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Abstract. We study in the inviscid limit the global energy dissipation of Leray solutions of
incompressible Navier-Stokes on the torus Td, assuming that the solutions have norms for Besov
space Bσ,∞3 (Td), σ ∈ (0, 1], that are bounded in the L3-sense in time, uniformly in viscosity. We
establish an upper bound on energy dissipation of the form O(ν(3σ−1)/(σ+1)), vanishing as ν → 0

if σ > 1/3. A consequence is that Onsager-type “quasi-singularities” are required in the Leray
solutions, even if the total energy dissipation vanishes in the limit ν → 0, as long as it does so
sufficiently slowly. We also give two sufficient conditions which guarantee the existence of limiting
weak Euler solutions uwhich satisfy a local energy balance with possible anomalous dissipation due
to inertial-range energy cascade in the Leray solutions. For σ ∈ (1/3, 1) the anomalous dissipation
vanishes and the weak Euler solutions may be spatially “rough” but conserve energy.

1. Introduction

In a 1949 paper on turbulence in incompressible fluids [1], L. Onsager announced a result
that spatial Hölder exponents ≤ 1/3 are required of the velocity field for anomalous turbulent
dissipation (that is, energy dissipation non-vanishing in the limit of zero viscosity). Onsager’s
original statement and most subsequent work [2, 3, 4, 5, 6, 7, 8, 9, 10] have involved the
conjecture that the velocity field in the limit of infinite Reynolds number is a weak (distributional)
solution of the incompressible Euler equations. In this short paper we show that the arguments
employed to prove Onsager’s claim about weak Euler solutions apply as well to Leray’s solutions
of the incompressible Navier-Stokes equation and can be used to prove a theorem that “quasi-
singularities” are required in those solutions in order to account for anomalous energy dissipation.
In fact, such consequences follow even if the energy dissipation is vanishing in the limit of zero
viscosity, as long as it goes to zero as slowly as∼ να for some α ∈ (0, 1). In that case, we show that
the Navier-Stokes solutions cannot have Besov norms, above a critical smoothness 1+α

3−α , which are
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Onsager’s Singularity Theory 2

bounded uniformly in viscosity. This observation is important because empirical studies (e.g. see
Remark 4 below) cannot distinguish in principle between a dissipation rate which is independent of
viscosity and one which is vanishing sufficiently slowly. Our results thus considerably strengthen
the conclusion that quasi-singularities are necessary to account for the enhanced energy dissipation
rates observed in turbulent flow. No assumption need be made in our proof about existence of
limiting Euler solutions, but weak Euler solutions do arise as ν → 0 limits of the Leray solutions
if some further natural conditions are satisfied.

Let uν ∈ L∞([0, T ];L2(Td)) ∩ L2([0, T ];H1(Td)) for ν > 0 be Leray solutions of the
incompressible Navier-Stokes equations satisfying

∂tu
ν +∇ · (uν ⊗ uν) = −∇pν + ν∆uν + f ν , (1)

∇ · uν = 0, (2)

in the sense of distributions on Td× [0, T ],with solenoidal initial conditions uν |t=0 = uν0 ∈ L2(Td)
and solenoidal body forcing f ν ∈ L2([0, T ];L2(Td)). A fundamental property of these solutions,
first obtained by Leray [11], is the global energy inequality, which states that viscous energy
dissipation cannot exceed the loss of energy by the flow plus the energy input by external force.
This property may be reformulated as a global balance of kinetic energy:ˆ T

0

ˆ
Td
ε[uν ] dxdt =

1

2

ˆ
Td
|uν0|2dx− 1

2

ˆ
Td
|uν(·, T )|2dx+

ˆ T

0

ˆ
Td
uν · f ν dxdt, (3)

for almost every T ≥ 0, where the total energy dissipation rate is

ε[uν ] := ν|∇uν |2 +D[uν ] (4)

with D[uν ] a non-negative distribution (Radon measure) that represents dissipation due to possible
Leray singularities. See Duchon-Robert [4] and the proof of our Lemma 1. Our main result is then:

Theorem 1 Let uν ∈ L∞([0, T ];L2(Td)) ∩ L2([0, T ];H1(Td)) for ν > 0 be any Leray solutions
of incompressible Navier-Stokes equations on Td × [0, T ] with initial data uν0 ∈ Bσ,∞

2 (Td), and
forcing f ν ∈ L2([0, T ];Bσ,∞

2 (Td)) for some σ ∈ (0, 1]. Suppose that:ˆ T

0

ˆ
Td
ε[uν ] dxdt ≥ ναL(ν), α ∈ [0, 1) (5)

where L : R+ → R+ is a function slowly-varying at ν = 0 in the sense of Kuramata [12], i.e. so
that limν→0 L(λν)/L(ν) = 1 for any λ > 0. Then, for any ε > 0, the family {uν}ν>0 of Leray
solutions cannot have norms ‖uν‖L3([0,T ];Bσα+ε,∞

3 (Td)) with σα := 1+α
3−α ∈ [1/3, 1) that are bounded

uniformly in ν > 0.

Theorem 1 follows easily from the following lemma:

Lemma 1 Let {uν}ν>0 be a family of Leray solutions with σ, uν0 , and f ν as in Theorem 1. Assume
that uν ∈ L3([0, T ];Bσ,∞

3 (Td)) with all the above Besov norms bounded, uniformly in viscosity.
Then, for a.e. T ≥ 0, the energy dissipation is bounded for some ν-independent constant C by:ˆ T

0

ˆ
Td
ε[uν ] dxdt ≤ Cν

3σ−1
σ+1 . (6)
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Onsager’s Singularity Theory 3

To see that Theorem 1 follows from Lemma 1, note that if for any ε > 0, uν ∈
L3([0, T ];Bσα+ε,∞

3 (Td)) with norms bounded uniformly in viscosity, then the inequality (6)
together with (5) implies:

L(ν) ≤ Cνε
(3−α)2

4+ε(3−a) . (7)

Since α ∈ [0, 1), the exponent in the power-law on the righthand side of (7) is positive. This
obviously leads to a contradiction since limν→0 ν

−pL(ν) = +∞ for L slowly varying at ν = 0 and
for any p > 0.

