different smaller microstructures,
nucleating at different points of the domain and expanding. In order to preserve continuity
of the deformation, and hence compatibility, these microstructures refine and become more
complex at the interfaces at which they encounter. However, they do not globally minimise
an energy functional penalising interfaces between martensitic junctions. Such complex evo-
lution has been observed both with optical microscopy, a common tool to analyse martensitic
microstructure, and by phonon emission measurements, a second method based on the observa-
tion that every nucleation event is accompanied by an acoustic emission (see e.g., [BBG20]). In
particular, both methods have thus been used for tracking the dynamics of nucleation phenom-
ena. High time resolution measurements of the described type display strongly intermittent
behaviour and the presence of ‘avalanches’ [PMV13, SKR09] with ‘universal’, power law
behaviour for central statistical quantities.

Based on these and related observations, it has been the objective of several recent
works to study simplified dynamic models of phase transformations in shape-memory alloys
(see also section 1.2 for further, more detailed physical models and explanations): on the
one hand, the continuum mechanical models in [DP19a, DP19b] seek to capture the evolu-
tion of the microstructures and the mechanical effects that the dynamics may have on them
based on optical microscopy observations. On the other hand, in parallel, simplified proba-
bilistic, geometrically constrained dynamic models have been proposed and investigated in
the literature [BCH15, CH18, TIVP17]—both in the mathematical and the physics commu-
nity. The latter aim at predicting the above mentioned acoustic observations and at deriving an
improved understanding of the ‘universal’, power law behaviour for central statistical quan-
tities. As shown in [TIVP17, figure 1], these probabilistic, geometrically constrained models
sometimes also successfully reflect the ‘wild’, ‘random’, irregular microstructures observed in
optical microscopy.
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Figure 1. The quasiconvex hull Kqc, i.e. the set of all macroscopically realizable defor-
mations, associated with the set K, depicted in Cauchy–Green space, see section 3 for
more detailed definitions. Here the wells from (3) correspond to the two corners of the
paraboloid (and are coloured cyan and green, respectively). All other matrices in the
depicted set are obtained as Cauchy–Green tensors of first or second order laminates
(corresponding to the boundaries of the paraboloid and its relative interior, respectively).
The colour coding here is the colour coding which is used for vertical twins (see the
explanations below). In order to illustrate the difference between horizontal and vertical
twins (in the sense of [DPR20]), we use a second colour scheme (see figure 3).

In order to capture the avalanching phase transformation dynamics, the models proposed
in [BCH15, CH18, TIVP17] take into account two key features which are believed to be
characteristic of many martensitic phase transformations:

• During the phase transformation a domain which has transformed from austenite to
martensite does not transform back (see also the moving mask hypotheses in [DP19a]).

• The nucleation domains are given by long (needle-like) domains (‘plates’) which are
oriented according to the rank-one connections which are present between the wells
(see e.g., the experimental results in [IHM13] and cf once more the moving mask
hypotheses in [DP19a]).

Based on this, the models in [BCH15, CH18, TIVP17] roughly propose the following
simplified, geometrically constrained nucleation mechanisms:

(a) Choose a point randomly out of the sample/reference configuration and choose a direction
(out of the possible rank-one directions, i.e. out of the directions of compatibility between
austenite and a martensitic plate) randomly.

(b) Nucleate a martensitic plate in the chosen direction through the chosen point until it hits
another plate or the boundary of the sample.

(c) Iterate this.

We emphasize that this leads to a purely ‘scalar’ model which is not formulated on the
level of the deformation gradients and, in particular, does not take into account any compati-
bility of the associated deformation gradients beyond the fact that the nucleated plates should
roughly be aligned with the rank-one directions. Numerical simulations of these dynamics lead
to highly fractal, self-organized, ‘wild’ structures in the martensitic materials. Based on the
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Figure 2. The random convex integration solutions produced by (a variant) of our
algorithms (the picture here is generated by means of the modifications explained in
section 8.1). The colour coding uses cyan and green for vertical and magenta and orange
for horizontal twins. In addition to the fractal behaviour originating from the random
(greedy type) covering which is observed in [BCH15, CH18, TIVP17], we here have a
second source of fractality originating from the use of the convex integration building
blocks within the random rectangle covering (see section 3 below for more comments on
this). In this simulation we have used the parameters M ≈ diag(0.939, 1.064), δ = 0.05,
γ = 0.5.

described dynamics, in their analysis and simulations in [BCH15, CH18, TIVP17] the authors
derive properties of the statistical distribution of martensitic plates and deduce self-similarity
and power law behaviour in certain regimes. This may indicate that, in spite of the drastic
simplifications, the geometrically imposed constraints could indeed provide insights into the
experimentally measured universal exponents in the nucleation experiments.

It is the objective of this article, to propose and investigate an intermediate model building
on the geometrically constrained, probabilistic models from [BCH15, CH18, TIVP17], captur-
ing both the random, geometrically constrained, self-organizing behaviour and including the
key mechanical aspect of compatibility. In the previous works on purely geometrically con-
strained, probabilistic models the latter had only been taken into account in terms of fixing the
orientation of the martensitic plate and not in terms of the associated deformation (see also the
more complex physical models discussed in section 1.2 from the mechanics community). As
in [BCH15, CH18, TIVP17] we are also interested in studying the universality properties of
solutions. In contrast to these results we however focus on the regularity of solutions as a mea-
surement for this and the ‘wildness’ of the microstructure, and interpret regularity as the main
quantity from which statistical properties could be deduced (see section 1.3 below). We further
link this to our recent investigation of deterministic ‘wild’ microstructures obtained through
the method of convex integration (figures 1 and 2).

1.1. The model and the main results

In the sequel, as a model setting, we focus on the geometrically nonlinear, two-dimensional
two-well problem. Extensions to other models would not pose any difficulties as pointed out
in our discussion below. Fixing temperature below the transformation temperature, we thus
consider

K = SO(2)F0 ∪ SO(2)F−1
0 (3)
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where F0, F−1
0 ∈ R

2×2 are respectively given by

F0 =

[
1 γ
0 1

]
, F−1

0 =

[
1 −γ
0 1

]
, (4)

and γ > 0.
In the present work we propose dynamics which are strongly inspired by the ones in

[BCH15, CH18, TIVP17] but which take mechanical compatibility into account. More pre-
cisely, essentially our nucleation algorithms still follow the steps (a)–(c) from above, with the
main difference that condition (b) is now formulated on the level of the full deformation gra-
dients (instead of the scalar order parameters from [CH18, TIVP17]). Therefore, the plates
which are nucleated in (b) are now prescribed in a compatible way (in the sense of not creat-
ing any stresses). This is achieved by relying on convex integration building blocks which are
exactly stress-free solutions to the differential inclusion (2) at a fixed temperature (in our case
below the critical temperature) and with prescribed displacement boundary conditions. As in
[BCH15, CH18, TIVP17] for the setting of the two-well problem this gives rise to two specific
orientations of the martensitic plates which are however now exact solutions to the differen-
tial inclusion. In the infinite iteration/time limit, we thus obtain exactly stress-free solutions
resembling those of [BCH15, CH18, TIVP17] which now however are defined on the level
of the deformations and in particular include compatibility and (up to a set of measure zero)
fully transform Ω. The precise algorithms used in our dynamics are described in algorithms
3.3 and 3.4 in section 3 below. Let us remark that such a behaviour reminds of experimental
observations in TiNbAl (see e.g., [Ia]) where, after the phase transition, it is possible to observe
different colonies of ‘wild’ microstructures.

As in [BCH15, CH18, TIVP17] we seek to show that these dynamics give rise to ‘power-
law’ behaviour and self-organized structures in a probabilistic sense (see section 8.3 for some
numerical evaluations of the length scale statistics). As already indicated above, we do not aim
at proving direct power-law distributions for the present lengths scales but view the regularity
of solutions as a proxy for this which encodes important statistical information (e.g. in terms
of the solutions’ heavy tailed Fourier distribution etc).

Our main analytical result for these dynamics is summarized in the following theorem. Here
algorithms 3.3 and 3.4 are two variants of the algorithm with the steps (a)–(c) from above, now
including compatibility. The detailed models will be outlined in section 3.

Theorem 1. Let K be as in (3)–(4) and let Ω̃ = (0, 1)2 ⊂ R
2. Let {yk} denote the sequences

obtained in algorithms 3.3 or 3.4 (defined in section 3) and let μ denote the corresponding
probability measure (constructed in detail in section 4). Then there exists θA,B > 0 such that for
all s ∈ (0, 1), p ∈ (1,∞) with sp < θA,B and for all M ∈ int Kqc and μ-almost every sequence
{yk} there exists a deformation y : Ω̃→R

2 such that yk → y in W1,1(Ω̃) and

∇y ∈ K a.e. in Ω̃,

y = Mx on ∂Ω̃,
(5)

with y ∈ W1,∞(Ω̃;R2) ∩ W1+s,p(Ω̃;R2).

Remark 1.1. It would be possible to extend the result to domains Ω̃ ⊂ R
2 which are more

complicated (e.g. domains which can be written as controlled (in-)finite unions of rectan-
gles). In order to avoid dealing with the associated issues and as the domain geometry does
not constitute our main focus in this article, we restrict to the above model setting in which
Ω̃ = (0, 1)2.
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We emphasize that essentially all sequences (in terms of μ) produced in our dynamics in the
infinite iteration/long time limit lead to exactly stress-free solutions of the differential inclusion.
Moreover, they have a certain fractality (and are in this sense self-organized and not completely
random) as encoded in the higher Sobolev regularity result with∇y ∈ Ws,p(Ω̃,R2) (see also the
remarks below). Numerical evaluations of the algorithms are presented in section 8, in which
we also discuss the lengths scale statistics involved in the solutions and highlight the different
convergence rates. We hope that this may eventually allow for comparisons with the measured
length scale (and avalanche) distributions in experimental settings.

1.2. Context

Self-organized, critical systems and cellular automata have attracted substantial interest in
systems undergoing phase transformations (see [BTW87] and the large amount of literature
building on this). Also in the mechanical literature there have been substantial endeavours
towards understanding this more precisely and various explanations have been proposed for
the origins of these effects. This includes pinning–depinning transitions [2005], coevolving
disorder associated with transformation-induced slip [PRTZT16], inertia-induced nucleation
[AA01] or the presence of quenched disorder [PRV04]. We also refer to [PRTZ08, PRTZ07,
PRTZ09, BBB15, PRTZT16, BUZZ16] and the references therein. We emphasize that both
scalar and vectorial models have been considered in these references. In the context of marten-
sitic phase transformations and self-similarity we highlight the early works [RSS95, MRSS95,
PLKK97] in which random, geometrically constrained models had been proposed and anal-
ysed in the study of self-organized structures in martensitic phase transformations. Already in
these, the emergence of self-similar, fractal microstructures was observed.

The models proposed in this article follow the line of ideas introduced in [RSS95, MRSS95,
PLKK97, BCH15, CH18, TIVP17]. It is our main objective to explore how simplified, geo-
metrically constrained, probabilistic dynamics may lead to universal power law behaviour
in nucleation processes as observed, for instance, through acoustic emission measurements.
In restricting ourselves to these models, compared to the above cited approaches from the
mechanics literature, we substantially simplify the mechanisms in the problem, losing various
physically-relevant effects. This for instance neglects the relevant time scales (which are sim-
ply prescribed and normalized) or the relevance of long-range effects (which are captured only
minimally by the history of the stochastic process but not made explicit in the form of non-local
elastic energy contributions). Physical effects like pinning–depinning transitions, disorder due
to transformation-induced slip are not resolved but simply subsumed in the randomness of
the algorithms. Moreover, we focus our attention on global minima although certainly local
minimization and metastability are of physical significance in avalanche models. While we
are aware of these simplifications, we emphasize that in spite of the outlined reduction of the
complexity of our model, it still displays ‘universal behaviour’ in the sense of bounds on the
frequency distributions in Fourier space. Indeed, due to its simplicity, it is possible to estab-
lish the Fourier bounds rigorously. Thus, in our model randomness should be viewed as a
proxy for partially capturing the outlined physical aspects which we do not resolve. It would
be interesting to combine ingredients of our model with the resolution of additional physical
effects.

While the earlier probabilistic, geometrically constrained models from [BCH15, CH18,
TIVP17] did not take into account mechanical compatibility conditions, by connecting the
probabilistic models from above with convex integration building blocks, our model does take
this into account. In particular it allows us to link the ‘self-organized’ model dynamics from
[BCH15, CH18, TIVP17], convex integration schemes [MŠ98, MS01, MŠ99]—which have a

4850



Nonlinearity 34 (2021) 4844 F Della Porta et al

natural dynamic interpretation—and the recently obtained higher Sobolev regularity results for
convex integration solutions [RZZ19, RZZ18, RTZ18, DPR20]. It is our hope that with further
simulations, experiments and analytical investigations these connections can be strengthened
and that eventually the obtained regularity exponents can be compared to the observed univer-
sal exponents of the (length scale) statistics in the experiments. From a mathematically point
of view, the connection of the proposed model and ‘random’, average convex integration algo-
rithms in which only the average instead of tailor-made packings are considered also seems
to be of independent interest (we also refer to [Kir03] and [Pom] for random walk interpre-
tations of convex integration procedures). We emphasize that our model should be viewed as
a hybrid model connecting the ideas from [PRTZ08, PRTZ07, PRTZ09, BBB15, PRTZT16,
BUZZ16] and from convex integration with higher Sobolev regularity from [RZZ19, RZZ18,
RTZ18, DPR20]. For the sake of mathematical simplicity in this first treatment of probabilistic
models involving convex integration we separate the two ingredients, the probabilistic point of
view and the convex integration scheme as much as possible. Building on this, as next steps,
possibly slightly more natural algorithms could include a simultaneous iteration of the convex
integration schemes and the random choice of the nucleation spots and the building block direc-
tions. These (possibly energetically more justified) models however lead to significantly more
complicated analytical problems. Seeking to introduce a coupling between the ideas of convex
integration (and thus of compatibility) and the random, geometrically constrained (and thus
self-organized) structures from [PRTZ08, PRTZ07, PRTZ09, BBB15, PRTZT16, BUZZ16],
we here focus on the simplest possible setting, but plan to study the indicated, more complex
structures in future projects.

1.3. Regularity, self-similarity and power law length scale distributions

Last but not least, we seek to heuristically connect the regularity of solutions to (5) and the
power-law behaviour of statistical quantities such as length scale distributions. Precise relations
between the (maximal) regularity of solutions and scaling laws are deduced in [RTZ18]. On an
L2 based level the higher Hs Sobolev regularity of the deformation gradient ∇y corresponds
to the finiteness of the integral∫

R2

|k|2+2s|Fy(k)|2 dk. (6)

In particular this implies thatFy(k) (the Fourier transform of y at k) necessarily has a decay rate
that (in an average sense) is determined by the Sobolev regularity of y. Assuming that Fy(k)
is of a power law distribution, i.e. that |Fy(k)| ∼ |k|−α/2 for |k| � 1 and some α ∈ R, the
finiteness condition for (6) would imply a power law behaviour of the length scales involved in
Fy(k) of the order at least α > 4 + 2s. Combined with scaling laws for the associated elastic
and surface energies, one would also be able to provide upper bounds on α as explained in
[RTZ18]. In this sense, the Sobolev regularity captures the degree of self-organization in a
precise sense. Similar, Fourier based considerations (for two-point functions) as a measure of
the fractality or degree of self-organization of a solution can be found in [PLKK97].

