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Abstract
The hollow porous microspheres assembled with BiOCl nanocrystals were successfully
synthesized via a facile spray solution combustion synthesis method. The microstructure,
morphology, absorbance, optical properties of the samples were investigated in detail. The
results show that hollow porous BiOCl microspheres have narrow band gaps (2.66–2.71 eV),
and the degradation rate of rhodamine B (RhB) can reach 98% under visible light irradiation for
60 min. Furthermore, the mechanism of the photocatalytic degradation of RhB was proposed
through the experiment of trapping active species. This excellent photocatalytic property can be
ascribed to the larger specific surface area and the special microstructure.

Keywords: porosity, combustion synthesis, BiOCl, photocatalysis

(Some figures may appear in colour only in the online journal)

1. Introduction

With the rapid development of worldwide industry and eco-
nomics, environmental pollution has become one of the big-
gest global problems in new century [1–3]. Semiconductor
photocatalysis technology has a great potential for the
degradation of organic pollutants because of its high effi-
ciency, energy saving, and pollution-free [4–6]. Bismuth
oxychloride (BiOCl), as one of the important main group
multicomponent V–VI–VII semiconductors, has been widely
studied due to its outstanding physical and chemical proper-
ties in various fields [7, 8]. BiOCl is known to be a tetragonal
layered structure containing [Cl–Bi–O–Bi–Cl] sheets with the

Cl atoms along the c-axis by nonbonding interactions. The
strong internal static electric fields perpendicular to the Cl
layer and the bismuth oxide-based fluorite-like layer can
reduced the recombination of photogenerated electron–hole
pairs [8–10]. And the photogenerated charge carriers can
transfer to the surface quickly to react with the organic pol-
lutant molecules [11–16]. These properties indicate that it’s a
good candidate for photocatalyst.

Many efforts have been made to synthesize BiOCl, such as
solvothermal method [13], spray drying method [14], hydro-
thermal method [15] and so on. However, these methods usually
involve high temperature, high pressure, long reaction time and
low efficiency. Solution combustion synthesis (SCS) is a method
of synthesizing nanomaterials by using oxidation-reduction
reaction among raw materials which is energy-efficient and time-
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saving [16, 17]. Nevertheless, it is difficult for SCS to control the
reaction process, and the powder products are easy to agglom-
erate. As a modification of SCS, Spray solution combustion
synthesis (SSCS) can generate uniform spherical particles with
relatively narrow size distributions, which is difficult to be
accomplished by traditional SCS method [18]. Furthermore,
SSCS can also well control the chemical uniformity of reactants
and improve the dispersion of the product [18]. However, the
reaction solution needs to be atomized into droplets and then be
sprayed into the tube furnace for the combustion reaction, so the
process time is longer than that of SCS. Up to now, many
materials have been synthesized by SSCS. For instance, Du et al
successfully synthesized hollow spherical MoO3 photocatalyst
by a facile one-step SSCS method [18]. Trusov et al reported
that SSCS method is effective for the synthesis of spherical
hollow particles of metals (Ni, Cu) [19]. Chen et al proposed that
nanocrystalline indium tin oxide (ITO) powders were prepared
by a novel spray combustion method [20].

In this work, we successfully synthesized novel BiOCl
microspheres via a simple one-step SSCS method. The BiOCl
microspheres, which are assembled by nanocrystals (10–20 nm),
present hollow and porous structure. Additionally, the SSCS
BiOCl shows excellent photocatalytic performance, and the
degradation performance for RhB reaches 98% in 60min. And
the differences between the two methods (SCS and SSCS) of
synthesizing BiOCl were discussed in terms of structure,
morphology and photocatalytic activity.

2. Experimental

2.1. Materials

Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), ammonium
chloride (NH4Cl), tartaric acid (C4H6O6), glycine (C2H5NO2),
rhodamine B (RhB) were purchased from Aladdin Chemical
Reagent Co., Ltd, China. And nitric acid (HNO3) was pur-
chased from Sinopharm Chemical Reagent Co., Ltd. All
chemicals were analytical grade and used directly without
further purification.

2.2. Sample preparations

BiOCl microspheres were synthesized via SSCS method. (1)
6 mmol Bi(NO3)3·5H2O, 6 mmol NH4Cl, 4 mmol C2H5NO2

and 4 mmol C4H6O6 and 10 ml 4M nitric acid were added
into a 50 ml beaker to form a homogeneous and transparent
solution on a magnetic heating plate; (2) The prepared solu-
tion was transferred to an ultrasonic atomizer and pushed into
the tube furnace with 600 ℃ preheating in the form of spray
droplets. (3) The spray droplets take place combustion reac-
tion under the action of heating, and products are adsorbed on
the other side of the quartz tube. When the prepared solution
was completely injected into the tube furnace, the tube fur-
nace began to cool down, and the reaction lasts for about
30 min. Finally, the products were collected on the right side
of the quartz tube. In order to investigate the influence of fuel
ratio, the amount of Bi(NO3)3·5H2O and NH4Cl and the ratio

of C2H5NO2 and C4H6O6 (1:1) were kept constant, while the
amount of total fuel (C2H5NO2 and C4H6O6) was increased by
1.25 and 1.5 times respectively, and then the same steps were
repeated. The farinose samples were obtained and labeled as
SSCS-B-1, SSCS-B-1.25, and SSCS-B-1.5 according to the
amount of fuel. For comparison, the sample called SCS-B-0
was prepared via traditional SCS route.

