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Abstract
Recently, deep learning has been widely used for intelligent fault diagnosis of rolling bearings
due to its no-mankind feature extraction capability. The majority of intelligent diagnosis
methods are based on the assumption that the data collected is from constant working
conditions. However, rolling bearings often operate under variable working conditions in the
real diagnosis scenario, which reduces the generalization capability of the diagnosis model. To
solve this problem, a self-adaptive deep residual shrinkage network with a global parametric
rectifier linear unit (DRSN-GPReLU) is proposed in this paper. First, the DRSN is used as the
basic architecture to improve the anti-noise ability of the proposed method. Then, a novel
activation function—the GPReLU—is developed, which can achieve better intra-class
compactness for vibration signals, and the inter-class samples are better mapped into remote
areas. Finally, a sub-network based on the attention mechanism is designed to automatically
infer the slope of the GPReLU. Various experimental results demonstrate that the
DRSN-GPReLU can realize better performance compared with traditional methods under
variable working conditions, and has better robustness under noise interference.

Keywords: deep residual shrinkage networks, rectifier linear units, attention mechanism,
rolling bearing fault diagnosis, variable working conditions

(Some figures may appear in colour only in the online journal)

1. Introduction

Rolling bearings are widely used in aerospace, transportation,
manufacturing, and other fields [1]. However, because rolling
bearings are frequently utilized in complex and harsh envir-
onments, failures are unavoidable and will result in equip-
ment downtime and significant financial losses. Therefore, it
is essential to accurately diagnose the faults of rolling bearings

∗
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[2]. However, the majority of diagnosis methods are based
on the assumption that the data collected is from constant
working conditions [3], which makes it difficult to adapt to
actual application scenarios. Rolling bearings often operate in
complicated conditions with varying speeds and loads, which
presents a challenge to traditional fault diagnosis methods.
Consequently, it is significant to develop a novel method
which can achieve accurate fault diagnosis under variable
working conditions.

The method based on signal processing is an effective
method in the field of fault diagnosis [4–6]. For example,
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Xu et al [5] proposed a novel empirical scanning spectrum
kurtosis for fault diagnosis, which can accurately identify
bearing faults. Moreover, researchers have also tried to pro-
pose various diagnosis methods based on signal processing to
address the challenges of variable working conditions [7, 8].
For example, Chen et al [8] proposed a novel approach based
on polynomial chirplet transform under variable speed con-
ditions. Generally, signal processing-based fault diagnosis
methods usually require technicians to locate fault frequen-
cies based on expert experience. However, this is often diffi-
cult due to the impact of complex real-world scenarios. The
data-driven fault diagnosis approach provides another effect-
ive tool that does not require locating the frequency of faults
[9–11]. For example, Kaya et al [9] proposed a new 1D-Local
binary pattern (LBP)-based feature extraction method, which
can be combined with various machine learning methods to
accomplish fault diagnosis of bearings. However, the data-
driven fault diagnosis method relies on the quality of the fault
extraction feature set, i.e. a good extraction feature set can
represent the fault feature information more comprehensively.
Therefore, how to better extract fault features has been a chal-
lenge in the field of data-driven fault diagnosis.

As an alternative, deep learning technology has become
mainstream in the field of fault diagnosis, which has no-
mankind feature extraction capability [12–14]. Among them,
the convolutional neural network (CNN) and its variants have
been widely applied in various classification tasks due to
their excellent pattern recognition performance. The Resnet
is a variant of the CNN [15], and its idea of residual error
can effectively avoid the phenomenon of gradient vanishing,
which is beneficial to the training of the network. Therefore,
the Resnet has gained popularity in the field of fault dia-
gnosis [16–18]. For instance, Zhang et al [16] introduced the
residual learning idea of the Resnet and constructed a new
deep learning structure which can achieve good fault dia-
gnosis accuracy for rolling bearings. However, in real-world
applications with strong background noise, the diagnosis abil-
ity of the above method will inevitably be reduced. Therefore,
Zhao et al [19] proposed a variant of the Resnet, called the
deep residual shrinkage network (DRSN). TheDRSN employs
a fundamental Resnet structure and perfectly combines the
attention mechanism with the signal processing knowledge
of the wavelet denoising. The DRSN has become one of the
best deep learning architectures in the field of fault diagnosis
[20–23]. For instance, Liu et al [21] combined a transfer learn-
ing method with the DRSN under harsh interference environ-
ments. Zhang et al [22] modified the shrinkage function of the
DRSN to significantly improve the fault diagnosis accuracy of
the original DRSN under strong background noise. The above
research shows that the DRSN demonstrates better perform-
ance than the CNN and Resnet, and therefore this paper uses
the DRSN as the basis architecture for further improvement.