1.4. Outline of the remainder of the article

The remainder of the article is organized as follows: after briefly collecting our most important
notation in section 2, we present our models in section 3. In order to fix the precise setting
these are complemented with the precise probabilistic set-up in section 4. A first convergence
result for our algorithms is discussed in section 5. In sections 6 and 7 the higher Sobolev
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regularity and the μ-almost everywhere convergence of the algorithms is studied. Last but
not least, in section 8, we provide several illustrations of the numerical implementation of our
algorithms—highlighting their different convergence properties—and their statistics. We hope
that these are of use in eventually comparing our results with experimental data.

Complementing the results from the main body of the text, we have included four appen-
dices: in appendix A a useful covering lemma is proved. In the appendix B we deduce a
coupling between the random sequences generated by the algorithms 3.3 and 3.4; in particular
proving that they generate equivalent limiting distributions. Moreover, in analysing the under-
lying fragmentation process in more detail in appendix C, we explain how (for a slight variant
of) algorithm 3.3 it is possible to dispose of the non-degeneracy condition in the algorithms
and to replace this by appropriate ‘tail estimates’. We view this as an analytically important
result of the article connecting our set-up from the main body of the text to the detailed anal-
ysis of fragmentation models. In appendix D we prove that the modifications of the numerical
implementation do not affect the regularity of the resulting deformations.

2. Notation

For the convenience of the reader, we collect some of the notation which will be used in the
following sections. We first collect the central notation from the algorithms 3.3 and 3.4 at
step k:

• Vk —this is the still not transformed part of the domain (0, 1)2 in the iteration step k, it
consists of a finite union of open rectangles,

• C(Vk)—this is the set of connected components of Vk,
• pk—this is the randomly chosen point in the algorithms,
• C(Vk, pk)—is the connected component of Vk containing pk,
• dk —this is the randomly chosen orientation in the algorithms,
• yk —this is the current deformation,
• z j

k —this is the replacement building block given by theorem 2,
• Bk, B j

k—these are the sets on which the current deformation is replaced by a deformation
which is in the wells.

In our discussion of the probabilistic background we use the following notation:

• Ωk :=Ω× · · · × Ω (k-times)—the k-fold Cartesian product of a set Ω ⊂ R
2,

• B(Ω)—the Borel sets on Ω,
• μ, μk, ρk —the measures constructed in lemmas 4.1 and 4.2,
• E, Ek —expectations with respect to the measures μ and μk, by construction μ is an

extension of μk, so E reduces to Ek for finite iterations of our algorithms,
• |A|—Lebesgue measure of a Lebesgue measurable subset A ⊂ R

n,
• D(D)—the descendants of a set D, see definition 5.5.

3. The models

As a model setting, we consider the energy wells determined by the strains F0 and F−1
0 from

(3) and (4). We remark that, as shown in [BJ92, section 5], given two wells with two rank-one
connections (and the physically natural condition of equal determinant), one can always reduce
the problem to our case via an affine change of variables.
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Figure 3. Representation of the iterative steps of the convex iteration algorithm in
[DPR20] with boundary conditions M ≈ diag(0.939, 1.064), γ = 0.5 are shown in
terms of the Cauchy–Green tensors. Here the coordinates are x = (MTM)11 ∈ (0, 1),
y = (MTM)22 ∈ (0, 1 + γ2) for the plane directions and z = (MTM)12 = (MTM)21 =
±
√

1 − xy for the vertical direction. The closer the steps are to F0, F−1
0 (that is to the

points with (x, y) = (1, 1 + γ2)) the closer the algorithm is to convergence. Here we
use a magenta–orange–black color coding for the horizontal replacement (horizontal
rectangle) and cyan–green–black for the vertical one (vertical rectangle).

3.1. The building blocks: higher regularity convex integration solutions for the geometrically
nonlinear two-well problem

Below we are going to rely on the following higher regularity convex integration theorem:

Theorem 2 (Theorem 1, [DPR20]). Let K be as in (3)–(4). Let Ω̃ ⊂ R
2 satisfy

(D) Ω̃ is open, connected, and can be covered (up to a set of measure zero)

by finitely many open disjoint triangles.

Then there exists θ0 > 0 (independent of Ω̃) such that for all s ∈ (0, 1), p ∈ (1,∞) with sp < θ0

and for all M ∈ int Kqc there exists a deformation u : Ω̃→ R
2 such that

∇u ∈ K a.e. in Ω̃,

u = Mx on ∂Ω̃,

u ∈ W1,∞(Ω̃;R2) ∩ W1+s,p(Ω̃;R2).

We will use the solutions from theorem 2 as building blocks for our ‘plates’ (see step (b) of
the probabilistic nucleation algorithms explained in the introduction, see also figure 5 for an

illustration of a building block for M ≈
(

0.939 0
0 1.064

)
, δ = 0.05 and γ = 0.5).

The solutions from theorem 2 are obtained iteratively through the method of convex integra-
tion, by iteratively deforming the current gradient distribution into an increasingly favourable
one, eventually in the infinite iteration limit passing to a solution of the full differential
inclusion (5) (see figure 3).

Here in each step we cover a rectangle in the given domain by ‘rhombi-constructions’ (see
lemma 4.1 and figure 4 in [DPR20], building on the rhombi-constructions from the works
[Con08, CT05, MŠ98]) which are needle-like basic building blocks (see figure 4).

We remark that in this iterative replacement of deformation gradients, there are two favoured
orientations for the rhombi-constructions (and thus for building blocks). These correspond
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Figure 4. Given the matrix decomposition, we employ ‘rhombi-construction’ on a
diamond-shaped domain. The green colour coding of figure 3 right corresponds to verti-
cal twins, the magenta colour coding of figure 3 left to horizontal twins. In the notation
of [DPR20] these correspond to the coordinates F1 and F2, respectively.

Figure 5. We use theorem 2 to construct building blocks in the shape of rectangles
(which themselves are covered by rhombi-constructions in the form of diamonds, see
figure 4). Different colours here correspond to different values of ∇u with the colour
coding given as in figure 3. For horizontal rectangles in the algorithms below we always
begin with a decomposition along horizontal laminates, i.e. in the magenta–orange
colour coding scheme. In particular from the colours in this figure it is clear that the
underlying deformation is not yet a full solution (but only a subsolution, roughly speak-
ing an approximate solution) to the differential inclusion. The construction of solutions
to theorem 2 is iterative. We have here depicted a subsolution obtained after three
iterations for the choice M ≈ diag(0.939, 1.064), δ = 0.05, γ = 0.5.

to the horizontal and vertical rank-one directions which are present between the wells (see
lemma 4.1 and figure 4 in [DPR20]). Thus, the choice of the orientation (of the needle-like
nucleation domains) which was only heuristically justified in (ii) in [BCH15, CH18, TIVP17]
now becomes a rigorously justified consequence of compatibility. In order to avoid additional
difficulties in the covering estimates and to keep closer to the models from [BCH15, CH18,
TIVP17], we do not directly work with the diamond-shaped rhombi-constructions as the basic
building blocks but consider rectangles oriented according to the rhombi-constructions which
are then themselves covered by rhombi-constructions (see figures 4 and 5).

Remark 3.1. Instead of focusing on the geometrically nonlinear two-well problem, we could
also have used the results in [RZZ19] or in [RZZ18] instead of theorem 1 in [DPR20]. As a
consequence, all the results which are deduced below for the geometrically nonlinear two-well
problem would similarly hold in these settings.

Remark 3.2. We remark that in (two-dimensional) situations with exceptionally high sym-
metry of the martensitic wells, it would also be possible to use the building block structures
from [CKZ17] and [CDPR20] as the ‘plates of nucleation’ together with greedy cover-
ing results. It is however not clear whether such constructions are also available in three
dimensions; hence we do not pursue this further in this article.
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3.2. Two geometrically constrained, probabilistic nucleation algorithms with mechanical
compatibility

With this background, we next introduce two possible models for simplified, geometrically
constrained, mechanically compatible nucleation dynamics. We emphasize that these dynamics
are purely phenomenological and are not derived from first principles. Their main objective is
to provide further insight into the observed phenomena of universal exponents in martensitic
phase transformation by means of simplified dynamics now including compatibility. Further
we seek to indicate how convex integration algorithms could naturally play a role in these types
of dynamics.

3.2.1. Model A. We first present an algorithms which nucleates a new martensitic plate in
each connected component of austenite in each iteration step.

Algorithm 3.3 (Model A). Let Ω = (0, 1)2, δ ∈ (0, 1) and:

• M ∈ Kqc;
• y0 :=Mx in Ω;
• V0 = Ω.

Then, for any k ∈ N

• Let C(Vk−1) be the set of connected components of Vk−1 (these are at most 2k rectangles)
• Let pk : C(Vk−1) → R

2 be a function associating to each element D j
k−1 ∈ C(Vk−1) a point

p j
k chosen uniformly at random in D j

k−1

• Let dk : C(Vk−1) → {1, 2} be a function associating to each D j
k−1 ∈ C(Vk−1) an orienta-

tion d j
k (horizontal vs vertical; modelled by the numbers 1, 2) which is equal to 1 with

probability p ∈ (0, 1) and equal to 2 with probability 1 − p. We define (d j
k)⊥ := {1, 2}\d j

k

• For each D j
k ∈ C(Vk−1) (which is a rectangle of sides-length 	 j

1, 	 j
2) we set

B j
k :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
x ∈ D j

k : x · e⊥
d j

k
∈
(

p j
k · e⊥

d j
k
− δδ j

k	
j

d j
k

, p j
k · e⊥

d j
k
+ δ(1 − δ j

k)	 j

d j
k

)}
,

if δ	 j

d j
k

< 	 j

(d j
k)⊥

,

D j
k, if δ	 j

d j
k

� 	 j

(d j
k)⊥

,

where

δ j
k := arg min

{∣∣∣∣s − 1
2

∣∣∣∣ : s ∈ (0, 1) and both p j
k − s	 j

d j
k

e⊥
d j

k
, p j

k + (1 − s)	 j

d j
k

e⊥
d j

k
∈ D j

k

}
• We set Vk :=Vk−1\

⋃
jB

j
k and

yk :=

⎧⎨
⎩

yk−1, on Ω\
⋃

j

B j
k,

z j
k, on B j

k,

where z j
k ∈ W1,∞(B j

k;R2) is given by theorem 2.

Let us comment on this algorithm and its dynamics: we begin with a sample Ω which rep-
resents our material at the beginning of the nucleation process (e.g. with the sample being in
the austenite phase or possibly also being under some prestrain). As illustrated in figure 6, in
each iteration step of the algorithm, in each connected component of Vk we randomly choose
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Figure 6. Given a point pk ∈ C(Vk, pk) and a direction edk we insert a maximal rectangle
Bk � pk of aspect ratio 1 : δ. Here, generically the rectangle is centered around pk (left).
If pk is too close to the boundary, we instead shift the rectangle Bk to touch the boundary
(right). If the domain C(Vk , pk) is too narrow (pictured on the bottom), we instead pick
Bk = C(Vk, pk).

a point and an orientation, and consider a set B j
k (ideally centered at the chosen point and ori-

ented in the chosen direction, see figure 6) on which we replace the current deformation yk

by a deformation z j
k which itself is given by theorem 2. We iterate this infinitely many times,

eventually obtaining a deformation which is increasingly close to being a solution to (5) (and
being an exact solution in the limit k →∞).

We remark that the main idea of the dynamics of the described algorithm is very similar
to the ones proposed and analysed in [RSS95, MRSS95, PLKK97, BCH15, CH18, TIVP17].
One main difference here is that instead of just ‘declaring’ the domains B j

k to be filled with
martensite, our domains B j

k are actually filled with martensite by replacing the deformation
yk−1 from the previous step by the new deformation z j

k which is obtained by virtue of theorem
2. With respect to the algorithms from [RSS95, MRSS95, PLKK97, BCH15, CH18, TIVP17]
by prescribing the precise deformation, our algorithm thus takes care of an additional layer of
complexity which had been ignored in the previous models.

We remark that there are several natural ways of achieving this. In our algorithm the domains
B j

k are immediately completely covered by a stress-free martensite configuration. As a con-
sequence, the fully transformed sets B j

k will never be modified by the algorithm again (the
material is already in the energy wells). As an alternative one could, for instance, have con-
sidered an algorithm in which the diamond-shaped rhombi-constructions (see figure 4) are
iteratively applied and which thus improve the stress distribution but do not directly yield
completely stress-free configurations. In this scenario, one would then try to improve the strain
distribution in the sets B j

k iteratively again in later steps of the algorithm. Mathematically the
latter model would thus correspond to a ‘full, random convex integration model’, while our
algorithm is rather a ‘hybrid, random convex integration model’, where the convex integra-
tion part is taken as a full, black-box building block as a consequence of theorem 2. Due to
the additional difficulties in combining the probabilistic perspective and the detailed convex
integration estimates, we postpone the study of ‘full, random convex integration algorithms’
to future work.

In studying the length scale distribution in the sense of understanding the regularity of the
final solution y (in expectation or μ-almost everywhere), we thus need to combine an analysis
of the covering algorithm (determined by the generation of the sets B j

k) which is essentially a
probabilistic fragmentation process (and thus related to the problems in for instance [FGRV95,
Ber06] and the references therein) with the regularity of the building blocks from theorem 2.

We remark that our constructions in the domainsB j
k are of a prescribed length-to-width ratio.

In the described model, this length scale is introduced in an ad hoc manner. Ideally, it would be
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derived as a scale in the interaction of elastic and surface energy contributions as for instance
in nucleation results from the literature [KKO13, KK11, CDMZ20]. We further stress that in
our definition of the ‘nucleation sets’ B j

k we allow for degenerate sets as long as their long axis
is oriented perpendicular to the long axis of the sets which are introduced through nucleation.
We however exclude degenerate, too long, thin sets, if their long axis is oriented in the same
direction as the sets which are inserted in the nucleation step (see the second condition in the
definition of the sets B j

k which is a non-degeneracy condition). From a technical point of view
this allows us to estimate the gain in volume fraction in each iteration step without discussing
tail estimates which originate from increasingly degenerate domains. For these the perimeter
would still be controlled, the gain in the volume would however not a priori yield exponential
gains in the sense of propositions 5.1 and 5.4. From a physical point of view, the degenerate vs
non-degenerate choice of the rectangles B j

k at this point is ad hoc. However, we believe that in
more sophisticated models control on the possible degeneracies can be deduced from surface
energy constraints, thus giving some credence to these type of simplifications. As an indication
in the direction of being able to derive sufficiently strong tail estimates which allow us to drop
the non-degeneracy assumption, in the appendix C we establish such estimates for a slightly
modified algorithm. We believe that with some further effort similar results could also hold for
the unmodified algorithm (see remark C.7).

