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Abstract
Three-dimensional (3D) graphene with a high specific surface area and excellent electrical
conductivity holds extraordinary potential for molecular gas sensing. Gas molecules adsorbed
onto graphene serve as electron donors, leading to an increase in conductivity. However, several
challenges remain for 3D graphene-based gas sensors, such as slow response and long recovery
time. Therefore, research interest remains in the promotion of the sensitivity of molecular gas
detection. In this study, we fabricate oxygen plasma-treated 3D graphene for the high-
performance gas sensing of formaldehyde. We synthesize large-area, high-quality, 3D graphene
over Ni foam by chemical vapor deposition and obtain freestanding 3D graphene foam after Ni
etching. We compare three types of strategies—non-treatment, oxygen plasma, and etching in
HNO3 solution—for the posttreatment of 3D graphene. Eventually, the strategy for oxygen
plasma-treated 3D graphene exceeds expectations, which may highlight the general gas sensing
based on chemiresistors.

Supplementary material for this article is available online

Keywords: 3D graphene, chemical vapor deposition, chemiresistors, oxygen plasma treatments,
gas sensing

Introduction

Graphene is an ideal two-dimensional (2D) material with
unique electrical and chemical properties [1]. These include
extremely high Young’s modulus and fracture stress [2], high
electrical conductivity [3, 4], excellent thermal conductivity
[5], low contact resistance [6], high mobility [7], large spe-
cific surface area, and high light transmittance and flexibility
[8]. Therefore, graphene can be developed and applied in
various fields [9], such as high-quality composite materials
[10], biomedical and drug delivery [11], transistors [12, 13],
integrated circuits [14], flexible electronics [15] and energy
storage devices [16].

Owing to the excellent properties of 2D graphene [17], its
three-dimensional (3D) counterpart is widely used in gas
molecular sensors owing to its unique 3D nanoporous struc-
ture [18], and feasible surface functionalization [19]. The
resistance of the graphene-based chemiresistor [20] changes
with the introduction of gases, which is the gas-sensing
mechanism.

Compared with other carbon nanomaterials [21], gra-
phene has the advantages of high conductivity and a large,
theoretical, specific surface area (3523 m2 g−1) [22]. These
facilitate the effective adsorption of gas molecules. Graphene
shows excellent prospects for gas-sensing applications [23].
Three-dimensional graphene interacts with different compo-
sitions and structures of gas adsorbents [24] in diverse ways.
The gaseous molecule adsorbs onto graphene by weak Van
der Waals interactions; hence, the resistance of graphene can
be monitored by uncomplicated electrical equipment [25].
Owing to its high-quality lattice structure [26], 3D graphene
possesses inherently low electrical noise, which avoids large
charge fluctuations compared with carbon nanotubes [27]. In
addition, chemiresistor-based sensing formats possess the
advantages of simple equipment, easy fabrication, and direct
measurement [28].

With the improvement in human living standards and
increasing attention to environmental protection, air quality,
and atmospheric pollution, more significant requirements for

gas monitoring have been introduced [29]. Air pollution
indoors and inside vehicles threatens human health and has
become a common concern worldwide. Among the existing
hazardous gases, formaldehyde is a common representative
example [30]. It is a colorless and soluble irritant gas, which
is volatile in adhesive decoration materials such as wallpaper.
High concentrations of 20 to 100 ppm are detrimental to
health and well-being [31, 32], while long-term exposure to
lower levels can cause allergies, carcinogenesis, and muta-
tions [33, 34]. Among all contacts, children (leukemia rate)
and pregnant women (abortion rate) are particularly sensitive.

Therefore, an effective formaldehyde gas sensor is an
immediate safety requirement. Among the existing for-
maldehyde sensors, some of them rely on amperometric
techniques, requiring either UV irradiation [35] or enzymes
[36] as receptors, which are prone to conformational changes
and, therefore, show poor long-term stability or require spe-
cial storage conditions.