2.3. Characterization

The XRD patterns, SEM images, TEM images, BET data, DRS
spectra, PL spectra and TOC determination were tested by x-ray
diffraction (Bruker D8 Advance diffractometer), scanning elec-
tron microscopy (Quanta 250), high-resolution transmission
electron microscopy (JEM-2100F, Japan), N2 gas Brunauer–
Emmett–Teller (BELSORP-max, Japan), ultraviolet–visible
spectrophotometer (Shimadzu, Kyoto, Japan), photoluminescence
spectrophotometer (FLS-980, UK) and total organic carbon
(Tekemar Dohrmann, Apollo 9000) respectively.

2.4. Photocatalytic performance evaluation

The photodegradation property of the samples for the RhB
degradation was monitored under visible light irradiation. In a
typical procedure, 30 mg of catalyst and 30 ml of 20 mg l−1

aqueous RhB solution were added into a 50 ml quartz beaker.
Then, the mixture was stirred in the dark for 30 min to obtain
a good dispersion and sufficient adsorption–desorption equi-
librium between the photocatalyst surface and RhB. After
that, the suspensions were continuously stirred with 150W
halogen lamp under visible light irradiation, and the distance
between the light source and the beaker was set at 20 cm.
Finally, the concentration of RhB solution was evaluated by
UV–vis spectrophotometer. The degradation efficiency was
reported as (1−C/C0). Here, C is the concentration of RhB
solution after absorption and irradiation, while C0 is initial
concentration of RhB solution. To characterize the stability of
as-synthesized power, five cycles of experiments were per-
formed under the same conditions.

Figure 1. XRD patterns of as-prepared products.
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3. Results and discussion

Figure 1 presents the XRD patterns of the as-obtained sam-
ples. It can be seen that all the diffraction peaks of as-syn-
thesized products are indexed to tetragonal BiOCl (JCPDS
card NO. 06-0249) with lattice constants of a=b=3.891 Å
and c =7.369 Å [15]. The major XRD diffraction peaks at
2θ=25.86°, 32.49° and 33.45° corresponding to the (101),
(110) and (102) planes, respectively. And these results show
that BiOCl was successfully synthesized by SCS and SSCS.
Based on the XRD patterns, the calculated grain size of the
sample SCS-B-0, SSCS-B-X (X=1, 1.25, 1.5) is 102.1 nm,
18.8 nm, 20.6 nm and 23.7 nm, respectively. These results
indicate that SSCS could effectively control the grain size of
the combustion products in comparison with SCS.

The detailed elemental composition and chemical state of
the SSCS-B-1 sample, as shown in figure 2, was identified
through XPS analysis. The XPS spectra were corrected for
specimen charging by referencing the C 1s peak at 284.50 eV
[21]. Figure 2(a) shows the survey spectrum of the SSCS-B-1
which presented the peaks of Bi, O, C and Cl elements. No
peaks of other elements are found, indicating the SSCS-B-1
sample have a very high purity. The spectrum of Bi 4f

(figure 2(b)) for SSCS-B-1 shows two peaks which located at
159.31 and 164.60 eV, corresponding to Bi 4f7/2 and Bi 4f5/2
of Bi3+ [21], respectively. The spectra of O 1s is shown in
figure 2(c), the peak at 530.10 eV coincides with the binding
energy of bismuth–oxygen of BiOCl, the peak at 531.44 eV is
assigned to the oxygen adsorbed by the BiOCl [22].
Figure 2(d) indicate that the Cl 2p XPS spectra with two
peaks at 198.00 and 199.60 eV, which belongs to Cl 2p3/2
and Cl 2p1/2, respectively [23]. The above results demon-
strate BiOCl was successfully prepared by SSCS.