3.2.2. Model B. Let us next discuss a second variant of our nucleation mechanism.

Algorithm 3.4 (Model B). Let Ω = (0, 1)2, δ ∈ (0, 1) and:

• M ∈ Kqc;
• y0 :=Mx in Ω;
• V0 = Ω.

Then, for any k ∈ N

• Let pk be a point chosen uniformly at random in Vk−1 and we define C(Vk−1, pk) to be
the connected component of Vk−1 containing pk (we remark that C(Vk−1, pk) is always a
rectangle of size 	1 × 	2, with 	1, 	2 ∈ (0, 1))

• Let dk ∈ {1, 2} be equal to 1 with probability p ∈ (0, 1) and be equal to 2 with probability
1 − p. We define d⊥

k := {1, 2}\dk

• We set

Bk :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
x ∈ C(Vk−1, pk) : x · e⊥dk

∈
(
pk · e⊥dk

− δk	dk , pk · e⊥dk
+ (1 − δk)	dk

)}
,

if δ	dk < 	d⊥k
,

C(Vk−1, pk), if δ	dk � 	d⊥k
,

where

δk := arg min

{∣∣∣∣s − 1
2

∣∣∣∣ : s ∈ (0, 1)

and both pk − s	dk e⊥dk
, pk + (1 − s)	dk e⊥dk

∈ C(Vk−1, pk)
}

• We set Vk :=Vk−1\Bk and

yk :=

{
yk−1, on Ω\Bk,

zk, on Bk,
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Figure 7. In algorithm 3.4 (pictured on the right) in each step we randomly pick a point in
the remaining area according to the normalized Lebesgue measure and insert a maximal
rectangle B containing this point. In algorithm 3.3 (pictured on the left) in each step
we independently pick a random point for each connected component. In this schematic
illustration of our algorithms the colours of the rectangles correspond to the iteration
step k of our algorithm. In particular, we observe that in algorithm B (right) only one set
Bk is introduced in the step k while in the algorithm A (left) we introduce 2k new sets B j

k
in the kth iteration step. As a consequence, on average, the microstructure produced in
algorithm 3.4 provides a much more uniform covering than the one from algorithm 3.3,
see also figures 11 and 12 in section 8.

where zk ∈ W1,∞(Bk;R2) is given by theorem 2.

In contrast to the algorithm 3.3 this algorithm does not nucleate a new martensitic plate in
each connected component of Vk but considers the more realistic (but mathematically slightly
more involved) situation of a single nucleation event in each step. The position of the nucleation
here is determined by the volume of the largest undeformed piece in the sample (see figure 7
for an illustration of the differences between the two algorithms).

While it may intuitively be apparent that the limiting deformations produced in algorithms
3.3 and 3.4 agree, the speed of convergence and in particular the behaviour after finitely many
iteration steps are very different in the two algorithms. We illustrate this in section 8 in which
we implement (numerically more tractable) variants of both algorithms. Thus, in the main text,
we treat both algorithms in parallel. In the appendix B we prove that there is indeed a bijection
(up to reordering) between the two outlined algorithms which yields ‘equivalent’ probability
distributions.

In the following sections we thus analyse algorithms 3.3 and 3.4, study their convergence
properties (in expectation) and the regularity of the resulting deformations.

4. Probability spaces and extensions

In the following we define the probability spaces associated to the algorithms 3.3 and 3.4
for each finite step k ∈ N and a common probability space (X,F ,μ) which includes all finite
steps. We thus consider our convex integration algorithms as stochastic processes with k being
interpreted as a discrete time step. In section 5 we then study the convergence of the algorithm
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in Lp by computing expectations of various norms of (differences of) the sequences obtained
in the constructions. In sections 6 and 7 we further study higher regularity of the solutions and
in particular show that our algorithms μ-almost surely produce a W1+s,p regular solution of the
differential inclusion.

Our probability spaces consider the sequences of points xk ∈ Ω (produced by pk) and direc-
tions dk ∈ {1, 2} chosen in the algorithms. To each such sequence we may then associate a
sequence of sets

Vk = Vk(x1, d1, x2, d2, . . . , xk, dk)

by constructing the rectangles Bk(x1, d1, . . . , x j, d j) as prescribed in the algorithm. We will
show that this function is measurable and that (Vk)k∈N can therefore be considered a random
variable.

4.1. The probabilistic set-up for algorithm 3.4

For simplicity of notation in the following we first discuss algorithm 3.4 where k steps
correspond to choosing k points (x1, . . . , xk) ∈ Ωk and directions (d1, . . . , dk) ∈ {1, 2}k.

Lemma 4.1. Consider the sequences of points (x1, x2, . . .) and directions (d1, d2, . . .) gen-
erated by algorithm 3.4 as a stochastic process. Then the corresponding ( pullback probability)
measure can be expressed as a density. More precisely, for each k ∈ N there exists a probability
density

ρk : (Ω× {1, 2})k → [0,∞),

such that for every Borel set B ∈ B(Ωk) and every (d ′
1, . . . , d ′

k) ∈ {1, 2}k the probability that
algorithm 3.4 produces a sequence with (x1, . . . , xk) ∈ B and (d1, . . . , dk) = (d ′

1, . . . , d ′
k) is

given by

μk(B × {d′
1, . . . , d′

k}) :=
∫

B
ρk(x1, . . . , xk; d′

1, . . . , d′
k)dx1 . . . dxk

k∏
j=1

P(d′
j),

where P(1) = p and P(2) = 1 − p. That is, our probability measure can be written as a density
with respect to the Lebesgue measure and a series of Bernoulli trials determining the direction
of the rectangles. Furthermore, it holds that for any k > 1

p
∫
Ω

dxk ρk(x1, . . . , xk; d1, . . . , dk−1, 1) + (1 − p)
∫
Ω

dxk ρk(x1, . . . , xk; d1, . . . , dk−1, 2)

= ρk−1(x1, . . . , xk−1; d1, . . . , dk−1),

(7)

that is μk−1 is given by the marginal of μk.

Proof. The first point x1 generated in algorithm 3.4 is chosen uniformly at random in Ω (with
respect to the Lebesgue measure) and the direction d1 ∈ {1, 2} is chosen independently with
probability (p, 1 − p). Thus, in this case

μ1(x1, d1) =

⎧⎪⎨
⎪⎩

p
|Ω| dx1 if d1 = 1,

1 − p
|Ω| dx1 if d1 = 2.

(8)
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Given a point and direction (x1, d1) ∈ Ω× {1, 2}, in algorithm 3.4 we obtain a rectangle
B1(x1, d1) and choose x2 uniformly at random (with respect to the Lebesgue measure) in
Ω\B1(x1, d1) with probability density:

1
|Ω\B1(x1, d1)| (1 − 1B1(x1,d1)(x2))dx2, (9)

and choose d2 independently. Thus, given d′
1, d′

2, we may compute

μ2(x1, x2; d′
1, d′

2) = P(d′
1)P(d′

2)
1

|Ω\B1(x1, d′
1)| (1 − 1B1(x1,d′1)(x2))dx1 dx2, (10)

where we note that B1(x1, d′
1) is prescribed in a measurable way.

More generally, given (x1, . . . , xk), (d′
1, . . . , d′

k), and a set B = B1 × · · · × Bk the conditional
probability for the choice of the point xk+1 is given by the normalized Lebesgue measure on
Ω with k rectangles (Ri(x1, . . . , xk, d′

1, . . . , d′
k))i∈{1,...,2k} removed and, for product sets,

μk+1(B × Bk+1 ×
(
d′

1, . . . , d′
k, d′

k+1

)
)

= P(d′
k+1)

∫
Bk+1

1Ω\∪Ri(x1,...,xk ,d′1,...,d′k)(xk+1)

|Ω\ ∪ Ri(x1, . . . , xk, d′
1, . . . , d′

k)| dxk+1

× μk(B × {d′
1, . . . , d′

k}).

(11)

In particular, as the conditional probabilities are normalized, the marginal property (7)
immediately follows. �

Having constructed probability spaces for each finite k, we now construct an extension
((Ω× {1, 2})N,F ,μ) which includes all these measures as restrictions. In the case of inde-
pendent measures this would correspond to identifying the above measures with a premea-
sure on cylinder sets, constructing the product σ algebra and using Caratheodory’s extension
theorem. For our case we rely on the following more general extension theorem for discrete
time stochastic processes.

Theorem 3 (Theorem 3.3.6 in [CZ01]). Let m, n ∈ N, 1 � m < n and define πmn to be
the embedding map of the Borel σ algebra Bm on R

m into Bn given by

∀ B ∈ Bm : πmn(B) = {(x1, . . . , xn) : (x1, . . . , xm) ∈ B}.

Suppose that for each n ∈ N, μn is a probability measure on (Rn,Bn) such that

∀ m < n : μn ◦ πmn = μm. (12)

Then there exists a probability space (X,F ,μ) and a sequence of random variables Xj such
that for each n, μn is the n-dimensional probability measure of the vector (X1, . . . , Xn).

Following the argument in [CZ01], we may apply this extension theorem to the sequence of
probability measures generated by algorithm 3.4, obtaining a probability measure on the space
of sequences (Ω× {1, 2})N.

Lemma 4.2. Let μk be the sequence of probability measures on (Ω× {1, 2})k as in lemma
4.1 with the product Borel σ algebra for each k. Let X = (Ω× {1, 2})N be the Cartesian prod-
uct equipped with the product σ algebra. Then there exists a measure μ on X and a sequence
of random variables Xj such that μk is the probability measure of the vector (X1, . . . , Xk).
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Proof. We consider probability measures on Ω× {1, 2}, which can be considered as a (two-
dimensional) subset ofR3. The marginal property (12) is satisfied by (7) and we hence conclude
by applying theorem 3. �

4.2. The probabilistic set-up for algorithm 3.3

It remains to discuss algorithm 3.3. Here, the choice of (x1, d1) is identical to algorithm 3.4,
but in the kth step we choose not just one point xk but rather 2k points (xi

k)2k

i=1, one for each
connected component.

Lemma 4.3. Let μk be the sequence of probability measures on (Ω× {1, 2})2k
generated

by k steps of algorithm 3.3. Then there exists a measure μ on (Ω× {1, 2})N and a sequence of
random variables Xj such that μk is the probability measure of the vector (X1, . . . , X2k ).

Proof. We note that given the points obtained in step k, the algorithm picks all these points
independently at the same time. In view of the extension of theorem 3 we further construct a
sequence of intermediate measures

μ1
k((xi

k−1), x1
k),μ2

k((xi
k−1), x1

k , x2
k), . . . ,

where we pick them sequentially from the connected components (since these points are
chosen independently we may pick in any order). Each such measure can be written in
terms of a density expressing conditional probabilities as in (11), where instead of all of
Ω\ ∪ Ri(x1, . . . , xi

k, d1, . . . , di
k), we now consider the (Lebesgue) normalized densities on each

connected component.
With this convention the measures considered in algorithm 3.3 correspond to the subse-

quence μk :=μ2k

k . As the points are chosen independently according to a probability measure
(which is normalized), the sequence of measuresμ1

k , . . . μ2k

k ,μ1
k+1, . . . ,μ2k+1

k+1 ,μ1
k+2, . . . satisfies

the marginal property and hence μ can be obtained by applying theorem 3. �

5. Convergence of the algorithms

In this section we study the convergence of the algorithms 3.3 and 3.4 with respect to Lp norms.
More precisely we show that the expected value (with respect to the measure μ of section 4)
of the Lebesgue measure of the sets Vk tends to zero as k →∞. In section 6 we further show
that the expected value of the BV norms of the associated characteristic functions does not
grow too quickly and that, as a result, the expectations of the W1+s,p norms of the differences
∇yk+1 −∇yk form a Cauchy sequence (in R). In section 7 we then pass from statements about
expectations to statements about sequences and in particular establish convergence and higher
regularity for μ-almost every sequence.

5.1. Convergence of model A

In this section we prove the following result:

Proposition 5.1. Consider the algorithm 3.3 (model A), let μ be the probability measure
constructed in lemma 4.3 and let E(·) denote the expectation with respect to μ. Then for each
k � 0, Vk is a random variable with respect to μ and it holds that

E
(
|Vk|

)
� c̃k

A|Ω|,
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where c̃A := max {p+ (1 − p)(1 − δ), (1 − p) + p(1 − δ)} ∈ (0, 1) and p ∈ (0, 1) is as in
algorithm 3.3.

We note that Vk only depends on ((x1, d1), (x2, d2), . . .) in terms of the points and directions
chosen up to step k. Hence, the expectation E may equivalently be computed in terms of the
measures μk in which case we work with Ek (see section 2 for the notation).

Proof. Let D j
k ∈ C(Vk−1). We notice that

Ek+1

(
|D j

k\B j
k|
∣∣∣D j

k

)
�
{

p(1 − δ)|D j
k|+ (1 − p)|D j

k|, if 	 j
1 > 	 j

2

(1 − p)(1 − δ)|D j
k|+ p|D j

k|, if 	 j
1 � 	 j

2

}

� c̃A|D j
k|,

since the new rectangle covers a fraction δ of the area if a favourable orientation is chosen by the
algorithm. Here, E(V|D j

k) corresponds to the conditional expectation with (x1, d1, . . . , xk, dk)
prescribed (see (11) for the corresponding probability density).

Integrating this estimate with respect to (x1, d1, . . . , xk, dk) (and μk) we obtain the expected
value inequality

Ek+1

(
|D j

k\B j
k|
)
� c̃AEk

(
|D j

k|
)
.

Thus, taking the union over j and exploiting the fact that V0 = Ω and that |Vk| =
⋃

j|D
j
k\B j

k|
proves the claim. �

In particular, proposition 5.1 implies the following convergence result:

Corollary 5.2. Algorithm 3.3 (model A) converges in expectation, i.e.,

lim
k→∞

E
(
|Vk|

)
= 0, lim

(k,l)→(∞,∞)
E
(
‖yk − yl‖L∞(Ω)

)
= 0.

Remark 5.3. We emphasize that this corollary only constitutes the very first step of our
analysis of the generated sequences {yk}k∈N. In particular, the corollary does not yet ensure
the convergence of the sequence {yk}k∈N to a solution of the differential inclusion (2).

Proof. The first statement is clear from proposition 5.1. For the second statement, we just
notice that (supposing without loss of generality that k < l)

E‖yk − yl‖L∞(Ω) = E‖yk − yl‖L∞(Vk\Vl)

� cE(‖∇yk −∇yl‖L∞(Ω)|Vk\Vl|
1
2 ) � cc̃

k
2
A |Ω|,

for some c > 0, and where we have used that, since K, Kqc are bounded, ∇y j is bounded in
L∞(Ω) for each l � 0. The claim thus follows. �

5.2. Convergence of model B

In this section we prove the following result (which does not yet ensure that yk converges to a
solution of (2), see theorems 4 and 6 for this).