Indeed, conventional semiconductor sensor requires high
operation temperature [37–39] or external UV-light activation
[35]. The graphene has the advantage of high conductivity at
low operation temperature, which often was blended with
semiconducting oxides for improving the surface area and
conductivity. Indeed, graphene/metal oxides based compo-
sites could improve the sensitivity of formaldehyde sensor
because of the electron transfer channels provided by the
metal oxide such as SnO [40], SnO2 [39, 41, 42], TiO2

[43–45], and ZnO [46–48] and ZnSnO3 [49]. Besides, the
graphene has formed composites with polymers [50–52], Si
nanowires [53] and MoS2 [54, 55] to serve as formaldehyde-
sensing materials. However, the oxygen plasma treated 3D
graphene has yet applied in formaldehyde sensing.

Therefore, we employed 3D graphene with different
treatments and compared their structure-performance rela-
tionships. In this study, we applied three strategies to treat 3D
graphene, including untreated, HNO3 etching, and oxygen
plasma treatment and their application in chemiresistors for
gas sensing using formaldehyde as an example.
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Experimental details

Synthesis of 3D graphene by chemical vapor deposition (CVD)

The Ni foam was washed with HCl (19 vol%), then washed
with deionized water. The pre-treated Ni foam was placed in a
quartz boat and deposited in the center of the furnace (figure
S1 (available online at stacks.iop.org/NANO/33/185702/
mmedia)). First, the tubular furnace was vacuum pumped to
10 Pa to remove air and water. Second, the fixed carrier gas
rate was 270/30 ml min−1 Ar/H2 after high-speed cleaning
with a large flow of Ar/H2 to atmospheric pressure. It was
heated at 70 °C min−1 and annealed at 1028 °C for 15 min.
Further, 20 sccm CH4 as growth gas was injected for 1 h, then
rapidly cooled to room temperature.

Freestanding 3D graphene without Ni

First, 3D graphene fabricated by CVD was soaked in 2M
FeCl3 mixed solution to remove the Ni substrate. The fully
etched 3D graphene was then transferred to deionized water
(mixed with HCl acid) for 2 h. Here, the HCl solution was
diluted to 0.37 wt% with deionized water. Then, the soaking
in diluted HCl was repeated for three times for thoroughly
removing the residual Fe species. Indeed, the titer by the
transfer recipe has been well established in our group for
thorough removal of Fe removal, i.e. no emergence of Fe
atoms over graphene in TEM images [17, 56], which have
been commonly observed by the Cs-corrected atomic reso-
lution TEM imaging [57, 58]. Eventually, the freestanding 3D
graphene was dried naturally at 25 °C for storage, char-
acterizations, and device fabrications.

Posttreatment of 3D graphene

Three approaches were employed for graphene posttreatment
(Table S1). First, non-treatment was conducted on the 3D
graphene. The second treatment was the HNO3 etching of 3D
graphene. The synthesized 3D graphene was submerged in
HNO3 (34 wt%) for 24 h. Third, the 3D graphene was treated
with oxygen plasma (Diener Electronic, model: Atto-BLS).
Initially, the chamber was vacuumed at 20 Pa. Then, oxygen
at a flow rate of 10 ml min−1 was introduced into the
chamber. Further, the oxygen plasma was generated at an RF
power (13.56 MHz) of 90 W and treated for 5–30 min. The
plasma-induced defects in 3D graphene were characterized
using Raman spectroscopy. Eventually, 15 min was found to
be optimal for completely functionalizing graphene with
oxygen.

Material characterization

Optical microscopy (Olympus BX53MRF-S) was used to obtain
snapshot optical micrographs. Raman spectra and mapping were
performed using 532 nm excitation wavelength Raman
spectroscopy (Horiba Labram HR800). The present chemical
bonds or functional groups were determined using a Fourier
transform infrared spectrometer (Bruker VERTEX 70 FT-IR).
The phase structure was tested using x-ray diffractometry

(Thermo Fisher ARL Equlnox 3000). The surface morphologies
were investigated using a scanning electron microscope (Hitachi
Regulus8100). The lattice structure, selected area electron dif-
fraction, and elemental analysis were conducted using a trans-
mission electron microscope (JEOL JEM-2100) integrated with
energy-dispersive x-ray spectroscopy.

