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Abstract
SPPARKS is an open-source parallel simulation code for developing and run-
ning various kinds of on-lattice Monte Carlo models at the atomic or meso
scales. It can be used to study the properties of solid-state materials as well
as model their dynamic evolution during processing. The modular nature of
the code allows new models and diagnostic computations to be added without
modification to its core functionality, including its parallel algorithms. A vari-
ety of models for microstructural evolution (grain growth), solid-state dif-
fusion, thin film deposition, and additive manufacturing (AM) processes are
included in the code. SPPARKS can also be used to implement grid-based
algorithms such as phase field or cellular automata models, to run either in
tandem with a Monte Carlo method or independently. For very large systems
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such as AM applications, the Stitch I/O library is included, which enables only
a small portion of a huge system to be resident in memory. In this paper we
describe SPPARKS and its parallel algorithms and performance, explain how
new Monte Carlo models can be added, and highlight a variety of applications
which have been developed within the code.

Keywords: SPPARKS, materials processing, kinetic Monte Carlo,
Metropolis Monte Carlo, on-lattice Monte Carlo, parallel algorithms

(Some figures may appear in colour only in the online journal)

1. Introduction

Materials inherently interact with their environment at the atomic scale, e.g. via mechanical,
chemical, or electrical processes. However, their response is often manifested and observed at
the meso or continuum scales. Monte Carlo (MC) models are powerful computational tools for
helping bridge these length and time scales. Three important variants for materials modeling
are kineticMonte Carlo (KMC), rejection KMC (rKMC), andMetropolisMonte Carlo (MMC)
methods.

In KMC and rKMCmodels, important events such as diffusive hops or reactions are defined
along with their rates to capture the relevant physical underpinnings of the model. These defin-
itions can reflect both internal interactions between atoms or mesoscopic particles as well as
external fields such as an electric potential, temperature gradient, or background concentra-
tion profile. Efficient algorithms can select events one after another with the correct relative
probabilities and update the state of the system in a time-accurate manner, without the need to
follow detailed atomic motion or spend CPU time waiting for interesting events to occur.

For KMC this procedure requires knowing the rates of all events that may occur next. In
the rKMC variant, pre-computation of some or all of the rates can be avoided if events can
be partitioned into natural subsets (e.g. per lattice site or per particle), and a so-called null
event defined for each subset. A site or particle can then be chosen randomly and only rates
for events involving that site or particle need calculation to determine the next event, which
may turn out to be null (i.e. no diffusive hop or reaction).

By contrast, MMC models are not time-accurate but can be used to sample the states of
an equilibrated system (e.g. [1–4] for molecular modeling) or to dynamically evolve a system
toward an equilibrated state (which may never be reached). In this paper our focus is on the
latter. A candidate event is picked, the energy change it induces in the system is calculated,
and the event is accepted or rejected based on a Metropolis criterion which is a function of
temperature. MMC models also allow unphysical events to be defined, such as swapping the
atomic species of two atoms, in order to computationally accelerate the time evolution of the
system.

In a materials modeling context both on-lattice and off-lattice models of all three variants—
KMC, rKMC, MMC—are widely used; see examples in reviews by Chatterjee and Vlachos
[5] and Voter [6], as well as articles cited later in this paper. On-lattice models are the primary
focus of this paper; they represent a material on a regular grid, with one or more variables
defined at each grid point. By contrast, off-lattice models represent a material as a collection
of particles at arbitrary locations, typically as either atoms or mesoscale entities. Generally,
on-lattice models are simpler and more computationally efficient, while off-lattice models can
more accurately represent a wider range of material behavior, especially at the atomic scale.
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Exact KMC and rKMC algorithms are fundamentally serial, because selection of the next
event may depend on the state of the entire system after the previous event. By contrast, MMC
algorithms can often be easily parallelized by performing multiple events simultaneously so
long as it is done in a manner which satisfies detailed balance (discussed further in the next
section). In practice, this generally means two events can be performed simultaneously if their
spatial separation is large enough that the outcome of one event does not influence the outcome
probabilities of the other event. Thus models whose energy computations are local (involving
only a site and its near neighbors) are amenable to parallel execution.

The same idea to perform spatially local events simultaneously can be exploited to paral-
lelize KMC and rKMC models. The simulation domain is partitioned across processors and
each processor performs events only within its subdomain. This can result in algorithms that
are no longer exact, but which are still sufficiently accurate for practical modeling purposes.

One such category of parallel algorithms are asynchronous in that time does not advance
uniformly across all subdomains. This may require a different methodology for choosing
events at subdomain boundaries [7, 8] or periodically synchronizing and ‘rewinding’ in time to
resolve conflicting events which occurred at the boundaries [9–11]. Asynchronous algorithms
are challenging to parallelize efficiently, especially at large scale.

By contrast, synchronous algorithms offer a simpler route to parallelization. A notable
example is the synchronous sub-lattice (SSL) algorithm of Shim and Amar [12]. Each pro-
cessor performs events within a subset of its subdomain with no possibility of conflict with
events performed by other processors. This is because the subsets are defined so that their
boundaries are not updated at the same time by neighboring processors. This introduces errors
relative to exact serial KMC, but as discussed in sections 2.7 and 2.9, the errors can be estim-
ated and bounded.

Examples of parallel on-lattice KMCmodeling based on the SSL algorithm include billion-
site Isingmodels [13], thin film growth [14], charge carrier transport in organic semiconductors
[15], vacancy diffusion in iron [16], and solute interactions with point defects in metal alloys
[17]. To our knowledge the codes used for these papers are not publicly available. Two
open-source software packages for KMC-based materials modeling are the kmcos framework
(formerly kmos) [18, 19] and KMClib library [20, 21]; they also enable users to implement
their own models. However kmcos does not operate in parallel, and the focus of KMClib is not
on the style or scale of parallelization which the SSL algorithm enables.

In this paper we describe the open-source parallel SPPARKS kinetic Monte Carlo simula-
tion code [22]. It was initially made publicly available for download in 2009; we recently
moved its development to GitHub [23]. The code primarily supports on-lattice MC mod-
els, though it also has modest support for simple off-lattice MMC models as described in
section 2.13.

SPPARKS has two notable features which we detail. The first is efficient spatial parallel-
ization of on-lattice KMC, rKMC, or MMC models. For KMC and rKMC, it implements the
approximate SSL algorithm [12]. The code has a heuristically adjustable setting which allows
the user to trade-off parallel efficiency against accuracy in a manner that enables accurate sim-
ulations. For MMC, it provides options for more fine-grained parallelism. The second feature
is modular design, making it relatively easy for users to extend SPPARKS with code for a new
on-lattice MC model or application, and thus enable large-scale parallel simulations with their
model.

The remainder of the paper is organized as follows. Section 2 describes the algorithms used
by SPPARKS to achieve parallelism, including partitioning of the simulation domain across
processors, communication between processors, and various methods to allow multiple MC
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events to be performed simultaneously. In section 3 we describe how the code is designed to
be extensible so that users can add new models which leverage the algorithms of section 2.
In section 4, benchmark timings are presented which illustrate the code can efficiently and
scalably perform simulations on large parallel machines. Then in section 5 we highlight the
variety of on-lattice material modeling applications which the authors and their collaborators
have implemented within SPPARKS over the last decade. Finally, in section 6 we comment
on new capabilities which could potentially be added to the code.

2. Algorithms

SPPARKS consists essentially of two parts: a suite of applications which implement specific
models, and a core functionality used by all the applications. This section describes that func-
tionality and the serial and parallel algorithms it uses. The next section 3 will explain how new
applications are implemented using this framework.

2.1. Lattices

In the context of on-lattice Monte Carlo (MC) methods for materials modeling, a lattice is
simply a graph with vertices and edges. Each vertex is a lattice site at a spatial location,
which has some number of nearby neighbor sites, enumerated by graph edges. As illustrated
in figure 1 lattices in SPPARKS can be 1d, 2d, or 3d, and may be regular or irregular.

A regular lattice has sites at uniformly spaced points, and the same number of neighbors for
each site. Note that a site’s neighbors need not be defined as simply the set of its nearest neigh-
bors; for the square8 lattice in figure 1(d), the MC neighbors are the eight first- and second-
nearest neighbors surrounding each site. An irregular lattice can position its sites anywhere,
and define different numbers of neighbors per site. For the two random lattice sub-figures (b)
and (f), the set of neighbors for each site is defined by a cutoff distance rcut.

The regular 3d lattice (g) in the figure is for a simple cubic lattice where each site has
6 neighbors, its nearest neighbors in each dimension. There is also a cubic26 lattice where
each site has 26 neighbors, namely its first-, second-, and third-nearest neighbors. SPPARKS
also supports 3d body-centered cubic (bcc) and face-centered cubic (fcc) lattices, common
in solid-state physics, with 8 and 12 neighbors/site respectively. There is also a fcc/octa/tetra
lattice which adds octahedral and tetrahedral interstitial sites to the fcc lattice; it was added to
support a specific application described in section 5.5.

A regular lattice may be periodic or non-periodic in any dimension with respect to the
simulation box. Lattice sites on a periodic face have neighbor sites on the opposite face; sites
on a non-periodic face do not, which is a method for modeling a free surface, e.g. for thin film
growth.

Custom lattices in one, two, or three dimensions are also supported where the site coordin-
ates and their neighbor connectivity are enumerated in an input file. Sub-figure (h) is a fine-
grained custom 3d lattice with 35 000 sites (not visible) which triangulate the surface of a pill-
shaped biological cell. Each site has (on average) 6 neighbors. The figure shows a snapshot
of a simulation with a 3-state Ising model (red,yellow,purple) which was used to simulate the
effect of antimicrobial peptides (AMPs) on cell membrane permeability. Its implementation
in SPPARKS and the meaning of the figure are discussed further in section 3.

Each application in SPPARKS defines what data it stores at each lattice site. This can be
any number of integer or floating point values. These values can be used and/or updated by
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Figure 1. Diagrams and images of lattices supported by SPPARKS. For 1d systems:
(a) line and (b) random. For 2d systems: (c) square4, (d) square8, (e) triangular, and
(f) random. For 3d systems: (g) cubic6 and (h) custom. Additional 3d lattices and (h) are
described further in the text. Edges are drawn to indicate which vertices are neighbors of
each other (except in 3d). The large red sites are the neighbors of a single large black site.
Note: In the print version of this paper no figures are in color. Please see the open-access
on-line version of the paper for color versions of all the figures.

the application in its MC calculations, initialized by input script commands, or input/output
from/to files. As explained in section 2.8, in a parallel simulation each processor also commu-
nicates its per-site values to other processors.

As explained in the next subsection, once the dimensionality of the physical system is
defined, it often does not matter which lattice is used to calculate the Hamiltonian that under-
lies the Monte Carlo model, though it may affect its parameters. The equation is typically a
simple function of individual lattice sites and their neighbors. In practice, if the sites represent
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atoms, a solid-state lattice corresponding to the crystalline solid-state material is convenient.
For mesoscale models a simple square or cubic lattice may be used, since each lattice site
represents a coarse-grained chunk of physical material.

2.2. On-lattice Monte Carlo

On-latticeMCmodels define the system energy as a sum (over lattice sites) of per-site energies.
The energy at each site is a function of the site value(s) and its neighboring site values.

As examples, consider the standard Potts model [24–26], where each lattice site has an
integer spin value Si from 1 to a user-defined value Q. Q= 2 is a canonical Ising model. Also
consider a single-species diffusion model where a site is either occupied with Si = 1 or unoc-
cupied (vacancy) with Si = 0. Both models define a single integer value at each site.

The Hamiltonians for the energy of a site i in these models with M neighbors (as defined
by the lattice), can be written as follows, for two variants of the diffusion model:

Potts: Hi =
M∑
j=1

δ1(Si,Sj) (1)

Linear diffusion: Hi =
M∑
j=1

δ2(Si,Sj) (2)

Nonlinear diffusion: Hi = E

 M∑
j=1

δ2(Si,Sj)

 . (3)

In each case the energy of the entire system is simplyHi summed over N sites. For the Potts
model, δ1(Si,Sj) is 0 if Si = Sj and 1 if Si ̸= Sj. For both diffusion models, a vacant site with
Si = 0 has δ2(Si,Sj) = 0, regardless of its Sj neighbor values. For an occupied site with Si = 1,
δ2(Si,Sj) = Sj, so that

∑
δ2 is effectively the coordination number of the site.

For the linear diffusion model, the site energy is a linear function of coordination number.
For the nonlinear model, the coordination number is the argument to a function E() which
returns an energy. In SPPARKS the user can input a list of function return values. If desired,
they can be pre-calculated using a classical molecular dynamics code with a suitable empirical
interatomic potential or via density functional theory (DFT) quantum calculations so that the
MC model represents a real material. See section 5.5 for an example of the latter.

An on-lattice MC model also defines ‘events’ that can take place at each site to change the
value(s) of the site and also potentially the values of one or more of its neighbor sites. For
Potts models an event changes the spin of a single site, which is termed Glauber dynamics.
In general, a site can perform any of Q− 1 possible events to flip to a different spin value. Or,
as discussed in section 5.1, an application using the Potts model may choose to limit possible
flips to site values that match a neighboring site.