Proposition 5.4. Consider the algorithm 3.4 (model B), let μ be the probability measure
constructed in lemma 4.2 and let E(·) denote the expectation with respect to μ. Then for each
k � 0, Vk is a random variable with respect to μ and it holds that

E
(
|V2k+1|

)
� c̃BE

(
|Vk|

)
,
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where c̃B := c̃A + (1 − c̃A) 1+e−
1
2

2 ∈ (0, 1) and c̃A is as in proposition 5.1.

In order to work with a concise notation, we recall the concept of a descendant of a domain:

Definition 5.5 (Definition 3.3 in [RZZ18]). Let D̂ ∈ C(Vk) for some k � 0. Then we
say that Ď ∈ C(Vl) for some l � k is a descendant of D̂ if Ď ⊂ D̂. We denote the set of all
descendants of D̂ by D(D̂).

Proof of proposition 5.4. We know that, in the setting of model algorithm 3.4, Vk has at
most k + 1 connected components D j

k. After k + 1 iterations of the algorithm we thus obtain
that

E
(
|V2k+1|| Vk

)
=
∑

j

E

(∣∣∣D(D j
k) ∩ V2k+1

∣∣∣∣∣∣Vk

)

�
∑

j

p̄jE

(∣∣∣D(D j
k) ∩ V2k+1

∣∣∣∣∣∣Vk and pl ∈ D j
k for some

l ∈ {k + 1, . . . , 2k + 1}
)

+
∑

j

(1 − p̄j)|D j
k|,

where p̄j is the probability that pl ∈ D j
k for some l ∈ {k + 1, . . . , 2k + 1}. This can be

computed by noticing that

1 − p̄j =

2k+1∏
l=k+1

(
1 − |D j

k|
|Vl−1|

)
�
(

1 − |D j
k|

|Vk|

)k+1

,

from which we obtain that

p̄j � 1 −
(

1 − |D j
k|

|Vk|

)k+1

=: pj.

Therefore, setting c̃A := min {p+ (1 − p)(1 − δ), (1 − p) + p(1 − δ)} ∈ (0, 1) and arguing as
in the proof of proposition 5.1, we deduce that

E

(∣∣∣D(D j
k) ∩ V2k+1

∣∣∣∣∣∣Vk and pl ∈ D j
k for some l ∈ {k + 1, . . . , 2k + 1}

)
� c̃A|D j

k|,

which allows us to estimate

E
(
|V2k+1|| Vk

)
�
∑

j

(
p̄jc̃A + (1 − p̄j)

)
|D j

k|

�
∑

j

(
pjc̃A + (1 − pj)

)
|D j

k| � |Vk|+ (c̃A − 1)
∑

j

pj|D j
k|

� c̃A|Vk|+ (1 − c̃A)
∑

j

(
1 − |D j

k|
|Vk|

)k+1

|D j
k|.

(13)

4863



Nonlinearity 34 (2021) 4844 F Della Porta et al

Let now r j :=
|D j

k |
|Vk |

. We now claim that

∑
j

(
1 − r j

)k+1
r j � ĉB (14)

for some ĉB ∈ (0, 1). Indeed, let

J1 :=

{
j : r j �

1
2(k + 1)

}
, J2 :=

{
j : r j <

1
2(k + 1)

}
,

and note that J := J1 ∪ J2 has k + 1 elements. We have

∑
j∈J1

(
1 − r j

)k+1
r j �

∑
j∈J1

(
1 − 1

2(k + 1)

)k+1

r j � e−
1
2
∑
j∈J1

r j,

and ∑
j∈J2

(
1 − r j

)k+1
r j �

∑
j∈J2

r j.

Since #J = k + 1,

∑
j∈J2

r j �
1

2(k + 1)

∑
j∈J2

1 � 1
2(k + 1)

∑
j∈J

1 � 1
2

,

and since
∑

j∈J1
r j = 1 −

∑
j∈J2

r j, we have

∑
j∈J

(
1 − r j

)k+1
r j �

∑
j∈J1

(
1 − r j

)k+1
r j +

∑
j∈J2

(
1 − r j

)k+1
r j

� e−
1
2
∑
j∈J1

r j +
∑
j∈J2

r j

� e−
1
2 +

(
1 − e−

1
2

)∑
j∈J2

r j � e−
1
2 +

(
1 − e−

1
2

) 1
2

,

which is (14) with ĉB := 1+e−
1
2

2 . Therefore, combining (13) and (14) we deduce

E
(
|V2k+1|| Vk

)
� |Vk|(c̃A + (1 − c̃A)ĉB) =: c̃B|Vk|.

We remark that c̃B ∈ (0, 1) is independent of k. Thus, taking expectation, we deduce

E
(
|V2k+1|

)
� c̃BE

(
|Vk|

)
.

�

In particular, proposition 5.4 implies the desired convergence result.

Corollary 5.6. Algorithm 3.4 (model B) converges in expectation. That means

lim
k→∞

E
(
|Vk|

)
= 0, lim

(k,l)→(∞,∞)
E
(
‖yk − yl‖L∞(Ω)

)
= 0.
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Proof. Let k � 1, and n̄, k̄ be defined by

n̄ := sup {n ∈ N : 2n − 1 � k} , k̄ := 2n − 1.

Then, by proposition 5.4 we have

E
(
|Vk|

)
� E

(
|Vk̄|

)
� c̃n̄

B|Ω|,

which implies the first claim. The second claim follows by arguing as in the case of model A
in corollary 5.2. �

6. Regularity of the solutions

After having discussed the convergence in expectation of the algorithms from model A and
model B in the previous section, we now study their expected higher regularity properties.

Again we begin by considering model A first and then pass on to model B.

Theorem 4. There exists θA ∈ (0, 1) such that, for each (s, p) ∈ (0, 1) × [1,∞) satisfying
sp < θA we have that yk constructed as in algorithm 3.3 (model A) satisfies

E
(
‖∇yk −∇yk+1‖Ws,p(Ω)

)
� C2−kα

for some C,α > 0 depending on θA, p and M ∈ Kqc only.

Proof. Let us first recall that for any f ∈ Ws,p(Ω) we have

‖ f ‖p
Ws,p(Ω) = ‖ f ‖p

Lp(Ω) +

∫
Ω

∫
Ω

| f (x) − f (y)|p
|x − y|2+sp

dx dy.

Let us start by assuming that sp < θ0, where θ0 is as in theorem 2. On the one hand, since
∇yl(x) ∈ K for x ∈ Ω\Vl and any l � 0 (and as ∇yk will not be changed along the iteration on
that set any more) and as both K and Kqc are compact, we have

‖∇yk −∇yk+1‖
p
Lp(Ω) � c|Vk\Vk+1| � c|Vk|.

On the other hand, setting vk :=∇yk −∇yk+1 and using that ∇yk = ∇yk+1 on (
⋃

jB
j
k)c, we

observe that∫
Ω

∫
Ω

|vk(x) − vk(y)|p

|x − y|2+sp
dx dy �

∑
j

∫
B j

k

∫
B j

k

|vk(x) − vk(y)|p

|x − y|2+sp
dx dy

+ 2
∑

j

∫
B j

k

∫
(B j

k)c

|vk(x) − vk(y)|p

|x − y|2+sp
dx dy.

(15)

The first term in (15) can be bounded thanks to theorem 2. Indeed,

∑
j

∫
B j

k

∫
B j

k

|vk(x) − vk(y)|p

|x − y|2+sp
dx dy �

∑
j

(
‖∇yk+1‖

p

Ws,p(B j
k)
+ ‖∇yk‖

p

Ws,p(B j
k)

)
.

Now building on the interpolation estimate (see [RZZ19, corollary 3])

‖u‖Ws,p(Ω) � ‖u‖1− 1
p

L∞(Ω)(‖u‖1−θ̃0
L1(Ω)

‖u‖θ̃0
BV(Ω))

1
p , (16)
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with θ̃0 = sp, as well as the estimates (see [DPR20, proposition 7.1] and [DPR20, lemma 7.1],
where in the latter |Ω| has to be replaced by Per(Ω))

‖∇uk‖BV(Ω) � C2k Per(Ω),

‖∇uk‖L1(Ω) � Cck|Ω|,
(17)

for some constant c ∈ (0, 1) which is independent of Ω and where uk is the deformation from
[DPR20], we obtain that for our deformation, by combining (16) and (17), we have for sp < θ0

(where θ0 > 0 is the regularity threshold from [DPR20] and theorem 2)

‖∇yk‖Ws,p(B j
k) + ‖∇yk+1‖Ws,p(B j

k) � C Per(B j
k)s|B j

k|
1
p−s. (18)

Hence, Cauchy–Schwarz and the fact that in the kth iteration step there are 2k sets B j
k in which

yk is modified, implies that

∑
j

∫
B j

k

∫
B j

k

|vk(x) − vk(y)|p

|x − y|2+sp
dx dy �

∑
j

‖∇yk‖
p

Ws,p(B j
k)
� Per(Ω)sp

2k∑
j=1

|B j
k|1−sp

� Per(Ω)sp2ksp|Vk\Vk+1|1−sp.

Regarding the second term in (15), exploiting the boundedness of the vk, we have for each
j that

∫
B j

k

∫
(B j

k)c

|vk(x) − vk(y)|p

|x − y|2+sp
dy dx � c

∫
B j

k

∫
(B j

k)c

1
|x − y|2+sp

dy dx

� c
∫
B j

k

∫
(

B
(

x,dist(x,∂B j
k)
))c

1
|x − y|2+sp

dy dx � c
∫
B j

k

∫ ∞

dist(x,∂B j
k )

1
r1+sp

dr dx

� c Per(B j
k) min {	 j

1, 	 j
2}1−sp � c Per(B j

k)sp|B j
k|1−sp.

Here the estimate in the second to last line is a consequence of the following considerations:
splitting

∫
B j

k

∫ ∞

dist(x,∂B j
k)

1
r1+sp

dr dx =
2∑

i=1

∫
Δi

j,k

∫ ∞

dist(x,∂B j
k)

1
r1+sp

dr dx

+
2∑

i=1

∫
Ti

j,k

∫ ∞

dist(x,∂B j
k)

1
r1+sp

dr dx,

where Δi
j,k denote the triangles and Ti

j,k the trapezoids from figure 8. Further, in the triangle

Δi
j,k in figure 8 we estimate from above by the estimate over the rectangle [0, 	 j

2] × [0, 	 j
2]:

∫
Δi

j,k

∫ ∞

dist(x,∂B j
k)

1
r1+sp

dr dx � 	 j
2

∫ 	
j
2

0
x−sp

1 dx1 =
1

1 − sp
	 j

2(	 j
2)1−sp,
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Figure 8. In order to estimate the Ws,p seminorm over B j
k × B j

k we split the rectangle
into the depicted four regions. In each of these regions the distance to the boundary is
explicitly given in terms of the Cartesian coordinates.

where we used that the integral with respect to r is given by a constant times dist−sp. Similarly,
for the trapezoids on the bottom in figure 8 we similarly estimate by

∫
Ti

j,k

∫ ∞

dist(x,∂B j
k )

1
r1+sp

dr dx � 	 j
1

∫ 	
j
2

0
x−sp

2 dx2 =
1

1 − sp
	 j

1(	 j
2)1−sp.

Thus, the integral is controlled by

max(	 j
1, 	 j

2) min (	 j
1, 	 j

2)1−sp � Per(B j
k) min (	 j

1, 	 j
2)1−sp.

Thus, by Hölder’s inequality and (18) we infer

∑
j

∫
B j

k

∫
(B j

k)c

|vk(x) − vk(y)|p

|x − y|2+sp
dx dy � c

∑
j

Per(B j
k)sp|B j

k|1−sp

� c

(∑
j

Per(B j
k)

)sp(∑
j

|B j
k|
)1−sp

� c
(
2k
)sp|Vk|1−sp.

By collecting all the above estimates we obtain for c = c(Per(Ω)) > 0

‖∇yk −∇yk+1‖
p
Ws,p(Ω) � c2ksp|Vk\Vk+1|1−sp + c2ksp|Vk|1−sp, (19)

which by taking the expected value and by proposition 5.1 becomes

E

(
‖∇yk −∇yk+1‖

p
Ws,p(Ω)

)
� c

(
2k
)sp(

c̃k
A|Ω|

)1−sp
.

Therefore, choosing θA := sp ∈ (0, θ0) such that 2θA · c̃1−θA
A < 1, we deduce the existence of

α > 0 satisfying

E

(
‖∇yk −∇yk+1‖

p
Ws,p(Ω)

)
� c2−αk.

�
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Arguing similarly as for model A, regarding model B we have:

Theorem 5. There exists θB ∈ (0, 1) such that, for each (s, p) ∈ (0, 1) × [1,∞) satisfying
sp < θB we have that yk constructed as in algorithm 3.4 (model B) satisfies

E
(
‖∇yk −∇y2k+1‖Ws,p(Ω)

)
� C2−α log2(k+1)

for any k � 1, and for some C,α > 0 depending on θA, p and M ∈ Kqc only.

We remark that for k = 2l − 1 it holds that 2k + 1 = 2l+1 − 1 and 2−α log2(k+1) = 2−αl.
Hence, we may consider the subsequence ỹl := y2l−1 to obtain an estimate of the same form
as in theorem 4.

Proof. The proof follows the approach devised in the proof of theorem 4. Again, we start by
assuming that sp < θ0, where θ0 is as in theorem 2. Then, by arguing as in the proof of theorem
4 we deduce

‖∇yk −∇y2k+1‖
p
Ws,p(Ω) � c Per(Ω)sp(k + 1)sp|Vk\V2k+1|1−sp

+ c

⎛
⎝ 2k+1∑

j=k+1

per(B j)

⎞
⎠

sp

|Vk|1−sp

� c per(Ω)sp(k + 1)sp|Vk\V2k+1|1−sp

+ c(k + 1)sp|Vk|1−sp,

where, in order to infer the estimate for the Ws,p semi-norm, we bound the difference of ∇yk −
∇y2k+1 in the differentB j, with j ∈ {k + 1, . . . , 2k + 1}, rather than in the setsB j

k. Thus, taking
the expected value and using the estimate from proposition 5.4, we arrive at

E

(
‖∇yk −∇y2k+1‖

p
Ws,p(Ω)

)
� c

(
(c̃n̄

B|Ω|)1−sp(k + 1)sp

+ (k + 1)sp
(
c̃n̄

B|Ω|
)1−sp

)

� c
(

2θB · c̃
n̄
n (1−θB)
B

)n
,

where n := log2(k + 1), n̄ := �n� and θB = sp. Since n̄
n � 1

2 , whenever k � 1, by choosing

θB := sp ∈ (0, θ0) such that 2θB · c̃
1
2 (1−θB)
B < 1, we thus infer the claimed result. �

7. Almost sure convergence and higher regularity

In sections 4–6 we have established estimates on solutions, their regularity and their conver-
gence in expectation. As a consequence of these results we further obtain convergence along
sequences for μ-almost every sequence produced by the algorithms.

