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Abstract
Bolt looseness detection is critical in preventing bolt connection failure. Compared to traditional
sensor-based bolt looseness detection, image-based methods are low-cost and contactless and
have thus become the highlight of research. However, current monocular vision-based detection
methods are prone to error scaused by the camera perspective . In this paper, we present a novel
bolt loosening angle detection method based on binocular vision. Key points on the bolt are
detected and matched by SuperPoint Gauss network for 3D coordinates reconstruction and
motion tracking. The bolt loosening angle is solved by fitting the rotation equation using
random sample consensus. Experiments verify the proposed method performs well under
different perspectives of camera and illumination conditions with an average error of 1.5◦.
Comparative test shows our method is superior to the monocular vision-based method in terms
of accuracy when there is a large perspective angle. The proposed method is mark-free and
robust to various working conditions, which makes it of great value for engineering application.

Keywords: bolt loosening angle detection, binocular vision, key point detection, deep learning,
3D reconstruction

(Some figures may appear in colour only in the online journal)

1. Introduction

Bolted connections are widely used in various mechanical
structures for its practicality. However, bolts may self-loosen
in service because of temperature fluctuation, load cycles and
vibration, which impairs the safety and reliability of structures
[1]. In terms of aero engine, loose bolted connection could
lead to the change of rotor unbalance, which will cause vibra-
tion failure of the rotor [2]. In order to prevent the vibra-
tion fault of engine caused by bolted connection failure, it
is of great importance to detect the bolt looseness in real
time [3].

Researchers have developed various approaches to detect
bolt loosening using vibration-based and impedance-based
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techniques [4–6], artificial neural network have also been
applied in recent works [7, 8]. However, those traditional
methods are usually complex and expensive to implement.
Image-based detection methods, by contrast, are contact-
less, low-cost, and flexible for application. With the devel-
opment of deep learning and the good performance of con-
volutional neural network (CNN) used in computer vision,
recently researches have focused on vision-based methods of
bolt looseness detection. With image information, nut-bolt
loss could be detected using deep learning technology such as
you only look once (YOLO) algorithm [9]. Some researchers
identify the bolt looseness by detecting the exposed length of
the screw. Cha et al [10] trains a support vector machine using
horizontal and vertical lengths of bolt heads based on Hough
transform (HT) to automatically distinguish the loosened bolts
from the intact bolts, Ramana proposed a similar method based
on Viola–Jones algorithm [11]. Zhang et al classify intact

1361-6501/23/035401+12$33.00 Printed in the UK 1 © 2022 IOP Publishing Ltd

https://doi.org/10.1088/1361-6501/aca218
https://orcid.org/0000-0001-5797-7750
https://orcid.org/0000-0003-2888-6520
mailto:wu_jiang@buaa.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6501/aca218&domain=pdf&date_stamp=2022-12-5


Meas. Sci. Technol. 34 (2023) 035401 S Wang et al

bolts and loosened bolts exposed screw using fast region-CNN
(R-CNN) [12]. Sun et al obtain the three-dimensional inform-
ation of the edge based on binocular vision, and determine
whether the bolt is loosened by calculating the distance
between the bolt head and the mounting surface [13].

On the other hand, some researchers detect the bolt loose-
ness by the bolt loosening angle. Figure 1 [14] shows that the
rotation angle indicates the loss of preload during the self-
loosening process of bolt as the preload declines along with
the rotation angle increase. Therefore, it is a feasible approach
to predict and prevent bolted connection failure by detecting
the bolt loosening angle. Kong and Li realize bolt loosening
detection by image registration that woks when the bolt rota-
tion angle is larger than 10◦ [15]. Nguyen et al propose an
algorithm to identify bolt loosening angle in steel structure
with image processing technology [16], using HT to identify
and segment the image of each bolt and detect the rotation
angle. Liao Rutian realizes bolt looseness detection based
on region-based fully convolutional networks and HT [17].
Huynh et al detect the bolt position with R-CNN and Faster R-
CNN, correct the distorted image using a perspective correc-
tion method based on homography transformation, and used
HT to automatically estimate the bolt loosening angle [18–21].
Wang et al apply a digit recognition method based on CNN
to locate bolts, and use HT and density-based spatial cluster-
ing of applications with noise methods to detect bolt rotation
angles [22]. Zhao et al use single shot detection to identify
the bolt loosening angle by locating two types of pattern on
the bolt [23]. Yabin et al improve the detection accuracy by
sticking circular markers on the bolts and point out that the
early-stage bolt looseness could be detected by the small rota-
tion angle of bolt [24]. Yang et al train a YOLO-based detector
to identify loosened bolted connections by making marks on
the bolt and nut, however, it cannot quantify the looseness and
requires extra manual marking [25].