In the context of Lemma 1, we note that that if σ ∈ [1/3, 1] then Theorem 6.1 of [5] implies
that D[uν ] = 0 and energy dissipation arises entirely from viscosity. The proof of this fact for
σ > 1/3 and fixed ν > 0 follows easily by the Constantin-E-Titi commutator argument [3]
for weak solutions, after taking into account the Leray-Hopf regularity L2(0, T ;H1(Td)). We
conjecture that our Theorem 1 is optimal for space dimensions d > 2 in the sense that, for some
α ∈ [0, 1), there should exist sequences of Leray solutions of Navier-Stokes uν for ν > 0 that are
uniformly bounded in L3([0, T ];Bσα−ε,∞

3 (Td)) with any ε > 0 and for which the lower bound (5)
on dissipation holds as an asymptotic equality for ν → 0. The case d = 2 is different, because
of the absence of vortex-stretching. This implies strong bounds on enstrophy for Leray solutions
in d = 2, even with initial vorticity ω0 ∈ Lp only for p < 2, and an essential improvement of the
energy dissipation bounds in our Lemma 1 for d = 2 [13].

Remark 1 The main condition on uniform Besov regularity in Lemma 1 is physically natural. The
Besov space Bσ,∞

p (Td) is made up of measurable functions f : Td → Rd which are finite in the
norm

‖f‖Bσ,∞p (Td) := ‖f‖Lp(Td) + sup
r∈(0,1]d

‖f(·+ r)− f(·)‖Td
|r|σ

(8)

for p ≥ 1 and σ ∈ (0, 1). See [37], section 3.5. These spaces can be equivalently explained
in a way more familiar to fluid dynamicists by using structure functions. The pth–order structure
functions Sνp (r) of spatial velocity-increments δuν(r;x, t) := uν(x+r, t)−uν(x, t) may be defined
as usual by Sνp (r, t) := 〈|δuν(r, t)|p〉, where 〈·〉 denotes space average over x ∈ Td. The velocity
field belongs to the Besov space Bσ,∞

p (Td) for p ≥ 1, σ ∈ (0, 1) at time t if and only if

〈|uν(·, t)|p〉 < C0(t), Sνp (r, t) ≤ C1(t)

∣∣∣∣ r`0

∣∣∣∣ζp , ∀|r| ≤ `0 (9)

with ζp = σp and then the optimal constants C0(t), C1(t) > 0 in these upper bounds define a norm
for the Besov space Bσ,∞

p (Td) by the identification ‖uν(·, t)‖Bσ,∞p (Td) := [C0(t) + C1(t)]1/p. E.g.
see [14]. Here any choice of length-scale `0 > 0 defines the same function space Bσ,∞

p (Td) but
for a physical identification of the constant C1(t) as the “amplitude” of an inertial-range scaling
law, one must take `0 to be the integral-length of the turbulent flow and independent of ν > 0. The
uniform boundedness of the family {uν}ν>0 in Lp([0, T ];Bσ,∞

p (Td)) is equivalent to the condition
that coefficients C0(t), C1(t) independent of ν > 0 should exist so that the bounds (9) are satisfied
for a.e. t ∈ [0, T ] and

´ T
0
dt [C0(t) + C1(t)] < ∞. The Theorem 1 and Lemma 1 apply a fortiori
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Onsager’s Singularity Theory 4

to solution spaces Lp([0, T ], Bσ,∞
p (Td)) with any p ≥ 3 and not only to p = 3. As a consequence,

energy dissipation vanishing with ν → 0 as slowly as (5) (or possibly not vanishing at all for
α = 0), implies ζp ≤

(
1+α
3−α

)
p for p ≥ 3 as a constraint on possible structure-function scaling

exponents in the inertial-range of any turbulent flow with enhanced dissipation of the form (5).
This inequality is a precise statement on “quasi-singularities” in the sequence of Leray solutions,
in order to be consistent with the observed slow decrease of energy dissipation as ν → 0. The
Navier-Stokes solutions (barring possible true, Leray-type singularities) are spatially C∞ for any
ν > 0, but they cannot possess smoothness of the form (9) that is uniform in viscosity. The primary
physical motivation of our result is turbulence in space dimensions d > 2, where a forward energy
cascade is expected. However our theorem has some implications even for d = 2. For example,
reference [13] considers Navier-Stokes solutions with initial vorticity ω0 ∈ Lp(T2), p ∈ (1, 2] and
obtains an upper bound on energy dissipation of the form (const.)ναp for αp := 2(p−1)

p
∈ (0, 1],

vanishing as ν → 0. If this is the actual scaling of the dissipation for p < 3/2, the Onsager critical
value of p for d = 2, then our Theorem 1 implies that the family {uν}ν>0 cannot be uniformly
bounded in L3([0, T ];B

σαp+ε,∞
3 (T2)) with σαp := 3p−2

p+1
∈ (1/2, 1).

Remark 2 A small but useful technical improvement of Theorem 1 can be easily provided by
sharpening the spaces considered. First, recall that energy conservation for weak solutions of
the Euler equations holds provided that u ∈ B

1/3,c0
3 (Td), a subspace of B1/3,∞

3 (Td) that can be
defined as follow

Bσ,c0
p (Td) =

{
f ∈ Lp(Td) : lim

|r|→0

‖f(·+ r)− f(·)‖Lp(Td)

|r|σ
= 0

}
. (10)

See [5]. Note that Bσ′,∞
p (Td) ⊂ Bσ,c0

p (Td) ⊂ Bσ,∞
p (Td) for any σ′ > σ. Define also

Lq(0, T ;Bσ,c0
p (Td)) =

{
f ∈ Lq(0, T ;Lp(Td)) : lim

|r|→0

‖f(·+ r)− f(·)‖Lq(0,T ;Lp(Td)

|r|σ
= 0

}
.

(11)
Theorem 1 then holds in a form in which one replaces all instances of Bσ,∞

p with Bσ,c0
p

and the conclusion reads that the family {uν}ν>0 of Leray solutions cannot have norms
‖uν‖L3([0,T ];B

σα,c0
3 (Td)) with σα := 1+α

3−α ∈ [1/3, 1). Note that the spaces Bσ,c0
p allow us to remove

the “ε” appearing in the theorem statement. The proof is almost identical and therefore omitted.
We are grateful to the anonymous referee for this remark.

We emphasize again that we do not need to assume that any “singular” or “rough” Euler
solutions exist in order to draw these conclusions. However, under reasonable additional
conditions, weak Euler solutions will exist as inviscid limits of the Leray solutions. For example:

Theorem 2 Let uν ∈ L∞([0, T ];L2(Td)) ∩ L2([0, T ];H1(Td)) be any Leray solutions of
incompressible Navier-Stokes equations with ν > 0 on Td × [0, T ], for initial data uν0 ∈ L2(Td)
and forcing f ν ∈ L2([0, T ];L2(Td)), and assume either:

(i) For some σ ∈ (0, 1] the family {uν}ν>0 is uniformly bounded in
L3([0, T ];Bσ,∞

3 (Td)), and that f ν → f strongly in L2([0, T ];L2(Td)) as ν → 0+. Let u
then be any strong limit of a subsequence uνk ∈ L3([0, T ];L3(Td)).
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Onsager’s Singularity Theory 5

or

(ii) uν ∈ L3([0, T ];L3(Td)) with norms bounded uniformly in viscosity and
furthermore, that weak convergence as ν → 0 holds for a full-measure set of times:

uν(·, t) ⇀
L3
u(·, t), (uν⊗uν)(·, t) ⇀

L3/2
(u⊗u)(·, t), f ν(·, t) ⇀

L2
f(·, t) a.e. t ∈ [0, T ].