Meanwhile, variable working conditions will lead to the
degradation of the fault diagnosis ability of traditional deep
learning models; therefore, several academics have tried to
suggest some methods to solve this problem [24–26]. For
instance, Han et al [24] improved the effect of the domain
alignment of the transfer learning, to ensure accurate diagnosis

under the influence of variable working conditions. Zhao et al
[26] combined the CNN with the batch normalization (BN)
and exponential moving average technology, which can elim-
inate feature distribution differences under variable working
conditions. However, the aforementioned studies all fail to
take into account a crucial issue, whereby the development of
a correct mapping relationship between the class and the ori-
ginal input data depends directly on the choice of activation
functions. The fixed activation functions used by all traditional
deep learning methods result in identical nonlinear transform-
ation for each vibration signal. These fixed activation func-
tions include the sigmoid, rectifier linear units (ReLUs) [27],
and the related variants of ReLUs [28, 29]. However, the fault
diagnosis of rolling bearing variables is complicated by the
variable working conditions. To be specific, intra-class faults
may result in differences in the pulses and waveforms of
vibration signals due to different working conditions. Simil-
arly, the fault characteristics of inter-class faults may be the
same due to different working conditions. Therefore, it is dif-
ficult for traditional activation functions to establish the cor-
rect correspondence between the original input data and its
corresponding categories, which can easily lead to misclas-
sification. Therefore, to enhance the diagnostic ability of the
model under variable working conditions, numerous academ-
ics improved the traditional activation function [30–32]. Shao
et al [30] applied the wavelet function in the auto-encoder to
perform nonlinear transformations on vibration signals, which
replaces the activation function and accurately identifies bear-
ing conditions. Zhao et al [32] developed an adaptive para-
metric ReLU (APReLU), which can achieve an adaptive non-
linear transformation for each vibration signal; the APReLU
can also achieve better diagnosis performance under variable
working conditions compared with traditional activation func-
tions. However, the APReLU in [32] only takes into account
the nonlinear transformation in the negative region of the fea-
ture space, and obviously ignores the nonlinear transformation
in the positive region, so that the features are insufficiently
extracted.

The research mentioned above shows how important it is
to develop a novel activatation function for the deep-learning-
based fault diagnosis method. To this end, a novel activa-
tion function called the global parametric ReLU (GPReLU)
is developed, which takes into account the nonlinear trans-
formation of the global characteristics, including the nonlin-
ear transformation in the negative and the positive regions.
Next, a brand-new deep network architecture called the
DRSN-GPReLU is proposed, which can achieve adaptive non-
linear transformation for each vibration signal, allowing better
projection of intra-class samples into the same area, and bet-
ter projection of inter-class samples into the distant area. The
contributions of this article are as follows:

(a) Firstly, a self-adaptive DRSN-GPReLU structure based on
the DRSN is designed. The proposed model is more robust
under noise conditions.

(b) Next, a GPReLU is developed to improve the mapping
of intra-class vibration signals into the same area and the
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Figure 1. The DRSN’s structure.

mapping of inter-class vibration signals into the faraway
area.

(c) Finally, to determine the slope of the GPReLU automatic-
ally, a novel sub-network based on an attentionmechanism
is designed.

The rest of this paper is arranged as follows. In section 2,
the theory of the self-adaptive DRSN-GPReLUmodel is intro-
duced. Section 3 details the experimental results and related
comparative analysis. Section 4 gives the conclusions.