Figure 1 shows that the loss of preload is up to more
than 80% when bolt loosening angle reaches 60◦. In order
to prevent bolt connection failure, it is critical to identify
bolt loosening angle at early stage. This requires bolt loosen-
ing detection algorithm should be capable of showing bolt
loosening angle in time instead of only identifying loosened
bolts [10–12, 15, 25] or missing nut-bolt [9] without quanti-
fied results. When the loosening angle goes larger, loosened
bolts can be identified by detecting the exposed length of the
screw [13]. Among bolt loosening angle detection methods
based on monocular vision mentioned above, the HT-based
detection method requires a high contrast between the bolt
surface color and the background color, otherwise the edge
cannot be correctly detected [16–21]. The measurement accur-
acy is low if the angle is calculated by localizing two pat-
terns of the bolt using the object detection [23], while the
method of manually making the mark is not practical under
general working conditions [24]. In addition, since the cam-
era is not always perpendicular to the surface of the bolt head,
the captured image is the projection of the three-dimensional
structure, and the angle information is obtained with errors
when using the algorithm of plane geometry. Although it

Figure 1. The self-loosening process of bolt (data obtained from
[14]).

is proposed in related works [18–22] to correct the distor-
ted image using homography matrix, the method is not uni-
versally applicable since it only functions when the arrange-
ment of bolts forms a certain shape (such as a circle or a
rectangle).

In view of the problems existing in the current machine
vision-based bolt loosening detection methods, we present a
new method where binocular vision is introduced to recon-
struct the three-dimensional coordinates of key points on the
bolt surface, and the bolt loosening angle is calculated by
tracking the spatial transformation of the key points. Com-
pared to fastener looseness detection methods based on 3D
point cloud from structural light [26–28], the binocular vision-
based method is relative low-cost and could produce a quanti-
fied loosening angle.

In this paper, our method is illustrated in detail in section 2:
theories about the object detector and the key point detector are
elaborated in sections 2.1 and 2.2; the algorithm used to solve
the loosening angle of the bolt is introduced in section 2.3.
Section 3 shows the experimental result that verifies the feasib-
ility and the superiority of the proposed method of bolt loosen-
ing angle detection. Meanwhile, our method does not rely on
manual marking or specific arrangement of the bolts, therefore
it has better applicability.

2. Method and theory

The implementation of the proposed method is shown in
figure 2. First, when the bolt is intact, images of the bolt are
taken by the binocular cameras simultaneously, and the bolt
images are cropped by object detection. Then the key points
are detected and matched across the left and right images,
and the three-dimensional coordinates of the bolt key points
are obtained through three-dimensional reconstruction (stereo
matching in figure 2). After the bolt is loosened, the above pro-
cess is repeated. For each camera, the key points are matched
across the two images captured before and after loosening
(motion matching in figure 2). The three-dimensional coordin-
ates of the corresponding points are filtered by random sample
consensus (RANSAC) algorithm to fit the rotation equation to
solve the loosening angle θ.
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Figure 2. Overview of the proposed bolt looseness detection method.

2.1. Object detection of bolt based on YOLO v4

Bolt only takes up a small region in the image captured
by the camera, which adds difficulty to the object detection
task. Among the prevalent object detectors based on CNN,
YOLO v4 [29] possesses strong feature extraction capabil-
ity due to the design of residual network and path aggreg-
ation network, which makes it competent to the detection
task of small objects in terms of both detection speed and
accuracy.

