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Abstract
Mesoporous TiO2 hollow spherical nanostructures with high surface areas were successfully prepared
using a microwave method. The prepared hollow spheres had a size range between 200 and 500 nm.
The spheres consisted of numerous smaller TiO2 nanoparticles with an average diameter of 8 nm. The
particles had an essentially mesoporous structure, with a pore size in the range of 2–50 nm. The results
confirmed that the synthesised of anatase TiO2 nanoparticles with specific surface area approximately
172.3m2 g−1. The effect of ultraviolet and visible light irradiation and catalyst dosage on the TiO2

photocatalytic activity was studied by measuring the degradation rate of methylene blue. The
maximum dye degradation performances with low catalyst loading (30mg) were 99% and 63.4%
using the same duration of ultraviolet and visible light irradiation, respectively (120min).

Keywords: TiO2 hollow spheres, microwave, mesoporous, photocatalysis

(Some figures may appear in colour only in the online journal)

1. Introduction

In the past few decades, the amount of waste generated by
human activities has increased tremendously. In the same period,
the demand for clean water for human consumption, agriculture
and industry has rapidly increased [1]. Due to limited resources
for clean water, the removal from effluent of contaminants such
as dyes in textile wastewater is becoming a pressing need [2, 3].
Various methods have been developed for the removal of dyes
from effluents, including physical methods such as precipitation
[4, 5], adsorption [6] and reverse osmosis [7]; chemical methods
via oxidation and reduction [8]; and biological methods
including aerobic and anaerobic treatment [9, 10]. Unfortunately,
these methods often have several shortcomings, such as creation
of sludge, high operating costs, time consumption, low yield and

inefficiency, especially in cases where complicated aromatic
compounds are produced.

In recent years, decomposing compounds using photo-
catalytic processes by semiconductor degradation methods have
received greater attention [11–13]. Unlike the methods men-
tioned above, photocatalytic degradation is well accepted as a
cleaner and greener technology for the elimination of toxic
organic and inorganic pollutants from water and wastewater.
Moreover, this method is economical, since it requires little
energy to operate, and works at ambient temperature and pres-
sure [14, 15]. Since the first report on its photocatalytic activity
[16], TiO2 has attracted huge interest from researchers for many
decades as the best semiconductor for the photodegradation of
organic pollutants in water. TiO2 exhibits chemical stability,
high oxidation resistance, low toxicity, long-term photostability
and competitive production cost [17, 18].

The photocatalytic activity of TiO2 is highly dependent
on its surface area, crystalline structure and synthesis method
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[19, 20]. Various methods have been studied to enhance the
photocatalytic performance via increasing the surface area of
TiO2 [21, 22], generating defects to motivate space-charge
separation [23] and doping TiO2 with other semiconductors or
metals [24, 25]. Among these methods, the easiest and most
effective approach to enhancing photocatalytic efficiency is
increasing the TiO2 surface area. TiO2 with a high surface
area is a highly active photocatalyst material, due to its high
surface-to-volume ratio, which absorbs light and provides
additional active sites for catalytic reactions [26, 27].

Having large specific surface area, TiO2 hollow spheres
display interesting optical and electrical properties. There are
several reports on their improved light-harvesting capacity,
enhanced penetration, low density and smaller band gap—
which leads to a wider wavelength absorption region [28, 29].
Thus, it is not surprising that TiO2 hollow spheres are being
suggested as one of the promising nanostructures for efficient
sunlight photocatalyst applications.

TiO2 hollow spheres can be prepared using various
methods [30–32]. However, the conventional methods
usually require high pressures and temperatures, involve long
reaction times, and utilise complex procedures. In addition,
localized overheating output from the hot surface of the
reaction vessel can lead to product decomposition in case of
heating for elongated periods. Unlike these conventional
preparation methods, where the heat is transferred by con-
ductance, the microwave method produces potential and
uniform internal heating by the direct coupling of microwave
energy with the polar molecules present in the reaction mix-
ture [33, 34]. Microwave dielectric heating is introduced into
the vessel reactor remotely, depending on the ability of the
solvent or matrix to absorb the microwave energy by, and
thus convert it into heat. The solvent absorbs the microwave
irradiation by two mechanisms: dipole polarisation and
conduction.

Here, we present a simple, high yield, efficient reaction to
prepare mesoporous TiO2 hollow spheres with high surface
area, using a novel modified microwave method which works
much faster than conventional methods. A possible mech-
anism of TiO2 hollow sphere formation has also been pro-
posed. The effect of different loading amounts of TiO2

nanoparticles on the photocatalytic activity has been studied
via the photodegradation of MB (C16H18N3SCl·3H2O) dye
in aqueous solution under both ultraviolet and visible light
irradiation.