(12)

Then u is a weak Euler solution which also satisfies, in the sense of distributions, the balance

∂t

(
1

2
|u|2
)

+∇ ·
[(

1

2
|u|2 + p

)
u

]
= −D[u] + u · f (13)

on Td× [0, T ], withD[u] the distributional limit of nonlinear “energy flux” for the Leray solutions:

D[u] := D′- lim
`→0

D′- lim
ν→0

Π`[u
ν ]. (14)

See definition (20) below. In particular, D[u] = 0 and energy conservation holds if σ > 1/3.
Furthermore, under the condition (i)

D[u] = D′- lim
ν→0

ε[uν ], (15)

where total dissipation measure ε[uν ] for Leray solutions is defined in (4), and u ∈
L3([0, T ];Bσ−ε,c0

3 (Td)) for any ε > 0. Thus, D[u] = 0 and local energy conservation holds when
σ ∈ (1/3, 1].

Remark 3 We owe the first condition of Theorem 2 to P. Isett [15], reproduced here with
permission. In particular, he pointed out that uniform boundedness of a family of weak Navier-
Stokes solutions {uν}ν>0 in L2([0, T ];Bσ,∞

2 (Td)) guarantees strong pre-compactness in L2(Td ×
[0, T ]) by the Aubin-Lions-Simon Lemma (see also [16]). Isett pointed out to us [17] that the
uniform boundedness assumed in Lemma 1 allows such an argument also for p = 3. In the physical
application this means that if energy dissipation is bounded below as in (5) but if also {uν}ν>0 is
uniformly bounded in L3([0, T ];Bσα−ε,∞

3 (Td)) for any ε > 0, then a limit Euler solution u will
exist. Moreover, the limit will possess some spatial Besov regularity with exponent σα − ε but not
a priori with a higher exponent σα + ε for any ε > 0. See Remark 6 below.

The second part of the theorem slightly generalizes recent results of Constantin & Vicol
[18] for wall-bounded domains Ω. There, it is proved that if uν ⇀ u weakly in L2(Ω) for
a.e. t and if a second-order structure function Sν2 (r) defined as in our Remark 1 (but also time-
averaged) satisfies an inertial-range scaling bound like (9), then u is a weak solution to the Euler
equations (see Theorem 3.1 of [18]). Recently, the condition on weak-convergence at a.e. time
t was removed in [31] in favor of assuming a structure function bound within a more precise
“inertial range”. Also, as pointed out in [18], Remark 3.4, this condition may be removed by
assuming a bound on the space-time structure function defined by Sνp (r, s) := 〈〈|δuν(r, s)|p〉〉,
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Onsager’s Singularity Theory 6

where δuν(r, s;x, t) = uν(x+r, t+s)−uν(x, t) are space-time increments and where 〈〈·〉〉 denotes
the space-time average over (x, t) ∈ Ω× [0, T ]. Specifically, it is assumed in [18] for p = 2 that

〈〈|uν |p〉〉 ≤ C0 Sνp (r, s) ≤ C1

[∣∣∣∣ r`0

∣∣∣∣+

∣∣∣∣ st0
∣∣∣∣]ζp , ∀ η(ν) ≤ |r| ≤ `0, τ(ν) ≤ s ≤ t0 (16)

with some ζp > 0, ν-independent constants C0, C1 > 0, and any scales η(ν), τ(ν) converging
to 0 as ν → 0. If the bound (16) is assumed to hold for η(ν) = τ(ν) ≡ 0, then (16) is the
uniform regularity statement supν>0 ‖uν‖Bσ,∞2 (Ω×[0,T ]) < ∞ for some σ ∈ (0, 1) and compactness
in L2(Ω × [0, T ]) with the strong topology is immediately implied by the Kolmogorov–Riesz
theorem [19]. Thus, subsequences νk → 0 always exist for which uνk → u strongly in L2 and the
limit function u is automatically a weak Euler solution. We could likewise replace the condition
(ii) at each time slice in Theorem 2 by the assumption that (16) holds for p = 3, i.e. uniform third-
order space-time structure function bounds in the inertial range, and take u to be any weak limit
point of uν ∈ L3(0, T ;L3(Td)). Furthermore, the limiting Euler solution inherits the space-time
regularity u ∈ Bσ,∞

3 (Ω× [0, T ]) by an argument similar to that in Remark 6.
An earlier theorem giving conditions for convergence of Navier-Stokes solutions to weak

Euler solutions satisfying a global energy inequality is proved in the work of Chen & Glimm [20].
Their sufficient conditions involve the time-average energy spectrum, or p = 2, because all terms
of the energy balance that are cubic in the velocity vanish when integrated over space.

Remark 4 It is worthwhile to review briefly here the empirical evidence regarding the global
energy dissipation rate in boundary-free turbulent flow. Numerical simulations of Fourier-truncated
Navier-Stokes dynamics by pseudo-spectral method in a periodic box correspond mostly closely
to the conditions of our Theorem 1. Free-decay simulations with body-force f ν = 0 such as
[21, 22] do show a non-vanishing energy flux in the inertial-range, consistent with D[u] > 0 as
defined in (14), but there seems to have been no systematic study of the dependence of space-
average 〈εν(t)〉 upon ν = 1/Re in such simulations. Forced simulations with very smooth (large-
scale) forces f ν [23, 24] provide the best evidence for a space-time average 〈εν〉 which is nearly
independent of ν = 1/Re as Re→∞. These simulations are nominally “long-time steady-states”
with T →∞, but in practice the time-averages are performed only over several large-eddy turnover
times, so that our Theorem 1 applies. Given the data plotted in Fig. 1 of [23] or Fig. 3 of [24] a
reasonable inference is that the dissipation rate does not vanish as Re → ∞, or vanishes only
weakly with viscosity. Accepting this as an empirical fact, our Theorem 1 for p =∞ implies that
Onsager’s prediction of Hölder exponents h ≤ 1/3 [1] remains valid as a statement about “quasi-
singularities” of Leray solutions. If any of the reasonable conditions in the Theorem 2 hold as
well, then Onsager’s conjecture on weak Euler solutions remains true, even if the dissipation rate
is vanishing weakly as ν → 0. In the latter case the Euler solutions may be spatially “singular”
or “rough”, but conserve energy. It should be emphasized that the Euler singularities inferred
by this argument need not develop in finite time from smooth initial data. A standard practice
in such numerical simulations is the initialization uν(·, 0) = uν

′
(·, T ′) of the simulation at high

Re by the final state at time T ′ of a smaller Reynolds-number Re′ < Re simulation performed
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Onsager’s Singularity Theory 7

at lower resolution, interpolated onto the finer grid of the Re-simulation (e.g. see p.L21 of [24]).
This practice of “nested” initialization means that initial conditions uν(·, 0) have Kolmogorov-type
spectra over increasing ranges of scales as ν decreases and do not correspond to uniformly smooth
initial data.