We use Hikvision industrial camera to collect 810 pictures
for bolt object detection dataset (656 for training, 73 for veri-
fication, 81 for test), and label the dataset with LabelImg. The
dataset contains bolt images with different backgrounds shot
under various conditions as shown in figure 3. YOLOv4model
is trained on NVIDIA p4000 GPU using Pytoch. Based on
transfer learning, the weight of backbone is frozen in the first
20 epochs, and the learning rate is set to 0.001; then all weights
are unfrozen, the learning rate is set to 0.0001; with Adam
optimizer used for gradient descent. After 100 epochs of train-
ing, the loss of training set is 0.7524, and the loss of verific-
ation set is 0.5789. Precision = 94.90%, Recall = 94.92%,
F1 = 0.95. The test results show it is robust to bolt
size, shooting distance and lighting conditions with high
accuracy.

2.2. Key points detection of bolt based on SuperPoint Gauss
(SPG)

Key points refer to the pixels in the image that are invariant to
image scaling and rotation, and partially invariant to change
in illumination and 3D camera viewpoint [30]. Matching the
key points across two images is the basis of three-dimensional
reconstruction and object tracking.

Detone et al proposed SuperPoint, a key point detec-
tion algorithm based on deep learning [31]. The algorithm
is self-supervised where the pseudo labels of key points in
the image are produced by a model pretrained on synthetic

Figure 3. Bolt images shot under various conditions.

dataset, then the model is trained with warped image pairs
and the pseudo labels. Yau et al improved SuperPoint toSPG
with sub-pixel accuracy using Gaussian convolution and
softmax [32].

In this paper, we train SPG with different backbones
(VGG [33], a network proposed by Visual Geometry Group;
and CSP Darknet53 [29], the network used in YOLO v4)
and different input image types (gray-scale image and RGB
image) on Common Object in Context (COCO, a dataset pro-
posed by Microsoft that contains 328k images) [34]. Then
the key point detection metrics of each model are evaluated
on HPatches [35], as shown in table 1. The RGB detection
model with VGG as the backbone has higher matching score
due to its matched encoder–decoder network (see figure 4)
and richer information contained in RGB images, so we
choose VGG-SPG-RGB as the key point detector for further
research.

In order to make the key point detection model more accur-
ately identify the key points on the bolt, a bolt image set is
made using the trained YOLO v4, with 1565 images for the
training set and 173 images for the verification set. The VGG-
SPG-RGB model pretrained on the COCO dataset is further
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Table 1. Metrics of various key point detection models based on SPG.

Task

Homography estimation epsilon = 1/3/5 Descriptor metric

1 3 5 NN mAP Matching score

VGG-SPG-GRAY (ORIGINAL) 0.46 0.75 0.81 0.78 0.42
CSP Darknet53-SPG-GRAY 0.27 0.63 0.72 0.66 0.39
VGG-SPG-RGB 0.41 0.74 0.81 0.77 0.45
CSP Darknet53-SPG-RGB 0.39 0.72 0.79 0.73 0.44

Figure 4. SPG network.

Figure 5. The predictions of key point matches by the SPG network
trained on the COCO dataset and the bolt dataset (nn thresh = 1.0).

trained on the bolt dataset to enhance the ability of extract key
points in bolt images.

The predictions of key point matches by the SPG net-
work trained on the COCO dataset and the bolt dataset
are shown in figure 5. It shows that under the same key
point score threshold, the network trained on bolt dataset
predicts less matches with lower the proportion of false
matches, indicating that the network trained on bolt dataset
is able to extract more distinguishable bolt surface texture
feature.

2.3. Three-dimensional reconstruction of key points of bolt

According to the imaging principle of pinhole cam-
era, the world coordinates of three-dimensional points[
XW YW ZW

]T
and the pixel coordinates projected on the

left and right image plane
[
uL vL

]T
,
[
uR vR

]T
satisfy

equation (1):

Figure 6. Stereo matches verification using the polar constraint.

ZcL
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1

= PL
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1



= PR


XW
YW
ZW
1

 (1)

where ZcL, ZcR are scaling factors, PL, PR are the projection
matrix of the left and right camera respectively. By using the
chess board to calibrate the binocular camera [36], the intrinsic
matrix and extrinsic matrices of the camera can be obtained,
then PL, PR can be solved. By matching the key points across
two pictures taken by the left and right cameras at certain state
(before or after the bolt is loosened), the three-dimensional
coordinates of the matched key points can be obtained accord-
ing to equation (1).