2. Theory of the self-adaptive DRSN-GPReLU

2.1. Fundamentals of the DRSN

The DRSN is a special variant of the ResNet, which uses a
basic Resnet structure, and perfectly integrates the attention
mechanism and the signal processing knowledge of the wave-
let denoising. It can be seen from figure 1 that the DRSN
consists of an original vibration signal input layer, a convolu-
tional layer, some residual shrinkage building units (RSBUs)
(RSBUs are the most important core components), a canon-
ical processing module (BN), a nonlinear transformation layer
(ReLU), anda global average pooling (GAP) layer. More
details about the DRSN can be found in [19].

As depicted in figure 2(a), the RSBU includes two batch
normalization layers, two nonlinear transformation layers,
two convolutional layers, a threshold module, and an iden-
tity shortcut. The BN layer can normalize features and reduce
internal covariant shift. The threshold module adopts the soft
thresholding function, which can remove the noise, and the
threshold is automatically inferred based on an attentionmech-
anism in the process of training, which is realized by a sub-
network of the inferred threshold. The components of this sub-
network are depicted in figure 2(b), which mainly include the
absolute module, the ReLU, the sigmoid function, and so on.
The first two layers can guarantee that the threshold is a posit-
ive value, and the sigmoid function layer can guarantee that the
threshold cannot be too large, so that the inferred thresholds
meet the threshold rule.

2.2. The developed GPReLU activation function

As shown in figure 3(a), ReLUs can more effectively prevent
the gradient vanishing, which is conducive to neural network

training compared to sigmoid and tanh. An ReLU uses the
function:

y=max(x,0) (1)

where x and y are the input features and output features,
respectively.

To enhance the performance of ReLUs in the deep learning
architecture, excellent variants such as LeakyReLU (LReLUs)
and Parametric ReLU (PReLUs) have been derived. As shown
in figure 3(b), LReLUs have a non-zero slope value (e.g. 0.3)
in the negative region compared with ReLUs. An LReLU uses
the function:

y= 0.3 ·min(x,0)+max(x,0). (2)

Similarly, PReLUs are improved on the basis of LReLUs.
As shown in figure 3(c), PReLUs ensure that the slope value
in the negative region is not a fixed value, but is automatic-
ally inferred by the gradient descent method in neural network
training. A PReLU uses the function:

y= α ·min(x,0)+max(x,0) (3)

where α is the slope value of the negative region.
However, these variants that include ReLUs have two lim-

itations when applied in the fault diagnosis of rolling bearings.
Firstly, these activation functions perform the same nonlin-
ear transformation on each sample, which leads to poor dia-
gnostic results under variable working conditions. Secondly,
these activation functions only take into account the nonlinear
transformation in the negative region of the feature space, and
obviously ignore the nonlinear transformation in the positive
region, so that the features are insufficiently extracted.

Therefore, to address the above issues, a new activation
function called the GPReLUs is developed, which takes into
account the nonlinear transformation of the global character-
istics, including the nonlinear transformation in the negative
and positive regions. A GPReLU uses the function:

y= α ·min(x,0)+β ·max(x,0) (4)

where α and β are the coefficients of the positive and negative
regions, respectively.

In addition, a novel slope parameter inferred adaptive sub-
network that is based on the attention mechanism is designed.
The coefficient values of the GPReLU can be adaptively adjus-
ted by the sub-network in response to different vibration signal
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Figure 2. (a) The RSBU’s structure, and (b) the threshold module.

Figure 3. (a) ReLUs, (b) LReLUs, (c) PReLUs, (d) attention PReLUs, and (e) attention GPReLUs.

samples, so that the self-adaptive nonlinear transformation is
performed on different samples. As shown in figure 3(d), atten-
tion PReLUs in [32] are only limited to the dynamic adapt-
ive nonlinear transformation in the negative region and ignore
the positive region. As shown in figure 3(e), the attention
GPReLUs proposed in this paper consider the adaptive nonlin-
ear transformation of global features, compared with attention
PReLUs. Therefore, attention GPReLUs are better equipped
to adapt to variable working conditions and extract features
more thoroughly. Additionally, more information about this
sub-network will be included in the following.

2.3. The sub-network of inferred slopes

As indicated in figure 4, a novel sub-network architecture is
designed, which can automatically infer the parameters α and
β, respectively. The automatic derivation process of the two
parameters is consistent. Firstly, the feature information of the
negative and positive regions can be extracted by the min(x,0)
module and max(x,0) module, respectively. Then, the extrac-
ted feature information is transformed into one-dimensional
vectors through the GAP layer, which can improve the train-
ing speed and solve the problem of shift variation. Then, the
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Figure 4. The network design of the inferred slopes.