Similar remarks apply to studies of dissipation rates in boundary-free flows by laboratory
experiment. The most common experiments study turbulence produced downstream of wire-mesh
grids in wind-tunnels or turbulent wakes generated by flows past other solid obstacles, such as
plates, cylinders, etc. [25, 26, 27]. These experiments measure the time-averaged kinetic energy
(1/2)〈|uν(x, ·)|2〉 at distances x down-stream of the obstacle. If the data are reinterpreted by
“Taylor’s hypothesis” as space-averages (1/2)〈|uν(·, t)|2〉 at times t = x/U, with U the mean flow
velocity, then these studies yield the space-average dissipation rate 〈εν(t)〉 by time-differentiation.
The data plotted in [25, 26, 27] again provide corroboratory evidence that 〈εν(t)〉 is nearly
independent of ν = 1/Re as Re increases. These experiments are obviously not in the space-
periodic framework of our Theorem 1. Ignoring the effects of walls in the wind-tunnel, at some
distance from the turbulent wake, these flows might be regarded as contained in some large box
with zero velocities at the wall (and thus periodic). However, the creation of the turbulence by flow
past solid obstacles implies that these experiments are closer to the setting of [18], with vorticity
fed into the flow by viscous boundary layers that detach from the walls. Since the boundary
layers become thinner as ν = 1/Re decreases, the initial data of these experiments also cannot be
considered to be smooth uniformly in ν > 0.

Remark 5 In light of the discussion in Remark 4, theoretically incorporating the effects of solid
confining walls is of great practical importance. The experimental observations are rather different
for wall-bounded turbulence, such as seen as in pipes, channels, closed containers, etc., than those
reviewed above for boundary-free flows. Energy dissipation in confined turbulent flows with rough
walls tends to constant values for Re � 1, whereas energy dissipation in flows with smooth
walls is generally observed to vanish with increasing Re, yet much more slowly than the laminar
rate ∼ 1/Re. For example, see the study [28] whose results are typical. Recently, there have
been a number of papers proving Onsager-type theorems on necessary conditions for anomalous
dissipation by weak solutions of the Euler equations on domains with solid boundaries [29, 32, 30].
The statements of energy dissipation are slightly more involved due to the fact that assumptions
need to be made both in the interior and near the walls. The results of Drivas and Nguyen [32],
which focus on vanishing viscosity limits of Leray solutions, may be modified to provide results in
the same spirit of our Theorem 1. In particular, §2.4 of [32] provides a connection between the
physical energy dissipation and coarse-grained fluxes as in Lemma 2. If one supposes that the
energy dissipation is lower bounded as in (5) and introduces quantitative versions of the near-wall
assumptions (i.e. impose how rapidly the velocity itself of the near-wall dissipation vanishes within
a viscous boundary layer as viscosity tends to zero), then Theorem 2 and 3 of [32] can translated
into constraints on uniform interior Besov regularity and boundary-layer behavior of Leray–Hopf
solutions. Detailed implications are left for future investigation.

The proof our Lemma 1 will be based on the same method employed by Constantin-E-
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Onsager’s Singularity Theory 8

Titi [3] to prove the original Onsager statement for weak Euler solutions, by means of a spatial
mollification. Specifically, let G be a standard mollifier, with G ∈ D(Td), G ≥ 0, and also´
Td G(r)dr = 1. Without loss of generality, we can assume that supp(G) is contained in the

Euclidean unit ball in d dimensions. Define the dilatation G`(r) = `−dG(r/`) and space-reflection
Ǧ(r) = G(−r). For any v ∈ D′(Td), we define its coarse-graining at scale ` by

v` = Ǧ` ∗ v ∈ C∞(Td). (17)

Then, we have the following:

Lemma 2 Let initial data uν0 ∈ L2(Td), forcing f ν ∈ L2([0, T ];L2(Td)) and uν be corresponding
Leray solutions of the incompressible Navier-Stokes equations on Td × [0, T ] for ν > 0. Then, the
following local resolved energy balance holds for any ` > 0, for every x ∈ Td and a.e. t ∈ [0, T ]

∂t

(
1

2
|(uν)`|

2

)
+∇ · Jν` = −Π`[u

ν ]− ν|∇(uν)`|2 + (uν)` · (f ν)`, (18)

with

Jν` :=

(
1

2
|(uν)`|

2 + (pν)`

)
(uν)` + (uν)` · τ`(u

ν , uν)− ν∇
(

1

2
|(uν)`|

2

)
. (19)

where the coarse-graining cumulant is defined by τ`(g, h) := (g ⊗ h)` − g` ⊗ h` for g, h ∈
L2(Td,Rd), the trace is denoted by τ`(g ;h) := Tr τ`(g, h) and where

Π`[u
ν ] := −∇(uν)` : τ`(u

ν , uν). (20)

Furthermore, for a.e. T ≥ 0 and for any standard mollifier G and any ` > 0, we have:
ˆ T

0

ˆ
Td
ε[uν ] dxdt =

ˆ T

0

ˆ
Td

Π`[u
ν ] dxdt+

ˆ T

0

ˆ
Td
ν|∇(uν)`|2 dxdt

+
1

2

ˆ
Td
τ`(u

ν
0;uν0) dx− 1

2

ˆ
Td
τ`(u

ν(·, T );uν(·, T ))

+

ˆ T

0

ˆ
Td
τ`(u

ν ; f ν) dxdt. (21)

The key ingredient of the proof of Lemma 1 is a simple exact formula derived in [3] which
expresses the “energy flux” Π`[u

ν ] in terms of velocity increments. Our relation (14) can thus be
interpreted as an extension of the celebrated Kolmogorov 4/5th–law to infinite Reynolds-number
limits of Leray solutions.