Device fabrication

Three types of post-treated 3D graphene (2 × 2 cm2) were
transferred to glass slides with patterned Au electrodes (50 nm
Au). Gold electrodes were fabricated on glass slides using
an electron-beam evaporator (HHV ATS 500). The 3D gra-
phene was aligned and adhered to bridge to two adjacent Au
electrodes (figure S9).

Gas-sensing examination

A simple gas chamber was used to test for the presence or
absence of resistive 3D graphene based sensors. A 25 ml
formaldehyde solution (Sigma-Aldrich, 38%) was dropped
onto a hot plate (30 °C) to generate formaldehyde vapor. The
relative humidity was maintained at 30%, and the temperature
was maintained at 25 °C.

The concentration of the targeted gas molecule was
measured from the mean of the static liquid distribution,
which was calculated using the following equation:

r
=

´ ´ ´
´

´C
V

M V

22.4
1000 ppm,1

2

Ф

where C (ppm) is the concentration of the target gas,Ф is the
volume fraction of the target gas molecule, ρ (g ml−1) is the
density of the liquid, V1 (ml) is the volume of the test liquid,
V2 (l) is the volume of the test chamber, and M (g mol−1) is
the molecular weight of the test liquid.

The time-dependent current curves of the gas sensor were
collected using a source measurement unit (Keithley 2400).
The response and recovery times were determined from the
time-dependent current curves of the gas sensors. The
response time of the sensor was determined when the resist-
ance (in gas) dropped to 90% of the pristine resistance (in air)
during the adsorption process. The recovery time was deter-
mined when the resistance dropped to 90% upon the deso-
rption of gas molecules.

Results and discussion

Three different treatments of 3D graphene after growth were
investigated and compared in this study. These labels are
provided in Table S1, and each experiment in the text and
graphics employs the same label. The 3D graphene treatments
were non-treatment, oxygen plasma, and etching in HNO3

solution.
We first discuss the appearance and morphology of the

3D graphene observed by optical microscopy (figure 1) to
confirm the homogeneity of the large area of the synthesized
3D graphene.
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The 3D graphene synthesized by CVD had a large 3D
framework structure (figure 1(a)) and high surface uniformity
(figure 1(b)). The 3D graphene treated by oxygen plasma
maintained the intrinsic 3D framework property (figure 1(d))
and homogeneous surface uniformity (figure 1(e)). This illu-
strated that the posttreatment of oxygen plasma did not affect
the morphology of 3D graphene. Besides, the HNO3 treat-
ment has caused negligible changes in morphology and
structure of 3D graphene (figure S6).

Raman spectroscopy is a powerful tool for exploring the
properties of graphene. The quality and purity of the syn-
thesized 3D graphene was determined by Raman spectrosc-
opy. It was also used to analyze the number of layers of the
grown graphene films on the substrate of the Ni foam. The
Raman spectrum illustrated the monolayer property through
peaks at ca. 1580 cm−1 for the G mode and ca. 2700 cm−1 for
the 2D mode (figure 1(c)). The emergence of the D mode (ca.

1350 cm−1) indicated graphene defects (figure 1(f)). Hence,
3D graphene treated by oxygen plasma may lead to defects
due to surface functionalization.

After the posttreatment with oxygen plasma, 3D gra-
phene possessed oxygen-containing groups. For example,
carbonyl and epoxy groups, this is further discussed with the
infrared spectra. These structural defects were determined by
Raman spectroscopy. The Raman spectra of 3D graphene
with different oxygen plasma treatment times are shown in
figure 1(g). Oxygen functionalization often occurred at the
surface and the edges of the 3D graphene [59] upon the
introduction of plasma. Specifically, no oxygen was incor-
porated into the interlayer spacing of few-layer graphene [60].
Therefore, surface oxygen functionalization could achieve a
saturable condition on the graphene surfaces. We used the
D/G ratio in the oxygen-plasma-treated graphene to deter-
mine the saturation of oxygen functionalization. Oxygen