Figure 5. (a) The architecture of the self-adaptive DRSN-GPReLU, and (b) the composition of the new RSBU.

global information is fused by the Concat layer. Next, fea-
ture normalization is completed by the BN module. Finally,
the value range of parameters α and β is limited to (0, 1)
by the sigmoid module. Overall, the sub-network not only
applies the self-adaptive nonlinear transformation to differ-
ent vibration signal samples, but also considers the global
signal features, so that the self-adaptive GPReLU effect-
ively overcomes the limitations of the traditional activation
function.

2.4. The architecture of self-adaptive DRSN-GPReLU

In this section, the overall structure of the self-adaptive DRSN-
GPReLU is given in figure 5(a). The network structure of
the self-adaptive DRSN-GPReLU is similar to the DRSN,

and there are two main differences. Firstly, the last ReLU
activation function in the overall architecture is replaced by
the attention GPReLU. Secondly, the ReLU in the original
RSBU is replaced with attention GPReLU to generate a new
RSBU, as shown in figure 5(b), so that the new RSBU has
self-adaptive nonlinear transformation that takes into account
global features.

3. Experimental validation and results

In this section, the self-adaptive DRSN-GPReLU proposed in
this paper is used for bearing fault diagnosis under variable
working conditions, and is compared with traditional activa-
tion functions.
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Figure 6. The rolling bearing comprehensive fault test stand.

3.1. Case 1: rolling bearing comprehensive fault test stand

3.1.1. Dataset collection. The comprehensive fault test stand
of a rolling bearing was used to collect vibration signals
in our experiments. As indicated in figure 6, the test bench
includes a bearing radial force digital meter, an alternat-
ing current (AC) motor, a support bearing, a rotor, a motor
speed controller, a support shaft, two accelerometers, and
the tested bearing. The speed is provided by an AC motor.
The test bench can simulate various types of failures of
rolling bearings, and adjusts the speed through a motor speed
controller to simulate rolling bearing failures under differ-
ent working conditions. In addition, the vibration signals
collected in this experiment are collected by two accelero-
meters, including a vertical accelerometer and a horizontal
accelerometer.

As presented in table 1, four conditions of rolling bear-
ings are simulated in this experiment, including a normal state
and three fault states. The specific rolling bearing fault set-
tings are shown in figure 7. In addition, four different speeds
are set in each bearing condition, including 20, 30, 40, and
50 Hz. The sampling frequency of the vibration signals is
1000 Hz. In this experiment, 50 signal samples are collected
for each condition, and each sample contains 1024 vibration
points. Therefore, the total number of vibration signal samples
is 800.

Table 1. Experimental data of rolling bearings.

Number Description Label

1 Normal (N) under a speed of 20, 30, 40,
and 50 Hz

N

2 Inner ring fault (IF) under a speed of 20,
30, 40, and 50 Hz

IF1

3 Outer ring fault (OF) under a speed of
20, 30, 40, and 50 Hz

OF1

4 Ball fault (BF) under a speed of 20, 30,
40, and 50 Hz

BF1

3.1.2. Hyperparameter setup for self-adaptive GPReLU-
DRSN. In table 2, all the hyperparameters used in this
experiment are listed. It is worth mentioning that this article
mainly proposes a new method rather than the optimization of
parameters. To obtain as good a diagnostic accuracy as pos-
sible, the hyperparameter of this article refers to the parameter
setting in [19].

3.1.3. Performance comparison. In the experiment, as
presented in table 3, the diagnostic performance of the
GPReLU is significantly better than other traditional activa-
tion functions under variable working conditions, which relies
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Figure 7. A schematic diagram of rolling bearing failure.

Table 2. The hyperparameters of the experiment.

Number Parameters Value

1 Learning rate 0.001
2 Momentum ratio 0.9
3 The coefficient of L2 regularization 0.0001
4 Mini-batch 16
5 The size of convolutional kernels (3,3)
6 The number of convolutional kernels in the first RSBU 4
7 The number of convolutional kernels in the second RSBU 4
8 The number of convolutional kernels in the third RSBU 8
9 The number of convolutional kernels in the fourth RSBU 8
10 The number of convolutional kernels in the fifth RSBU 16
11 The number of convolutional kernels in the sixth RSBU 16

Table 3. Diagnostic accuracy results of different methods.