For diffusion models, events are typically defined by Kawasaki dynamics where two neigh-
boring sites exchange their values. Such swaps are ‘conservative’; if site values represent dif-
ferent materials or material phases, the amount of each material or phase is the same before
and after the event. When vacancies are present, events need only be defined for occupied sites.
Each occupied site can potentially perform one of multiple events, i.e. an exchange with any
of its unoccupied neighbor sites.

SPPARKS can run these kinds of on-lattice MC models in one of three modes: kinetic
MC, rejection kinetic MC, and Metropolis MC. As explained in section 3, a developer of an
MC application can choose which mode(s) it will support by implementing the appropriate
methods.
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Figure 2. Kinetic MC algorithm to pick the next event m and calculate its associated
time increment ∆t in a statistically consistent manner. There are N possible events to
choose from, each with propensity (or rate) pi. The total propensity ptotal is the sum of
all N propensities.

2.3. Kinetic Monte Carlo

The first mode is kineticMonte Carlo (KMC in this paper) [6], also sometimes called rejection-
free KMC or non-equilibrium MC. (The latter term is also used for rejection KMC, discussed
next.) Each site defines zero or more events it can perform and an associated kinetic rate (or
propensity) for each event. These propensities are typically not only related to energy changes
in the Hamiltonian when an event takes place, but also to the temperature-dependent probabil-
ity of crossing an energy barrier. The standard KMC algorithm for picking the next event with
correct statistical probability relative to all other possible events, and also computing the time
at which it occurs, is outlined in figure 2.

Interestingly, this algorithm has been independently formulated at least three times in dif-
ferent contexts. First by Bird [27, 28], for his particle-based Direct Simulation Monte Carlo
method used to simulate rarefied gas flow, as an algorithm for updating time after gas particle
collision events. Second by Bortz et al [29], for their BKL or N-fold way algorithm to
efficiently evolve the Ising model in statistical physics simulations. And third by Gillespie
[30, 31], as part of his Stochastic Simulation Algorithm (SSA) for time evolution of a biochem-
ical reaction network of coupled ODEs within a well-mixed small volume (e.g. a biological
cell) containing multiple molecular species at different concentrations.

In the SPPARKS context, the KMC algorithm is used to choose a single site (from a collec-
tion of N sites) to perform the next event, with the correct relative probability. If the selected
site defines more than one possible event, the application uses an additional procedure to select
one of them.

SPPARKS implements three solvers for the KMC algorithm, all of which are described in
[32]. Their computational cost to choose the next site from N sites isO(N),O(logN), andO(1)
respectively. Internally, they store the current total propensity for each site in a data structure
that enables them to implement step (4) of figure 2 in different ways: by scanning a list of
N propensities (O(N) effort), by walking a binary tree with the N propensities at its leaves
(O(logN) effort), or via amore complex composition/rejection data structure andmethodology
(O(1) effort) described in detail in [32].

Once an event is selected, the MC application performs the event, which typically changes
the site value(s) and possibly the values of one or more nearby sites. The new state of the
system changes what events are now possible for both the selected and nearby sites as well as
their propensities. The altered site propensities are calculated and passed to the solver, which
updates its internal data structure and the total propensity ptotal of figure 2. The updates must
also be done with O(N), O(logN), or O(1) cost to maintain the solver’s scalability.
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2.4. Rejection kinetic Monte Carlo

The second mode is rejection KMC (rKMC in this paper), also called null-event MC or non-
equilibrium MC [5]. As with KMC, each site defines a set of events it can perform with
associated propensities that sum to the site propensity pi. In this case, pi must have a well-
defined upper bound pmax. Conceptually, the propensity of each site is then set to pmax by
adding a null event with propensity pmax− pi. The event is ‘null’ because if it is selected, no
event is performed.

The advantage of rKMC over KMC is simplicity, particularly when implementing an MC
application. No list of competing propensities for all sites need be maintained and thus no
KMC solver is required to select the next event. Instead, a site is chosen randomly, and a second
random number is used to select an event for that site, which may be the null event. The system
clock can be updated the same as for KMC, whether the event is null or not. However, since the
summed propensity ptotal in figure 2 is constant due to the null events, the clock can instead be
updated more coarsely after a large number of events (null or otherwise) have occurred. Once
an event is performed, there is no need to update the propensities of any of the affected sites.
That calculation only need be performed once a site is selected and enumerates its events.

The disadvantage of rKMC is that the aggregate propensity of the null events across all sites
may be large, and thus there can be a high probability of no event occurring at most iterations
of the rKMC algorithm, decreasing its efficiency. In particular, if there are only a handful of
large propensity (high rate) sites in the model, the null-event propensity will be large for all
other sites, resulting in a high probability of selecting a null event. The trade-off between these
effects and thus the relative computational speed of the rKMC versus KMC modes is strongly
model-dependent.

Importantly, both the KMC and rKMC algorithms track the dynamic evolution of the sys-
tem in a time-accurate manner. If the application defines event propensities (rates) that are
physically accurate, then the KMC algorithm of figure 2 calculates a statistically exact time
increment for each event’s occurrence, and the resulting SPPARKS simulation is also time-
accurate.

2.5. Metropolis Monte Carlo

The third mode is Metropolis Monte Carlo (MMC in this paper), also called barrier-free MC.
As with rKMC, a site is chosen randomly for the next possible event. No propensities or rates
need be assigned to events; if multiple events can occur at a selected site, each can be selected
with equal probability. The energy change the selected event induces in the system (all affected
sites) is computed using the Hamiltonian defined by the model, and the event is accepted or
rejected with the following probability P (Metropolis criterion):

P=min[1,exp(−∆E/kbT)] (4)

where∆E= Efinal −Einitial, kb is the Boltzmann constant, and T is the temperature of the sim-
ulated system (set by the user). If ∆E⩽ 0, the event decreases system energy and is always
accepted. If∆E> 0, the event increases system energy and is accepted with a fractional prob-
ability which rapidly shrinks as the size of ∆E grows. Increasing T makes it more likely for
energy-increasing events to be accepted.

MMC offers much greater great flexibility in defining events, since there is no require-
ment to compute event propensities. As explained in section 2.7, sites can be looped over in
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a variety of ways (not just random selection) to speed up a simulation or enable parallelism.
Unphysical events, such as swapping the chemical identities of two adjacent atoms or particle
deletion/creation/mutation, can be defined and performed. In general, the relative frequencies
for selecting different events can be altered at will, so long as the constraint of ‘detailed bal-
ance’ is observed, meaning that (a) for any event that occurs, the reverse event can also occur
and (b) the relative probability of selecting a forward versus reverse event equals the relative
probabilities of the final and initial states at thermal equilibrium.

A disadvantage of MMC is that there is no inherent physical time associated with an
event, since rates enable that calculation in KMC and rKMC models. Instead the Metro-
polis algorithm evolves the system from the initial state towards a stationary distribution of
states, corresponding to thermodynamic equilibrium at temperature T. Often this distribution
of states will be clustered around a local or global potential energyminimum, e.g. a Boltzmann-
weighted distribution of energies. However, for the materials-processing kinds of models in
section 5, such a state is never reached; instead, the simulation ends with the material in a
metastable state, e.g. a polycrystalline solid.

As explained in section 2.7, algorithms in SPPARKS which implement MMC typically
loop over all sites to perform a ‘sweep’ of the system. If desired, the user can associate a
sweep with a Monte Carlo ‘time’ or a physical time. The latter can sometimes be done by
correlating observed properties of the simulated system with experimental results.

2.6. Partitioning and ghost sites

The dimensionality of the simulation box and lattice determines how SPPARKS assigns sites to
MPI tasks for distributed-memory parallelism. Figure 3 illustrates partitioning of a 2d regular
lattice. Each processor owns the sites within its subdomain. The processor grid is regular,
meaning the size and geometric shape of each subdomain is the same. The user can define the
processor grid (3× 3 = P in this case, where P is the total processor count) or the code will
auto-select subdomains with minimal surface area. The same approach is used for irregular
lattices and 1d or 3d lattices (1d and 3d grids of processors).

The application defines how many ghost sites each processor needs to store and commu-
nicate to/from other processors by setting two ‘hop’ parameters which define interaction dis-
tances. A hop distance of 1 means neighbors of a site, a hop distance of 2 means neighbors
of neighbors, etc. The first hop parameter is hevent, the maximum distance of neighbor sites
whose state is changed by an event at a central site. For the Potts model (Glauber dynamics)
discussed in section 2.2 hevent = 0; for the diffusion model (Kawasaki dynamics) hevent = 1.

The second parameter is henergy, the maximum distance at which neighbor sites values affect
the propensity calculated for a central site (KMC, rKMC) or affect the energy change calcu-
lated by an event at the central site (MMC). Equivalently, it is the maximum distance of neigh-
bor sites whose propensities need to be recomputed after an event occurs. For the Potts model
henergy = 1, meaning that computing the propensity or energy change associated with a spin
flip requires only neighbor site values. Because they employ Kawasaki dynamics (swaps), the
linear and non-linear diffusion models require henergy = 2 and henergy = 3, respectively. In the
non-linear case, computing the energy change at a site requires site values two hops away,
since the coordination numbers of the neighbor sites of a central site need to be calculated. A
diffusive event changes both site I and J, which means site values three hops away from site I
are needed.

For models which allow multiple events to occur at a site, the two parameters are set to
the maximum hop distances associated with any event. The henergy parameter determines how
many ghost sites each processor needs to store, as well as how many of its owned site values it
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Figure 3. Partitioning by solid lines of a rectangular simulation domain and its 2d square
lattice for a 2d grid of 9 processors. As illustrated for one processor in the middle, each
processor owns a subdomain of (large black) lattice sites as well as surrounding (red)
ghost sites, which are copies of sites owned by nearby processors. The dotted lines
denote 4 sectors within each subdomain. The yellow sectors are computed on simul-
taneously by all processors as discussed in section 2.7.

communicates to neighboring processors to update their ghost sites. Conversely, hevent determ-
ines how many ghost sites values need to be communicated back from neighboring processors
after events have taken place. It is always the case that henergy ⩾ hevent. The patterns of inter-
processor communication which use the two hop parameters are discussed in section 2.8.

2.7. Parallelism via sectors, sweeps, and colors

As mentioned in section 1, on-lattice MC algorithms can be parallelized using the spatial par-
titioning described in the previous sub-section, by allowing processors to perform events sim-
ultaneously in their respective subdomains. This assumes that events are local, meaning their
propensities depend on a small neighborhood of site values surrounding the central site. This
is the case for all the MC models discussed in this paper.

A parallel algorithm must also insure that two events on neighboring processors which are
close enough to influence each other’s energy or propensity calculation are not performed at
the same time. The synchronous sub-lattice (SSL) algorithm of Shim and Amar [12] enforces
this constraint by sub-dividing each processor’s subdomain into sub-lattices, called sectors in
SPPARKS. Figure 3 illustrates the sectors for a 2d system as dotted lines. For a 1d system each
processor’s subdomain is divided into 2 sectors, in 2d into 4 sectors, and in 3d into 8 sectors.

If each processor only performs a series of events within its same (yellow) sector simultan-
eously, there is no possibility that events on adjacent processors are close enough to influence

10



Modelling Simul. Mater. Sci. Eng. 31 (2023) 055001 J A Mitchell et al

each other. After a threshold in physical time (KMC or rKMC) or Monte Carlo time (MMC)
has been reached by the event sequence on each processor, they communicate with their neigh-
boring processors to update values for their owned or ghost sites. Details of the parallel com-
munication are discussed in the next section 2.8. This is effectively a synchronization point
in the SSL method to insure all processors have the lattice data needed to perform events in
the next sector. The steps to compute-within-a-sector, then communicate-with-neighbors are
repeated S times, where S is the number of sectors per processor; this represents one sweep
over the entire system.

For KMC or rKMC models, sites within a sector are chosen randomly to perform an event,
in accord with the KMC algorithm of figure 2, whereN is now the number of sites in the sector.
For KMC models, SPPARKS implements this by having each processor create S instances of
a KMC solver, so that each sector can store and update its site propensities independently of
the other sectors. For MMC models, sites within a sector can be selected randomly to attempt
an event or they can simply be looped over in a prescribed order, e.g. a triple loop over sites
in the x,y,z dimensions of a 3d simple cubic lattice.

As an alternative to sectors, SPPARKS also has an option for MMC models to ‘color’ the
global lattice, as illustrated in figure 4. Each lattice site is assigned a color so that all sites with
the same color are far enough apart that simultaneous events on those sites do not influence
each other’s energies as described above. This means that all processors can simultaneously
loop over sites they own of a given color (in any order), and safely perform events. Similar to
sectors, the steps to compute-within-a-color, then communicate-with-neighbors are repeated
C times, where C is the number of colors; this represents one sweep over the entire system.