It is found in test that the number of key points that sim-
ultaneously meet the binocular matching and the tracking
matching is too small to correctly fit the three-dimensional
rotation equation. We adopt a strategy where homography
transformation is introduced to expand the matched point
pairs of left and right cameras. The specific implementation
is as follows. First, stereo matches are filtered as shown in
figure 6 using the polar constraint [37] that the corresponding
pixel coordinates

[
uL vL

]T
and

[
uR vR

]T
shall satisfy

equation (2):  uL
vL
1

F
 uR
vR
1

T

= 0 (2)

whereF is the fundamental matrix of binocular camera, which
can be obtained by calibration. Taking account of allowed
errors, we determine stereo matches that satisfy equation (3)
are correct matches, otherwise aremismatches to be filtered. In
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this paper, the threshold ε is set as 1.0 assuming the allowable
error is 1.0 mm in the world coordinate system: uL

vL
1

F
 uR
vR
1

T

< ε (3)

Meanwhile, stereo corresponding points satisfy
equation (4) where s is the scaling factor and H is the homo-
graphy matrix:

s

 uR
vR
1

= H

 uL
vL
1

=

 H11 H12 H13

H21 H22 H23

H31 H32 1

 uL
vL
1

 .

(4)

The RANSAC algorithm [38] is adopted to exclude the
mismatches that do not satisfy equation (4), and the homo-
graphy matrix H is obtained by fitting the inliers. Through H
andH−1 more matching point pairs are produced: images cap-
tured by certain camera before and after loosening arematched
for tracking. For the matched point pL =

[
uL vL

]T
at cer-

tain state (before or after loosening) of the left image, the
corresponding point p ′

R =
[
uR ′ vR ′ ]T

in the right image is

obtained by equation (5); for the point pR =
[
uR vR

]T
of

the right image, the corresponding point p ′
L =

[
uL ′ vL ′

]T
in the left camera is obtained by equation (6):

u ′
R =

H11uL+H12vL+H13

H31uL+H32vL+H33
,vR

′ =
H21uL+H22vL+H23

H31uL+H32vL+H33
(5)

u ′
L =

H−1
11 uL+H−1

12 vL+H−1
13

H−1
31 uL+H−1

32 vL+H−1
33

,vL
′ =

H−1
21 uL+H−1

22 vL+H−1
23

H−1
31 uL+H−1

32 vL+H−1
33

.

(6)

With 2D point pair (pL, p ′
R) and (p ′

L, pR) acquired, the 3D
coordinate corresponding to each 2D point pair can be solved
by equation (1) and the 3D reconstruction of key points on the
bolt is realized.

2.4. Solution to the bolt loosening angle based on binocular
vision

Through key point matching, the original coordinate P=
(x,y,z)T before loosening and the transformed coordinate
P ′ = (x ′,y ′,z ′)T after loosening of the same point on the bolt
surface can be obtained. The loosening of the bolt can be sim-
plified as the rotation of the bolt around its own axis, so the
bolt loosening angle θ can be solved according to equation (7)
which describes three-dimensional rotation of rigid body:

P ′ = RP

R= aI+(1− a)nnT + b

 0 −nz ny
nz 0 −nx
−ny nx 0


a= cosθ
b= sinθ.

(7)

Figure 7. Bolt loosening angle θ.

Algorithm 1. Rotation angle solution using RANSAC.

Input:
Matched point-pair set S= {S1 (P1,P1

′) ,
S1 (P1,P1

′) , . . . ,SN (PN,PN ′)}
Random sample size n
Max iterations max_iter
Expected probability to obtain a correct model p
Residual threshold σ

Process:
1: initialize most_inliers= 0,best_index = {}, i = 0
2: while i<min(maxiter,enditer) do:
3: currentinliers= 0, currentindex= {}
4: randomly sample n pairs in S to fit (7) and get a model
5: for j= 0,1, . . . , N do:
6: if ej = Pj ′ −RPj < σ:
7: current_inliers = current_inliers+ 1
8: current_index.append(j)
9: end for
10: if current_inliers>most_inliers:
11: most_inliers= current_inliers
12: best_index= current_index
13: end_iter= log(1−p)

log(1−( most_inliers
N )n)

14: if most_inliers> 0.5N: break
15: end while
16: return the angle θ solved by fitting (7) using

Sk ∈ S, k ∈ best_index

where R denotes the rotation matrix, θ is the rotation angle
(see figure 7), n= (nx,ny,nz) is the unit vector of the rotation
axis. Through the coordinates before and after the rotation of
multiple key points, the inliers are selected with mismatches
excluded by RANSAC algorithm as shown in algorithm 1.
The bolt loosening angle θ can be solved by least square fit-
ting using the inliers, where the residual error e= P ′ −RP is
minimized.