Figure 1.Morphology and Raman spectra of 3D graphene with and without oxygen plasma treatment. (a), (b) The optical microscopic images
of non-treated 3D graphene (over Ni foam) with different magnifications. (c) The Raman spectrum of non-treated 3D graphene. The peak
positions were assigned for D mode (ca. 1350 cm−1), G mode (ca. 1580 cm−1) and 2D mode (ca. 2700 cm−1). (d), (e) The optical
microscopic graphs and (f) Raman spectrum of 3D graphene after treatment with oxygen plasma. The Raman spectra and D/G ratio of
oxygen plasma-treated 3D graphene. (g) The Raman spectra of oxygen plasma-treated 3D graphene for different durations of (from bottom to
top) 0, 5, 10, 15, 20 min. (h) Statistics of the D/G ratio of the oxygen plasma-treated 3D graphene after different treatment times.
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saturation occurred when the D/G ratio ceased to increase
with prolonged plasma treatment. After 15 min of oxygen
plasma the D/G ratio (0.10) of graphene stabilized
(figure 1(h)).

Pristine 3D graphene does not show D mode in Raman
spectrum (figure 1(c)). With 5 min oxygen plasma treatment,
the graphene exhibits significant D mode (figure 1(g)). After
extending the oxygen plasma duration from 5 min to 20 min,
the D/G intensity ratio increases to 0.1 (figure 1(h)). Further
oxygen plasma treatment, i.e. for 30 min, does not induce
larger D/G ratio. Therefore, we selected an oxygen plasma
duration of 15 min for the graphene treatment and subsequent
device fabrication.

To show the crystal quality, we compared pure 3D gra-
phene and Ni-supported 3D graphene by x-ray diffraction
(figure 2).

The purity of the 3D graphene was analyzed after etch-
ing. The 3D graphene supported by the Ni framework
(figure 2(a)) showed an obvious face-centered cubic peak of
Ni metal at ca. 2θ = 44.4° (111), ca. 2θ = 51.7° (200), and ca.
2θ = 76.3° (220), respectively. The XRD graph of the pure
3D graphene (figure 2(b)) after etching exhibits one peak
(002). This confirmed the success of etching as no Ni residue
or other impurities remained.

The XRD pattern of the synthesized 3D graphene
showed a diffraction peak at 2θ=26.6° (figure 2(b)). The
estimated layer spacing of graphene was 0.335 nm by the
Bragg equation 2dsin θ = nλ, which was the result of the
preferred orientation of the graphene reflection. A noticeable

reflection of the (002) peak demonstrated that the grown 3D
graphene was arranged regularly along the stacking direction.

Compared with the non-treatment of 3D graphene, the
3D graphene after oxygen plasma treatment (figure 2(c))
showed the same single strength peak at the crystal plane of
(002), which indicated that the posttreatment of oxygen
plasma did not destroy the initial crystal structure. In addition,
we did not see the emergence of the GO peak at around 10
degrees [61]. Again, the oxygen-plasma treatment does not
change the crystal structure of graphene, i.e. without the
formation of graphene oxide. In addition, the HNO3 treatment
did not cause change in crystal structure of graphene (figure
S8) as XRD data show.

To further study the surface morphology characteristics
of 3D graphene, scanning electron microscopy (SEM) was
used for more detailed observation and characterization. After
etching the Ni framework, 3D graphene retained the inter-
connected 3D supporting structure of the original Ni foam
template (figure 2(d)) and a large hollow tube (figure 2(f)).
The pore size of the 3D graphene was mainly distributed in
the range of 300–500 μm (figure 2(e)), which was consistent
with the diameter of the hole of the Ni foam. Therefore, the
synthesized 3D graphene possessed structural integrity and
size stability.

The crystal structure and characteristics of the synthe-
sized 3D graphene after treatment with oxygen plasma were
analyzed through imaging and electron diffraction of the
transferred 3D graphene (figure 3).