SNR (dB) −4 −2 0 2 4 6

DRSN-Sigmoid (%) 84.0 ± 2.7 86.1 ± 2.5 87.1 ± 1.7 90.1 ± 2.4 92.0 ± 1.3 94.6 ± 1.5
DRSN-ReLU (%) 85.9 ± 0.8 86.6 ± 1.2 87.9 ± 1.4 89.9 ± 2.4 93.4 ± 2.8 95.9 ± 2.9
DRSN-LReLU (%) 86.7 ± 1.3 87.1 ± 2.4 89.1 ± 1.7 91.3 ± 2.8 93.5 ± 1.0 95.6 ± 1.1
DRSN-PReLU (%) 84.2 ± 1.6 87.8 ± 3.5 90.1 ± 2.0 92.1 ± 1.9 93.0 ± 2.4 95.2 ± 1.3
DRSN-APReLU (%) 85.6 ± 1.8 89.7 ± 0.7 92.7 ± 1.6 93.2 ± 2.8 94.8 ± 2.3 97.1 ± 2.1
DRSN-GPReLU (%) 95.1± 3.1 96.9± 2.0 97.9± 1.3 98.8± 1.0 99.0± 1.6 99.3± 0.5

on its strong ability of the self-adaptive nonlinear transform-
ation. To be specific, the fault diagnosis accuracy of the
GPReLU yields improvements of 8.9%, 7.9%, 7.2%, 7.4%,
and 5.6%, compared to the Sigmoid, the ReLU, the LReLU,
the PReLU, and the APReLU under different noise intensit-
ies. Moreover, it can be found through experimental results
that the DRSN-GPReLU still has a high diagnostic accuracy
under a strong noise environment, which indicates that the
DRSN-GPReLU demonstrates better anti-noise performance.
It needs to be emphasized that the network structure and hyper-
parameter settings are unified, but the activation function is
replaced, to validate the superior performance of the new activ-
ation function developed in this paper, compared with other
traditional activation functions. In addition, each set of exper-
iments was run 10 times, to ensure that the experimental results
were not random.

Then, to more clearly identify the actual diagnosis results
of each category, the confusion matrices of the different meth-
ods are indicated in figure 8. From the confusion matrix in
figure 8, our proposed DRSN-GPReLU achieves the best dia-
gnostic performance compared to other methods. The accur-
acy of the IF category is 95%, 78%, 47%, 57%, 50%, and 60%,
which can further illustrate the superiority of our method.

The accuracies and loss curves of the DRSN-GPReLU and
other methods are depicted in figure 9, respectively, when the
SNR = −4 dB. It can be observed that the average accur-
acy of the DRSN-GPReLU is higher than the other meth-
ods, and the average loss of our proposed method is lower
than the other methods. This is because the adaptive nonlinear
transformation of the DRSN-GPReLU can improve diagnostic
accuracy under variable working conditions. Furthermore, it is
worth mentioning that the superiority of the DRSN-GPReLU
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Figure 8. Confusion matrices of the (a) DRSN-GPReLU and (b)–(f) other methods.

starts to be significant, when the epochs are greater than about
30. This phenomenon shows that our adaptive method cannot
oversaturate as easily as other functions after 30 epochs, but
can also effectively adjust itself according to the signal.

To visually demonstrate the superiority of the developed
GPReLU under variable working conditions from the per-
spective of spatial feature distribution, the t-distributed
stochastic neighbor embedding (t-SNE) method [33] is used
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Figure 9. The loss and accuracy curves: (a) training loss, (b) training accuracy, (c) test loss, and (d) test accuracy.

to visualize the high-dimensional features of the six methods.
As shown in figure 10, all features are represented by coordin-
ate points mapped to a two-dimensional space. As indicated
in figure 10(a), it can be observed that the sample features
become more separable in the DRSN-GPReLU under vari-
able working conditions, when the SNR=−4 dB. In contrast,
the N and IF classes highly overlapped in the other methods,
from sample points in figures 10(b)–(f). The main reason for
this may be that the vibration signal characteristics under nor-
mal conditions are similar to the vibration signal characterist-
ics under the inner ring failure conditions due to the change
in the speed in this experiment. Firstly, the traditional activa-
tion function can only rely on a fixed nonlinear transformation.
Secondly, the nonlinear transformation in the positive region
of the feature space is usually ignored, which makes it difficult
to accurately diagnose faults.