In practical use, since the cameras are not mounted on
the same board as the bolt is, there may be a relative rota-
tion between the cameras and the board on account of the
unstable structure. This, however, has not been considered in
previous works [16–24]. In this case (see figure 8), the bolt
loosening angle θ should be the relative rotation angle between
the bolt and the background (cameras as the viewpoint),
namely, θ = θ1 − θ2. An experiment is conducted to verify
the feasibility of bolt loosening angle detection in this case
(see section 3.3).
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Figure 8. Bolt rotation and background rotation.

3. Experiments and results

3.1. Design and calibration of the workbench for experiment

In order to verify the feasibility of the proposed algorithm,
the accuracy measurement experiment of bolt looseness detec-
tion based on binocular vision is carried out. The layout of the
experimental workbench is shown in figure 9. Two Hikvision
cameras (detailed in table 2) are mounted on a tripod, and the
data is transmitted to the computer through the Gige data line.
The M8 bolts are fixed on the aluminum profile structure, the
looseness of which is to be detected. When testing, the ver-
tical angle of the cameras α is alterable by adjusting the tripod
(see figure 10(a)), while the relative position with the hori-
zontal angle β between the cameras are fixed (see figure 10(b),
β= 20◦). The horizontal distance between the cameras and the
background is 25 cm.

In the previous researches of detecting bolt loosening angle
based on machine vision, the actual bolt rotation angle in the
experiment is usually measured by protractor or directly meas-
ured on the picture using image processing tools, which intro-
duces large measurement errors [16–24]. Therefore, we pro-
pose to use a servo motor to rotate the bolt, which provides
high-precision actual value of bolt rotation angle through
closed-loop position control. The 4108 motor and SimpleMo-
tor drive board used in the experiment are shown in figure 11.
TheAS5600 encoder attached to themotor has 12-bit accuracy
with minimum measured angle at 0.1◦. The motor is fixed on
the aluminum profile workbench. An experiment is conduc-
ted as shown in figure 12 in order to calibrate the accuracy of
the bolt rotation angle output by the motor: first, the motor is
controlled to rotate to 0◦, and the position of the pointer edge
l0 is recorded on the background paper. Then the motor is set
to rotate 10◦, 20◦, 30◦, 40◦, 50◦ and 60◦ in sequence, and the
pointer positions l1, l2, l3, l4, l5, l6 are recorded respectively. At
last, the background paper is taken off and the angle between
li (i = 1,2,3,4,5,6) and l0 is measured by an angle ruler.

The measurement curve obtained from the experiment is
shown in figure 13. The average error between the angle meas-
ured by the encoder and the angle ruler is within 0.5◦, which
proves ourmeasurement usingmotor encoder provides a rather
accurate actual rotation angle.

Figure 9. The experimental workbench.

Table 2. Detailed information of the cameras.

Model MV-CA032-10GC
Image resolution 2048 × 1536
Sensor type CMOS
Sensor size 1/1.8′′

Data interface Gige
Focal length 6 mm

Figure 10. Layout of the binocular cameras.

Figure 11. The motor and the drive board.

3.2. Test on accuracy of the bolt loosening angle detection

In order to test the performance of the proposed method under
various conditions, experiments are carried out using each key
point detection models under the combinations of different
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Figure 12. The experiment on actual bolt rotation angle
measurement.

Figure 13. Angle measured by the encoder and angle ruler.

Figure 14. Images captured under different exposure time.

vertical perspectives of camera (see figure 10(a)) and differ-
ent exposure time. As shown in figure 14, different illumina-
tion conditions can be simulated by changing exposure time
of the cameras. Under each condition, the servo motor is con-
trolled to rotate the bolt to 0◦, 5◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦

in sequence. Images of the bolt at each rotated angle are cap-
tured by the binocular cameras simultaneously. Bolt rotated
by 0◦ is considered as the intact state for reference and bolt at
other rotation angles are considered as loosened, rotation angle
is calculated by the proposed algorithm and compared with the
encoder output angle. The experimental results are shown in
figure 15.