The number of distinct colors needed is a function of the lattice type and dimensionality,
as well as the ‘hop’ parameters. More specifically, all sites within a distance hcolor = hevent +
henergy must be assigned colors different than the central site; hcolor is effectively the influence
distance for events on each site. The coloring option can be used only for regular lattices, not
the custom or random lattices of figure 1. For square8 and cubic26 lattices, SPPARKS allows
hcolor to be any value, otherwise hcolor = 1 is required, which is the case for the Potts model
of section 2.2. The size of the global lattice in any periodic dimension must also be evenly
divisible by hcolor + 1, so that the entire lattice can be colored consistently.

As shown in figure 4, the number of colors needed when hcolor = 1 is two for the square4
lattice and four for the square8 and triangular lattices. For a square8 lattice with hcolor = 2,
nine colors are needed = (hcolor + 1)2. In 1d, two colors are needed for the line lattice with
hcolor = 1. In 3d, for hcolor = 1, two colors are needed for cubic6 and bcc lattices, four colors
for fcc, and eight colors for cubic26. For a cubic26 lattice with hcolor = 2, 27 colors are needed
= (hcolor + 1)3.

2.8. Communication

Communication of per-site values from owned sites to neighboring processor ghost sites, and
vice versa, is required for parallel KMC, rKMC, or MMC simulations. The form of commu-
nication depends on whether sectors are used or not. Both forms are illustrated in figure 5
for 2d lattices. Coloring schemes for MMC use the pattern in the left diagram; all the MC
methods with sectors use the pattern in the right diagram, once per sector until all sectors have
performed events and communicated, i.e. a sweep is completed.

The extent of ghost site regions shown in the figure is set by the henergy hop parameter
defined in section 2.6. When henergy = 2, each processor sends values for owned sites within 2
hops of its subdomain boundaries to be stored by receiving processors on its ghost sites up to
2 hops outside their subdomains.
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Figure 4. Coloring schemes for regular 2d lattices. The (a) square4, (b) square8, and
(c) triangular lattices are colored for hcolor = 1. The (d) square8 lattice is colored for
hcolor = 2. The hcolor parameter is explained in the text. The color of the shaded polygon
is assigned to the lattice site at its lower left corner (e.g. red shaded to large red site). All
sites of the same color can perform events simultaneously in a Metropolis Monte Carlo
model.

Though not illustrated in the figure, there are also reverse communication operations per-
formed in a similar fashion (sends become receives and vice versa). These are performed after
events have taken place, either across the entire processor subdomain (coloring forMMCmod-
els) or within a sector. This insures that if events changed ghost site values, then the corres-
ponding owned site values are correctly updated. In this case, the hevent hop parameter determ-
ines which ghost sites are sent and which owned sites are updated. If hevent = 0 (e.g. the Potts
model), this communication is skipped.

For KMC models with sectors, work by Wu et al [33] has improved on the commu-
nication algorithm discussed here to reduce the number of messages and schedule the
communication operations more optimally. In their testing, this resulted in a 25% reduction in
communication time on a 32-node cluster (640 cores or MPI tasks) as compared to SPPARKS.

2.9. Tuning the synchronous sub-lattice algorithm

The approximate SSL parallel algorithm requires a criterion for terminating each sector visit.
In SPPARKS this is done at the start of each sweep by specifying a threshold time tstop. In the
case of KMC, events are performed within a sector until the accumulated time exceeds tstop
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Figure 5. Communication for 2d simulations of ghost site information surrounding
either an entire processor subdomain or one sector of a processor subdomain. (Left)
A 9-processor partitioning of the simulation domain, with one processor’s subdomain
in shaded yellow, surrounded by ghost sites (green and blue) in the dotted box. Eight
exchanges (26 in 3d) with neighboring processors are sufficient for every processor to
acquire all the ghost sites it needs to perform its Monte Carlo computations. (Right)
One processor’s subdomain, split into sectors (quadrants in 2d). The dotted box con-
tains ghost sites needed by the yellow quadrant. Ghost sites in the shaded green, red,
blue regions are owned by other processors; sites in the unshaded region already belong
to this processor. Three receives of site data (7 in 3d) from neighboring processors are
sufficient to acquire all needed ghost sites. Green, red, blue sites owned by the pro-
cessor are sent to three other processors to populate ghost sites surrounding their yellow
quadrants.

(the final event is not accepted). Each time increment is calculated by step (3) in figure 2, but
with ptotal replaced by psector, the total propensity of events in that sector. In the case of rKMC,
the number of events is calculated by dividing tstop by the constant time per site (including the
null event). In both cases, the accumulated physical time is incremented by tstop at the end of
the loop over all sectors (one sweep).

Tuning of tstop must be done for each application to achieve a good balance between accur-
acy and parallel efficiency. Making tstop smaller reduces error (compared to exact serial KMC),
but increases the fractional cost of interprocessor communication. Conversely, making tstop lar-
ger increases error, but reduces communication so that parallel efficiency improves. For larger,
more computationally efficient tstop values, the quantification of accuracy is complex. The fol-
lowing distinct sources of error are introduced by the approximate SSL algorithm; all but the
first are due to sectoring:

(1) Events occur simultaneously on different processors.
(2) The ordering of events depends on the order in which sectors are visited.
(3) Consecutive events occurring in the same sector are oversampled.
(4) Consecutive events that straddle a sector boundary are undersampled.
(5) Event probabilities are affected by sites in adjacent sectors which are both older and

younger (in an elapsed time sense).
(6) While events are performed within one sector, its boundary region is effectively ‘frozen’;

those sites do not change.

The first three sources have a relatively weak impact on error, because they affect all events
roughly equally. The last three have stronger impact; their effect is concentrated on sites at
sector boundaries.
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Figure 6. Time evolution of average grain volume Nave scaled by time t. Black circles
are exact KMC results. Crosses are approximate parallel KMC results using fixed tstop
values of 0.1τ (blue), 1τ (red), and 10τ (green). γcomm is the fraction of time spent on
interprocessor communication. Separate data points from 10 independent simulations
are shown at each time. The meaning of tstop is explained in the text. Vertical arrows
indicate the output of the first completed sweep in each set of parallel KMC runs. Data
points for tstop = 10τ (green) at t= 90τ and t= 100τ are removed for clarity.

To demonstrate these effects in a prototypical application, a Potts grain growth model was
used, as described in section 5.1. As the Potts model evolves in time, events occur at the grain
boundaries so that (on average) large grains increase in size while small grains are subsumed
by larger ones and eventually vanish. More details on the physical interpretation of the Potts
model are given in section 5.1.

Figure 6 plots the time evolution of average grain size using different algorithms, each for
10 independent simulations of a periodic 3d Potts model with 1003 sites on a simple cubic
lattice with z= 26 neighbors per site run at zero temperature. Site spins were initialized with
random integer values 1⩽ Si ⩽ Q= 200. The maximum possible site propensity pi for this
model is z/τ , corresponding to a site with distinct spins on all its neighbor sites, where τ is an
arbitrary time unit.

To efficiently grow the average grain size from Nave ∼ 1 to Nave ∼ 3 sites, a short MMC run
was used to evolve the system up to t0 = 0.1τ . Then a KMC algorithm was used to evolve the
system up to time 100τ . Note that on the y-axis, grain size Nave is scaled by time t to better
illustrate small differences. Also, on the x-axis, time is plotted on a logarithmic scale to clarify
differences at both short and long times.

The black circles correspond to the exact KMC algorithm run on a single processor (no
sectors). The blue, red, and green symbols are for parallel runs with the SSL algorithm using
different values of tstop. These were run on eight CPU cores using a 23 grid of processor sub-
domains; each of the 8 sectors within each subdomain comprised 253 sites. In all the runs there
is more statistical variation at the end when there are fewer, larger grains (Nave ∼ 1000).

For tstop = 0.1τ (blue crosses) the grain size data are statistically indistinguishable from
exact KMC, but the fraction of time spent on interprocessor communication is γcomm = 45%.
For tstop = 1τ (red crosses) the grain size is only slightly overestimated, relative to the exact
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algorithm, and γcomm drops to 12%. For tstop = 10τ (green crosses), γcomm is only 5%, but the
error in average grain size is much more pronounced, both at early and late times. Overestim-
ation of grain size is due to enhanced grain growth at sector boundaries; this is an example of
error type (5) in the list above. It is related to the ‘shish-kebab’ effect described in [22]. Grains
straddling a sector boundary preferentially grow into the ‘younger’ sector, resulting in grains
on sector boundaries larger than those in sector interiors. Conversely, the underestimation of
grain size at late times is an example of error type (6). As tstop increases, large grains are more
likely to grow up against a sector boundary, which temporarily prevents them from growing
further, resulting in lower average grain size.

The intermediate value of tstop = 1τ strikes a good balance between accuracy and parallel
efficiency. However, this is only true for time t≫ tstop. The blue, red, and green vertical arrows
indicate the time of the first completed KMC sweep over sectors at t= t0 + tstop. We see that
in the case of tstop = 1τ (red arrow), this occurs after a significant amount of grain growth has
already occurred; the grain size is significantly lower than for exact KMC. More importantly,
information about the early stages of grain growth is inaccessible, due to the use of a fixed
value of tstop that is effective at long times but limits resolution at short times.

This example illustrates the difficulty of finding a single value for tstop that provides not only
good parallel efficiency and accuracy, but also suitable time resolution at different stages of a
simulation. In this model the average propensity per site decreases by more than an order of
magnitude during the timescale spanned by the simulation. A small value of tstop that provides
good resolution at short times is needlessly inefficient at long times, while a large value of tstop
that works well at long times skips over important early stages of the simulation.

Intuitively, a good choice of tstop will result in a moderately small change in the average state
of sites during a single visit to a sector. This will ensure each sector does not either advance too
far ahead or lag too far behind neighboring sectors. To enable this in SPPARKS, the code allows
adaptation of tstop using an alternative parameter nstop. It specifies a target average number of
events to perform per active site. Active sites are those with non-zero propensity. In the zero-
temperature Potts model only grain boundary sites are active; sites interior to a grain have no
neighbors with different spin values and thus are inactive.

At the beginning of each sweep, the threshold time is calculated as tstop = nstop/max(pave),
where the denominator is the maximum value of the per-sector pave values across all sectors
and all processors. The pave for each sector is psector divided by the number of active sites in that
sector. For efficiency reasons, this is computed at the beginning of the previous sweep. Defining
tstop indirectly via nstop makes it easier to estimate a reasonable value which is independent of
the average magnitude of event propensities (rates) in the model as well as the number of
neighbors/site. It also allows the time resolution to change adaptively as the maximum rate of
change evolves. For example, in this Potts model pave ∼ 26 at the beginning of the simulation
but asymptotically approaches unity at late stages, resulting inmore than an order of magnitude
increase in tstop for a specified nstop. Because nstop is an input set by the user, it is also easy to
test its effect on accuracy or parallel efficiency for a particular model.

Our experience has been that a nstop value of unity often yields results close to exact KMC,
is reasonably parallel efficient, and provides better output resolution at small times. This rule-
of-thumb is confirmed by the results in figure 7 for the same model run with three different
values of nstop, which can be compared to figure 6. For nstop = 0.1τ (blue crosses) the grain
size data are statistically indistinguishable from exact KMC, but the fraction of time spent
on interprocessor communication is γcomm = 50%. For nstop = 1 the results closely match the
exact KMC algorithm and γcomm is 14%, similar to using tstop = 1τ in figure 6. For nstop = 10,
γcomm is 7% and grain size is more accurate at early times, but still somewhat too small at late
times.
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Figure 7. Time evolution of average grain volume Nave scaled by time t. As in figure 6,
black circles are exact KMC results. Crosses are approximate parallel KMC results using
nstop values of 0.1 (blue), 1 (red) and 10 (green). γcomm is the fraction of time spent on
interprocessor communication. Separate data points from 10 independent simulations
are shown at each time. The meaning of nstop is explained in the text. Vertical arrows
indicate time of first completed sweep in each set of parallel KMC runs. Data points for
nstop = 10 (green) at t= 90τ and t= 100τ are removed for clarity.

More importantly, the time resolution of events at early times is now greatly improved.
In particular, nstop = 1 provides similar accuracy and performance to tstop = 1τ , but the early
sweeps are now shorter in duration. The first completed sweep occurs at 0.2τ (red arrow in
figure 7). A total of four sweeps are completed using nstop = 1 in the same elapsed time that
one sweep is completed using tstop = 1τ (red arrow in figure 6).

2.10. Stitch library for large models and I/O

For materials processing it is sometimes useful to model a huge volume of material, requiring
a lattice much larger than even a parallel code can easily store in memory. More importantly,
only a small spatial portion of the model may actively evolve in a given time window. A good
example is additive manufacturing (AM) models where new material is deposited increment-
ally, a laser beam or other heat source scans over it, and the resulting microstructure (grains)
only evolves near the presence of the heat source. However, the global microstructure state
needs to be preserved, so that when the laser re-scans a region or new material is deposited on
top of it, the system evolves correctly.