2. Experimental procedure

2.1. Synthesis of TiO2 hollow spheres

The TiO2 hollow spheres were prepared using a modified
commercial domestic microwave oven (Sharp model R-369T)
complete with a reflux device and magnetic stirrer. The modified
microwave process consisted of drilling a 35mm hole on the top
side of the microwave to provide space for a reflux condenser to
facilitate work at ambient pressures. Titanium (IV) isopropoxide
(TTIP, Ti[OCH(CH3)2]4, bought from Acros Organics, 98%)

was used as the precursor. In a typical procedure, 0.2M of TTIP
was added dropwise into a glass vessel containing ethanol
(pH=2) under vigorous stirring for 10min at room temper-
ature. Next, 100ml of ethanol was added to the solution to slow
the hydrolysis and condensation reactions, after which 5ml of
deionised water was added dropwise to the mixture with con-
tinuous vigorous stirring for 3 h. The solution was then placed in
the microwave for 5 min at 50% of the maximum microwave
power (1100W). The solution changed from transparent to
milky white, indicating that TiO2 nanoparticles were produced
directly by exposure to microwave radiation. Next, the pre-
cipitate was centrifuged at 4000 rpm for 5min and repeatedly
washed with absolute ethanol and distilled water to eliminate
any residual organic species remaining in the final products. The
precipitate was then dried at 90 °C in air overnight. Finally, the
white fine powder was calcined at 500 °C in air for 1 h to obtain
TiO2 nanoparticles.

2.2. Characterisation

2.2.1. X-ray diffraction analysis. The phase identification of
the powder was conducted at room temperature by XRD
(Bruker D8 Advance) using Cu Kα radiation operating at
40 kV and 40 mA. The 2θ range was from 10° to 65° with a
step size of 0.025° and an exposure time of 19 s per step. The
crystallite size of the prepared powder was calculated using
TOPAS V4 software (Bruker Diffract-Plus).

2.2.2. Field-emission scanning electron microscopy (FE-
SEM). The sample morphology was investigated using
FE-SEM (SUPRA 55VP, ZEISS) operated at accelerating
voltages of 3 to 30 kV. The powder was mounted on a
conductive carbon tape prior to the measurement.

2.2.3. BET surface area measurements. The surface area of
the powder was analysed using a Gemini apparatus
(Micromeritics 2010 Instrument Corporation). The

Figure 1. XRD patterns of the as-prepared TiO2 (a) and TiO2

calcined at 500 °C in air for 1 h (b).
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measurements were based on N2 (>99.999%) adsorption
isotherms at 77.35 K using the Brunauer–Emmett–Teller
(BET) process at 350 °C for 2 h under 50 mTorr of vacuum.
The pore volume and average pore size distribution were
obtained via the Barrett–Joyner–Halenda (BJH) technique
from the nitrogen desorption isotherm.

2.2.4. X-ray photoelectron spectroscopy (XPS). The surface
state of the powder was examined using extremely high-
vacuum XPS (AXIS ULTRA DLD). The x-ray source used in
this work was Mg Kα operating at 10 mA and 15 kV. The
pressure in the measuring chamber was fixed at 10−9 torr. The
survey scan was conducted using pass energy set at 160 eV,
and the high-resolution spectra for all elements were collected
using 20 eV. The data were baseline-corrected and analysed
using Vision processing software. The instrumentation
transmission function was corrected using Schofield

sensitivity factors. The charging effects of binding energies
(BEs) were decreased by applying a flood gun at low kinetic
energy. The binding energies were calibrated based on the
graphite C 1s peak at 284.5 eV. The corrected BEs were used
to identify the valence and chemical environment of the atom
studied.

2.3. Photocatalytic activity test. The photocatalytic activity
of the synthesised TiO2 nanoparticle was evaluated by
monitoring the degradation of methylene blue (MB)
solution as the target pollutant in aqueous solution.
Methylene blue was selected due to its high adsorption to
metal oxide surfaces, well defined optical absorption and
good resistance to light degradation. The experiment was
conducted at room temperature with an initial pH of 7.0. The
effect of catalyst dosage was studied as a function of
irradiation time. Two types of light were used to study the