Experimental results show that when the bolt rotation angle
is in the range of [10◦, 40◦], all key point detection models
can accurately track the real bolt loosening angle using least
square fitting or RANSAC. As the rotation angle increased, the
number of mismatches key point increased, and the accuracy

of the least square algorithm decreased. When the bolt rotates
50◦–60◦, due to the rotation periodicity of the hexagon on
the bolt surface, there are too many mismatches in the predic-
tions of SPG-COCO-RGB and SPG-COCO-Gray (as shown in
figure 16), and the RANSAC algorithm cannot correctly detect
the bolt rotation angle due to the minority of inliers. SPG-
Bolt-RGB using RANSAC algorithm can accurately track the
rotation angle of the bolt with good robustness to illumination
and perspective angle, with an average error of 1.5◦. Angle
measurement errors detected by SPG-Bolt-RGB using least
square fitting or RANSAC under each condition presented in
table 3 shows that RANSAC can effectively eliminate mis-
matches and reduce the error of detection results under the
condition that correct predictions take the majority of total
matches.

3.3. Detection of relative rotation between the bolt and the
background

To verify the algorithm’s capability to detect relative rota-
tion between the bolt and the background, we run a test
as follows. The background and the bolt are rotated at the
same time, and the rotation angle of the background and
the bolt are calculated by tracking the key points on the
background image and the key points on the bolt surface,
so as to calculate the relative motion between the bolt and
the background. In the experiment, the bolt and the pic-
ture are not rotated for the intact state. For the loosened
state, the background is rotated counterclockwise by 10◦, 20◦

and 30◦ respectively, while the bolt is rotated clockwise by
10◦, 20◦ and 30◦ for a total of nine groups of experiments
are conducted. The SPG network model is retrained on the
bolt images where a certain area around the bolt is reserved
as background (named SPG-bolt-background-RGB), unlike
pictures in the bolt imageset only contain bolt itself. The
key point predictions made by SPG-bolt-background-RGB
are compared with the models trained on the bolt images
(SPG-bolt-RGB) and COCO (SPG-COCO-RGB), as shown in
figure 17.

The average error of the bolt relative rotation angle meas-
ured by each key point detection model is shown in table 4.
Results show that the measurement error of each key point
detection model mainly comes from the measurement of the
rotation angle of the background, because there are less distin-
guishing local features in the background, which makes it hard
for machine learning and recognition. SPG-bolt-background-
RGB outperforms the other two models in both bolt rotation
angle detection and background detection, indicating that the
key point detection model based on deep learning would per-
form better when the variance between the training set and the
test set is small.

3.4. Comparison with monocular detection of bolt loosening
angle

Related works that quantify the bolt loosening angle focus on
HT-based monocular methods [16–22]. To verify the better
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Figure 15. Experiment results under various conditions.

Figure 16. Key point match when the bolt rotates 60◦.

performance of our binocular method under various condi-
tions, bolt loosening angle detection based on monocular vis-
ion is tested using the same images captured in section 3.2

for the comparison. The specific implementation is as follows:
after the bolt image is obtained through the object detection
based on YOLO v4, the adaptive double threshold Canny edge

8
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Table 3. The measurement error of SPG-bolt-RGB using least square fitting and RANSAC.

Vertical perspective 0◦ 30◦ −30◦

Exposure time Least square fitting RANSAC Least square fitting RANSAC Least square fitting RANSAC

60 ms 7.3 1.1 5.4 1.4 5.4 1.5
80 ms 19.4 1.7 4.5 1.0 4.5 1.4
100 ms 6.6 1.7 5.4 1.0 5.4 2.3
Average error 11.1 1.5 5.1 1.2 5.1 1.8

Figure 17. Key point match on the background predicted by each SPG model.

Table 4. Average error of relative rotation angle detection.