The Stitch library enables storage of huge regular lattices (∼1012 lattice sites) in an SQL
database file [34, 35]. Each site can not only store multiple ‘fields’ (integer or floating point
values), but also a time history with arbitrary timestamps. This is useful for AMmodels where
an individual site may be scanned multiple times. The API provided by Stitch enables simu-
lators like SPPARKS to incrementally read or write data from/to a Stitch file; likewise post-
processing analysis or visualization tools can use the same file. The tools can be written in any
language and access the file in serial or parallel; a python interface is provided by Stitch for
its C++ library.
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The SPPARKS distribution includes the Stitch library and several SPPARKS commands
that use it. Site values on all or a portion of the SPPARKS lattice can be initialized from a
Stitch file for a requested timestamp; likewise site values can be written to a Stitch file with
an assigned timestamp. Both operations are performed on contiguous ranges of lattice sites,
i.e. a brick-shaped region in 3d. When SPPARKS runs in parallel, each processor can do this
simultaneously for all (or a portion of) the sites it owns. For simultaneous writes, the SQL
operations within Stitch insure the single database file is updated consistently.

SPPARKS input scripts allow for looping and for variables to be defined by mathematical
equations and used as inputs to commands. This makes it relatively easy to write a single
script which incrementally simulates an AMmodel over a huge domain. The bounds of single
SPPARKS simulation box are set to a small subset of the global model, the corresponding site
values are read from a Stitch file or initialized with new material, an MC simulation is run
to evolve the sites, and their values at a new timestamp are written back to the Stitch file. In
the next loop iteration, the simulation box can be shifted to a new position. Simulations with
SPPARKS that use the Stitch library in this manner are highlighted in sections 5.2 and 5.3.

Although Stitch was conceived and developed for SPPARKS welding and AM simulations,
it is very useful as an output database for any SPPARKS application which uses a compat-
ible lattice. Currently, compatible lattices are regular and rectangular such as those shown in
figures 1(a), (c), (d) and (g).

2.11. On-the-fly visualization

SPPARKS provides an output option to create on-the-fly images of site values as JPEG or PNG
files (or a movie that concatenates them) as a simulation runs. Sites can be rendered either as
spheres or small boxes (squares or cubes in 2d/3d). The former is useful for non-square or non-
cubic lattices or when sites represent atoms. The latter is useful for square or cubic lattices or
when sites represent mesoscale chunks of material; the rendering produces a seamless chunk
of material the size of the simulation box.

The color of each site can represent any value that sites store. Geometric regions can be
defined to limit which sites appear in the image, which is useful for cut-away views of 3d
models. Options are provided to set the zoom factor and view angle. Commands to do all of
this can be specified multiple times so that a simulation produces multiple sets of images,
e.g. to view a 3d system from different perspectives.

While this capability does not provide the interactivity of post-processing visualization
tools, it is useful for quick verification that a MC simulation was initialized correctly and
is evolving as expected. And it is quite useful when running huge simulations (e.g. billions
of sites) to have instant images of the state of the entire system without the need to store
huge snapshots in text or binary formats and process them later. Figures 10–16 from section 5
include examples of on-the-fly images for various models.

Each image is rendered in parallel in the followingmanner8. Each processor renders the sites
it owns into an empty JPEG (or PNG) buffer the size of the desired image (e.g. 1024× 1024).
Each site is rendered pixel-by-pixel as a sphere or box. The first time a pixel is drawn into
the image buffer, a depth value for the pixel is also stored in a companion buffer, which is the
perpendicular distance from that pixel to the plane of the image. When a pixel is re-computed,

8 A similar on-the-fly visualization capability is implemented in two other particle-based codes which one of the
authors (SJP) helped develop, namely LAMMPS [36] for molecular dynamics and SPARTA [37] for Direct Simulation
Monte Carlo (DSMC) simulations. The parallel portion of the algorithm described in those papers is the same as
described here for SPPARKS.
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its depth value is compared to the currently stored value. If the new pixel is in front of the old
one, it replaces it in the JPEG buffer, and the stored depth is updated. If it is behind the old
one, the new pixel is discarded.

Once each processor has rendered an image of its sites, the image buffers are pairwise
merged into a final image in log2(P) number of iterations, whereP= the number of processors.
At each iteration, half the processors send their current image and depth buffers to partner
processors which perform the merge; the number of participating processors is halved at each
iteration. Pixels are compared one-by-one between the two images; the in-front pixels and their
depth values become the new merged image. At the last iteration a single processor performs
the merge which produces the final image containing all the sites, which it then writes to
disk. This operation scales well to very large processor counts because the initial rendering
is perfectly parallel (assuming equal numbers of sites per processor), the iteration count is
logarithmic in P, and the volume of per-processor communication needed at each iteration is
the size of a single image.

2.12. Job-level parallelism

SPPARKS supports two forms of parallelism. First, via the partitioning described in
section 2.6, P processors can be used to perform a single simulation in parallel. Second, when
SPPARKS is launched, the P processors can be partitioned intoM subsets, where each subset
has P/M or any number of processors, so long as the total processor count across subsets sums
to P. Each subset can then run an independent simulation simultaneously.

This is managed by the input script, which can define variables that assign different para-
meters to different simulations, or loop over a large set of additional input scripts. For example,
withM= 10 subsets, a run could be launched to perform 500 simulations. Each of the 10 sub-
sets starts a simulation. Whichever finishes first launches the 11th simulation, and so forth,
until all 500 finish. This is a useful technique for performing many independent runs (e.g. with
different random number seeds) to generate good statistics or to select simulation settings from
a large multi-dimensional parameter space.

2.13. Off-lattice models

Finally, SPPARKS currently has only modest support for off-lattice MC models. Ideas for
enhancements to this capability are discussed in section 6.

The sites used for on-lattice models need not be defined on a regular lattice, in which case
they can be treated as off-lattice atoms or mesoscale particles. For example, the read_sites
command can be used to initialize a collection of atoms representing an amorphous solid or
polycrystalline material with grain boundaries. In this kind of model, an integer per-site value
(spin in the case of a Potts or Ising model) can be treated as an atom species, e.g. for an
alloy system. The partitioning of the simulation domain into subdomains, one per MPI task
(processor core), is the same as described in section 2.6 for the on-lattice case. Likewise the
communication of ghost particles between neighboring processors described in section 2.8,
works similarly, using a user-specified cutoff distance rcut to define the extent of needed ghost
particles instead of integer hevent and henergy parameters for lattice hops.

However building an MC application on top of this framework is, in general, more complex
than for on-lattice models. One simple off-lattice application is included in current SPPARKS
to illustrate how it can be done. It is the app_style relax command which enables an off-
lattice system of atoms to be energetically minimized via an MMC algorithm. A random
particle is selected and is translated randomly within a small maximum distance set by the user.
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The energy of the system before and after the particlemove is calculated and themove is accep-
ted or rejected based on the Metropolis criterion outlined in section 2.5. For this application,
energy is not defined by an on-lattice Hamiltonian, but by an interatomic pairwise potential,
defined in the input script via a pair_style command. Currently, the only pair style implemen-
ted in SPPARKS is the canonical Lennard–Jones potential

Ei =
M∑
j=1

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(5)

for the energyEi of atom i; rij is the distance between atoms i and j. The sum is over all particles
j within the cutoff distance rcut, i.e. rij < rcut. For a multi-species model, the user can define
ε, σ, and rcut values which are specific to pairs of atom species.

To run this application in parallel, the sectoring idea explained in section 2.7 is used. All
processors performMCmoves of particles within the same sector in their subdomain to insure
no attempts are made to simultaneously move two atoms within a cutoff distance of each other.
Communication is then performed to update ghost particle coordinates around the sector. This
sequence of move/communicate is repeated for all the sectors. In this context, a sweep can be
defined for an N particle off-lattice system as attempting to move each particle once, either
exactly or on average.

3. Implementing new models

SPPARKS is designed tomake it relatively easy for users to add newMonte Carlo (MC)models
(applications) to the code, which can evolve via either KMC, rKMC, orMMC algorithms. This
is done by writing a new C++ class which derives from a provided virtual parent class for on-
lattice applications, adding it to the source directory, and simply re-compiling the code. The
new child class inherits all the core functionality described in the previous section 2. This
hierarchical class structure also makes it easy to extend an existing application (class) in either
simple or sophisticated ways. A new application can simply derive from an existing one and
add or override only the specific functionality needed by the new MC model.

The child class specifies how many per-site values are used by the application and defines
what they represent. It also sets various parameters such as hevent and henergy which are used for
storage and communication of ghost site values, as discussed in section 2.6. Most importantly,
the new class implements some or all of the functions (methods) listed in table 1.

All of these functions are invoked by the top-level solver and timestepping algorithms when
a simulation executes in a chosen mode (KMC, rKMC, MMC) with a given parallel strategy
(coloring, sectoring) and/or sweeping option (random, raster, etc). The upper half of the table
lists functions which implement fundamental operations that define the on-lattice MC model;
they enumerate events, compute event propensities (rates) or energy changes due to an event,
perform selected events, and update the state of the system after events occur:

• The site_energy() function is required for all MC models. It computes the energy associated
with a site, as defined by the Hamiltonian for the model.

• The site_propensity() and site_event() functions are required for KMC models. The former
computes the aggregate propensity for all events a single site can perform. The latter is called
when a particular site is selected by the KMC solver (see figure 2) to perform an event. If
multiple events are possible, this function selects one randomly (with appropriate relative
probabilities). The event is performed and the propensities of all affected nearby sites are
updated within the KMC solver using the site_propensity() function as needed.
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Table 1. Functions which Monte Carlo (MC) applications implement to operate within
the SPPARKS parallel framework. Many are optional. Those labeled KMC, rKMC, or
MMC are required for the application to run in kinetic, rejection kinetic, or Metropolis
MC mode.

site_energy() compute energy of a site
site_propensity() KMC: compute propensity for a site’s events
site_event() KMC: choose and perform a site event
site_event_rejection() rKMC or MMC: choose and perform a site event with

possible rejection

constructor() process parameters passed to the application
init_app() setup and initialize app; check that sites are initialized

correctly
input_app() process a custom command defined by the application
app_update() invoke a custom application method periodically

• The site_event_rejection() function is required for rKMC or MMCmodels. It is called when
a site is selected by the caller to perform an event. In rKMC mode the function chooses
from multiple events possible for the site (including the null event) with correct relative
probabilities and performs it (or no event). In MMC mode the function selects one of the
possible events for that site, computes the energy change due to the event (often using the
site_energy() function), accepts or rejects the event based on the Metropolis criterion of
section 2.5 and performs the event if accepted. Note that for these models, no storage and
update of nearby site propensities is required; all computations are performed once a site is
selected.

The functions in the lower half of table 1 are optional except for the constructor of the class
itself. Each line of a SPPARKS input script is parsed into white-space separated words. The
first word is a command name, the rest are text or numeric arguments.When the app_style com-
mand appears in the script, one of its arguments is a word (like potts) which triggers an associ-
ated child class (AppPotts in this case) to be instantiated, derived from the parent AppLattice
class. The constructor of the child class is passed all the arguments of the app_style command
in the input script. This allows the MC model to be tailored by user-specified parameters at
run time. These are the optional functions:

• The init_app() function is invoked whenever the input script launches a simulation, which
can occur multiple times in a script. It allows the application to check that everything is
initialized correctly, e.g. that all sites have valid values, or to perform additional needed
setup operations.

• The input_app() function allows an application to define additional application-specific input
script commands. When an input line is not recognized as a pre-defined SPPARKS com-
mand, the command name and its arguments are passed to the input_app function for the
application to interpret and process however it wishes.

• The app_update() function is called after eachMonte Carlo sweep through the lattice or over
the sectors by KMC, rKMC, andMMCmodels. It provides an opportunity for an application
to (a) implement non-Monte Carlo time-dependent behavior or (b) couple additional grid-
based simulation modalities to the Monte Carlo solver. Examples of (a) are the welding
and additive manufacturing applications described in sections 5.2 and 5.3. They move a heat
source (e.g. laser spot) across the surface of the simulation domain to induce crystalline grain
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growth. The app_update() function is used to incrementally alter parameters that define the
heat source (position, shape, and intensity) as the MC simulation runs. Examples of (b) for
phase field and other models which either couple to the MC model or can replace it entirely
are described in section 5.8.

3.1. Cell membrane application

As a specific example of a new application that was relatively simple to add to SPPARKS,
see the simulation snapshot image in figure 1(h). Thismembrane application encodes a 3-state
Ising model which was originally formulated for modeling porous media [38]. It was used to
model the state of a lipid membrane with embedded antimicrobial peptide (AMP) molecules,
leveraging the ability of SPPARKS to define a MC lattice that covered the surface of a pill-
shaped volume representing a biological cell9. In this context the 3 states represent AMP (red),
lipid (purple), or water (yellow). AMPs have the ability to kill a cell because they are coated
with water; when multiple AMPs are close enough together they can induce a large pore to
form in the membrane (as in figure 1(h)) which compromises its integrity and allows water to
enter or exit the cell.