The low-magnification TEM graph (figure 3(a)) demon-
strated the smooth homogeneity of the surface of the 3D

Figure 2. Diffraction spectra and surface morphology of 3D graphene. (a) The x-ray diffraction (XRD) spectrum of the 3D graphene
supported by Ni foam. The XRD spectra of (b) 3D graphene (after Ni removal) and (c) 3D graphene (after Ni etching) treated by oxygen
plasma. (d)–(f) SEM micrographs for oxygen treated 3D graphene (after Ni removal). In panel (f), a hollow tube of 3D graphene was
presented.
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graphene after treatment with oxygen plasma. The SAED
(figure 3(b)) exhibited a [100] lattice plane with six-fold sym-
metry of the 3D graphene crystal. The TEM micrograph of
graphene with fringes (figure 3(c)) showed the 3D graphene
layers (ca. 8–10), which was illustrated by the micro-nano-
crystalline surface (figure 3(d)). The surface atomic diagram of
the multilayer graphene demonstrated the distribution of the
epoxy and carbonyl groups (figure 3(e)). The TEM data show
negligible difference for pristine 3D graphene (figure S2) and
HNO3 treated 3D graphene (figure S3), compared to the oxygen
plasma treated sample.

Now we come to discuss the defects and the oxygen
contents of graphene by three types of treatments. CVD-
grown graphene over Ni foam was free of defects, i.e. none D

mode in Raman spectrum. The oxygen plasma seems to
introduce sp3 type defects, e.g. hydroxyl or epoxy groups in
our experiments (figure 3(e)). Indeed, the vibrational modes
and chemical environments of these oxygen-related bonds
were confirmed later as FT-IR (figure 4) and XPS data
(figures S4 and S5) indicate. The structure disorder in gra-
phene, often termed defects, e.g. sp3 type, could be induced
with plasma treatments [62, 63]. Indeed, the plasma could
introduce defects both at edges and on the basal planes as tip-
enhanced Raman spectroscopy mapping shows [64]. Besides,
vacancy-type defects were often observed with heavily ions-
irradiated graphene surfaces [65–68]. The graphene edges
contribute to the D modes under Raman spectroscopic char-
acterizations [69–71].

Figure 3. Structural, elemental, and diffraction analysis of the oxygen-plasma-treated 3D graphene. (a) Low-magnification transmission
electron microscope graph of graphene (transferred) over a Quantifoil grid. (b) Selected area electron diffraction (SAED) pattern of the
graphene. (c) TEM micrograph of graphene with fringes and (d) high-magnification TEM micrographs showing the layer stacks of the
graphene. (e) The surface atomic diagram of the multilayer graphene. (f) Energy-dispersive x-ray spectrum of the oxygen plasma-treated 3D
graphene. (g) TEM graph showing the stacked layers of few-layer 3D graphene. (h) The intensity profile of the interlayer spacing of graphene
in panel (g).
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The pristine 3D graphene contains the minimum oxygen
content (0.4 at%) as EDX data show (figure S2(e)), which
corresponding to hydroxyl group (figure 4(a)). Then, the 3D
graphene treated by oxygen plasma is less (figure 3(f)), i.e.
0.7 at%, corresponding to the hydroxyl groups as indicated by
infrared spectra (figure 4(b)). In addition, the oxygen content
of three-dimensional graphene etched by nitric acid is the
highest (0.8 at%), (figure S3(e)) which corresponds to the
enhancement of C–O group in the peak shown by infrared
transmittance spectrum (figure S7(a)). The hydroxyl groups
are preferred for the rapid response to formaldehyde gas
molecules compared to other oxygen-containing groups
(discussed later in the section of sensing mechanism).

The TEM graph exhibited typical graphitic fringes along
smooth edges, which indicated multilayer graphene features
(figure 3(g)). The measurement of the interlayer spacing of
the 3D graphene was ca. 0.33 nm (figure 3(h)).

We compared the infrared spectra of the 3D graphene
with and without oxygen plasma. The strong absorption peak
of O–H was at ca. 3450 cm−1 (figure 4(a)). This was caused
by the hydrogen bond adhering to the graphene surface during
the plasma etching. This was caused by the hydrogen bond
adhering to the graphene surface during the plasma etch-
ing [59, 72].