The following theorem converts the results on expectations of theorem 4 into a statement
on μ-almost every sequence.

Theorem 6. Consider algorithm 3.4 and let μ be as in lemma 4.2 (or algorithm 3.3 and μ
as in lemma 4.3). Then there exists α′ > 0 such that for μ-almost every sequence (x1, d1, . . .)
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obtained in the algorithm, there exists K < ∞ (depending on the sequence) such that for all
k � K it holds that

‖∇yk −∇yk+1‖Ws,p(Ω) � C̃2−α′k, (20)

for some constant C̃ independent of k (in the case of algorithm 3.3 we estimate ∇y2k−1 −
∇y2k+1−1 instead). In particular, μ-almost every generated sequence {yk}k∈N is Cauchy in
W1+s,p(Ω) and has a limit y ∈ W1+s,p(Ω). The function y satisfies the differential inclusion
problem (5).

Proof of theorem 6. In theorem 4 we had shown that there exists α > 0 such that

E(‖∇yk −∇yk+1‖Ws,p(Ω)) � C̃2−αk.

Let now 0 < α′ < α and define C > 1 such that 2−α′k = Ck2−αk. Then by Chebychev’s
inequality it holds that

μ({(x1, d1, . . . ) : ‖∇yk −∇yk+1‖Ws,p(Ω) � 2−α′k}) � C̃C−k.

In particular, given K ∈ N we may define the exceptional sets

UK =
⋃
k�K

{(x1, d1, . . . ) : ‖∇yk −∇yk+1‖Ws,p(Ω) � 2−α′k}

and by subadditivity of the measure and the geometric series we obtain that

μ(UK) � C̃
∑
k�K

C−k = C̃C−K 1
1 − C−1

.

Thus for every ε > 0 we may find K ∈ N sufficiently large such that μ(UK) � ε and therefore

Wε := (Ω× {1, 2})N\UK

has measure at least 1 − ε and by construction of Wε the estimate (20) holds for each sequence
in Wε for all k � K.

Let now ε j be some sequence with ε j → 0 and define

W =
⋃

j

Wε j .

This set has full measure since

μ((Ω× {1, 2})N\W) � inf
j
μ((Ω× {1, 2})N\Wε j) � inf

j
ε j = 0,

and therefore any sequence μ-almost surely is in W. By construction, for any (x1, d1, . . .)
∈ W there exists ε j and hence K such that (20) is valid for k � K.

As a consequence, ∇yk →∇y in Ws,p(Ω) for μ-almost every sequence constructed in
algorithm 3.3 and y ∈ W1+s,p(Ω) ∩ W1,∞(Ω) μ-almost surely.

In order to observe that ∇y ∈ K for μ-almost every sequence (x1, d1, . . .), we argue anal-
ogously: by proposition 5.1 we have that E(|Vk|) � ck for some c ∈ (0, 1). Then, as above,
Chebychev’s inequality again yields that for some d > 1

μ({(x1, d1, x2, d2, . . . ) : |Vk| � dkck}) � d−k.
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Given K ∈ N, we again define exceptional sets

ŨK =
⋃
k�K

{(x1, d1, . . . ) : |Vk| � (dc)k},

and obtain that

μ(ŨK) � d−k 1
1 − d−1

.

Defining sets W̃ε and W̃ as above, and noticing that the union of two null sets is again a null
set, concludes the proof in the case of model A.

The result for algorithm 3.4 follows analogously from theorem 5. �

Proof of theorem 1. The proof of theorem 1 is an immediate consequence of theorem 6. �

8. Simulations

In this final section, we discuss the numerical implementation of our models from algorithms
3.3 and 3.4 and compare it to the results in [BCH15] and [TIVP17] on the one hand and to our
simulations from [RTZ18] on the other hand.

8.1. Strategy

In order to run the simulations, we perform the two following simplifications to our models,
which significantly reduce the computational cost of the algorithms.

Change 1. For model A we change the definition of the sets B j
k whenever δ	 j

d j
k

� 	 j

(d j
k)⊥

(this

is the degenerate case). In this case we define α j
k :=

	
j

(d j
k )⊥

	
j

d
j
k

, N j
k =

⌊
δ

α j
k

⌋
and

B j
k :=

{
x ∈ D j

k : x · e
d j

k
∈ p j

k · e
d j

k
− δ j

kN j
k	

j

(d j
k)⊥

, p j
k · e

d j
k
+ (1 − δ j

k)N j
k	

j

(d j
k)⊥

}
,

where

δ j
k := arg min

{∣∣∣∣s − 1
2

∣∣∣∣ : s ∈ (0, 1) and both p j
k

− sN j
k	

j

(d j
k)⊥

e
d j

k
, p j

k + (1 − s)N j
k	

j

(d j
k)⊥

e
d j

k
∈ D j

k

}
.

See figure 9 for an illustration. Similarly, for model B we set αk :=
	

(dk )⊥
	dk

, Nk =
⌊

δ
αk

⌋
and

Bk :=
{

x ∈ C(Vk−1, pk) : x · edk ∈ pk · edk − δkNk	(dk)⊥ , pk · edk

+ (1 − δk)Nk	(dk)⊥
}

,
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Figure 9. If δl j

d j
k

� l j

(d j
k )⊥

, that is, in the degenerate case, in the algorithms 3.3 and 3.4

we prescribed that we cover all of D j
k. In order to simplify the numerical implementation

we modify our construction to instead insert a maximal number of copies of the building
blocks (in this example N j

k = 3).

Figure 10. The vertical building blocks: the thin needle structures in their actually used
size (left) and a blown-up version of this (right). The illustration shows the building block
after several iterations of the convex integration scheme. We have used the parameters
M ≈ diag(0.939, 1.064), δ = 0.05, γ = 0.5.

whenever δ	dk � 	(dk)⊥ . Again, here

δk := arg min

{∣∣∣∣s − 1
2

∣∣∣∣ : s ∈ (0, 1) and both

pk − sNk	(dk)⊥edk , pk + (1 − s)Nk	(dk)⊥edk ∈ C(Vk−1, pk)

}
.

We remark that, in both cases, one can repeat exactly the same proofs as in section 5, where
the only difference here is that

c̃A := max
{

p+ (1 − p) max{2−1, (1 − δ)}, (1 − p)

+ p max{2−1, (1 − δ)}
}
∈ (0, 1).

That means, this change deteriorates the rate of convergence in the case that δ > 1
2 .

Change 2. We define

Ω1 = (0, 1) × (0, δ), Ω2 = (0, δ) × (0, 1),
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Figure 11. The random convex integration solution produced by algorithm 3.3 (left) and
a random packing without interior structure generated by the same random covering
arguments as in algorithm 3.3 (right) for M ≈ diag(0.939, 1.064), δ = 0.05, γ = 0.5.
By using the building blocks from theorem 2, the structures which are obtained in the
limit k →∞ of the algorithm 3.3 become exactly stress-free solutions to the differential
inclusion (5). The illustration shows the microstructure after 11 iterations of the covering
procedure. Thus, we have inserted roughly 2000 building block structures according to
the iteration rules of algorithm 3.3.

Figure 12. The random convex integration solution for the boundary data
M ≈ diag(0.939, 1.064), δ = 0.05, γ = 0.5 produced by algorithm 3.4 (left) and
a random packing without interior structure generated by the same random covering
arguments as in algorithm 3.4 (right). As in the setting of the algorithm 3.3 the fact that
we rely on building blocks with convex integration structure implies that in the limit
k →∞ the deformations are exactly stress-free solutions to the differential inclusion
(5). In the illustration here we have iterated the algorithm roughly 1000 times and
have thus introduced roughly 1000 covering rectangles. Due to the iteration scheme of
algorithm 3.4 the covering boxes are distributed much more uniformly than in algorithm
3.3 and, on average, cover a larger volume fraction of the domain after the same number
of boxes have been introduced.

and we construct, following [DPR20], two solutions z1, z2 ∈ W1,∞(Ωi;R2) ∩ W1+s,p(Ωi;R2) to

∇u ∈ K a.e. inΩi,

u = Mx on∂Ωi,

for i = 1, 2, and where K is given by (3) and M ∈ Kqc. Here, as in theorem 2, θ0 ∈ (0, 1) and
(s, p) ∈ [0, 1) × (1,∞) are arbitrary and such that sp < θ0. Then, every time we have to make
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Figure 13. Histograms of length scales of inclusions from the algorithms 3.3 and 3.4
with parameters M ≈ diag(0.939, 1.064), δ = 0.05, γ = 0.5. The particular implemen-
tation is exact, in the sense that the algorithm terminates only when it is impossible
to generate an inclusion of length greater than 10−2, which is the range shown. In both
cases, the histograms are generated over 10 realisations. Fitting curves are found by least
squares regression of the histograms, using only the data range of 10−1 to 10−2 to avoid
noise during the burn-in of the algorithm.

a replacement construction in the rectangle B (that is in one of the rectangles B j
k in model A,

or in one of the rectangles Bk for model B) we argue as follow:

(a) IfB = c0 + λΩi for some c0 ∈ R
2, λ ∈ (0, 1], then we set yk(x) = λzi

( x−c0
λ

)
inB. Indeed,

we remark that, in B, zB(x) :=λzi

( x−c0
λ

)
satisfies ∇zB ∈ K a.e., zB(x) = Mx on ∂Ω.

Therefore, the convergence of the model to the desired limiting stress free deformation
is not affected by this change.

(b) If B �= c0 + λΩi for any c0 ∈ R
2,λ ∈ (0, 1], according to the changes to the model

in the above paragraph, we have the existence of c0 ∈ R
2,λ ∈ (0, 1], N ∈ N such that

B =
⋃N−1

n=0 (c0 + nλei + λΩi). In this case, as in the above one, we set yk(x) =

λzi

(
x−c0−nλei

λ

)
for any c0 + nλei + λΩi and n = 0, . . . , N − 1. Again the convergence of

the algorithm to the desired limiting stress free deformation is not affected by this change.

The outlined modifications of the algorithms thus have the computational advantage that
in the degenerate case it suffices to have the two ‘standard’ convex integration solutions z1, z2

which can be inserted into the covering instead of having to produce new convex integration
solutions for each aspect ratio. This is a substantial numerical improvement, since the produc-
tion of the convex integration building blocks is the computationally most expensive part in our
simulations. As explained in the appendix D this change does not effect changes in our theo-
retical regularity estimates for the solutions: the presented numerics illustrate our theoretically
findings that while probabilistically the limiting configurations are equivalent, the convergence
behaviour of the algorithms is very different.

8.2. Output of the simulations and comparison

In this section, we present some of the output of our simulations of the described algorithms 3.3
and 3.4. As explained above, this combines a random covering by horizontal or vertical rect-
angles of a fixed width-to-length ratio δ > 0 and the filling of these by the convex integration
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Figure 14. Histogram of length scales for the convex integration algorithm using the
parameters M ≈ diag(0.939, 1.064), δ = 0.05, γ = 0.5. This corresponds to the positive
definite square root of C1 for the parameters λ, μ = 0.1 in the construction of [DPR20].
The histogram is shown with a fit of the form 2.47

x2.107 , obtained by linear regression on the
log–log histograms, using only data between 3.5 × 10−4 to 10−2 to avoid noise from
burn-in. The data is exact on the data shown, in the sense that the implementation only
terminates when all possible inclusions of length scale greater than 3.5 × 10−4 have been
generated.

Figure 15. Example of the dyadic packing, showing two lineages.

building blocks from theorem 2. For given boundary data M ≈
(

0.939 0
0 1.064

)
, δ = 0.05

and γ = 0.5, the horizontal and vertical convex integration building blocks are illustrated in
figures 5 and 10, respectively.

For the algorithm 3.3 this yields structures as depicted in figure 11 left. Here fractal struc-
tures emerge similarly as in [BCH15, CH18] and [TIVP17] with the main difference that the
use of convex integration building blocks results in a stress-free solution in the limit k →∞
(which thus involves further fine length scales in the building blocks from theorem 2).
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For the algorithm 3.4 we also obtain highly fractal structures (see figure 12). As already
observed in [CH18], after inserting the same number of rectangles, these however are more
homogeneous than the ones from algorithm 3.4. Compared to the illustrations in [CH18] this
is still strongly observable but possibly slightly less pronounced in our illustrations than in
[CH18] due to the presence of a finite width.

8.3. Length scale statistics obtained in the algorithms 3.3 and 3.4

In order to eventually compare our results to the experimental data (see for instance [VOM94,
CMO98], where universal exponents are obtained for each phase transformation), below we
present length scale statistics of our solutions after a finite number of iterations of our algo-
rithms. Here as a measure of the lengths we consider the long side of the rhombi-constructions
as a respective measure. The distribution of the lengths involved in the random covering is
analogous to the ones obtained in [CH18] or [TIVP17]. Further, finer length scales are how-
ever involved in the individual rhombi-building blocks (which themselves are obtained through
iterative algorithms, see for instance [DPR20] or [RZZ18], which here are illustrated up to a
third order iteration). Due to the use of the ‘infinite iteration building blocks’ in the rhombi-
constructions (see [RTZ18] for this notation), we however remark that while these statistics
may eventually serve as a comparison to the experimental data, they are not directly linked to
the regularity exponents of the convex integration solutions as in the case of the ‘finite convex
iteration building blocks’ which had been discussed in [RTZ18].

8.4. Combined length scale distributions

A quantity that is of considerable experimental interest is the number and strength of acoustic
emissions during the nucleation process [PMV13, VOM94]. It is believed that this is related to
the length scale distribution of the microstructure which emerges upon nucleation [CH18]. In
order to eventually allow for comparisons of our theoretic findings with experimental results,
we also analyse this quantity and present some numerical experiments on its computation.

In our algorithms essentially two length scale distributions enter in the computation of the
overall length scale distribution: on the one hand, we consider the lengths scales of the outer
random packing (this essentially has the same distribution as the length scale distribution from
[TIVP17]). On the other hand these also have an internal length scale distribution, since there
is structure also within our building blocks. The inner structure in turn is again determined
by two lengths scale distributions which consist of a covering of the given domain by model
rectangles and the covering of the model rectangles by the rhombi-constructions.