The microstructure construction of as-prepared samples
was illustrated by SEM, TEM and HRTEM in figures 3 and 4.
As shown in figure 3(a), the SCS product is composed of
yellow powders, while the SSCS products turn into faint
yellow and fluffy powders (figures 3(d), (g) and (j)).
Figures 3(b) and (c) reveal that SCS BiOCl shows an irregular
structure from agglomeration of nanorods and nanoparticles.
However, all the samples obtained via SSCS present the
morphology of uniformly dispersed microspheres. As shown
in figure 3(e) and inset, SSCS-B-1 exhibits a structure of
microspheres with a spherical shell thickness of a single layer
nanocrystals and there is no stacking of nanocrystals.
Figure 3(f) indicates that hollow microspheres are assembled

Figure 2. XPS spectra of (a) survey spectrum; (b) Bi 4f; (c) O 1S; and (d) Cl 2p for SSCS-B-1 sample.
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by nanocrystals (10–20 nm) and there are a large number of
uniform nanopores around the nanocrystals, which may help
narrowing the band gap of BiOCl. The hollow porous struc-
ture retains the high specific surface area of nanocrystals.
When the amount of fuel increases to 1.25 times (figures 3(h)
and (j)), the surface of some microspheres is surrounded by a
layer of film, which may be attributed to the increase in heat
release. Figures 3(k) and (l) show that when the amount of

fuel increases to 1.5 times, the structures of the surface of
some BiOCl microspheres change from nanoparticles to
nanosheets. Figure 4 show the TEM and HRTEM images of
SSCS-B-1 sample. Figure 4(a) further reveals that the BiOCl
microspheres are hollow and porous. As shown in figure 4(b),
the surface of BiOCl microspheres are composed of nano-
crystals with the size of 10–20 nm, corresponding well to the
calculated particles size. The HRTEM image of SSCS-B-1 is

Figure 3. The macrophotographs and SEM images of as-prepared samples: (a)–(c) SCS-B-0; (d)–(f) SSCS-B-1; (g)–(i) SCS-B-1.25; (j)–(l)
SSCS-B-1.5.

Figure 4. (a), (b)TEM images and (c) HRTEM image of SSCS-B-1.
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shown in figure 4(c), the lattice spacing of 0.276 nm,
0.345 nm can be obviously observed corresponding to the
(110), (101) crystal planes of BiOCl, respectively. The result
further demonstrates that high crystallinity BiOCl micro-
spheres have been successfully prepared via SSCS route.

As shown in table 1 and figure 5, the BET surface areas
of SCS-B-0 and SSCS-B-1 were calculated to be 5.11 and
15.33 m2 g−1, respectively, and the corresponding average
pore diameters were 13.74 and 8.55 nm, respectively. And the
average pore diameters of SSCS-B-1 are consistent with the
results of TEM. Moreover, the total pore volume of SSCS-B-
1 have a significant increase in compassion with SSCS-B-0.

Obviously, SSCS-B-1 sample prepared in SSCS method
exhibits a larger specific surface area about three times and a
smaller porous structure than that of SCS. The hollow porous
BiOCl microspheres are assembled with single layer of
nanocrystal, which not only helps retain the high surface area
of nano crystal, but also avoids the agglomeration and
stacking of nano crystal.

The UV–vis diffuse reflectance spectra of as-obtained
samples were depicted in figure 6(a). In contrast to SCS
BiOCl, SSCS BiOCl have a slight red-shift in the range of
350–500 nm. The band gaps of as-prepared samples are
determined by the formula: Eg=1240/λg [24], in which Eg

Figure 5. N2 adsorption–desorption isotherms and the relevant pore-size distributions (insert) of (a) SCS-B-0 and (b) SSCS-B-1.

Figure 6. (a) UV–vis diffuse reflectance spectra of as-obtained samples; (b) PL spectra of SCS-B-0 sample and SSCS-B-1 sample.

Table 1. BET surface areas and average pore diameters of SCS-B-0 and SSCS-B-1.

Sample BET surface area (m2 · g−1) Average pore diameters (nm) Total pore volume (cm3 · g−1)

SCS-B-0 5.11 13.74 0.017
SSCS-B-1 15.33 8.55 0.033
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and λg represent the band gap and wavelength, respectively.
The calculated band gap of SCS-B-0, SSCS-B-1, SSCS-B-
1.25 and SSCS-B-1.5 are approximately 3.29 eV, 2.71 eV,
2.68 eV and 2.66 eV, respectively. The results indicate that
BiOCl prepared via SSCS method have a narrower band gap.
Figure 6(b) shows photoluminescence (PL) spectra of SCS-B-
0 and SSCS-B-1, in which PL spectra is related to the effi-
ciency of the photogenerated electron–hole separation and the
transfer behavior of charge carriers. As shown in figure 6(b),
the PL spectra of the two samples exhibit an emission peak
centered at 485 nm (∼2.56 eV) under the excitation of 350 nm
laser. And the PL intensity of SSCS-B-1 is significantly
weaker than that of SCS-B-0, indicating that SSCS-B-1
enable the charge carriers to rapidly transfer onto the surface
BiOCl microspheres. This facilitates the separation of pho-
togenerated electrons and holes. The hollow porous structures
of BiOCl microspheres with a large number of uniform holes
in the shell could allow multiple scattering of UV–vis light,
suggesting that the optical path length for light transporting
through those BiOCl hollow structures are longer than that of
the BiOCl nanoplates. Longer optical path length could
increase the quantity of photogenerated electrons and holes

[25, 26]. Thus, the PL intensity of SSCS-B-1 microspheres
tends to weaken and the band gap will become narrower. In
addition, semiconductor nanomaterials exhibit size effect in
the nano region, and the PL intensity of BiOCl weakens with
the decrease of grain size [26, 27].