Compared to the non-treated 3D graphene, the post-
treatment with oxygen plasma sample showed an absorption
peak at ca. 2700 cm−1 (−CHO), and a stronger stretching
vibration peak of C=O at 1625 cm−1 (figure 4(b)) [73]. In
addition, the absorption peaks emerge at ca. 2900 cm−1

(including two peaks at 2920 and 2850 cm−1), which are
assigned as the C–H stretching modes [74, 75]. Therefore,
oxygen-containing functional groups were introduced across
the surface of 3D graphene (figure 4(e)). These oxygen-con-
taining groups were more likely to adsorb formaldehyde gas

Figure 4. Infrared spectra of 3D graphene without (a) and with (b) oxygen plasma treatment. Oxygen plasma leads to the formation of epoxy
groups and carbonyl radicals at the edges and on the surface of graphene. The atomic configuration of graphene during plasma treatment (c)
pristine graphene, (d) initial oxygen plasma, and (e) complete plasma treatment. The oxygen-containing groups are distributed over the
surface of graphene, such as the carbonyl, aldehyde, and epoxy groups. (f) A typical SEM micrograph of the oxygen plasma-treated 3D
graphene.
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molecules, which was consistent with the performance tests
for the detection of formaldehyde molecules (discussed later).

We examined the gas-sensing performance of the three
types of post-treated 3D graphene. The electric current of the
sensor was tested at a fixed voltage (0.1 V). Liquid for-
maldehyde was injected and dropped onto a hot plate (30 °C)
(figure S10). At high temperatures, formaldehyde volatilized
into gaseous molecules, which filled the gas test chamber

(figure 5). A large specific surface area and high quality of 3D
graphene have been demonstrated in the detection of gas
molecules. The analysis of response and recovery confirmed
the gas sensitivity of the 3D graphene-based gas sensor at a
formaldehyde concentration of 11 ppm at 25 °C.

The untreated 3D graphene exhibited a stable response
and excellent repeatability for exposure to a formaldehyde
concentration of 11 ppm. This demonstrated that the sensor

Figure 5. Gas-sensing performances of 3D graphene with and without oxygen plasma treatment. (a) The gas sensor testing platform
schematic includes a test chamber, electric measurement equipment (source measurement unit), and a gas introducing unit. (b) The
photograph of the gas sensor based on the oxygen plasma-treated 3D graphene bridging two Au electrodes. (c), (d) Response curve of the gas
sensor based on the untreated 3D graphene. The response is the quotient of the Ra/Rg. Ra denotes the resistance of 3D graphene in open air.
Rg denotes the resistance of 3D graphene with introducing the target gas. (e), (f) The response performances of the gas sensor based on
oxygen plasma-treated 3D graphene. Different concentrations of formaldehyde molecules were introduced during the sensor examination.
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had significant detection ability at lower concentrations of gas
molecules (figure 5(c)). The HNO3-treated 3D graphene
showed weak performance during gas sensing. The devices
had poor recovery upon ventilation (figure S12).

Comparatively, the oxygen plasma-treated sample
(figure 5(e)) showed a shorter response time (ca. 118 s versus
180 s for the untreated 3D graphene) and faster recovery time
(ca. 116 s versus 187 s for the untreated 3D graphene)
(figures 5(d) and (f)). Our device performances were com-
parable to the best devices ever reported with some oxide
assistance (table S2).

The detection mechanism was determined by analyzing
the response current curves. First, the three types of treat-
ments do not significantly change their conductance (figure
S11). This means the good electric transport has been main-
tained for graphene. And the oxygen functionalization only
occurs at the topmost layer surface or edges of the graphene
(ca. 10 layers as HRTEM data show). Then, the gas interac-
tion occurs at the surface of graphene, other than the inter-
layers. Here, the electron-rich formaldehyde molecule as a
donor was adsorbed onto the surface of 3D graphene, which
increased the electron cloud density of 3D graphene and the
number of carriers. Therefore, 3D graphene absorbed the gas
molecules of formaldehyde, which improved the measured
conductivity.