2. Proofs

Proof of Lemma 2: Any Leray weak solution uν of Navier-Stokes satisfies point-wise in x ∈ Td

and distributionally in t ∈ [0, T ] the coarse-grained equations

∂t(uν)` +∇ · [(uν ⊗ uν)`] = −∇(pν)` + ν∆(uν)` + (f ν)`. (22)
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Onsager’s Singularity Theory 9

We use here the velocity-pressure formulation of Leray solutions, with pressure pν ∈
W−1,∞(0, T ;L2(Td)) (e.g. see Theorem V.1.4 of [35]). The d equations (22) can then be obtained
by mollifying the Navier–Stokes equations with (non-solenoidal) test functions ϕi, i = 1, 2, . . . , d,

of the form ϕi(r, t) := ψ(t)G`(r − x)ei where ψ ∈ C∞0 ((0, T )), G ∈ C∞(Td), and ei is the unit
vector in the ith coordinate direction.

We now show that the classical time derivative of (uν)`(x, t) exists for every x ∈ Td and a.e.
t ∈ [0, T ]. See also Prop. 2 of [36]. Since Leray solutions satisfy uν ∈ L∞([0, T ];L2(Td)), then
for every x ∈ Td

‖∇ · [(uν ⊗ uν)`](x, ·)‖L∞([0,T ]) ≤
1

`
‖(∇G)`‖∞‖u‖2

L∞([0,T ];L2(Td)),

‖ν∆(uν)`(x, ·)‖L∞([0,T ]) ≤
ν

`2
‖(∆G)`‖2‖u‖L∞([0,T ];L2(Td)), (23)

by Young’s convolution inequality. The pressure-gradient term ∇(pν)`(x, t) in (22) is determined
using∇ · f ν = 0 from the Poisson equation

−∆∇(pν)`(·, t) = (∇⊗∇⊗∇) : (uν ⊗ uν)`(·, t) (24)

and the righthand-side belongs to C∞(Td) for a.e. time t and is bounded above by a constant of
the form (1/`3)‖((∇ ⊗ ∇ ⊗ ∇)G)`‖∞‖u(·, t)‖2

L2(Td)
. The solution of the Poisson problem thus

satisfies a similar estimate as (23), i.e. for some constant C and every x ∈ Td:

‖∇(pν)`(x, ·)‖L∞([0,T ]) ≤
C

`3
‖((∇⊗∇⊗∇)G)`‖∞‖u‖2

L∞([0,T ];L2(Td)). (25)

We thus see that, except for (f ν)`(x, ·), every term in (22) for the distributional derivative
∂t(uν)`(x, ·) belongs to L∞([0, T ]). Since we assume that f ν ∈ L2([0, T ];L2(Td)), we have for
every x ∈ Td at least:

‖(f ν)`(x, ·)‖L2([0,T ]) ≤ ‖G`‖2‖f ν‖L2([0,T ];L2(Td)). (26)

It follows from Eq. (22) that ∂t(uν)`(x, ·) ∈ L2([0, T ]), so that (uν)`(x, ·) for every x ∈ Td is
absolutely continuous in time and the classical time-derivative exists and is given by Eqn. (22) for
a.e. t ∈ [0, T ].

Taking the Euclidean inner product of (22) with (uν)`(x, ·) for each x ∈ Td and writing
(uν ⊗ uν)` = (uν)` ⊗ (uν)` + τ`(u

ν , uν) yields by the Leibniz product rule the “resolved energy”
balance:

∂t

(
1

2
|(uν)`|

2

)
+∇ · Jν` = −Π`[u

ν ]− ν|∇(uν)`|2 + (uν)` · (f ν)`, (27)

with

Jν` :=

(
1

2
|(uν)`|

2 + (pν)`

)
(uν)` + (uν)` · τ`(u

ν , uν)− ν∇
(

1

2
|(uν)`|

2

)
, (28)
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Onsager’s Singularity Theory 10

which, again, holds for every x ∈ Td and a.e. t ∈ [0, T ] (and thus distributionally in space-time as
well). Since |(uν)`|2(x, ·)/2 is absolutely continuous in time, upon integrating we have:

1

2
|(uν)`(x, T )|2 − 1

2
|(uν0)`(x)|2

=

ˆ T

0

[
−∇ · Jν` − Π`[u

ν ]− ν|∇(uν)`|2 + (uν)` · (f ν)`
]
(x, t) dt (29)

for every T ≥ 0 and x ∈ Td. Since Leray solutions satisfy uν ∈ L3([0, T ];L3(Td)) and,
consequently, pν ∈ L3/2([0, T ];L3/2(Td)) (see e.g. Proposition 1 of [4]), each term of the integrand
inside the square brackets in (29) is easily checked by the definitions (19),(20) to belong to
L1([0, T ];L1(Td)). The Fubini theorem then gives that

´
Td
´ T

0
∇·Jν` dt dx =

´ T
0

´
Td∇·J

ν
` dx dt =

0 by space-periodicity, so that integrating (29) over Td, we obtain the global balance of resolved
energy:

1

2

ˆ
Td
|(uν)`(x, T )|2dx− 1

2

ˆ
Td
|(u0)`(x)|2dx+

ˆ T

0

ˆ
Td

Π`[u
ν ] dxdt

+

ˆ T

0

ˆ
Td
ν|∇(uν)`|2 dxdt−

ˆ T

0

ˆ
Td

(uν)` · (f)` dxdt = 0. (30)

We now show that any Leray solution satisfies the global energy balance (3) for almost every
T ≥ 0. Duchon & Robert [4] prove a local version of (3), i.e. they show that Leray solutions
satisfy

∂t

(
1

2
|uν |2

)
+∇ ·

[(
1

2
|uν |2 + pν

)
uν − ν∇

(
1

2
|uν |2

)]
= −ε[uν ] + uν · f (31)

in the sense of distributions on space-time. We smear (31) with a test function of the form
ϕε(x, t) = ψε(t)χTd(x), where ψε(t) approximates the characteristic function of the time-interval
[0, T ] and χTd(x) is the characteristic function of the whole torus (the constant function 1). This
yields:

−
ˆ ∞

0

ψε′
(ˆ

Td

1

2
|uν |2dx

)
dt = −

ˆ ∞
0

ψε
ˆ
Td
ε[uν ]dxdt+

ˆ ∞
0

ψε
ˆ
Td
uν · f dxdt. (32)

Recall that Leray solutions uν are right-continuous in time, strongly in L2(Td), for a.e. t ≥ 0 and,
in particular, at t = 0, as a consequence of the energy inequality (see Remark 2 of [33]). To make
use of this one-sided continuity, let 0 ≤ ψε(t) ≤ 1 be supported on the interval [0, T + ε] and equal
to 1 on [ε, T ]. The derivative ψε′(t) gives the difference of two bump functions, one supported on
[T, T + ε] and the other supported on [0, ε]. Taking ε→ 0 we obtain by the right-continuity that:

−
ˆ ∞

0

ψε′
(ˆ

Td

1

2
|uν |2dx

)
dt→

ˆ
Td

1

2
|uν(x, T )|2dx−

ˆ
Td

1

2
|uν0(x)|2dx, a.e. T ≥ 0. (33)

The assumption f ν ∈ L2([0, T ];L2(Td)), a-priori estimate uν ∈ L∞([0, T ];L2(Td)) ∩
L2([0, T ];H1(Td)) and the fact that D[uν ] is a Radon measure permit the dominated convergence
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Onsager’s Singularity Theory 11

theorem to be applied to guarantee that as ε→ 0

−
ˆ ∞

0

ψε
ˆ
Td
ε[uν ]dxdt+

ˆ ∞
0

ψε
ˆ
Td
uν · f dxdt→ −

ˆ T

0

ˆ
Td
ε[uν ]dxdt+

ˆ T

0

ˆ
Td
uν · f dxdt.

(34)
Thus, the global energy balance (3) is proved.

Adding to (3) the resolved energy balance (30) gives, for almost every T ≥ 0,
ˆ T

0

ˆ
Td
ε[uν ] dxdt =

ˆ T

0

ˆ
Td

Π`[u
ν ] dxdt+

ˆ
Td
ν|∇(uν)`|2 dxdt

− 1

2

ˆ
Td

(
|uν(·, T )|2 − |(uν(·, T ))`|

2
)

dx+
1

2

ˆ
Td

(
|u0|2 − |(u0)`|

2
)

dx

+

ˆ T

0

ˆ
Td

(uν · f − (uν)` · (f)`) dxdt.

Since, for integrable g ∈ L1(Td) one has
´
Td g`(x)dx =

´
Td g(x)dx, we arrive at identity (21). �

Proof of Lemma 1: We first prove the upper bound on the total dissipation of Leray solutions. By
Lemma 2, the global energy dissipation is given by the formula (21). Note that |(uν)`|2 ≤ (|uν |2)`
by convexity and thus the contribution from τ`(u

ν(·, T );uν(·, T )) ≥ 0 in (21) is non-positive and
we may drop it at the expense of an inequality:

ˆ T

0

ˆ
Td
ε[uν ] dxdt ≤

ˆ T

0

ˆ
Td

Π`[u
ν ] dxdt+

ˆ T

0

ˆ
Td
ν|∇(uν)`|2 dxdt

+
1

2

ˆ
Td
τ`(u

ν
0;uν0) dx+

ˆ T

0

ˆ
Td
τ`(u

ν ; f ν) dxdt. (35)

The inequality (35) then implies:
ˆ T

0

ˆ
Td
ε[uν ] dxdt ≤

ˆ T

0

‖Π`[u
ν ]‖1dt+

ˆ T

0

ν‖∇(uν)`‖2
2 dt

+
1

2
‖τ`(uν0;uν0)‖1 +

ˆ T

0

‖τ`(uν ; f ν)‖1dt. (36)

The energy flux-through-scale is bounded using the Constantin–E–Titi commutator estimate [3]:
ˆ T

0

‖Π`[u
ν(t)]‖1dt ≤ CG`

3σ−1

ˆ T

0

‖uν(t)‖3
Bσ,∞3 (Td)dt = O(`3σ−1). (37)

Above, CG is a constant depending on G but not on `, ν and the “big-O” notation denotes an upper
bound with a constant prefactor depending only upon G and u. Next, using the nesting property
Lp(Td) ⊆ Lq(Td), p ≥ q, we bound the resolved energy dissipation term
ˆ T

0

ν‖∇(uν)`‖2
2 dt ≤

ˆ T

0

ν‖∇(uν)`‖2
3 dt ≤ C ′Gν`

2(σ−1)

ˆ T

0

‖uν(t)‖2
Bσ,∞3

dt = O(ν`2(σ−1)).

(38)
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Onsager’s Singularity Theory 12

The remaining terms in (36) are bounded using estimates for coarse-graining cumulants (see, e.g.
[3, 34]):

‖τ`(uν0;uν0)‖1 ≤ C ′′G`
2σ sup

ν>0
‖uν0‖2

Bσ,∞2 (Td) = O(`2σ), (39)
ˆ T

0

‖τ`(uν ; f ν)‖1dt ≤ C ′′G`
2σ sup

ν>0
‖f ν‖L2([0,T ];Bσ,∞2 (Td)) sup

ν>0
‖uν‖L3([0,T ];Bσ,∞3 (Td)) = O(`2σ). (40)

Thus, combining the estimates (37), (38), (39) and (40) in the inequality (36), we find that:
ˆ T

0

ˆ
Td
ε[uν ] dxdt = O(`3σ−1) +O(ν`2(σ−1)). (41)

Here a termO(`2σ) has been absorbed intoO(`3σ−1), since for σ ≤ 1 it is always smaller as `→ 0.

Because ` > 0 in (41) is arbitrary, we specify a relation between ` and ν which optimizes the upper
bound by balancing the contribution of the non-linear flux with the resolved dissipation. This fixes
a relationship ` ∼ ν1/(σ+1) and yields the final upper bound:

ˆ T

0

ˆ
Td
ε[uν ] dxdt = O(ν

3σ−1
σ+1 )

as claimed in (6). It is worth remarking that ` ∼ ν1/(σ+1) is the expected scaling in phenomenolog-
ical theory for the “dissipation length” where nonlinear energy flux and viscous energy dissipation
become comparable, when the velocity increments exhibit scaling δu(`) ∼ `σ. See [38, 39]. �

Proof of Theorem 2: We now show under either condition (i) or (ii) that u is a weak solution of
the Euler equations which satisfies distributionally the local energy balance:

∂t

(
1

2
|u|2
)

+∇ ·
[(

1

2
|u|2 + p

)
u

]
= −D[u] + u · f, D[u] :=D′- lim

`→0
Π`[u]. (42)

We prove these conclusions separately for condition (i) and for condition (ii):

Proof of Theorem 2(i): We apply the Aubin-Lions-Simon Lemma, stated as in Theorem II.5.16 of
[35], with p = 3, r = 3/2, B0 = Bσ,∞

3 (Td), B1 = L3(Td), and B2 = Bσ−2,∞
3/2 (Td). The imbedding

of Bσ,∞
3 (Td) in L3(Td) is compact by the Kolmogorov-Riesz theorem and L3(Td) = F 0,2

3 (Td),
a Triebel-Lizorkin space (see [37], section 3.5), is continuously embedded in Bσ−2,∞

3/2 (Td) (e.g.
Remark 3.5.1.4, [37]).