A heuristic computation shows that in general the length scale distribution will be given by a
competition of the involved length scales. We next discuss this for the case of two nested scales:
let us assume that for y ∈ (0, 1) the length scale distribution of the outer blocks is described
by a function f(y) which counts the number of blocks (of ratio δ) of size y (in this back-of-
the-envelope calculation we exclude the degenerate setting). Let us further suppose that each
block of the size (0, 1) × (0, δ) has an interior length scale distribution modelled by a function
g(x) which assigns to every structure of length scale x the number g(x) of such scales (again
we assume that there is a certain non-degeneracy of our structures here). Thus, for every fixed
outer structure of the size (0, y) × (0, δy) (up to translation), by scaling, the inner structure has
a length scale distribution given by g( x

y ).
As a consequence, the overall number of structures of lengths x are roughly given by

1∫
0

f (y)g( x
y )dy. If both distributions f , g are power laws, e.g. f(y) = yα, g(x) = xβ , we thus infer
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that

1∫
0

f (y)g

(
x
y

)
dy = c(α, β)xβ(1 − xα+1−β) ∼ max{xα+1, xβ}. (21)

Numerically, we observe that, indeed, at least at our finite numerical resolution of the ran-
dom convex integration scheme, the length scales can be well-approximated by power laws:
considering the boundary data

M ≈
(

0.939 0
0 1.064

)
,

δ = 0.05 and γ = 0.5 we obtain the following length scale distributions:

(a) The histogram of the length scale distribution inside a diamond building block (as in
figure 10) is shown in figure 14. A least square fit gives g(x) ∼ Cx−2.107.

(b) Using this diamond we dyadically fill a rectangle as in figure 15, which yields a length
scale distribution f(y) ∼ Cy−1 (see lemma A.1 below for a more detailed argument).

(c) These rectangles then serve as building blocks in our stochastic packing, which itself
exhibits length scale distributions hA(z) ∼ Cz−1.49 and hB(z) ∼ Cz−1.48 (see figure 13) for
the algorithms 3.3 and 3.4, respectively.

The combination of the first two items (a) and (b) provides the overall length scale
distribution of the building block constructions from theorem 2.

Inserting the described distributions into (an iterated version of) (21), we obtain an overall
power law with exponent α = −2.107. It is thus the length scale of the convex integration
building blocks which dominate the overall length scales in our model.

Although, in general, it is not yet proven that the functions f(y) and g(x) must be power
laws, we conclude from the back-of-the-envelope computation from above, that the details
of the interior structure and thus of the compatibility requirement has an interesting, mea-
surable impact on the experimentally measured length scale distributions in the described
covering algorithms. In particular including compatibility thus provides important new and
experimentally measurable information on the models of [BCH15, CH18, TIVP17].
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Appendix A. A covering result

For completeness, we here discuss the covering result used in section 8.4(b).

Lemma A.1. Consider an axis-parallel rectangle R of lengths 1 : δ and its greedy covering
by dyadically rescaled copies of our diamond domain (illustrated in figure 15). Then for any
n � 1 there are 8 · 2n diamonds with length scale 4−12−n+1.

Proof. We note that the largest diamond in the center has length scale 1 and covers 1
2 of

the total volume. In each of the four remaining regions we then insert two copies of diamond
rescaled by a factor 1

4 , which corresponds to the case n = 1. As illustrated in figure 15 starting
from each of these 8 diamonds we obtain a tree-like structure of 2n diamonds rescaled by a
factor

(
1
2

)n
, which concludes the proof.

We remark that by the same argument at step N we have covered a total volume

1
2
+

1
2

N∑
n=1

2n4−n = 1 − 2−N−2,

while the size of the boundary grows proportionally to N. �

Appendix B. On the equivalence of the limits produced in algorithms3.3 and 3.4

In this section we show that algorithm 3.4, where we randomly pick points according to volume,
and algorithm 3.3, where pick points in each connected component, converge to the same limit
and have ‘equivalent’ probability distributions after reordering.

However, we stress that while their limit is the same, their convergence properties, speed
of convergence, behaviour after finitely many steps and other qualitative properties are very
different. Thus, similarly to numerical schemes which both recover a solution, when viewed
as a process or approximation scheme these algorithms are very distinct (as illustrated in our
numerical implementations from section 8).

Remark B.1 (Necessity of reordering). We remark that while algorithm 3.3 produces
the same distribution of rectangles in the limit, it does not recover the ordering of insertions of
algorithm 3.4. Indeed, consider a sequence of points (and corresponding rectangles) generated
by algorithm 3.4 as pictured in figure 16. Then the point x1 and its associated rectangleB1 bisect
the domain Ω into two connected components of (in most cases) different volume. Hence the
point x2 is more likely to be placed in the larger connected component. In this case, only at a
later point, almost surely after sufficiently many steps a point xn will be inserted in the other
connected component (lemma B.3). In contrast to this, in algorithm 3.3 we first insert a point
x1 by the same equidistributed measure as in algorithm 3.4 and then insert the points x1

2, x2
2 in

the generated connected exponents at the same time. We thus cannot recover the asymmetry
of the ordering due to the different volumes present in algorithm 3.4 in any way. Therefore, it
is not possible to construct a bijection between the two algorithm without reordering.
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Figure 16. Samples of finite steps of the algorithms. In algorithm 3.3 (left) at each step
points are picked each connected component. In algorithm 3.4 (right) we instead ran-
domly pick points equidistributed by volume. Hence, it can happen that many steps are
required before a point is inserted in a given connected component.

In order to rigorously state our bijection which is compatible with the probability dis-
tributions of the algorithms we will make use of stopping times, construct suitable random
variables and establish a correspondence of the probability distributions. This is necessary,
since the algorithms 3.3 and 3.4 are defined on different probability spaces. However, before
discussing this rigorously let us informally outline the strategy of constructing the bijection.
This is illustrated in figures 16–18:

(a). We consider the infinite sequence of points x j and associated rectangles B j generated
by algorithm 3.4 as pictured in figure 16. In particular, this keeps track of the order of
insertion of the individual rectangles B j.

(b). To each finite sequence x1, . . . , xN we then associate a tree structure as in figure 17.
That is, points inserted in a connected component C(V j) generated by x j are descendants
of x j.

(c). Given any point x j and the connected components C(V j) it (newly) generated, we note
that after a possibly large number of steps, a point will be picked in this component with
positive probability bounded below. Thus, almost surely after finitely many steps a point
will have been inserted in each connected component. In terms of the tree this means
that almost surely at each level n of the tree all possible nodes will be populated.

(d). In the notation of figure 17 our mapping then associates all points (and associated rect-
angles) at level n of the tree associated with algorithm 3.4 to the points x1

n, x2
n, . . . , x2n

n

generated by algorithm 3.3.
(e). In both cases, the points coupled through the bijection are picked uniformly according to

volume in each connected component and thus obey the same (conditional) probability
distribution.

It remains to make this construction rigorous. To this end, we first introduce the following
definition of a tree generated by a sequence of points generated by algorithm 3.4. In addi-
tion to illustrating the placement of rectangles, here empty nodes keep track of the number of
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Figure 17. Trees associated to the sequences of figure 16. The root of the tree is given by
x1 and a node x j is inserted as a child of xi, i < j if x j is placed in a connected component
newly generated by xi. Here the edges connecting to empty nodes as in definition B.2
are not pictured.

Figure 18. Tree with empty edges. This tree corresponds to the sequences of rectangles
given in figure 16 (right) and includes empty edges according to definition B.2. We note
that it is filled up to level 2 but not further. Thus, this sequence has been stopped before
the third stopping time τ 3.

connected components generated by inserting a given rectangle. A version of the tree of
figure 17 (right) with these empty nodes is depicted in figure 18.

Definition B.2. Given a finite sequence of points and directions (x j, d j) and associated
rectangles B j we associate a tree to it as follows:

• The root of the tree is given by x1 (which we identify with its generated rectangle B1).
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• If the insertion of the rectangle B1 generated two new connected components, we add to
the tree two child edges with, at this time, empty nodes. This is the most common case
since the rectangle B1 tends to bisect the region it is inserted in.

• If the insertion of B1 generated only one connected component (because it touches the
boundary of the region it is inserted in with three sides) we only introduce one edge (and
one empty node).

• If B1 fully covers the region it is inserted in, we introduce no edges (and no empty nodes).
• We next insert a rectangle B2 according to algorithm 3.4 in one of the connected com-

ponents and place x2 as a child of the node x1 (filling up from the left in the graphical
representation), thus replacing one of the previously placed empty nodes. Inserting the
rectangleB2 then again generates 2, 1 or 0 new connected components and we insert edges
starting at x2 and empty nodes, accordingly.

• For any later point x j+1 and associated rectangle B j+1 we insert it as child of the rectangle
which generated the connected component it was placed in, thus replacing a previously
empty node. We also add edges and empty nodes according to the number of connected
components generated.

While each node may thus have 2, 1 or 0 children, with slight abuse of notation we refer to
this construction as a binary tree. We say that this tree is filled at level n if none of the nodes
placed at level n is empty.

The following lemma defines stopping times τ n such that the process stopped at that time
generates a tree which is fully populated until level n. In particular, we show that this almost
surely is the case after finitely many steps.

Lemma B.3. Consider the random sequence of points and directions (x j, d j) j∈N and its
associated rectangles (R j) j∈N generated by algorithm 3.4. Formally define the stopping times
τ n, n � 1 as the minimal step number N such that the tree generated by the sequence up to
step N is filled at all levels less or equal than n. Then τ n are well-defined stopping times and
are almost surely finite. Moreover, if we denote rectangles, points and directions picked at
level n of the tree by R1

n, . . .RJ(n)
n ⊂ Ω, y1

n, . . . , yJ(n)
n ∈ Ω and d̃1

n, . . . , d̃J
n ∈ {1, 2}, then these are

random variables with respect to the process stopped at the time τ n.

Proof of lemma B.3. We show by induction that τ j indeed defines a stopping time and is
finite almost surely.

Since the first inserted rectangle generates the root of the tree (which is level 1), τ 1 = 1 is
deterministic and thus trivially well-defined and finite.

Thus suppose that τ j is a stopping time and finite almost surely. Then by assumption, up
to null-sets, we may restrict ourselves to considering only sequences on which τ j is finite.
We now consider τ j+1 on such a sequence. Then for any finite n > τ j we can construct a tree
associated to the sequence as in definition B.2 (see also figure 17). In particular, we can easily
check whether this tree satisfies our condition that the level j + 1 has been filled (all lower
levels are filled by the definition of the previous stopping time τ j). Moreover, this property
only depends on the finite sequence. Therefore τ j+1 ∈ N ∪ {∞} is a well-defined hitting time,
which is a standard example of a stopping time.

It thus only remains to show that τ j+1 is almost surely finite. For this purpose we consider
conditional probabilities. That is, given any finite stopping time τ j = n (which are all cases
except for a set of probability zero) and a sequence (xk, dk)k�n with this stopping time, we
consider the generated connected components C(V j). Let x j1 , . . . , x jr denote the points at level
j of the associated tree. By assumption this level of the tree is fully populated. If also all
descendants at level j + 1 are fully populated, we have already hit the stopping time τ j+1.

4880



Nonlinearity 34 (2021) 4844 F Della Porta et al

Thus suppose, that this is not yet the case and let Ω̃ correspond to an empty node at level j + 1
(i.e. Ω̃ as not yet been hit by the algorithm. Then the probability that it is chosen in the next

step i is given by |Ω̃|
|Vi| . Since Vi is decreasing in i ∈ N, after N further steps the probability that

Ω̃ is still not hit is bounded above by

(
1 − |Ω̃|

|Vi|

)N

,

which converges to zero as N →∞. Conversely this means that a point will be picked in Ω̃ for
some finite N almost surely and, since Ω̃ was arbitrary, for all connected components almost
surely at least one point will be picked after finitely many steps. Using the structure of the (finite
step) probability measure in terms of the conditional probability measures, it follows that also
after integrating with respect to (x j, d j) j�n (with stopping time τ j = n) the (unconditional)
probability that we do not hit the stopping time τ j+1 after finitely many steps is zero. Thus
τ j+1 is finite almost surely, which completes the induction step.

Finally we note that for the stopped processes (x j, d j)
τn
j , the nodes of the tree at level n are

exactly the points generating the rectangles (Ri
n)i which is our desired random variable. �

The stopping times and rectangles of lemma B.3 thus provides a candidate for the desired
bijection (up to ordering) between the algorithms 3.3 and 3.4. In the following proposition
we show that this mapping indeed obeys the provides a coupling between the algorithms
compatible with the probability distributions of both algorithms.

Proposition B.4. Consider the random variables generated by the stopping times τ n with
n ∈ N. Then the corresponding distributions of the set of points at level n obey the same law
as the points generated by algorithm 3.3. More precisely, let y1

1, . . . , yJ(1)
1 , . . . , y1

n, . . . , yJ(n)
n and

d1
1, . . . , dJ(1)

1 , . . . , d1
n , . . . , dJ(n)

n be the points and orientations from lemma B.3. Then these have
the same distribution as the points x1, x1

2, xJ(2)
2 , . . . , x1

n, . . . , xJ(n)
n from algorithm 3.3 (in the

notation of figure 17).

Proof. The first point x1 is picked uniformly at random from the full domain Ω in both
algorithms 3.3 and 3.4 and thus this statement is true for n = 1.

We next show by induction that the probabilities of the newly picked points at level n + 1
agree. More precisely, by the induction assumption we know that the points up to level n are
picked according to the same law. We will then show that the conditional probabilities of the
placement of points at level n + 1 given the placement at level n agree in law, from which we
can the deduce equality of the unconditional laws.

Let thus x1, . . . xi
n be one such choice up to level n and consider the conditional probability

of the points picked at level n + 1. By construction of the stopping time a point will be picked in
each connected component generated by x1, . . . xi

n. Furthermore, since these are the first points
inserted in each component they are equidistributed inside each such component. However, this
is exactly the (conditional) law imposed in the definition algorithm 3.3 for placing the points
x j

n+1 given a prior choice of points x1, . . . xi
n. Thus, the conditional probability is indeed given

by the same law.
Finally, we note that the full law is given by integrating the conditional probabilities against

the distribution of the points up to level n. By the induction assumption the distributions of
these points up to level n agree with the distributions generated by algorithm 3.3. Hence by
integration also the unconditional distributions agree, which concludes our proof. �
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Figure 19. Top: if the rectangle D j
k has aspect ratio 1 : L with 1 � L � δ−1 the inserted

rectangles are translates of (0, δ) × (0, 1) and (0, L) × (0, Lδ). Center: if the aspect ratio
is too long, that is L > δ−1, a rectangle (0, L) × (0, Lδ) is too tall to fit. We thus instead
insert a translate of (0, δ−1) × (0, 1). Bottom: if the aspect ratio satisfies 1

2δ
−1 � L �

2δ−1 we only modify the quadrant Q ⊂ D j
k which contains the picked point p j

k. More
precisely, we use the constructions on the top and center with D j

k replaced by Q.

Appendix C. On large aspect ratios and tail estimates

As remarked in section 3 in our algorithms 3.3 and 3.4 we opted to completely cover the
rectangle D j

k, if

	 j

d j
k

� δ−1	 j

(d j
k)⊥

,

that is, if the length of the rectangle in the direction e
d j

k
we picked is too long. This cut-

off simplifies the covering arguments and allows us to more easily deduce uniform bounds
on volume fractions which are iteratively covered (as proved for instance in propositions 5.1
and 5.4).