The photocatalytic performance investigations of the as-
synthesized samples were probed by degrading rhodamine
(RhB) under visible light illumination. As depicted in
figure 7(a), RhB was almost not degraded without any pho-
tocatalyst under visible light illumination. SCS-B-0 sample
exhibited a poor photocatalytic efficiency (18% in 60 min) for
RhB degradation. However, SSCS-B-X (X=1, 1.25, 1.5)
samples show remarkably enhanced photocatalytic abilities in
comparison with SCS-B-0 sample, which is mainly due to the
following reasons: (1) hollow porous microspheres retain
high specific surface area of nanocrystals and avoid the
agglomeration of nanocrystal. (2) The uniformly distributed
nanopores are conductive to the transport of reactants which
can also provide sufficient active sites inside the micro-
spheres. Furthermore, the photocatalytic performance of the
SSCS samples gradually descends with the amount of fuel.
Especially for SSCS-B-1 sample, near 98% removal rate can

Figure 7. (a) Photocatalytic properties of as-synthesized samples; (b) TOC analysis of the RhB degraded with SSCS-B-1 sample under visible
irradiation;(c) cyclic photodegradation of RhB for SSCS-B-1 sample; (d) the influence of different active species scavengers on
photocatalytic performance of SSCS-B-1 sample.
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be achieved for RhB. To confirm the degraded substance, a
TOC analytical experiment was carried out. As is shown in
figure 7(b), 51% of the organic carbon is mineralized after
60 min of illumination. The result indicates some of the
degradation intermediates produced in the photodegradation
process still exist [10, 28, 29]. The photostability of the
photocatalyst was conducted by cyclic photodegradation of
RhB. As shown in figure 7(c), the photocatalytic performance
after five cycles does not have significant decrease for SSCS-
B-1 sample which demonstrates an excellent photostability.

To investigate the active species generated in the pho-
tocatalytic process, hydroxyl radicals (·OH), superoxide
radicals (·O2−), and holes (h+) were captured by isopropyl
alcohol (IPA) [30], 1,4-benzoquinone (BQ) [31], and
ammonium oxalate (AO) [32], respectively. The procedure
similar to the above photocatalytic experiments in addition to
adding 1 mM trapping agents. As depicted in figure 7(d),
without adding scavengers, the degradation efficiency of RhB
can reach 98%. When IPA served as trapping agent, the
photocatalytic performance slightly declines, which demon-
strates ·OH is not the main active species in the degradation
process. When AO was added, the photodegradation rate of
RhB decreased obviously to 70%, indicating that h+ specie
plays the major roles in the RhB photocatalytic degradation.
Nevertheless, the photodegradation rate dramatically
decreased to 21% after adding BQ as trapping agent, which
prove that ·O2− is the most active specie for the photocatalytic
degradation of RhB.

Based on the aforementioned analysis, the photocatalytic
mechanism of BiOCl microspheres prepared via SSCS for the
photocatalytic degradation of RhB is put forward in figure 8.
Under visible light irradiation, BiOCl can be excited to pro-
duce photogenerated electron–hole due to the narrow band
gap of it. The photogenerated electrons in the conduction
band can react with the adsorbed O2 form ·O2− species. The
reactive oxygen radical (·O2−) and holes (h+) can degrade

RhB to form intermediates, CO2 and H2O in the photo-
catalytic reaction.

4. Conclusions

In this work, hollow porous microspheres assembled by sin-
gle layer of BiOCl nanocrystals were prepared successfully
through a novel spray solution combustion method. The SEM
and TEM results indicate that BiOCl obtained by SSCS
method is self-assembled by nanoparticles to form hollow
porous microspheres. Moreover, compared with BiOCl syn-
thesized via SCS method, SSCS BiOCl microspheres have
larger specific surface areas (15.33 m2 g−1) and narrower
band gaps (2.66–2.71 eV), which can improve the absorption
ability of BiOCl for visible light and further enhance the
photocatalytic activity of BiOCl. A photocatalytic mechanism
for hollow porous BiOCl microspheres is proposed, and ·O2−

and h+ are the main active species in degrading RhB. The
present research provides a method to prepare novel BiOCl
microspheres with enhanced visible photocatalytic properties.
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