Now we come to discuss the chemistry behind the
enhanced gas sensing capability after oxygen plasma treat-
ment. The hydroxyl was found to account for the sensing of
oxygen-containing polar molecules. As per ab initio calcul-
ation, the hydroxyl exhibits the highest affinity to for-
maldehyde molecules than that of the epoxy and carbonyl
[76]. Besides, the hydroxyl can form the hydrogen bonds with
oxygen from formaldehyde, which lead to a stable gas/
hydroxyl interaction [77]. And the rotational deformation of
hydroxyl [78] facilitates the acquisition of gaseous molecules
upon the adsorption. Eventually, a drastic charge transfer
occurs between gaseous molecules and the graphene, viz., a
change emerges in the conductance of graphene based che-
miresistor. For example, the electrons transfer from the
nitrogen at ammonia to hydroxyl at graphene [77]. In com-
parison, the electrons are extracted from HCHO to reduced
graphene oxides [48, 54, 79, 80]. However, the pristine gra-
phene acts as electron acceptor when interacting with for-
maldehyde [81]. Indeed, the carbon-containing groups can
regulate the electric property of graphene by the sp3 hybri-
dization [82, 83], which leads to the decrease of delocalized π

electrons [84]. Therefore, the variation of graphene con-
ductance [85, 86] leads to the sensitivity of gas detection
through the rapid change of conductance [87, 88]. However,
these oxygen elements are of low percentage compared to
carbon, which do not change much the metallic conductivity
of graphene [89, 90], i.e. without doping. This maintains the
good response upon the introduction of gas molecules [91].
Upon the release of gas molecules, the structure of hydroxyl
turns back to its initial state, which features fast recovery of
gas sensors.

However, the oxygen of epoxy group has lone-pair elec-
trons which could expel the rich electrons at the formaldehyde

[92]. Therefore, epoxy is not preferred in the gas sensing of
electron-rich oxygen at HCHO molecules [93–95]. And the
HNO3 treatment leads to the epoxy functionalization of gra-
phene [96].

Compared with graphene oxides, our 3D graphene foam
after oxygen plasma treatment retains good electric con-
ductivity, which allows good rise/recovery rate. Besides, our
3D graphene-based sensor could operate at room temperature.
Indeed, the extraordinary performances of oxygen treated 3D
graphene-based gas sensors result in the mild oxidation that
occurs dominantly at the surface. Therefore, the surface
functionalization facilities the interaction of gas molecules.
Meanwhile the good electric conductivity guarantees the fast
charge transfer, which leads to extraordinary response. The
hydroxyl group are dominant for the capture and release of
gas molecules, which retains the excellent long-term cycling
performances of the devices.

Our experimental results of sensing HCHO confirm high
performances of oxygen plasma treated graphene due to
hydroxyl-rich surface functionalization; and low performance
of HNO3 treated graphene (figure S12) by epoxy-rich groups.
Indeed, the oxygen plasma treatment led to the formation of
hydroxyl at graphene surfaces while the HNO3 treatment
leads to the epoxy introduction over graphene. Our results
show the superior performances of oxygen plasma treated
graphene for formaldehyde detection. This may provide a
guide rule for the functionalization of other 2D materials and
their sensor applications.

Conclusions

We prepared oxygen plasma-treated 3D graphene for che-
miresistor fabrication and demonstrated the high gas-sensing
performance with formaldehyde as an example. Compared
with non-treatment and HNO3 etching, oxygen plasma treat-
ment showed a superior approach for the functionalization of
graphene with the epoxy group and carbonyl radicals. The
structural functionalization was reflected in the excellent gas-
sensing performance based on oxygen plasma-treated 3D
graphene. The response time was shortened by 34%, and the
recovery time was decreased by 38% compared to pristine 3D
graphene. In addition, treatment with the oxygen plasma for
15 min resulted in the best gas-sensing performance. Our
findings may boost research progress in chemiresistor-based
gas sensing.
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