This application was added as an app_membrane.cpp and associated header file which
defines an AppMembrane class. A single integer value per site stores which state the site is
in. The input_app() method of the class defines a new input script inclusion command which
allows the user to specify small clusters of sites on the membrane surface as AMP sites. In its
site_energy() method, the class encodes the following Hamiltonian for each site i and its M
neighbor sites j:

Hi =−µxi −
M∑
j=1

(w11aij+w01bij) (6)

where xi = 1 if site i is solvent and 0 otherwise; aij = 1 if both the i, j sites are water and 0
otherwise; bij = 1 if one of the i, j sites is water and the other is AMP and otherwise zero.
The three parameters µ, w11, and w01 are user inputs. As discussed in [38], this is a lattice gas
grand-canonical Monte Carlo model, which is isomorphic to an Ising model. The µ term is
a penalty for inserting water which prevents the system from becoming all water, which the
second sum-over-neighbors term would otherwise prefer.

The application also implements the other three methods in the top half of table 1 so
that it can evolve the model in either KMC, rKMC, or MMC mode. In KMC mode the
only events are spin flips from lipid to water or vice versa. The propensity of each event is
min[1,exp(−∆E/kbT)], where ∆E= Efinal −Einitial is calculated using the Hamiltonian for
the energy of the site, and T is the user-defined temperature of the system. In rKMC or MMC
mode (the same in this case) a random non-AMP site is set randomly to fluid or lipid. The same
energy change∆E= Efinal −Einitial is calculated, as is a uniform random number R between 0
and 1. The new state is accepted if R< min[1,exp(−∆E/kbT)], else it is rejected.

All of this was implemented in ∼200 lines of new code, excluding comments. The model
enabled study of the number and nearness of AMPmolecules needed to trigger pore formation,
as well as the influence of various weighting parameters in the Hamiltonian on the efficacy of
the AMPs.

9 Laura Frink and Mark Stevens (Sandia National Laboratories) collaborated in formulating this AMP model.

21



Modelling Simul. Mater. Sci. Eng. 31 (2023) 055001 J A Mitchell et al

3.2. Other parent/child classes

The design pattern of virtual parent and user-extensible child classes is also used elsewhere in
SPPARKS. Three examples are for diagnostic computations, definition of geometric regions,
and output of snapshots of lattice site values.

SPPARKS provides a virtual parent Diagnostic class which means a user developing a
new MC application can also add code and associated input script commands to calculate
application-specific properties and trigger their computation when running simulations. For
example, the diag_style cluster command creates an instance of the DiagCluster class which
identifies clusters of neighboring sites with the same spin value and outputs cluster information
to a file, e.g. grain size distribution for a Potts grain-growth model. It uses the communication
operations described in section 2.8 to do this consistently for clusters which span multiple
processors.

Simple geometric regions (rectangular blocks, spheres, cylinders) or unions or intersections
of multiple simple regions can be used for creating lattice sites or setting site values via the
region command. Users can add new Region child classes if desired.

Snapshot output (dump files) can be written in various formats: simple text files, VTK files
for visualization by the Visualization Toolkit, Stitch SQL files, or JPEG/PNG files. The Stitch
and on-the-fly image capabilities were discussed in sections 2.10 and 2.11. All of these options
were added to SPPARKS over time as new child classes derived from a virtual parent Dump
class.

4. Performance and scalability

In this section, performance results for SPPARKS are presented that illustrate its parallel effi-
ciency and scalability for large systems running on large parallel machines. The benchmark
tests used a simple 3d Potts model for grain growth as described in section 2.2 which produces
statistically uniform grain morphologies similar to those shown at the left of figure 11 (without
the pinning sites). Clusters of same-spin sites represent a grain in a polycrystalline material.
A cubic lattice was used with 26 neighbors/site, appropriate for a mesoscale model of real
materials.

The initial system was created by randomly assigning one of 1000 possible spin states
to each lattice site. A short initialization run to seed the system with tiny grains was first
performed. This was done with 100 sweeps of the simple MMC algorithm of section 2.5. This
resulted in a small average grain size of ∼3 sites.

A benchmark KMC simulation was then run using the approximate parallel SSL algorithm
of section 2.7 to evolve the system for 100 time units (same as in section 2.9). The temperature
of the system was set to zero to model equilibrium grain growth. For all system sizes and node
counts this required ∼140 additional sweeps and resulted in an average grain size of ∼850
sites. As recommended in section 2.9, a value of nstop = 1 was used to balance accuracy versus
parallel efficiency.

The benchmarks were run on a large CPU cluster with 2.3 GHz Intel Skylake 6140 dual-
socket CPUs and a Mellanox OmniPath interconnect. Systems from 1M (million) to 4.1B
(billion) sites were run on node counts from 1 to 256. With 36 cores per node, these were
parallel runs with 36 to 9216 MPI tasks. The results are shown in figure 8 using the tree-based
KMC solver discussed in section 2.3 which has O(logN) scaling; results with the O(1) solver
are presented in the next plot.
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Figure 8. Strong scaling parallel efficiency for the approximate parallel KMC algorithm
using a tree-based. O(logN) solver. A grain growth Potts model was simulated on
26-neighbor cubic lattices with 1003, 2003, 4003, 8003, 16003 sites. The calculations
evolved the grains from an initial average 3-site size to 850 sites/grain. The runs were
performed on a large Intel Skylake cluster with 36 cores (MPI tasks) per node.

Each curve is a strong scaling10 result for a single system size. The smallest node count
N used to run a particular size system in time TN is plotted as 100% parallel efficient (y-axis
= 1.0). The time TM to run the same system on M>N nodes is plotted as an efficiency of
TN/TM×N/M. The smallest simulation with 1M sites on a single node performed 6.8M KMC
events (spin flips) in 3.5 s. The largest simulation with 4.1B sites on 256 nodes performed 28B
KMC events in 60 s. The 4.1B site simulations ended with 4.8M grains, indicating that very
large polycrystalline systems can be modeled relatively quickly with these techniques.

The curves for 1M, 8M, and 64M sites show good performance (above 80% efficiency)
until the count of sites/node falls below a few hundred thousand (less than 10 000 sites/core).
The 64M and 512M curves show super-linear scaling, where efficiency is greater than 100%
for some node counts. This is primarily due to use of the O(logN) KMC solver for these runs,
as discussed below.

Weak scaling11 performance can also be inferred from this benchmark data. Simulations of
1M sites on 1 node, 8M on 8 nodes, 64M on 64 nodes ran in 3.47, 3.41, and 3.48 s respectively.
Likewise simulations of 64M sites on 4 nodes, 512Mon 32 nodes, and 4.1B on 256 nodes ran in
57.4, 55.9, and 59.9 s respectively. In each case, perfect weak scaling would be if all 3 timings
were identical, which is nearly the case.

The same benchmarks were also run using the O(1) composition-rejection KMC solver
discussed in section 2.3 instead of the tree-based O(logN) solver. Figure 9 compares the per-
formance of the two solvers for the 3 largest simulations of figure 8. The constant-time solver
is 8%–22% faster for all data points. The largest difference is generally at the left of each pair
of curves, where the sites/node count is largest. The solid-line curves for the tree solver are

10 Strong scaling is when the same-size system is run on more and more nodes.
11 Weak scaling is when the system size doubles each time the node count doubles.

23



Modelling Simul. Mater. Sci. Eng. 31 (2023) 055001 J A Mitchell et al

Figure 9. Strong scaling parallel efficiency for both the O(1) and O(logN) KMC solv-
ers, labeled CR (for composition/rejection) and tree respectively. The three largest sys-
tems of figure 8 were run with both solvers. Both curves of the same color use the faster
timing of the leftmost point on the CR curve as their 100% efficiency reference.

the same data as in figure 9, except they use the faster timing for the leftmost dotted-line point
runs as 100% efficient (by definition), and are thus shifted downward on the y-axis.

Comparing the two plots, the super-linear speed-ups of figure 8 are now much smaller for
the constant-time solver; what remains is likely improved cache efficiency when the same size
problem is run on more cores. In a strong-scaling context when more processors are used to
run the same size system, the sites/node (N for the solver) decreases, and an O(logN) solver
has less work to do. Thus in figure 8 it was misleading to consider the leftmost data point in
each curve to be 100% efficient. Figure 9 corrects for that by using the faster constant-time
solver timing as the 100% efficient reference point.

We also note this is a best-case scenario for comparison of the two solvers. Very large sys-
tems (per node) were benchmarked and a computationally cheap model (Potts grain growth)
was used where the cost of calculating/updating event probabilities as well as performing
events is minimal, so that the relative cost of the solver (selecting events) is thus amplified.

5. Applications

This section contains several sub-sections, each of which briefly describe a physical model,
its implementation in SPPARKS as an on-lattice application, and simulation results which
illustrate what it is capable of modeling.

The first sub-section describes extensions to the basic Potts model introduced in section 2.2.
They are used to model grain growth in microcrystalline materials under different conditions
(section 5.1), welding (section 5.2), and additive manufacturing processes (section 5.3).

The second sub-section describes extensions to the basic diffusionmodel, also introduced in
section 2.2. They are used to model thin film deposition and growth (section 5.4) and diffusion
and defect formation effects in a bulk material (section 5.5).

24



Modelling Simul. Mater. Sci. Eng. 31 (2023) 055001 J A Mitchell et al

The next two sub-sections describe models employing both Potts and diffusion style events
for bubble formation (section 5.6) and sintering (section 5.7) in the context of nuclear fuels.

The final set of models, described in section 5.8, use the MC lattice to implement a grid-
based solver, either in addition to performing MC events or by itself. The applications include
phase field models for sintering (section 5.8.1) and compositional evolution (section 5.8.2),
additive manufacturing in a complex thermal field (section 5.8.3), and dynamic recrystalliza-
tion (section 5.8.4).

All the applications described here operate in parallel. However the apps of sections 5.4
and 5.7 treat deposition of new atoms and removal of vacancies as operations occurring not at
the granularity of individual events, but as tasks performed periodically after the entire lattice
has been updated by a loop over all sectors (KMC, rKMC) or a sweep (MMC).

5.1. Grain growth

The use of Potts models for simulating grain growth originated with the work of Anderson
et al [24, 25], which showed they could reproduce the power-law kinetics of curvature-driven
grain growth observed in metals. Subsequent literature on the use of Potts models for grain
growth is enormous. Themodel implemented in SPPARKS as the potts application is described
more fully by Holm et al [39]; it uses the Hamiltonian discussed in section 2.2. For solution
by KMC and rKMC, if the change in energy∆E induced by a flip is⩽ 0, a propensity of unity
is assigned. If∆E> 0, the propensity is the Boltzmann factor exp(−∆E/kbT), where kb is the
Boltzmann constant and T is temperature (set by the user). For MMC models a selected event
is accepted/rejected using the related Metropolis criterion of equation (4).

For more efficient modeling of grain growth, the potts/neighonly application can be used as
an MMCmodel, which only selects from events which restrict a site’s new spin value to match
one of its neighbor site spins. The number of possible events for a site is thus the number of
its unique neighbor spins. So-called ‘wild’ flips of a site to a value different than its neighbor
spins are disallowed. In practice, such flips often do not affect grain-growth dynamics. This
also means sites in the interior of a grain can be skipped since they require no computation.

5.1.1. Effects of temperature and grain boundary mobility. To model the effects of grain
boundary mobility and/or temperature gradients on microstructural evolution, a variant of the
standard Potts model is provided by the potts/grad application. It takes three parameters which
represent uniform gradients in x,y,z of grain boundary mobilityM over the simulation domain.
Alternatively, the user can specify temperature gradients. Temperature sensitive mobility at
each site is computed asM(⃗x) =M0 exp(−Q/kBT(⃗x)), whereM0 is a mobility constant and Q
an activation energy. Events in this model are accepted/rejected with the following probability:

P=

{
M(⃗x) ∆E⩽ 0
M(⃗x)exp(−∆E/kbT) ∆E> 0

(7)

where ∆E is the (grain boundary) energy change induced by a spin flip.
Effects of temperature and mobility gradients on grain growth were studied using

equation (7) [40]; subsequently, the model was implemented in SPPARKS as a potts/grad
application. A SPPARKS simulation showing the effect of a uniform mobility gradient on
grain morphologies is shown in figure 10.

5.1.2. Abnormal grain growth. In abnormal grain growth, one or a few grains grow dramatic-
ally at the expense of others. One physical cause can be the presence of inert particle inclusions
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Figure 10. Potts grain growth model with a mobility gradient in the lateral dimension.
High mobility induces faster growth at the left; low mobility slows grain growth at the
right.

Figure 11. (Left) Normal and (right) abnormal grain growth in the presence of small
inert pinning particles [41].

which kinetically pin grain boundaries in positions that maximize their contact with the inert
particles, retarding grain growth. However, occasionally a grain boundary breaks free and a
grain is able to grow at the expense of others, leading to abnormal growth. This effect can
be simulated with the potts/pin application, which defines an extra spin state which is never
considered for possible flips. A small cluster of these sites represents a pinning particle. A pin
command defined by the application allows the user to insert a desired density of single-site
or small-cluster pin particles either randomly or preferentially at existing grain boundaries.