Key point detection model
Error of rotation angle
of the background

Error of rotation
angle of the bolt

Error of relative
rotation angle

SPG-COCO-RGB 5.3 1.8 6.8
SPG-bolt-RGB 3.8 1.3 4.4
SPG-bolt-background-RGB 2.8 1.2 2.8

detection is carried out on the bolt gray image as proposed
in [20], then the edge is detected by HT, the score threshold
of which is set to 0.2 times of the average of the length and
width of the bolt image. Finally, the lines that constitute the
hexagon of the bolt surface are filtered to exclude the false
lines [17], among which the first three straight lines with the
highest score are selected to calculate the angle. If no line is
detected, 0◦ is returned as the current angle. Canny edge detec-
tion and HT line detection results are shown in figure 18. Due
to the similar color between the background and the bolt sur-
face and the interference of the pattern on bolt surface, some-
times there are too many false detections while sometimes
there is no detected lines although the detection method is
adaptive.

For the pictures taken by the left and right cameras in each
experiment in section 3.2, the monocular detection of bolt
loosening angle is carried out using the above method, the
detection is tested and compared with the binocular method
proposed in this paper as presented in figure 19. The results
show that the accuracy of monocular method is equivalent to
that of binocular method when the perspective angle is 0◦.
However, the monocular method is obviously affected by the
distortion of image when there is a sharp perspective angle

upward or downward with an average error more than 4◦ while
that of binocular method is only 1.5◦. The experiment illus-
trates that it is difficult for the monocular method to elimin-
ate the error caused by the perspective angle without the bolt
position information as reference for distortion correction of
the image, while the binocular method is robust to the camera
perspective angle by restoring the three-dimensional informa-
tion of the key points. Therefore the proposed bolt loosening
angle detection method based on binocular vision has less lim-
itations and better applicability compared to previous method
based on monocular vision.

4. Discussion

To further investigate the relationship between the perform-
ance of the proposed algorithm and cameras’ pose, bolt loosen-
ing angle measurement are tested under different α and β
(defined in figure 10). Experimental results are shown in
figures 20 and 21.

The proposed method presents high measurement accuracy
when α < 50◦ and β < 70◦. When the horizontal or vertical
angle of cameras goes sharper, the method produces poorer

9
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Figure 18. Canny edge detection and HT line detection (blue for detected lines, green for selected lines).

Figure 19. Comparison of bolt loosening angle detection based on monocular vision and binocular vision.
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Figure 20. Measurement results under different vertical angle of
cameras α (with β fixed at 20◦).

Figure 21. Measurement results under different vertical angle of
cameras β (with α fixed at 0◦).

Figure 22. Matches produced under sharp vertical or horizontal
angle of cameras.

result or malfunctions due to the scanty correct matches as a
result of less sematic information obtained by the cameras (see
figure 22). Therefore, it is suggested the proposed method is

implemented under cameras’ horizontal angle α < 50◦ and
vertical angle β < 70◦.

5. Conclusion

In this study, we propose a novel binocular vision-based
method for detecting the angle loosening angle. Key points on
the bolt are detected andmatched for three-dimensional recon-
struction and motion tracking, and the rotation angle is solved
by the rotation equation using RANSAC. Experiments verifies
that the feasibility and superiority of the proposed method in
following aspects:

(a) The proposed method is robust to illumination condition
and the vertical perspective of camera with an average
error of 1.5◦. The key point detector trained on the bolt
images has higher accuracy than that trained on COCO as
the benefit of transfer learning.

(b) The monocular vision-based method is tested under the
same conditions for comparison, and the result shows that
the binocular vision-based method is invariant to the error
caused by perspective distortion that affects the accuracy
of monocular vision-based method to a great extent.

(c) Relative rotation detection is also tested to stimulate relat-
ive motion between the cameras and the background. The
key point detector trained on bolt images with background
can predict more accurate matches on both bolt and back-
ground, and the relative angle can be detected correctly
with an average error of 2.8◦. It indicates that the pro-
posed key point-based bolt looseness detection is capable
of eliminating the relativemotion between the cameras and
the background.

To sum up, the proposed method presents robustness to
different conditions and superiority to previous monocu-
lar vision-based detection. Under cameras’ horizontal angle
α < 50◦ and vertical angle β < 70◦, and our algorithm pro-
duces accurate quantified bolt loosening angle at early stage
without extra marks or specific requirements of bolts arrange-
ment. Our method focuses on detecting small bolt loosening
angle θ with an average error of 1.5◦ when θ ∈ [0◦,60◦], while
larger looseness can be identified by detecting the exposed
length of the screw. In addition, the key point tracking-based
detection shows its potential in the field of motion measure-
ment and is worth of further research in the future.
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