We now show that a distributional Navier-Stokes solution u ∈ L3([0, T ];Bσ,∞
3 (Td)) has a

weak time-derivative in the sense of Definition II.5.7 of [35], which is given by

duν

dt
= −P∇ · (uν ⊗ uν) + ν∆uν + f ν ∈ L3/2([0, T ];Bσ−2,∞

3/2 (Td)), (43)

with P the Leray projector. To see this, choose smooth test functions of the form ϕ(t, x) =

ψ(t)φ(x) with ψ ∈ C∞0 ((0, T )) and φ ∈ C∞(Td,Rd), giving〈ˆ T

0

∂tψ(t)u(t)dt, φ

〉
= −

〈ˆ T

0

ψ(t)
[
− P∇ · (u⊗ u)(t) + ν∆u(t) + f ν(t)

]
dt, φ

〉
, (44)
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Onsager’s Singularity Theory 13

where 〈·, ·〉 denotes the usual pairing between elements of D′(Td) and D(Td) = C∞(Td). We next
observe that each term inside the square bracket on the righthand side of the previous equation
belongs to L3/2([0, T ];Bσ−2,∞

3/2 (Td)) with norms uniformly bounded in ν. First, by the Calderon-
Zygmund inequality we have for some constant c0 depending only on space dimension d the
estimate

‖P∇ · (uν ⊗ uν)‖L3/2([0,T ];Bσ−2,∞
3/2

(Td)) ≤ c0‖uν ⊗ uν‖L3/2([0,T ];Bσ−1,∞
3/2

(Td)) ≤ c0‖uν‖2
L3([0,T ];Bσ,∞3 (Td)).

(45)
On the other hand,

‖∆uν‖L3/2([0,T ];Bσ−2,∞
3/2

(Td)) ≤ c1‖uν‖L3/2([0,T ];Bσ,∞
3/2

(Td)) ≤ c1‖uν‖L3([0,T ];Bσ,∞3 (Td)). (46)

Finally, because the sequence f ν is strongly convergent, it is uniformly bounded in
L2([0, T ];L2(Td)) and

‖f ν‖L3/2([0,T ];Bσ−2,∞
3/2

(Td)) ≤ ‖f
ν‖L2([0,T ];L2(Td)). (47)

These bounds imply that the element of D′(Td) which is paired with φ on the right side of (44)
in fact belongs to Bσ−2,∞

3/2 (Td). Moreover,
´ T

0
∂tψ(t)u(t) dt ∈ Bσ,∞

3 (Td) on the left side of (44).

Since there is the Banach space duality
(
B2−σ,1

3 (Td)
)′

= Bσ−2,∞
3/2 (Td) and D(Td) is dense in

B2−σ,1
3 (Td) ([37], section 3.5.6), we can extend the relation (44) to φ ∈ B2−σ,1

3 (Td) by continuity
and this implies the equality

ˆ T

0

∂tψ(t)u(t)dt = −
ˆ T

0

ψ(t)
[
− P∇ · (u⊗ u)(t) + ν∆u(t) + f ν(t)

]
dt, (48)

as elements of Bσ−2,∞
3/2 (Td). It follows that (43) holds in the sense of Definition II.5.7 of [35].

By the estimates (45)-(47), one has furthermore∥∥∥∥duνdt
∥∥∥∥
L3/2([0,T ];Bσ−2,∞

3/2
(Td))

≤ c0‖uν‖2
L3([0,T ];Bσ,∞3 (Td)) + νc1‖uν‖L3([0,T ];Bσ,∞3 (Td))

+ ‖f ν‖L2([0,T ];L2(Td)). (49)

In view of our assumptions (i) in Theorem 2, the family of weak time-derivatives {duν/dt}ν>0

is uniformly bounded in L3/2([0, T ];Bσ−2,∞
3/2 (Td)). The conditions of the Aubin-Lions-Simon

Lemma are therefore satisfied, so that {uν}ν>0 is relatively compact in L3([0, T ], L3(Td)). Sub-
sequences νk → 0+ thus always exist so that uνk → u strongly in L3(Td × [0, T ]). For any such
subsequence, we can apply the arguments of [4] to obtain the statements (13),(14),(15). �

Proof of Theorem 2(ii): First we show any limit u is a weak Euler solution. Recall our assumptions
(12): For ν → 0

uν(·, t) ⇀
L3
u(·, t), (uν ⊗ uν)(·, t) ⇀

L3/2
(u⊗ u)(·, t), f ν(·, t) ⇀

L2
f(·, t) a.e. t ∈ [0, T ]. (50)
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Onsager’s Singularity Theory 14

These conditions imply that (f ν)` → (f)`, (uν)` → (u)` and (uν ⊗ uν)` → (u⊗ u)` pointwise
in space, a.e. t. Integrating the coarse-grained Navier-Stokes equations (22) against an arbitrary
solenoidal test function ϕ ∈ D([0, T ]× Td) yields:

− 〈∂tϕ, (uν)`〉 = 〈∇ϕ, (uν ⊗ uν)`〉+ ν〈∆ϕ, (uν)`〉+ 〈ϕ, (f ν)`〉. (51)

To show convergence as ν → 0, we obtain uniform bounds for all the integrands in (51) and
apply Lebesgue dominated convergence. Such bounds are easily obtained by applying Young’s
inequality for convolutions:

|(uν)`(x, t)| ≤ ‖G`‖3/2‖uν(·, t)‖3 . ‖uν(·, t)‖3, (52)

|(uν ⊗ uν)`(x, t)| ≤ ‖G`‖3‖uν ⊗ uν(·, t)‖3/2 . ‖uν(·, t)‖2
3, (53)

|(f ν)`(x, t)| ≤ ‖G`‖2‖f ν(·, t)‖2 . ‖f ν(·, t)‖2, (54)

where the notation . indicates an upper bound with constant prefactor depending on G and `, but
not on ν. By our assumption uν ∈ L3([0, T ];L3(Td)) and f ν ∈ L2([0, T ];L2(Td)) with norms
uniformly bounded, all of the upper bounds (52)–(54) are in L1(Td × [0, T ]) uniformly in ν > 0.
Note that the term in (51) with viscosity as a pre-factor vanishes as ν → 0

ν〈∆ϕ, (uν)`〉 ≤ ν‖∆ϕ‖2‖uν‖L∞([0,T ];L2(Td)) −→
ν→0

0. (55)

We may therefore apply dominated convergence to obtain from (51) for fixed ` > 0 that in the
limit ν → 0

− 〈∂tϕ, u`〉 = 〈∇ϕ, (u⊗ u)`〉+ 〈ϕ, f `〉

The argument is completed by taking the limit ` → 0, using the fact that mollification can be
removed strongly in Lp. Taking the limit of equation (56) thus shows that u is a weak Euler
solution.