Figure 11 shows results for a 3003 lattice, run for a million Monte Carlo sweeps (MMC
algorithm), with five volume-percent pinning particles inserted when the average grain radius
was ten sites [41]. On the left is a normal-growth case where the system becomes fully pinned.
On the right is a case where abnormal growth eventually occurs. A SPPARKS input script
can be setup to run a series of simulations with different random number seeds to generate
sufficient data for statistical analysis.
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5.1.3. Annealing of additive manufactured materials. In [42], Zhou et al added a KMC
application to SPPARKS to model post-processing anneals of AM stainless steel. It adds terms
to the Potts model Hamiltonian to account for residual energy at each site (left over from the
AM process) which can trigger recrystallization effects. The model was used to investigate
an experimentally observed phenomenon where annealing leads to cubic rather than equiaxed
grains in the final material.

5.2. Welding

To simulate metallic microstructure morphologies formed during welding, the potts/weld and
potts/weld/jom applications were added to the code. They derive from and extend the potts app.
Both models simulate a moving heat source on the surface of a simulation domain which cre-
ates a dynamic 3d melt pool as well as a spatially- and time-dependent temperature profile sur-
rounding the pool. The potts/weld/jom app implements five preset shapes for the heat-affected
zone (HAZ) and uses a pre-calculated temperature profile within the HAZ based on its shape
and width [43].

The potts/weld app offers more flexibility in defining the shape of the weld melt pool via
Bézier curves which can be fit to virtually any smooth weld pool shape [44]. The model then
computes the temperature profile within the HAZ as a function of each site’s distance to the
melt pool surface. Internally, distance is stored as an additional per-site value in the apps.
The per-site temperature values are used in the accept/reject decision for each spin flip (MMC
algorithm). Both applications also allow the user to specify melt pool dimensions, plate thick-
ness, and weld speed, all of which are parameters generally known from experiments and
process specifications.

While both these models assume steady-state melt pool size and shape, ignore dendritic
structures inside grains, and do not consider solute segregation or grain orientation effects, they
are predictive for some metals; see [43, 44] for details. The welding microstructures shown in
figure 12 were generated using the potts/weld app; the spatial and dynamic temperature profile
strongly influences the resulting grain shapes that grow asmaterial solidifies at the trailing edge
of the moving melt pool. Figure 13 shows a second example of a simulation of a pulsed power
weld.

5.3. Additive manufacturing

The am/ellipsoid application enables simulation of AM processes in metals at the mesoscale.
Similar to the welding apps of section 5.2, it includes a heat source which creates a molten
zone extending into the material volume, annihilating existing grain structure, and creating
new microstructure morphologies. As the name implies, it derives from the potts app, and
likewise uses the MMC algorithm of section 2.5.

This app has two novel features. First, it models the full 3d shape of the melt pool and
associated temperature profile for arbitrary 3d geometries. By contrast, the welding apps of
the previous subsection operate in a quasi-2d context for thin metal plate geometries. Second,
the app defines new input script commands which can encode a complex motion path for the
heat source as it scans across the surface of the material. The motion can include diagonal
directions and multiple passes over the same material.

The app can also be easily coupled to the Stitch library, discussed in section 2.10. This
enables efficient modeling of very large geometries by only loading into memory and sim-
ulating the active portion surrounding the current position of the heat source. Likewise new
material can be added as the heat source reaches it for the first time.
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Figure 12. Post-weld simulated and experimental microstructures; different colors or
shades denote different grains. Colored microstructures are simulated; experimental
microstructures are gray. The left two columns show the top surface of a thin plate;
the right two show the bottom surface. Each row is a case study with a different pool
aspect ratio. Reproduced from [44]. © IOP Publishing Ltd. All rights reserved.

Figure 13. Pulsed power weld simulation using an elliptical melt pool shape. The heat
source (black ellipse at right) passed across the domain from left to right. Reproduced
from [44]. © IOP Publishing Ltd. All rights reserved.

An example of a Stitch-enabled simulation of stainless steel manufacture is shown on the
left of figure 14. The full block of material (3.4 cc3) is represented by 425M (million) lattice
sites, but was simulated via∼100 smaller SPPARKS simulations to build it incrementally. The
hollow cylinders on the right of figure used 54M lattice sites within the volume between two
concentric cylinders [46]. The region command in SPPARKS, discussed in section 3.2, enables
definition of subtractive volumes such as this. The hollow cylinders were built by adding one
thin 2d ring of material at a time in the vertical direction.
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Figure 14. Examples of grain morphologies (each color is one grain) present in large
additive manufacturing geometries due to motion of the heat source. (Left) A block of
stainless steel built by rastering the heat source across successive planes in the vertical
direction. (Right) Hollow cylinders manufactured at different laser spot rastering speeds.
Right-side figure reproduced from [46]. © IOP Publishing Ltd. All rights reserved.

By appropriate specification of the melt pool geometry, the am/ellipsoid app can accurately
reproduce grain microstructures from experiments using various AM processing methods for
different material systems [45–48]. Figure 15 shows comparisons between experiment and
simulated Laser Engineered Net Shaping (LENS) of 304L stainless steel.

The am/ellipsoid app was extended further by Pauza et al [49, 50] to incorporate crystallo-
graphic orientation effects. Their work demonstrated that by biasing the spin-flip algorithm to
preferentially choose a new spin based on the alignment between fast-solidifying crystal direc-
tions and the local temperature gradient, experimentally observed textures could be reproduced
for a range of conditions.

5.4. Thin film deposition and growth

The diffusion application in SPPARKS implements the diffusion Hamiltonian discussed in
section 2.2, including options to define energy barriers for hop events and site energy as linear
or non-linear functions of coordination number. It allows for both diffusive hops by atoms
to vacant nearest-neighbor sites as well as so-called Schwoebel hops [51] to a vacant second
nearest-neighbor site if there are two nearest-neighbor sites (one occupied and one vacant)
which are also neighbors of each other. Schwoebel hops are an experimentally observed dif-
fusion mechanism on surfaces. SPPARKS also includes a diffusion/multiphase app which
enables models with multiple diffusing species (no vacancies) and specification of pairwise
neighbor energies for each pair of phases (e.g. atomic species).
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Figure 15. Comparison of simulated and experimental 304L LENS microstructures on
different 2d faces of a 3d block of material. Grain colors in the experimental images
represent crystalline directions in the colored pie segment. Reproduced from [45].
CC BY 4.0.

The diffusion app also implements a custom deposition command which can be used to
specify how new material is continuously deposited on a surface, to enable modeling of thin
film growth. It has options for incident angle, deposition rate, and criteria for selecting which
vacant sites accept deposited atoms.

When running in serial, deposition events are selected by the KMC or rKMC algorithm
in competition with diffusive hops. A random position is chosen on the top surface of the
simulation box. The path of the incident atom is calculated and for all deposition-eligible sites
the distance of the site from the path’s starting point is calculated. The closest eligible site is
where the atom is deposited. This approach allows modeling of ‘shadowing’ effects on a rough
surface where hillocks may prevent atom deposition on their ‘downwind’ side.

In parallel, deposition events are performed after each loop over sectors (KMC, rKMC) or
sweep (MMC) which performs the diffusive hop events. Depending on the deposition rate and
elapsed time per loop or sweep,M random positions are chosen on the top surface of the simu-
lation box as starting points. The rest of the algorithm proceeds as in the serial case, except each
processor only considers eligible sites within its owned sub-domain and it computes distances
for allM starting points. The results are merged across processors (requiring communication)
to identify the closest site anywhere in the system for each of the M deposition events. This
approach enables parallelism in the deposition events but is another source of approximation
relative to the exact SSL serial algorithm.
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Figure 16. Growth of thin films in a 2d on-lattice model with deposition and diffu-
sion. Red sites are occupied with material; blue sites are vacant. (Left) Diffusion with
only nearest-neighbor (NN) hops. (Right) Diffusion with both NN and Schwoebel (2nd
nearest-neighbor) hops.

Figure 16 shows a simple example of thin-film growth in a 2d system (triangular lattice) with
normal incidence of deposited atoms. The snapshot on the left is for amodel with diffusive hops
to only neighbor sites (Schwoebel hops can be suppressed experimentally by adding impurities
to the system). The right snapshot is for a model which includes Schwoebel hops. Both sim-
ulations were performed at 250K which induced roughly three diffusive hops per deposition
event. Simulations at higher temperatures perform more diffusive hops per deposition event,
resulting in more homogeneous thin films.

This simple model illustrates how a combined diffusion/deposition on-lattice app enables
modeling of important thin film properties including surface or interface roughness, film tex-
ture, and defect density. Controlling thin film void content is critical in a number of applications
where voids created during deposition lead to shortened device lifetimes. Interface roughness
is likewise important to many photovoltaic, microelectronic, and optical thin film applications
when multilayered films are deposited.

Use of the diffusion app in a 3d model is described in [52] for a model of GaNmetal-organic
vapor phase epitaxial thin-film growth. Arrhenius rates for a KMC model were assigned to
correlate with experimental studies. Step-edge formation and flow, as well as island nucleation
were observed and characterized, for both nearest-neighbor and Schwoebel hop models.

5.5. Erbium hydrides for neutron generation

The erbium application is another diffusion-based app which was customized in two ways for
modeling metal hydrides. They are commonly used for neutron generation in industrial, medi-
cinal, and national security applications, including petroleum exploration, explosives detec-
tion, toxic waste analyses, and boron neutron capture therapy. Specifically, the app is designed
to model the mobility of gaseous species, i.e. tritium (T) and helium (3He), within erbium (Er)
and erbium tritide (ErT2) solids. The tritium is implanted into the erbium metal matrix and
resides primarily on tetrahedral interstitial sites of the Er face-centered cubic (fcc) lattice,
decaying to helium with a half-life of 12.3 years. Both tritium and helium can diffuse through
the fcc Er matrix via tetrahedral and octahedral interstitial sites.

A new lattice type was added to SPPARKS for use by the erbium app. It is a cubic lattice
with a unit cell containing 4 fcc sites for Er atoms as well as 12 interstitial sites (8 tetrahedral,
4 octahedral) for tritium and He. A new event command was also implemented within the app
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Table 2. Reaction/diffusionmechanisms in ErT2 for tritium (T) and helium (He). Vacan-
cies are denoted by an asterisk (∗); tetrahedral and octahedral interstitial sites are denoted
by tet and oct subscripts.

Reaction Rate (1 ns−1) or Barrier (eV)

Ttet→3Hetet 1.78 (1 ns−1)
Toct→3Heoct 1.78 (1 ns−1)
Ttet +

∗
tet→ ∗

tet + Ttet 0.98 (eV)
Ttet +

∗
oct→ ∗

tet + Toct 1.89 (eV)
Ttet +

∗
oct← ∗

tet + Toct 0.68 (eV)
3Hetet + ∗

tet→ ∗
tet +

3Hetet 0.49 (eV)
3Heoct + ∗

oct→ ∗
oct +

3Heoct 1.49 (eV)
Ttet +

∗
oct + Toct→ Ttet + Toct +

∗
oct 0.62 (eV)

Ttet +
∗
oct +

3Hetet→3Hetet + Toct +
∗
tet 1.31 (eV)

Ttet +
∗
oct +

3Hetet←3Hetet + Toct +
∗
tet 0.16 (eV)

3Hetet + Toct +
∗
oct→ Ttet +

∗
oct +

3Heoct 0.88 (eV)
3Hetet + Toct +

∗
oct← Ttet +

∗
oct +

3Heoct 0.16 (eV)

which allows definition of KMC events involving one, two, or three sites within the lattice, each
of specified kind (fcc, tet, oct). This enables implementation of a reaction/diffusion model such
as the one shown in table 2. One-site events are ‘reactions’ where tritium decays to helium at
the half-life rate. Two- and three-site events enumerate various vacancy-mediated diffusion
mechanisms on the lattice. The listed energy barriers were computed via density functional
theory [53] using Sandia’s SeqQuest electronic structure code [54].

KMC diffusion simulations were performed using a portion of this model for a system
with 1283 ErT2 unit cells. The 16.7 million tetrahedral interstitial sites were randomly seeded
initially with 90% tritium and 10% vacancies. Using the parameters in table 2 no clustering of
vacancies was observed as tritium diffused through the Er matrix. Additional DFT calculations
were then performed which identified a 0.1 eV reduction in energy when a vacancy-vacancy
pair forms as the result of a diffusion event. This effectively lowers the activation barrier for
the 3rd reaction in the table in the presence of one or more neighbor vacancies.

When this effect was included in the logic of the erbium app, strong vacancy clustering
effects were observed, as shown in figure 17. This result is significant because it is a potential
mechanism for ‘bubble’ formation within a metal hydride if He atoms occupy an interstitial
vacancy cluster. Transmission electron microscopy has suggested that as tritium decays into
He it can form gas bubbles which are believed to be detrimental to the long-term performance
of the metal hydride [55].