Figure 2. FE-SEM images of TiO2 nanoparticles at different magnification: 10 k (a), 50 k (b), 100 k (c) and 160 k (d). Arrows correspond to
the presence of hollow spheres while the red circle marked to the cracked part.
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effect of the irradiation source on the dye degradation: a 20W
commercial halogen tungsten lamp was used as the visible
light (VL) source and a 12W VL-6.LC lamp at 365 nm was
used as the UV source. In each experiment, a given amount of
catalyst (10, 20, 30, 40 or 50 mg) was suspended in 100 ml of
aqueous MB (10 mg L−1) in a 250 ml conical flask. Prior to
irradiation, the solution was sonicated for 10 min and
preserved in a dark room for at least 1 h to ensure
adsorption−desorption homogeneity of the dye on the
catalyst surface. The first sample (approximately 5 ml) was
taken at the end of the period for the dark adsorption (just
before the light was switched on) to determine the MB
concentration in the solution, which was considered the
elementary concentration (c0). The flask was then
continuously mechanically shaken at 400 rpm under
irradiation by a light source located axially to the container
at a distance of 20 cm. After specific intervals, approximately
5 ml of the liquid was withdrawn regularly and promptly
centrifuged to remove any suspended solid. To monitor the
MB degradation, the clean solution was analysed using UV
−visible spectrometry (Perkin Elmer Lambda 900 UV/Vis)
in the range 450–750 nm.

3. Results and discussion

3.1. X-ray diffraction analysis

Figure 1 shows the x-ray diffractograms of the prepared TiO2

nanoparticles (before and after calcination). The as-synthe-
sised TiO2 nanoparticles (uncalcined) show broad and weak
peaks, due to the small average crystallite size and poor
crystallisation (figure 1(a)). Crystalline peaks were observed
after calcination (figure 1(b)). Sharp peaks with high inten-
sities identified as the anatase phase (JCPDS # 021-1272) for
the calcined TiO2 confirmed the formation of highly crystal-
line material. The average crystallite size was determined

using TOPAS V4 software as approximately 4.5 nm and
11.9 nm before and after calcination, respectively.

3.2. Surface morphology

The morphology and structure of TiO2 nanoparticles were
examined by FE-SEM. The low-magnification in figure 2(a)
revealed that the TiO2 nanoparticles mainly possessed sphe-
rical shape with rough surfaces. The average diameter of these
spheres was approximately 500 nm. Moreover, we can also
observe that the spherical particles have a hollow inner cavity
with thick wall. The hollow spheres are indicated by red
arrows. The high magnification (figures 2(b)–(d)) show that
these spheres are composed of numerous smaller TiO2

nanoparticles with an average diameter of 8 nm. A small
amount of aggregated nanoparticles can be observed maybe
existing from precursors or cracked hollow spheres. The
cracked part marked with the red circle as shown in
figure 2(c).

Figure 3. N2 adsorption–desorption isotherm and pore diameter
distribution (inset) of anatase TiO2 nanoparticles.

Figure 4. XPS spectra of Ti 2p (a) and O1s (b) from TiO2

nanoparticles.
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The nanospheres’ structure was further identified by the
TEM image as shown in figure 3. The nanospheres’ surfaces
consist of plentiful agglomerated TiO2 nanoparticles with
diameter around 7 nm, and a significant amount of mesopores
with diameters of 3–6 nm are displayed. These nanoparticles’
agglomeration may be due to insufficient reaction time inside
the microwave. The black area noted in the figures may be
due to the inner cavity of the hollow spheres.

3.3. Specific surface area and pore distributions

Figure 3 shows the typical N2 adsorption and desorption of
anatase TiO2 nanoparticles. According to BDDT classifica-
tion, the isotherms can be classified into four different
regions:

(i) At low relative pressures (below 0.2), the isotherm
displays gradual increment of adsorption, suggesting
that the powders have micropores (type I).

(ii) At intermediate relative pressure (corresponding to
pressure between 0.2 and 0.5), feeble hysteresis loops
are observed, and can be attributed to type H2,
indicating the powder contains mesopores with narrow
necks and wider bodies (ink-bottle pores) [35].

(iii) Step in the P/P0 range of 0.5–0.8 corresponding to
isotherm with type IV, which reveals distinct capillary
condensation [36]. In addition, a hysteresis loop is
clearly observed and attributed to type H2; such a loop
is often associated with pores with narrow necks and
wider bodies (ink-bottle pores) [37]. This observation
confirms the hollow spherical structure of nanoparticles
in the sample.

(iv) At high relative pressures above 0.8, a small hysteresis
loop can be identified, indicating the presence of larger
mesopores (type IV) [38–41].