The energy balance (42) is proved by a very similar argument. Smearing the resolved energy
balance (18) established in Lemma 2 with an arbitrary test function ϕ ∈ D([0, T ]× Td) yields:

−〈∂tϕ,
1

2
|(uν)`|

2〉 = 〈∇ϕ, J0
` [uν ]〉 − 〈∆ϕ, ν

2
|(uν)`|

2〉

+ 〈ϕ,−Π`[u
ν ]− ν|∇(uν)`|2 + (uν)` · (f ν)`〉 (56)

where J0
` [uν ] is the inviscid part of the energy current J`[uν ] defined in (19), or

J0
` [uν ] :=

(
1

2
|(uν)`|

2 + (pν)`

)
(uν)` + (uν)` · τ`(u

ν , uν).

First note that the terms involving viscosity as a pre-factor vanish pointwise in space-time:

ν|∇(uν)`(x, t)|2 ≤
ν

`2
‖(∇G)`‖2

2‖uν‖2
L∞([0,T ];L2(Td)) −→ν→0

0, (57)
ν

2
|(uν)`(x, t)|

2 ≤ ν

2
‖G`‖2

2‖uν‖2
L∞([0,T ];L2(Td)) −→ν→0

0. (58)
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Onsager’s Singularity Theory 15

The above bounds follow from Young’s inequality for convolutions. Thus, the contribution from
these terms will vanish in (56) for ν → 0 and we must now argue that the remaining terms
converge.

In addition to the pointwise-in-x convergence of the mollified quantities discussed above, we
have similarly that τ`(uν , uν) → τ`(u, u) pointwise in space for a.e. t. Moreover, by general
theory of Calderón-Zygmund operators, the map uν ⊗ uν → pν is strongly continuous in Lp(Td)
for p ∈ (1,∞) (see e.g. [4]). In particular, for p = 3/2, the assumption on weak convergence of
uν ⊗ uν in (50) implies that pν ⇀ p weakly in L3/2(Td) a.e. t. Thus, all of the following terms
converge pointwise in space, for a.e. t:

1

2
|(uν)`|

2 → 1

2
|u`|2, J0

` [uν ]→ J0
` [u], Π`[u

ν ]→ Π`[u], (uν)` · (f ν)` → u` · f ` (59)

since they are made up of products of objects which converge pointwise.
Once again, convergence in the sense of distributions follows if integrable bounds can be

obtained that allow us to infer limits of the smeared terms in (56) by dominated convergence.
Recall by our assumptions that uν ∈ L3([0, T ];L3(Td)) and pν ∈ L3/2([0, T ];L3/2(Td)) not only
for each ν > 0 (as holds for every Leray solution) but also with norms bounded uniformly in
ν > 0. Using Young’s inequality for convolutions and Hölder’s inequality, we have pointwise in
space-time:

|∇(uν)`(x, t)| ≤
1

`
‖(∇G)`‖3/2‖uν(·, t)‖3 . ‖uν(·, t)‖3 (60)

|τ`(uν , uν)(x, t)| ≤ ‖G`‖3‖(uν ⊗ uν)(·, t)‖3/2 + ‖G`‖2
3/2‖uν(·, t)‖2

3 . ‖uν(·, t)‖2
3. (61)

Likewise we have for the terms appearing in (56) that

1

2
|uν(x, t)`|

2 . ‖uν(·, t)‖2
2, |J0

` [uν ](x, t)]| . ‖uν(·, t)‖3
3 + ‖pν(·, t)‖3/2‖uν(·, t)‖3,

|Π`[u
ν ](x, t)]| . ‖uν(·, t)‖3

3, |(uν)`(x, t) · (f ν)`(x, t)| . ‖uν(·, t)‖2‖f ν(·, t)‖2, (62)

Since all of the latter upper bounds are inL1(Td×[0, T ]) uniformly in ν > 0 under our assumptions,
we can apply dominated convergence theorem to obtain from (56) for fixed ` > 0 that in the limit
ν → 0

∂t

(
1

2
|u`|2

)
+∇ · J0

` [u] = −Π`[u] + u` · f `, (63)

in the sense of space-time distributions. We note in particular that

D′- lim
ν→0

Π`[u
ν ] = Π`[u] := −∇(u)` : τ`(u, u). (64)

The argument is completed by taking the limit ` → 0 of (63) and showing that (42) holds
distributionally. This fact is proved in [4] using a somewhat different regularization. For all terms
except Π`[u], distributional convergence follows directly from the strong continuity of shifts in Lp

since u ∈ L3([0, T ];L3(Td)) and p ∈ L3/2([0, T ];L3/2(Td)). In particular, the term u` · τ`(u, u)
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Onsager’s Singularity Theory 16

in J0
` [u] vanishes by the commutator identity for τ`(u, u) in [3]. Convergence of the flux Π`[u] is

then inferred from the distributional equality:

− D′- lim
`→0

Π`[u] = ∂t

(
1

2
|u|2
)

+∇ ·
[(

1

2
|u|2 + p

)
u

]
− u · f := D[u]. (65)

Under condition (i), the limiting Euler solutions u ∈ L3(Td × [0, T ]) have additional space-
regularity. The uniform boundedness condition in (i) of Theorem 2, supν>0 ‖uν‖L3([0,T ];Bσ,∞3 (Td)) <

∞, implies that

‖uν‖L3(Td×[0,T ]) < C ′, ‖uν(·+ r, ·)− uν‖L3(Td×[0,T ]) < C|r|σ. (66)

with constants C, C ′ independent of viscosity. The inequalities (66) are preserved under strong
limits in L3(Td × [0, T ]) and thus the limiting Euler solutions u under condition (i) satisfy them
as well. This yields immediately u ∈ L3([0, T ], Bσ′,c0

3 (Td) for any σ′ < σ, with definitions as in
Remark 2. Finally, D[u] = 0 for σ ∈ (1/3, 1] follows from the additional space-regularity by the
results of [5].

�

Remark 6 Although not stated in the theorem, the inequalities (66) are again preserved in the
limit if we add to condition (ii) the assumption that (66) holds with constants C, C ′ independent of
viscosity. Weak lower-semicontinuity of the L3(Td)-norm and of

‖uν(·+ r, t)− uν(·, t)‖3 = sup
‖w‖3/2=1

|〈w(· − r)− w, uν(·, t)〉| (67)

and Fatou’s lemma in time, together with the assumption (66), guarantees that limiting Euler
solutions u under this strengthened condition (ii) satisfy the same bound. This is analogous to
Remark 3.5 in [18].
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