The diffusion-based capabilities discussed here and in the previous section 5.4 have also
been used by other researchers. In many cases they extended SPPARKS, similar to the erbium
app above, to implement new events or features specific to their physical models.

Ciantar et al [56] developed a custom reaction/diffusion app for silicate oligomerization in
a zeolite, using reaction rate constants computed by DFT. Joshi and Chaudhuri [57] modeled
formation of Guinier–Preston zones in dilute Al-Cu alloys as a function of temperature and Cu
concentration. Interestingly, they called the LAMMPS molecular dynamics code [36] as a lib-
rary from their app to compute the energy change for each diffusive event. This allows various
interatomic potentials implemented in LAMMPS (a three-body angular dependent potential
in their model) to be evaluated and to include off-lattice relaxation effects via energy minim-
izations of the before and after on-lattice configurations.
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Figure 17. A late-time snapshot of a simulation of tritium diffusion on tetrahedral inter-
stitial lattice sites within ErT2. Red spheres are tritium atoms; white are interstitial
vacancies; Er atoms are not shown. In the upper left corner, visualization of the tritium
(red) was turned off to enable the vacancy clusters to be more easily seen.

In [58, 59], Lloyd et al modeled radiation effects on tungsten (W), a plasma-facing mater-
ial proposed for nuclear fusion reactors, using DFT calculations to compute changes in energy
due to diffusive events and infer rates for their KMC model. In [58] they added a semi-grand
canonical MC algorithm to their app to allow the concentration of rhenium (Re) atoms (a
radiation-induced transmutation product) in the W matrix to fluctuate. In tandem with diffu-
sion, they observed clustering and precipitation of Re, which has been experimentally observed
to embrittle the W. In [59], osmium (Os) atoms (another transmutation product) were included
in the KMCmodel and DFT calculations, and vacancy clustering was observed, with the voids
decorated by Re and Os atoms which can stabilize the voids, leading to degradation of the W.

Finally, Zhou and Yang [60] modified the diffusion app to model second phase precipitate
formation at semiconductor Au/Bi2Te3 junctions in the presence of oxygen. Themodel defined
additional floating-point values at each lattice site to allow concentrations of different species
to vary spatially. Energy barriers for phase formation and diffusive hops were estimated from
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experimental data. The modified app was used in a materials aging context to model effects
that degrade the electronic performance of semiconductor devices.

5.6. Bubble formation and coalescence in nuclear fuels

During operation of light water nuclear fuel reactors, Xe and Kr gas atoms are produced as
fission by-products within the fuel pellets. Because they are highly insoluble, they precipit-
ate to form small ∼10 nm, highly-pressurized, intragranular bubbles. At high temperatures,
gas in small bubbles can redissolve into the nuclear fuel matrix and diffuse to grain bound-
aries to form larger ∼500 nm intergranular bubbles. Eventually, coalescence of intergranular
bubbles can progress to the point they form a percolating path along grain boundaries which
can release pressurized gas from the fuel. After pressurization subsides, the fuel pellets can
shrink via sintering and the process begins anew. The repeated process of gas accumulation,
bubble percolation, gas release, and fuel shrinkage has important implications for fuel per-
formance and longevity.

To model these effects two applications, potts/bubble and sinter, were added to SPPARKS.
The first is discussed here, the latter in the next sub-section. For bubble modeling, a Potts
model for grain growth was augmented to incorporate gas generation, diffusion, precipitation,
and surface diffusion within gas bubbles. Gas generation was modeled by specifying a rate
for a gas site to appear at a random location in the solid material. Gas diffusion was modeled
by allowing exchange events between a gas site and neighboring solid sites. Energy settings
in the model induce gas clustering (precipitation) into large bubbles at grain boundaries; high
simulation temperatures allow clustered gas atoms to dissolve back into the solid. Bubbles at
grain boundaries can migrate along the boundary via surface diffusion when gas sites at the
bubble surface hop along its surface.

In figure 18, this application was used to model a simple microstructure of two grains with
a planar grain boundary between them [61]. The left image shows formation of smaller intra-
and larger inter-granular bubbles. The two simulation box end planes are part of the same
boundary due to periodic boundary conditions. The middle image is a planar cut though the
center boundary at the point in time only a small number of boundary bubbles have coalesced.
The right image is after bubble coalescence has formed a percolation path across the entire
system.

5.7. Sintering for nuclear fuels

To model sintering a sinter application was developed which simulates microstructural evolu-
tion during solid-state sintering, which is a thermal processing technique used to consolidate
powder particles into components with enhanced structural integrity. See section 5.8.1 for an
alternative phase-field based model of sintering with SPPARKS.

In the context of nuclear fuel aging, sintering occurs naturally in the fission fuel cycle. As
with the potts/bubble app of the previous sub-section, a Potts model was extended with dif-
fusive events defined for gas sites. Annihilation events were also added, and can be performed
at a frequency determined by kinetic criteria. Each annihilation event migrates an isolated gas
site at a grain boundary to the surface of a non-periodic system.

This event is performed by defining a line from the gas site through the center-of-mass of
the adjacent grain all the way to the surface of the non-periodic simulation box. The gas site
is moved to the surface and each site along the path of the line is shifted one site towards the
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Figure 18. Snapshots of a two-grain simulation of gas bubble dynamics within a nuclear
fuel pellet. (Left) Small gas bubbles form inside grains with larger bubbles at grain
boundaries; only the gas sites are shown. (Middle) 2d slice of a grain boundary when
bubble coalescence (green) has just begun in the fuel matrix (red). (Right) Coalescence
has proceeded to the point of percolation (connected bubbles in dark blue).

original location of the gas site. This effectively eliminates the gas site and collapses a column
of sites inward from the surface, resulting in densification of the solid.

When running in serial, the annihilation procedure is performed immediately whenever a
site is selected for annihilation. In parallel, the procedure requires inter-processor communic-
ation to shift the sites, since the line can span many processors. For efficiency, the events are
not performed immediately. Rather, a list of annihilation events is accumulated as lattice sites
are selected for various events and the entire list is processed after an MMC loop over sectors
(i.e. a sweep) is complete. The list can then be processed with some degree of parallelism, so
that each processor appropriately updates sites it owns. Details of the parallel algorithm are
given in [62]. Similar to the parallel deposition algorithm discussed in section 5.4 this parallel
annihilation approach is another source of approximation relative to the exact serial algorithm.

The sinter app also defines new input script commands to control the sintering process and
choose the relative frequencies of different gas site events. New diagnostic commands were
also added which characterize the density of the overall system and the size and surface area
of gas clusters (pores) within it.

Figure 19 shows images from a simulation of the sintering process for a powder of Cu
particles at a series of material densities from 69 to 79 to 83 vol%. In the sintering context,
a collection of neighboring sites with the same Potts spin value represent a single powder
particle. Gas sites are assigned a unique spin value. At each density, two images are shown for
the 3d system and a 2d slice through the vertical center point. As explained in [62], the density
versus time profiles, microstructural images and grain size distributions for this system are in
good agreement with 3d in-situ images taken in a high-energy synchrotron during sintering of
Cu particles.

5.8. Grid-based solvers

Regular SPPARKS lattices can represent not only MC sites, but also a grid which overlays the
simulation domain. Each lattice point is at the center of a volumetric grid cell; neighboring
lattice points represent neighboring grid cells. For example, the cubic6 lattice of section 2.1
defines a regular 3d grid with a stencil of six neighboring grid cells each of which share a face
with the central cell.

In the grid context, SPPARKS effectively allows an application to define multiple integer
or floating point quantities associated with a grid cell, partition the grid across processors, and
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Figure 19. Pairs of simulation images for a sintering simulation of Cu powder particles
as gas is removed and the system densifies from 69 to 79 to 83 vol% (upper left, upper
right, lower, respectively). Each pair of images show the 3d system and a 2d slice. Indi-
vidual particles are colored differently in the 2d slices.

perform communication to access ghost cell quantities surrounding a processor’s sub-domain.
In the MC context, the grid values are additional per-site values and can influence MC events.
As explained in section 3, an application can define an app_update() function which in this
context can update the grid values after each loop over sectors (KMC, rKMC) or sweep through
the lattice (MMC).

Within this framework it is thus relatively easy to implement a parallel grid-based solver
in SPPARKS so long as updates of a grid cell are ‘local’ operations, involving only nearby
grid cells (neighboring lattice sites within the hop distances defined in section 2.6). The app
can be a grid-only model12 or hybrid grid plus MC model. Classes of useful grid-based meth-
ods in the materials modeling context include phase field (PF), finite-difference representa-
tions of PDEs, and cellular automata (CA). Examples of each are discussed in the following
sub-sections.

5.8.1. Phase field model of sintering, coarsening, and grain growth. The PF method is com-
monly used to model the formation and evolution of patterns (e.g. microstructure in the context
of materials science problems) and moving boundaries. PF formulations have been success-
fully applied to a wide range of problems, including solidification kinetics [63, 64], solid-solid
structural phase transitions [65, 66], grain growth [67, 68], and coarsening phenomena [69–
71]. See [72, 73] for more details on the PF method in materials modeling.

The starting point of a PF model is the definition of order parameters (OPs), which can be
scalar, vector, or tensor fields. OPs can be conserved (e.g. concentration of elemental species
in alloys) or non-conserved (e.g. degree of crystallinity) fields, which can vary smoothly or
sharply across interfaces (e.g. grain or phase boundaries, solid-liquid interfaces). Using the
OPs, a free energy functional is defined that incorporates the relevant physical processes for
the problem of interest. Minimization of the free energy functional corresponds to modeling
spatio-temporal evolution of the system. This is typically formulated as a set of coupled partial

12 An option is provided to only invoke the app_update() function and exclude theMC portion of the loop over sectors
or sweep.
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Figure 20. (a) PF order parameters used in the sintering model. (b) PF representation of
a powder compact with a bi-dispersed particle size distribution. (c)–(e) Successive snap-
shots in time for the region enclosed by the blue box in (b), depicting the morphological
evolution and densification of internal pores. In (b)–(e), regions outlined in black (red)
denote free surfaces (grain boundaries); particles are shaded light grey. Reprinted from
[77], Copyright (2019), with permission from Elsevier.

differential equations (PDEs) which can be numerically time-integrated using finite difference
or finite volume methods on the grid which SPPARKS defines.

The phasefield/thinfilm application in SPPARKS implements a two-phase multi-grain PF
capability employing so-called Model C dynamics in the classification by Hohenberg and
Halperin [74]. It includes both conserved (Cahn–Hilliard [75]) and non-conserved (Allen–
Cahn [76]) PDEs. This enables modeling of a wide range of phenomena—crystal growth,
grain growth, thin film deposition, coarsening, wetting, and sintering—though code needs to
be added to the app to support new non-linear terms in the PF PDEs.

The schematic of figure 20(a) shows how the phasefield/thinfilm app was used to construct
a PF model of sintering. A conserved OP ϕ defines the particle powder and pore space and a
series of non-conserved OPs ηi are used to describe single-grain particles with different crys-
tallographic orientations; Abdeljawad et al [77] provides details on this model. Figure 20(b)
is a PF representation of a particle arrangement with a bi-dispersed particle size distribution,
and figures 20(c)–(e) show successive PF simulation snapshots of the blue boxed portion of
figure 20(b), depicting the morphological evolution and densification of internal pores.

5.8.2. Hybrid phase field with Potts for microstructural/compositional evolution. The phase-
field/potts application implements a hybrid PF/Potts model for coupled microstructural-
compositional evolution using the same underlying lattice for both components, and the Cahn–
Hilliard equation for the PF portion of the model. The two components are linked by their
energetics [78] via this Hamiltonian for an individual site

Hi = Ev(Si,Ci)+
M∑
j=1

Jδ1(Si,Sj)+κc∇2Ci (8)

which includes a volumetric energy term (Ev) that is dependent on both spin and composition,
an interface energy term (sum overM lattice neighbors) based on sharp interfaces in the Potts
model, and an interface energy term based on diffuse interfaces in the PF model.

In [78], the volumetric energy is defined analytically for two different phases, each with a
different equilibrium composition. Within SPPARKS, the integer spin of a site defines both a
grain ID and phase, where multiple grain IDs may belong to each phase. The composition is
defined at each site by a floating point value between zero and unity; for mass conservation,
brief excursions outside this range are allowed but large energy penalties quickly drive the
system back to physical values. If computational thermodynamics equations are used to define
volumetric energies in terms of composition and phase, then the system will naturally evolve
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Figure 21. A hybrid model with both MC Potts model events and time-evolution of
the Cahn–Hilliard phase-field equations which can efficiently simulate grain growth
in a two-phase system controlled by diffusion. (Left) Snapshots of (a) grain structure,
(b) phase structure, and (c) composition at various times (in MC sweeps) for a two-
component, two-phase system. (Right) Nucleation and phase transformations in a sim-
ilar system initialized differently, as disussed in the text. Reprinted from [78], Copyright
(2013), with permission from Elsevier.

towards equilibrium phases and compositions because the same energetics are used to calculate
phase diagrams [79].