In the following we show that for a slightly modified version of our algorithm such a cut-off
is not required. These modifications are made precise in algorithm C.1 below and are illus-
trated in figure 19. All other, not explicitly defined quantities are defined in the same way as
in algorithm 3.3.

Algorithm C.1. We consider algorithm 3.3 but make the following two modifications with
respect to its dynamics:

(a) For each D j
k ∈ C(Vk−1) (which is a rectangle of side lengths 	 j

1, 	 j
2) we defineB j

k as follows.
If 	 j

d j
k

< 1
2δ

−1	 j

(d j
k)⊥

, we keep the previous definition:

B j
k :=

{
x ∈ D j

k : x · e⊥
d j

k
∈ (p j

k · e⊥
d j

k
− δδ j

k	
j

d j
k

, p j
k · e⊥

d j
k
+ δ(1 − δ j

k)	 j

d j
k

)

}
, (22)
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where δ j
k is chosen such that B j

k is contained in D j
k:

δ j
k := arg min

{∣∣∣∣s − 1
2

∣∣∣∣ : s ∈ (0, 1) and both p j
k

− s	 j

d j
k

e⊥
d j

k
, p j

k + (1 − s)	 j

d j
k

e⊥
d j

k
∈ D j

k

}
.

See figure 19 (top) for an illustration.
If δ	 j

d j
k

> 2	 j

(d j
k)⊥

, we cannot insert a translate of (0, 	 j

d j
k

) × (0, δ	 j

d j
k

), since (0, δ	 j

d j
k

) �⊂

(0, 	 j

(d j
k)⊥

). We thus instead insert a translate of (0, δ−1	 j

(d j
k)⊥

) × (0, 	 j

(d j
k)⊥

) according to the

following definition:

B j
k :=

{
x ∈ D j

k : x · e
d j

k
∈ (p j

k · e
d j

k
− λ j

kδ
−1	

(d j
k)⊥ , p j

k · e
d j

k
+ (1 − λ j

k)δ−1	
(d j

k)⊥)
}

, (23)

where

λ j
k := arg min

{∣∣∣∣s − 1
2

∣∣∣∣ : s ∈ (0, 1)

and both p j
k − sδ−1	(d j

k)⊥ed j
k
, p j

k + (1 − s)δ−1	(d j
k)⊥ed j

k
∈ D j

k

}
.

See figure 19 (center) for an illustration.
(b) Suppose that D j

k ∈ C(Vk−1) has lengths 	1, 	2 with δ−1/2 � 	1
	2

� 2δ−1 and we picked

d j
k = 1. Then we divide D j

k into four quadrants and consider only the quadrant Q which
contains the point p j

k which had been picked. All other three quadrants remain unchanged
and are added to the remainder set Vk+1. In the picked quadrant Q, we define B j

k

1. By the formula (22) (with D j
k replaced by Q) if δ−1 � 	1

	2
,

2. And by the formula (23) (with D j
k replaced by Q) if 	1

	2
� δ−1.

See figure 19 (bottom) for an illustration.

For simplicity of presentation in the following we further restrict to the case where the
horizontal and vertical directions are chosen with equal probabilities p = 1 − p = 1

2 .

Remark C.2. The first point (a) in algorithm C.1 is a relaxation of algorithm 3.3 where we
allow for rectangles with large aspect ratio also in the case of alignment with the replacement.
The condition (b) is a technical assumption which we do not expect to be necessary. It ensures
that we do not cover ‘too much’ volume, see lemma C.5 and remark C.8.

We show that for the modified algorithm C.1 in expectation only a (uniformly bounded)
fraction of the total volume is covered by very long rectangles while most of the volume is
covered by non-degenerate rectangles. In order to make this more precise we sort rectangles
into buckets according to their aspect ratio.

Definition C.3. Let Vk be a collection of rectangles (defined in algorithm C.1), let
0 < δ < 1 and 1 < λ be given and for simplicity of notation assume that δ = λ−J+1/2 for
some positive integer J ∈ N. We then say that a rectangle R ∈ Vk is in the class Cj, j ∈
{J, J − 1, . . . , 0,−1, . . .} ⊂ Z, if its aspect ratios 1 : L, L � 1 satisfies

λ− j−1/2δ−1 � L < λ− j+1/2δ−1.
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We note that Cl with l > 0 corresponds to aspect ratios 1 : L with 1 � L < δ−1λ−1/2 and Cl

with l < 0 corresponds to ‘long’ rectangles with aspect ratio L > δ−1λ1/2.
Furthermore, we introduce the corresponding volumes

Vk
j =

∑
R∈Vk :R∈C j

|R|.

We note that the total volume |Vk| satisfies

|Vk| =
∑

−∞� j�J

Vk
j =

∑
R∈Vk

|R|.

Our objective in the following is to show that if Vk is the random variable given by our
algorithm C.1, then there exists J1 < 0 such that for all k it holds that∑

j�J1

E(Vk
j ) � 0.1 E(|Vk|). (24)

We call this a tail estimate since it shows that the contribution of j � J1 (which corresponds
to long, thin rectangles) to the sum of the sequence (E(Vk

j )) j�J is small.
Supposing for the moment that this estimate holds, we deduce that the expectation of the

remaining volume decreases at an exponential rate.

Theorem 7. Suppose that for some J1 < 0 the random process generated by algorithm C.1
satisfies the estimate (24) for all k ∈ N. Let δ ∈ (0, 0.1) be the threshold from algorithms 3.3
and C.1. Then there exists c = c(J1, δ) ∈ (0, 1) such that for all k

E(|Vk+1|) � c E(|Vk|)

and, as a consequence,

E(|Vk|) � ck|Ω|.
We thus obtain similar results as in section 5.1 even without completely covering long

rectangles, however possibly with worse rates.

Proof of theorem 7. We recall that in algorithm C.1 we independently insert a building
block into each rectangle. For any given rectangle R (= D j

k ∈ Vk) we may thus compute the
expected volume fraction (of R) covered by the inserted building block and subsequently sum
over all rectangles. We note that, by scaling, this volume fraction only depends on the aspect
ratio of R which is comparable to λ−lδ−1 if R ∈ Cl.

We claim that there exists a sequence of coefficients c j ∈ (0, 1) (which is independent of k)
such that

E(|Vk|) − E(|Vk+1|) �
∑

J1< j�J

c jE(Vk
j ). (25)

We remark that the quantity on the left equals the total volume covered by building blocks
when passing from step k to k + 1 (since only building blocks are removed). In the following
we will thus have to estimate the expected volume fraction covered by building blocks for any
given rectangle R ∈ Vk. Before proving (25) let us discuss how it allows us to conclude our
proof. To this end, we may further estimate the right-hand side of (25) by invoking (24)

min(c j)
∑

J1< j�J

E(Vk
j ) � 0.9 min(c j)E(|Vk|).
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Inserting this estimate back into (25) we deduce that

E(|Vk+1|) � (1 − 0.9 min(c j))E(|Vk|),

which yields the result of theorem 7.
It hence remains to prove the claimed inequality (25). Let thus R be a given rectangle of

lengths 	1, 	2 and for simplicity of notation denote L = max(	1,	2)
min(	1,	2) � 1. Then after rescaling,

translation and possibly rotating by π
2 we may assume that

R = (0, L) × (0, 1).

Let j ∈ {. . . ,−1, 0, 1, . . . , J} such that R ∈ C j and hence

λ− j−1/2δ−1 � L � λ− j+1/2δ−1. (26)

We then estimate the expected volume covered by the inserted building block as follows:
If the direction e

d j
k

picked is vertical, e
d j

k
= e2, and L /∈ ( 1

2δ
−1, 2δ−1) then we insert a trans-

late of (0, δ) × (0, 1) into a rectangle (0, L) × (0, 1) (see figure 19 on the left side of the top and
center rows). If instead L ∈ ( 1

2δ
−1, 2δ−1), then by point (b) of algorithm C.1 we only modify

a quadrant and hence insert a translate of (0, δ/2) × (0, 1/2) (see figure 19 bottom). In both
cases we cover at most a volume fraction

δ

L
� λ j−1/2δ2 (27)

and recall that we picked the direction e
d j

k
= e2 with a probability 1

2 .

Suppose the direction picked is horizontal, that is e
d j

k
= e1, and let again without loss of

generality R = (0, L) × (0, 1) ∈ C j. Then we distinguish three cases:

• If L � 1
2δ

−1 (which implies that j � 0 in (26)), we insert a translate of (0, L) × (0, Lδ) and
hence cover a volume fraction Lδ � λ− j−1/2 = λ−| j|−1/2.

• If L � 2δ−1 (which implies that j � 0 in (26)), we insert a translate of (0, δ−1) × (0, 1)
and hence cover a volume fraction δ−1

L � λ j−1/2 = λ−| j|−1/2.
• Finally, if 1

2δ
−1 � L � 2δ−1 (which implies that | j| is small in (26)), we only modify R

inside a quadrant and hence may bound the volume fraction covered from above by 1
4 .

We thus cover at most a volume fraction max( 1
4 ,λ−| j|−1/2) and recall that we picked ed j

k
= e1

with probability 1
2 . Combining this estimate and (27), we may thus choose

c j =
1
2
δ2λ j−1/2 +

1
2

max

(
1
4

,λ−| j|−1/2

)
∈ (0, 1). (28)

This establishes the claimed inequality (25) and hence concludes the proof. �

Remark C.4. We remark that our computations of E(|Vk|) − E(|Vk+1|) in (25) are close to
being sharp. More precisely, given the aspect ratio of a rectangle R we can precisely compute
the expected volume fraction (of R) which is covered by the building block. Since in our buckets
C j we group ratios which differ by at most a factor λ±1, we may bound these volume fractions
from above and below by constants c∗j and c j which differ from each other by a factor at most
λ±1 (see lemma C.6 for a calculation of lower bounds).
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The remainder of this section is concerned with establishing the claimed estimate (24). More
precisely, we make the stronger claim that there exists a constant C > 1 (for our purpose the
constant can, for instance, be chosen to be C = 100) such that for all k � 0 and all j � J1 it
holds that

E(Vk
j ) � Cλ j

E(|Vk|). (29)

That is, rectangles with a very large aspect ratio comparable to λ| j|δ−1 cover an exponentially
decreasing amount of the total volume E(|Vk|). As j � J1 < 0 is negative, we may relate this
to the geometric series in 1

λ < 1 (starting at |J1|) and after possibly choosing J1 even more
negative it holds that

C
∑
j�J1

λ j = C
λJ1

1 − λ−1
� 0.1,

which implies the desired result (24). In order to prove (29) we proceed by induction using an
upper and a lower bound given by the following two lemmas.

Lemma C.5. Let Vk be as above. Suppose that (29) holds for a given k and C large
(C = 100) and λ = 1.1. Then for all j � J1 < 0 it holds that

E(Vk+1
j ) � 0.7Cλ j

E(|Vk|). (30)

Lemma C.6. Let Vk be as above. Then it holds that

E(|Vk+1|) � 0.7E(|Vk|). (31)

Remark C.7. We remark that a failure of the lower bound (31) corresponds to covering a
large volume fraction in a single iteration step of the algorithm, which at first sight seems
very desirable. However, by covering this large volume fraction we might possibly lose con-
trol of relative volume fractions (e.g. it might be that the tail is not anymore relatively small).
We believe that (31) remains true also for algorithm 3.3, but our current method of proof for
that case only allows to derive a suboptimal lower bound by 0.6E(|Vk|), which is not suf-
ficient to close the argument. For simplicity of presentation we hence opted to modify the
algorithm to cover a lower fraction in the ‘best case’ (leading to the condition (b) in algorithm
C.1). We comment on some partial results for the unmodified case at the end of this section in
remark C.8.

We emphasize that in contrast to lemma C.6 the result of lemma C.5 is valid for both
algorithms 3.3 and C.1 and, in particular, does not need the modifications from algorithm C.1.

The combination of lemmas C.5 and C.6 allows us to prove (29).

Proof of the claim (29) using lemmas C.5 and C.6. We note that initially, that is for k = 0,
Vk

j = 0 for all j � J1 and thus (29) is trivially satisfied. We then aim to proceed by induction.
Suppose that (29) holds for a given k and with λ = 1.1. Then by lemmas C.5 and C.6 it holds
that

E(Vk+1
j )

(30)
� C0.7λ j

E(|Vk|)
(31)
� Cλ j 0.7

0.7
E(|Vk+1|) = Cλ j

E(|Vk+1|),

and the estimate (29) therefore also holds for k + 1. We thus conclude by induction. �
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It remains to prove lemmas C.5 and C.6.

Proof of lemma C.5. We argue similarly as in equation (25) in the proof of theorem 7 and
estimateE(Vk+1

j ) in terms ofE(Vk
l ), l ∈ Z ∩ {m � J}. Here we use that every rectangle in Vk+1

is obtained as one of the connected components of a rectangle R ∈ Vk generated by inserting a
building block (see figure 19). More precisely, let j � J1 be arbitrary but fixed and let R ∈ Vk

be a given rectangle. As in the proof of theorem 7 after rescaling and rotation we may assume
that

R = (0, L) × (0, 1), L � 1.

Then given the random point p ∈ R and direction ed ∈ {e1, e2} we insert a building block
B = B(p, ed) ⊂ R, which divides

R\B =: R1 ∪ R2,

into two connected components R1 = R1(p, ed) and R2 = R2(p, ed) (if B touches the boundary
of R some of these components might be trivial). We then compute the contribution of R ∈ Vk

to E(Vk+1
j ) by determining for which p and ed it holds that R1 ∈ C j or R2 ∈ C j (and integrating

|R1| and |R2| with respect to the probability density) and finally sum over all R.
More precisely, we claim that for any j � J1 it holds that

E(Vk+1
j ) � (0.5λ j+1/2δ + 0.5λ j+1/2)E(Vk

�0)

+ δ2λ j+1/2
E(Vk

0�l> j)

+ (1 − λ−2)E(Vk
j )

+
∑
l< j

λ2l−2 j(1 − λ−2)E(Vk
l ).

(32)

Here we used the short-hand notation

E(Vk
�0) :=

∑
l�0

E(Vk
l ), E(Vk

0�l> j) :=
∑

0�l> j

E(Vk
l ).

Using (29) and the fact that C is large, we will argue that the main contribution on the right-
hand side of (32) is given by the last two terms. More precisely, inserting the estimate (29), the
last two contributions are controlled by

(1 − λ−2)
∑
l� j

Cλ2 j−3l
E(|Vk|) = Cλ− j 1 − λ−2

1 − λ−3
E(|Vk|).