On the other hand, the sharp decline in the desorption
curve also confirms the presence of mesoporosity (2–50 nm)
in the material [42]; the mesoporous structure of TiO2

nanoparticles can be ascribed to formation of pores between
TiO2 particles [43, 44]. Such mesoporous structure can
improve the rate of photocatalytic reactions [45].

The specific surface area of the TiO2 nanoparticles was
found to be approximately 172.3 m2 g−1. The surface area of
the synthesised sample in this work was greater than the that
of TiO2 nanospheres reported in the literature, which ranged
between 102.9 m2 g−1 [46], 123 m2 g−1 [47] and 57.0 m2 g−1

[48]. Generally, large surface area is possible to exhibit better
photocatalytic activity, because a large surface area provides
more active sites to adsorb methylene blue solution [49].

The pore size distribution of TiO2 nanoparticles is shown
in the inset of figure 3; it can be seen that the spherical TiO2

nanoparticles reveal bimodal pore size distributions with
small and large pore sizes. The average pore diameter of small
pores is distributed around approximately 5 nm, while that of
the large pores has peak pore diameters about 78 nm.
Therefore, the average pore size distribution also confirms the
mesoporous nature of the sample.

Ggenerally, there is a relationship between average pore
size and the crystallite size of TiO2 nanoparticles, where the
average pore size increased with an increase in the crystallite
size of TiO2 powders [50–53]. This bimodal mesopore size
distribution corresponds to the two different aggregates in the
powders. The first is attributed to the small intra-aggregated
mesopores created between intra-agglomerated main particles
(represented the hysteresis loop at the lower P/P0 range), and
probably consists of voids that are left between agglomera-
tions of nanoparticles in the TiO2 shell. The second is
attributed to aggregates in the powders corresponding to the
large interaggregated mesopores produced by interaggregated
secondary particles (hysteresis loop at the higher P/P0 range),
and corresponds to the pores inside the hollow spheres.

3.4. X-ray photoelectron spectroscopy (XPS)

The narrow scan of XPS spectra for Ti and O taken on the
surface of TiO2 is shown in figure 4. The photoelectron peak

Figure 5. UV–vis absorption spectra of MB solution after
photocatalysis by 30 mg of TiO2 with different illumination times
under UV (a) and VL (b) irradiation.

5

Nanotechnology 29 (2018) 145707 F K Mohamad Alosfur et al



of Ti 2p region was resolved as depicted in figure 4(a). The
peaks positioned at binding energies of 458.7 and 464.4 eV
were attributed to Ti 2p3/2 and Ti 2p1/2 spin−orbital splitting
in the Ti4+ chemical state, respectively. In addition, the
splitting between these two peaks was found to be 5.67 eV,
which is in good agreement with the literature values [54].
This value clearly indicates the presence of Ti4+, and is
consistent with the presence of anatase TiO2 [55].

The O 1s peak can be deconvoluted into three con-
tributions at 529.9, 531.3 and 532.6 eV. The main peak
(529.9 eV) was assigned to Ti–O in TiO2. The other peaks
can be attributed to hydroxyl groups from either Ti–OH or
adsorbed H2O. The existence of hydroxyl can be attributed to
the fact that TiO2 can easily adsorb water vapor in air, leading
to hydroxyl formation on the surface. Du et al (2008) argued
that the formation of catalysts such as TiO2 with large amount
of surface hydroxyl groups play an important role in enhan-
cing the photocatalytic activity, where this quantity is pro-
portional to the surface area of the catalysts. Based on these
results, high-purity TiO2 nanoparticles were successfully
synthesised using microwave irradiation.

3.5. Growth mechanisim

Based on the experimental results and analysis, the TiO2

nanoparticle was obtained by hydrolysis starting from tita-
nium isopropoxide. In acidified ethanol solution, the reaction
takes place into two steps—hydrolysis of titanium isoprop-
oxide (equation (1)) is followed by condensation
(equation (2)):

The acid condition and the increase in alcohol con-
centration provide control to the avoiding TiO2 precipitation
by slow down the hydrolysis reaction. Therefore, several
factors should be included for obtaining a desired shape and
size of the TiO2 nanoparticles. Among these factors are the
time and temperature of the reaction, the amount and con-
centration of each of TiO2 precursor, acids, alcohols and
deionized water.

The possible formation mechanism of TiO2 hollow
spheres can be suggested depending on the reaction system,
as shown in scheme 1. At first, fine TiO2 nanoparticles are
formed. Meanwhile, isopropyl alcohol (C3H8O) decomposes
under heating to produce some gas bubbles. These bubbles

Scheme 1. Schematic growth mechanism of the TiO2 hollow spheres via Ostwald ripening.