After each iteration of the Potts model (loop over lattice sites) a call to the app_update()
function is made, as discussed in section 3. This function implements a finite-difference
scheme to update the PF equations. Multiple small timesteps may be needed to ensure stability.

Figure 21 shows results from this hybrid model, discussed further in [78]. For the sys-
tem on the left, a randomly seeded system of spins, each at the equilibrium composition, is
evolved. The coupling of the two fields ensures that the coarsening microstructure is continu-
ally evolving towards an equilibrium composition for the respective phases. On the right, the
system is seeded with spins of a single phase, but at the incorrect composition. Nucleation
events, implemented at a specified rate in the Potts model, allow the system to phase separate
to the correct volume fraction of phases at their equilibrium compositions.

A phasefield/potts/table app was also implemented which replaces the analytic model in
the phasefield/potts app with tabulated values for the free energy. This allows arbitrary binary
systems to be simulated with any number of phases, as illustrated for an Al–Si system in
[80]. An additional app (not yet available in public SPPARKS) extended the method to ternary
systems; a temperature field was also added to track heat flow by diffusion of different species
(i.e. the Soret effect). The ternary app was used to examine the combinations of 14 different
phases that emerge in an exploration over the full composition range of the U–Pu–Zr nuclear
fuel [81].
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Figure 22. Simulation images at a late stage in the formation of an additive manufac-
tured open lattice structure. (Left) temperature field; (right) grain microstructure (dif-
ferent colors = different grains).

5.8.3. Hybrid thermal transport with Potts for additive manufacturing. The am/finitediff
application couples microstructure evolution to a thermal field discretized on the same
SPPARKS grid [82]. A finite difference formulation of the heat equation is used to compute the
evolution of a temperature field in the presence of boundary conditions. The thermal history
during AM is modeled using the transient heat transfer equation

ρCp
∂T
∂t

+∇· (−k∇T) = Q (9)

where ρ is the material density, Cp is the specific heat, k is the thermal conductivity, T is
the temperature, and Q is the heat source, which includes terms accounting for convection-
radiation boundary conditions and the energy input due to a moving Gaussian-shaped laser
beam. The generality of this approach allows for simulation of arbitrarily complex heat source
scan patterns and material-specific melt pool dynamics. However, it is significantly more
computationally expensive than the steady-state melt pool used in the potts/additive app of
section 5.3.

The am/finitediff app also modifies the Potts solidification model used in the am/ellips-
oid and potts/weld apps to introduce material-specific behavior and allow use of common
solidification parameters such as a temperature-dependent solidification front velocity and a
critical undercooling-based grain nucleationmodel. Spin flips are still performed using a Potts-
style MCmodel, but the solidification rate is no longer controlled by the Boltzmann pre-factor
mobility formulation used in am/ellipsoid and potts/weld. Further details are discussed in [82].

Simulation results using the am/finitediff app to form a complex spherical-shell lattice struc-
ture with 304L stainless steel is shown in figure 22. The laser heats the thin struts of the lat-
tice with a contour scan which follows the outer surface of a strut. The thermal evolution of
the material is strongly dependent on the local boundary conditions imposed by the lattice
structure.
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Figure 23. Simulation of a hybrid cellular automata and Potts model of recrystallization
in UO2 nuclear fuel. (Left) Snapshots at different times (a)–(c) of evolving microstruc-
ture. (Right) Stored energy at the three times due to fission-induced damage within the
same domain. Reprinted from [83], Copyright (2012), with permission from Elsevier.

5.8.4. Hybrid cellular automata with Potts for dynamic recrystallization. While recrystalliz-
ation is common in highly-worked metals, dynamic recrystallization is unusual. One material
which dynamically recrystallizes is UO2 nuclear fuel. In its outer rim, damage to the crystalline
UO2 structure (vacancies, interstitials, dislocations, stacking faults) continuously accumulates
from fission events. Simultaneously, the UO2 recrystallizes by producing damage-free nuclei
that grow. The continuous accumulation of high-energy damage in competition with dissipa-
tion of energy via recrystallization leads to unique microstructures.

This was studied by implementing a automata/potts application which couples a cellular
automata (CA) algorithm with a Potts model. The growth of recrystallized damage-free areas
is simulated by the Potts model; accumulation of damage and nucleation is simulated by the
CAmodel. In this context, the CAmodel is formulated as simple rules for how adjacent lattice
sites interact to propagate or accumulate damage over time, in contrast to the Potts model
selection of events by MC rules.

This app was used in [83] to model dynamic recrystallization effects. Figure 23 shows a
series of simulation snapshots for microstructure with grains colored by their Potts model
spin value as well as the energy stored by the microstructure. Damage accumulation and nuc-
leation/growth of recrystallized grains both happen continuously. Small recently-nucleated
grains have lower stored energy, but as they grow, damage accumulates due to fission events.
The high-energy grains then lower their energy by recrystallizing again into small grains.
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6. Summary and future work

Wehave described the functionality of the open-source SPPARKS code for performing parallel
on-lattice Monte Carlo simulations via kinetic Monte Carlo (KMC), rejection KMC (rKMC),
andMetropolis MC (MMC) algorithms. The code is designed to enable users to add their own,
customizedMCmodels. A variety of such models added by developers and users of SPPARKS
were highlighted in section 5, all in the context of materials modeling or material processing
simulations.

For parallel modeling, SPPARKS partitions the simulation domain so that each processor
(MPI task) owns lattice sites (material) within a spatial subdomain. The synchronous sub-
lattice (SSL) algorithm [12] is used to further partition subdomains into sectors so that MC
events can be performed simultaneously on all the processors. However executing KMC,
rKMC, or MMC algorithms in a spatially parallel manner makes them approximate versus the
exact serial KMC algorithm. The different kinds of resulting approximation errors are detailed
in section 2.9. Conceptually, the errors arise because parallelism includes some degree of spa-
tial bias versus the exact serial algorithm which selects successive events randomly anywhere
in the domain. This bias can result in boundary effects between sectors or undersampling or
oversampling within sectors. An important feature of SPPARKS is that it has options to adjust
its parallel algorithm to trade-off parallel efficiency versus accuracy for a particular model, as
also discussed in section 2.9.

Three areas for possible future work or research with SPPARKS are outlined here. Namely,
GPU acceleration, extended support for off-lattice models, and code coupling to enable mul-
tiphysics or multiscale models.

6.1. GPU acceleration

SPPARKS is currently a CPU-only code with support for distributed-memory parallel simula-
tions via MPI. No threaded parallelism is implemented, either for CPUs (OpenMP) or graph-
ical processing units (GPUs). One natural path to support this forMMCmodels are the coloring
options described in section 2.7. Each MPI task can perform MC events simultaneously for
sites it owns of the same color. However, the computational cost for a site to perform an event
is quite small in most on-lattice models. It could thus require a very large number of sites per
highly-threaded GPU to run efficiently.

For KMC or rKMC models, another idea is to implement the SSL algorithm and sectoring
ideas of section 2.7 on a much finer scale, so that eachMPI process has a large number of small
sectored subdomains within its large processor subdomain. A similar strategy (for a single
GPU) was proposed and tested in [84]. It also analyzed the effect of fine-grained sectoring on
the fidelity of the simulation as compared to the exact serial KMC algorithm or the approximate
coarse-grained distributed-memory SSL algorithm discussed in section 2.7.

6.2. Off-lattice algorithms

Limited SPPARKS support for off-lattice MC models was explained in section 2.13 and illus-
trated with a simple MMC energy minimization application. This model was relatively easy
to implement in SPPARKS because the only off-lattice events included were small random
displacements of individual atoms.

By contrast, consider an off-lattice atomic-scale diffusion model for a solid-state system,
e.g. thin film growth due to deposition onto a free surface. In this context, MC diffusion events
are hops by an atom from one energy-relaxed state to another. A specific conformation of a
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multispecies surface and substrate may have numerous point or extended defects induced by
previous deposition events or by a strain-inducing lattice mismatch of the thin film with the
substrate. There are at least three complex issues to consider for implementation of a fully
functional off-lattice MC algorithm for this model.

First, identifying candidate locations to which each atom can potentially hop is non-trivial
in an off-lattice model. In a KMC sense, accurately computing the barrier height (and thus
relative propensity) for each diffusive hop requires a nudged-elastic band (NEB) [85] or similar
calculation of the hop path which includes energy-relaxation of the system along the path,
specifically at the saddle point of the barrier.

Second, diffusive events in such a system often do not only involve single-atom hops, but
also multi-atom conformational changes. An example is the well-known exchange event [86]
whereby a surface adatom moves into the substrate, inducing a substrate atom to move to a
different adatom location on the surface. Such events also need to be identified and their energy
barriers calculated to create a robust KMC model.

And third, as described in section 2.13, the energy equation used for off-lattice MC models
involves an interatomic potential (or its analog for mesoscale models). There are a huge variety
of analytic potentials appropriate for different materials and different combinations of mater-
ials (alloys, interfaces, etc). Increasingly, these include machine-learned potentials which are
trained from large databases of quantum mechanical calculations such as density functional
theory (DFT).

Some of these off-lattice capabilities could potentially be added to SPPARKS in a manner
that allows for user-extensibility (e.g. to add a new interatomic potential). However a better
strategy is likely to enable SPPARKS to be coupled to other materials modeling codes which
provide complementary capabilities, either in a multiphysics (one scale) or multiscale sense.
For example, the LAMMPS classical molecular dynamics package [36] implements a large
number of interatomic and mesoscale potentials as well as a NEB capability. In a multiphys-
ics context, it could be coupled to SPPARKS for atomic-scale diffusion applications such as
the off-lattice thin film deposition model discussed above. See the next subsection for more
discussion of code coupling with meso- and continuum-scale models.

The work by Joshi and Chaudhuri [57] mentioned in section 5.5 is an example of this
approach. Another example, is the work of Martinez-Saez and Caro who coupled their own
KMC code with two instances of LAMMPS tomodel diffusion-drivemicrostructural evolution
(grain growth) [87]. The first instance of LAMMPS was partitioned into processor sub-groups
to performmultiple NEB calculations simultaneously to compute diffusion barrier heights; the
second instance was used to perform a global relaxation of the entire system after each KMC
event was selected and performed.

6.3. Code coupling

In section 5.8, implementations of several hybrid MC+X applications were discussed, where
X was a phase field, cellular automata, or PDE model (updated via finite-differencing). These
were relatively simple to implement within the SPPARKS framework because the second
model used the same underlying MC lattice and also required only local updates.

More generally in a multiphysics context, a second model may compute fields or other
effects which are discretized at longer length scales or whose computation may be long-range
(non-local) in nature. Examples include deformation, strain, or temperature fields, any ofwhich
can spatially influence the Hamiltonian used by anMCmodel. Examples of codes which calcu-
late such fields are theVPFFT andCPFFTmodels for viscoplasticity (VP) and crystal plasticity
(CP) effects on microstructure evolution in polycrystalline materials, which compute them via
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FFTs [88, 89]. A multiphysics MC + VP/CP model could potentially be developed by coup-
ling SPPARKS with an existing VP or CP code, so that each could compute their portion of
the hybrid model and exchange needed information each timestep.

Multiscale models which couple KMC or MMC models to continuum-scale solvers are
anothermotivation for joining SPPARKSwith an independent code. This is particularly attract-
ive in the KMC context, since its timescale is determined by event rates, and it can thus natur-
ally operate at multiple timescales.

In these contexts, we note that SPPARKS can be built as a library and has a simple C-style
library interface (API) which allows another code or Python script to setup, invoke, and control
one or more instances of a SPPARKS simulation. It also allows an umbrella code to invoke
both SPPARKS and a second code (assuming it also has its own library interface) and to trigger
the exchange of data between them.

New methods could be added to the SPPARKS library API to enable calls to lower-level
functionality, aimed at supporting these more tightly coupled multiphysics or multiscale kinds
of applications. In the same vein, support for use of SPPARKS with another code in a cli-
ent/server mode of code coupling could also be added via use of the MolSSI MDI library
[90, 91] designed to enable easy and flexible coupling of scientific simulation codes; see a
discussion in [36] for how this was done for LAMMPS.

For use cases where both SPPARKS and another code partition the simulation domain
spatially for parallel simulations and need to communicate large volumes of data (e.g. grid-
based values), parallel data exchanges would be most efficient. A small, simple code-coupling
library for communicating data in this manner is included in the SPPARKS distribution
(examples/COUPLE directory). However, it could be enhanced for a variety of multiphys-
ics and multiscale couplings, e.g. to infer mappings between different grid partitionings in
the two codes, or to perform interpolation or upscaling between grids discretized at different
resolutions.

Doing all of this work in the added context of creating CPU- and GPU-parallel efficient on-
lattice or off-lattice KMC/rKMC/MMC models is an on-going research challenge. Our hope
is that SPPARKS can be a useful tool not only as a stand-alone on-lattice MC code, but also
for coupling to other materials modeling codes as well.
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