In particular, we observe that

β(λ) :=
1 − λ−2

1 − λ−3
=

λ−1 + 1
λ−2 + λ−1 + 1

approaches 2
3 as λ approaches 1. Inserting these estimates into (32) and choosing λ = 1.1, we

may thus deduce that

E(Vk+1
j ) � λ j

(
δλ

1
2 + δ2λ

1
2 + 0.5λ

1
2 + 0.68C

)
E(|Vk|) < 0.7Cλ j

E(|Vk|),

provided C is sufficiently large compared to 0.5.
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It thus remains to prove the estimate (32). Let thus j � J1 be arbitrary but fixed. As discussed
above, for any R ∈ Vk we determine with which probability R1 and R2 are in C j by estimating
the probability of the associated sets of (p, ed). Using this, we compute the expectations of
|R1|1R1∈C j + |R2|1R2∈C j and then compare these to the volume |R| of R.

We remark that if the aspect ratio 1 : L, L � 1 of R satisfies 1
2δ

−1 � L � 2δ−1 and we are
thus in case (b) of algorithm C.1, then the rectangles R1, R2 are further rescaled by a factor 1

2

and hence cover 1
4 of the volume which they would else have occupied without this modifi-

cation. Since we only require upper bounds on |R1|1R1∈C j + |R2|1R2∈C j , this gain of a factor 1
4

only improves the estimates. Thus, for simplicity of notation in the following we establish the
stronger estimate for the algorithm without this second modification.

In the following let always R ∈ Vk and without loss of generality, after rescaling, rotating
and translating let

R = (0, L) × (0, 1)

with L � 1.
The contribution by Vk

�0: suppose that R is such that 1 � L � δ−1 (and hence R ∈ Cl for
some l � 0). We then want to estimate the volume of the generated rectangles R1, R2 if they
are in C j. Here we say that R1 (or R2) is vertical if it is a translate of (0, a) × (0, 1) for some
a ∈ (0, 1) (that is the e2 direction is the longest) and otherwise call it horizontal.

Let us first consider the case when R1 (or R2) is in C j and vertical. Then R1 is a translate of
(0,λ jδγ) × (0, 1) (see figure 19 left) with γ ∈ (λ−1/2,λ+1/2) (since the class C j was defined in
this way). We may thus roughly bound its volume fraction by

λ j+1/2δ

L
� λ j+1/2δ.

Next suppose that R1 (or R2) is in C j and horizontal. Then (by the definition of Vk
�0 and

C j as well as the replacements explained in algorithm C.1) R1 is a translate of (0, L) × (0,α)
(see figure 19 top right) with α

L ∈ (λ j−1/2δ−1,λ j+1/2δ−1) and thus in particular covers a volume
fraction less than

α � λ j+1/2.

The contribution by Vk
l with 0 � l > j: let again R ∈ Vk and suppose that δ−1 � L <

δ−1λ− j−1/2 (and thus R ∈ Cl, 0 � l > j). Since L � δ−1, the generated rectangles R1, R2 have
height 1 and are thus translates of (0,α) × (0, 1) for some α ∈ (0, L) (see figure 19 center). As
α < L < δ−1λ− j−1/2, it is not possible for R1 or R2 to be horizontal rectangles in C j (since α
is too small for the rectangles to be in C j). If R1 (or R2) is a vertical rectangle and in C j, it is
a translate of (0,λ jδγ) × (0, 1) with γ ∈ (λ−1/2,λ1/2) and hence covers a volume fraction at
most

λ jδγ

L
� λ j+1/2δ2.

The contribution by Vk
l with l � j: finally, let again R ∈ Vk and suppose that R ∈ Cl and

thus

λ−l−1/2δ−1 � L < λ−l+1/2δ−1.
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If the generated rectangle R1 (or R2) is vertical, it will only cover a volume fraction

δλ jγ

L
� δ2λ1+ j+l, (33)

which is negligible.
In the following we thus focus on estimating the expected volume fraction covered by R1

in C j being a horizontal rectangle (which by symmetry is the same volume fraction as covered
by R2). Here for concreteness we again fix

R = (0, L) × (0, 1)

and let R1 = R1(p, ed) be the rectangle generated on the left of the building block B which had
been removed from R (see figure 19).

The case l = j: by construction the building block B inserted depends on p only in terms of
its e1 component p1. We thus ask for which p1 (for given ed) it holds that R1 ∈ C j and require an
estimate of |R1(p1, ed)| in that case. Since p1 was chosen according to the Lebesgue measure,
we then can compute the volume fraction for a given ed′ by

E

(
|R1|
|R| : R1 ∈ Cj is horizontal, d = d′

)
=

1
|R|

∫ L

0
|R1(p1, ed′)|1R1∈C j

dp1

L

=
1
L2

∫ L

0
|R1(p1, ed′)|1R1∈C j dp1.

We first discuss the case when p1 is not close to 0 or L and the building block B is thus centered
at p (see the definitions of δ j

k and λ j
k in algorithm C.1). Then if ed = e1, B = (p1 − δ−1/2, p1 +

δ−1/2) × (0, 1) and R1 = (0, p1 − δ−1/2) × (0, 1). Similarly, if ed = e2, B = (p1 − δ/2, p1 +
δ/2) × (0, 1) and R1 = (0, p1 − δ/2) × (0, 1). Thus, for R1 to be in C j, we need that either
p1 − δ−1/2 ∈ (λ− j−1/2δ−1,λ− j+1/2δ−1) or p1 − δ/2 ∈ (λ− j−1/2δ−1,λ− j+1/2δ−1), respectively.

We remark that if B is not centered in p1, it touches the right-boundary.Hence, the generated
rectangle R1 will only be shorter than it would be otherwise and we may hence bound from
above by the previously derived formula.

Introducing the new variables of integration x1 = p1 − δ−1/2 � L or x1 = p1 − δ/2 � L,
we may thus bound

1
L2

∫ L

0
|R1(p1, ed)|1R1∈C j dp1 � 1

L2

∫ L

λ− j−1/2δ−1
x1 dx1

=
x2

1

2L2
|L
λ− j−1/2δ−1 .

(34)

We recall that by symmetry the volume fraction due to R2 on the right-hand side is of the same
size and we can hence estimate the full volume fraction by:

E

(
|R1|
|R| : R1 ∈ Cj is horizontal

)
+ E

(
|R2|
|R| : R2 ∈ Cj is horizontal

)

� x2
1

L2

∣∣∣∣
L

λ− j−1/2δ−1
= 1 −

(
λ− j−1/2δ−1

L

)2

.
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We recall that L ∈ (λ− j−1/2δ−1,λ− j+1/2δ−1) and thus this is zero if L is on the smaller end of
the range and bounded above by

1 − λ−2.

The case l < j: we argue analogously as in the case l = j except that the upper limit of the

interval of integration in the analogue of (34) is given by λ− j+1/2δ−1 < L instead: thus, in this
case,

E

(
|R1|
|R| : R1 ∈ Cj is horizontal

)
+ E

(
|R2|
|R| : R2 ∈ Cj is horizontal

)

� x2
1

L2

∣∣∣∣
λ− j+1/2δ−1

λ− j−1/2δ−1
=

λ−2 j+1δ−2 − λ−2 j−1δ−2

L2
.

Since L2 � λ−2l−1δ−2 and l � j − 1 this can be estimated by

λ−2 j+1 − λ−2 j−1

λ−2l−1
� λ−2 j+2l(1 − λ−2).

This concludes the proof of the claim (32) and thus of the lemma. �
It remains to prove lemma C.6. Due to the modification (b) in the definition of algorithm

C.1 we here obtain a very short, straightforward proof. Subsequently we discuss how to obtain
similar results for algorithm 3.3 using more sophisticated methods.

Proof of lemma C.6. We argue similarly as in the derivation of equation (25) and claim that
there exist constants such that we obtain the following upper bound on the volume covered:

E(|Vk|) − E(|Vk+1|) �
∑

j

c jE(Vk
j ), (35)

for constants c j > 0 which are independent of k. Since
∑

jE(Vk
j ) = E(|Vk|), a (possibly highly

suboptimal) upper bound of the right-hand side is given by

max(c j)E(|Vk|).

It hence follows that

E(|Vk+1|) � (1 − max(c j))E(|Vk|).

We now claim that due to the second modification in the definition of algorithm C.1 it holds
that max(c j) � 0.3 and the result hence follows.

In order to compute the constants c j, we again individually consider each rectangle R ∈ Vk

and after rescaling and possibly rotating by π
2 may assume that

R = (0, L) × (0, 1)

with L � 1. If we pick the vertical direction, ed = e2, (which occurs with probability 1
2 ), we

insert a translate of (0, δ) × (0, 1) and hence cover a very small fraction

δ

L
� δ.
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If we instead pick the horizontal direction, ed = e1, (which also occurs with probability 1
2 ),

we expect to cover a larger volume fraction of R. We distinguish three cases:

• If L < δ−1/2, the inserted rectangle is a translate of (0, L) × (0, Lδ) and hence covers a
volume fraction

Lδ � 1
2
.

See figure 19 top right.
• Similarly, if L � 2δ−1, we insert a translate of (0, δ−1) × (0, 1) and thus cover a volume

fraction

δ−1

L
� 1

2
.

See figure 19 center right.
• Finally, if δ−1

2 � L < 2δ−1, we are in the case (b) of algorithm C.1 (see figure 19 bottom).
As we only modify R inside one quadrant we cover at most

1
4

of the volume.

Thus, in all theses cases for ed = e1 we cover at most 1
2 of the volume.

Combining the estimates for ed = e2 and ed = e1 (each with probability 1/2), then yields
the bound

c j �
1
2
δ +

1
2

1
2
=

1
2
δ +

1
4
� 0.3,

provided δ � 0.1. �
Remark C.8. Finally, let us briefly comment on some additional challenges in carrying
out the tail estimates (29) without the quadrant modification (b) in algorithm C.1. Con-
sider a rectangle R ∈ Vk, R = (0, L) × (0, 1) with 1

2δ
−1 � L � 2δ−1 and suppose we picked

ed = e1. Then, if 1
2δ

−1 � L � δ−1, we insert a translate of (0, L) × (0, Lδ) and cover a frac-
tion Lδ ∈ [ 1

2 , 1]. Similarly, if δ−1 � L � 2δ−1, we insert a translate of (0, δ−1) × (0, 1) and

cover a fraction δ−1

L ∈ [ 1
2 , 1]. Therefore, the best naive upper bound for max(c j) as in the proof

of lemma C.5 we can achieve is given by

1
2
δ +

1
2

1,

and hence

E(|Vk+1|) �
(

1 − 1
2
δ − 1

2
1

)
E(|Vk|) =

(
0.5 − 1

2
δ

)
E(|Vk|).

Unlike the factor 0.7 obtained in lemma C.6 this estimate is not sufficient to close the inductive
argument for (29).

In order to improve this bound, we thus need to exploit that the estimate in terms of max(c j)
is very rough and not actually attained. Indeed, we may employ an approach similar to the one
of lemma C.5 to show that

E(Vk
0) � θE(|Vk|),
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for an explicit constant θ ∈ (0, 1). That is, only some part of the total volume is covered by
rectangles R ∈ C0. Then instead of bounding by max(c j) we may use

θ

(
1
2
δ +

1
2

1

)
+ (1 − θ) max

j�=0
c j.

Unfortunately, while these and further improvements allow us to deduce that E(|Vk+1|) �
0.6E(|Vk|), this still is not sufficient to close the inductive estimate (29). We thus opted to
simplify discussions by considering the modified algorithm C.1.

Appendix D. Regularity of the algorithm of the numerical implementation

Last but not least, we prove that the slightly modified algorithms from section 8 satisfy the same
regularity properties as their original counterparts. The simplifications are thus only technical
and allow for a more efficient numerical implementation.

Indeed, in order to prove that the modified algorithms satisfy analogous regularity properties
we argue as in the proof of theorem 4. With the notation as in section 8.1, we thus have to ensure
that the modification of our construction still satisfies an estimate of the form∫

Ω

∫
Ω

|∇vk(x) −∇vk(y)|p
|x − y|2+sp

dx dy �
∑

j

∫
B j

k

∫
B j

k

|∇vk(x) −∇vk(y)|p
|x − y|2+sp

dxdy

+ 2
∑

j

∫
B j

k

∫
(B j

k)c

|∇vk(x) −∇vk(y)|p
|x − y|2+sp

dx dy

� c
∑

j

per(B j
k)|B j

k|1−sp,

where, in our modified construction, we have to replace the old building blocks B j
k by the

blocks B described above. Since the second contribution is estimated ‘generically’, not using
properties of vk (see the proof of theorem 4), it suffices to discuss contributions of the form∫

B

∫
B

|∇vk(x) −∇vk(y)|p
|x − y|2+sp

dx dy.

To this end, we consider the two cases (a) and (b) described above: first, by stacking N blocks
of the microstructures on top of each other (that means in caseB =

⋃N−1
n=0 (c0 + nλei + λΩi) =:⋃N−1

n=1Ω
n
i ), we have that for vk := yk+1 − yk (cf proof of theorem 4)∫

B

∫
B

|∇vk(x) −∇vk(x̂)|p
|x − x̂|2+sp

dx dx̂

=
N−1∑
n=0

∫
Ωn

i

∫
Ωn

i

|∇vk(x) − vk(x̂)|p
|x − x̂|2+sp

dx dx̂

+
N−1∑
n=0

∫
B\Ωn

i

∫
Ωn

i

|∇vk(x) −∇vk(x̂)|p
|x − x̂|2+sp

dx dx̂
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� N

∣∣∣∣∇zi

(
x − c0

λ

)∣∣∣∣
p

Ẇs,p(c0+λΩi)

+ cN per(Ωn
i )sp|Ωn

i |1−sp

� N

∣∣∣∣∇zi

(
x − c0

λ

)∣∣∣∣
p

Ẇs,p(c0+λΩi)

+ C(Nα	d)sp(|B|)1−sp

� N

∣∣∣∣∇zi

(
x − c0

λ

)∣∣∣∣
p

Ẇs,p(c0+λΩi)

+ C(per(B))sp(|B|)1−sp.

But since ∫
λΩi

∫
λΩi

|∇zi(λ−1x) −∇zi(λ−1x̂)|p
|x − x̂|2+sp

dx dx̂

= λ2−sp

∫
Ωi

∫
Ωi

|∇zi(x) −∇zi(x̂)|p
|x − x̂|2+sp

dx dx̂ � λ2−sp|∇zi|pWs,p(Ωi)
,

(36)

and since in this case

Nλ2−sp = (Nλ)sp(Nλ2)1−sp � c(per(B))sp|B|1−sp,

we obtain ∫
B

∫
B

|∇vk(x) −∇vk(x̂)|p
|x − x̂|2+sp

dx dx̂

� c(per(B))sp|B|1−sp|∇zi|pWs,p(Ωi)
+ (per(B))sp|B|1−sp.

We now notice that, by (36), also when B = c0 + λΩi we have

|∇vk|pWs,p(B) � λ2−sp|∇zi|pWs,p(Ωi)
� c|B|1−sp(per(B))sp|∇zi|pWs,p(Ωi)

.

Therefore, we still infer (19) in the proof of theorem 4, and hence we deduce the same regularity
result as in section 6 above also under this implementation of the model.
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