ð1Þ

ð2Þ
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can act as templates for the formation of hollow spheres, where
TiO2 nanoparticles tend to aggregate on the gas bubble surfaces
to reduce the interfacial energy, thereby forming the spherical
aggregates. It is known that many factors can affect the attach-
ment of particles on the gas bubble surfaces, such as particle
size, surface properties, electrostatic interactions and hydro-
dynamic conditions. With increased reaction time, migration of
TiO2 nanoparticles will sustainably reach a certain level, after
which the hollow sphere structure will be obtained after escape
of bubbles from the core. This phenomenon can be attributed to
the Oswald ripening process during heating [56], where con-
tinual aggregation of TiO2 occurs on the bubble surface. Finally,
the mesoporous TiO2 hollow spheres are created. Thus, iso-
propyl alcohol plays an essential role in the formation of
mesoporous hollow TiO2 spheres.

3.6. Photocatalytic activity

Figure 5 shows the changes in the maximum absorption
spectra of MB for 664 nm irradiation in the presence of 30 mg

of TiO2 under UV and VL irradiation. As the irradiation time
was increased, the intensities of the maximum absorption
peaks decreased. The peaks became very weak and nearly
disappeared after 120 min of irradiation with VL, which
indicates almost complete degradation of MB. The absorption
peaks were slightly blue shifted during the course of the
photodegradation, due to the small crystal size of the TiO2

[57]. This shift indicates an increase in the reduction potential
and oxidising potential for electrons and holes respectively.
The electrons and holes with high reduction and oxidation
power, respectively, enhanced the photodegradation rate.

The residual concentration ratios c/c0 of MB (at 664 nm)
versus degradation time (t) are shown in figure 6. Essentially,
the degradation ratio increases with increasing catalyst
dosage, and then decreases after a specific catalyst dosage. All
of the TiO2 samples exhibited increased MB degradation
under VL irradiation than under UV irradiation. The blank
run (without TiO2) showed that the degradation can be
ignored, as the MB could not be decomposed under light
irradiation without the photocatalyst. Among the TiO2 cata-
lyst dosages studied, the 30 mg dosage offered the best effi-
ciency for MB degradation under both UV and VL
irradiation. This is due to fact that an increased opacity of the
suspension brought about by the excess TiO2 particles, which
decrease the light penetration. The maximum performance of
MB removal with catalyst loading (30 mg) for a given time
period reached 99% and 63.4% under VL and UV irradiation,
respectively, after 120 min—indicating that the TiO2 prepared
herein had high photocatalytic activity. The VL response can
be attributed to the high surface area of the nanocatalyst,
where TiO2 hollow sphere structure allows more efficient use
of the light source, and thereby offers improved catalytic
activity [58–61]. In addition, the organization of TiO2 nano-
particles into a hierarchical structure can prevent the nano-
particles from randomly aggregating, so that high catalytic
efficiency can be maintained.

The steps of photocatalytic reactions occurring on the
TiO2 surface can be proposed as shown in figure 7. When
TiO2 is illuminated by a photon with energy equal or higher

Figure 6. Effect of TiO2 nanoparticle dosage on photocatalytic MB
degradation versus irradiation time under UV (a) and VL (b)
irradiation.

Figure 7. The proposed mechanism of photocatalysis by TiO2

nanoparticles.
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than its band gap, electrons (e−) will jump from the valence
band (VB) to the conduction band (CB). This process pro-
duces a positive charge in VB termed a hole (h+) and a free
electron (e−) in the CB. Generally, the adsorbed H2O or
hydroxide ions (OH−) on the TiO2 surface can react with hole
in the VB to generate hydroxyl radicals (•OH), while the
electron in the CB can reduce O2 in the surroundings to
produce superoxide ions O .2

-( ) The most important reaction of
MB photodegradation involves turning hydroxyl ions (OH−)
into hydroxyl radicals (•OH) by reaction with the holes on the
TiO2 surface [62].

4. Conclusions

TiO2 hollow spheres with high photocatalytic activity for MB
degradation were successfully synthesised using a modified
microwave method. The sample characteristics showed that
the prepared TiO2 nanoparticles had a small particle size
(average 15 nm), a pure anatase phase and a high surface area
with a mesoporous structure. The small amount of TiO2

nanocatalyst obtained has a strong effect on MB degradation
under visible light irradiation. This study suggests that this
modified microwave synthesis technique for TiO2 nano-
particles has good economic potential for removing pollu-
tants, and deserves further study.
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