3.1.4. An analysis of slope values. As shown in table 4,
the slopes of various activation functions are examined using
eight different vibration signal samples as examples. It can
be seen that LReLU and PReLU conduct identical nonlinear
transformation for each sample because their slope values are
fixed. The main difference is that the slope value of LReLU
is manually selected, while PReLU’s slope value is automat-
ically inferred during training. In contrast, the APReLU and
the developed GPReLU have different slope values for each

sample, which means that they can perform different nonlinear
transformation for each vibration signal, and these slope val-
ues are all obtained based on an attention mechanism. The dif-
ference between them is that the GPReLU proposed in this
paper has two inferred slopes at the same time and considers
the global feature information, while the APReLU only con-
siders the negative region and ignores the positive region.

3.2. Case 2: the public bearing fault dataset

3.2.1. Dataset description. In this section, the bearings data-
set of Case Western Reserve University (CWRU) is adopted.
The CRWU’s test bench is indicated in figure 11. The vibration
signals of a driver end bearing are used in this paper, which are
collected at 1797, 1772, 1750, and 1730 RPM, respectively.
The sampling frequency is 12 000 Hz. More details about the
experimental data are shown in table 5. Each type of fault is
also set with three fault sizes, including 7, 14, and 21 mils. In
this experiment, 100 samples for each class of states are used,
and each sample contains 1024 vibration signals. The propor-
tion of the training set is 80%.

3.2.2. Performance comparison. In the experiment, the
architecture and hyperparameters are the same as in case 1.
Due to the larger number of training data, the batch size
in this experiment is 32, and the samples are subjected to
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Figure 10. Visualization of feature spaces of the (a) DRSN-GPReLU and (b)–(f) other methods.

Table 4. A summary of the slope value analysis.

Sample LReLU PReLU APReLU GPReLU (α) GPReLU (β)

1 0.3 0.546 0.166 0.705 0.169
2 0.3 0.546 0.397 0.640 0.232
3 0.3 0.546 0.685 0.272 0.767
4 0.3 0.546 0.333 0.628 0.236
5 0.3 0.546 0.610 0.354 0.662
6 0.3 0.546 0.685 0.272 0.767
7 0.3 0.546 0.503 0.476 0.489
8 0.3 0.546 0.685 0.272 0.767
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Figure 11. The CRWU’s test bench.

Table 5. A detailed description of the dataset.

Rotating speed (r min−1) Healthy condition Fault size (inch) Class label Number of samples

1797 & 1772 & 1750 & 1730 N 0 0 100 & 100 & 100 & 100
1797 & 1772 & 1750 & 1730 BF1 0.007 1 100 & 100 & 100 & 100
1797 & 1772 & 1750 & 1730 BF2 0.014 2 100 & 100 & 100 & 100
1797 & 1772 & 1750 & 1730 BF3 0.021 3 100 & 100 & 100 & 100
1797 & 1772 & 1750 & 1730 IF1 0.007 4 100 & 100 & 100 & 100
1797 & 1772 & 1750 & 1730 IF2 0.014 5 100 & 100 & 100 & 100
1797 & 1772 & 1750 & 1730 IF3 0.021 6 100 & 100 & 100 & 100
1797 & 1772 & 1750 & 1730 OF1 0.007 7 100 & 100 & 100 & 100
1797 & 1772 & 1750 & 1730 OF2 0.014 8 100 & 100 & 100 & 100
1797 & 1772 & 1750 & 1730 OF3 0.021 9 100 & 100 & 100 & 100

Figure 12. Test accuracy of different methods in ten trials.

white Gaussian noise, the intensity of which is 6 dB. Each
set of experiments is performed ten times to guarantee that
the results are not random. As indicated in figure 12, the dia-
gnosis performance of the GPReLU is far more superior than
other traditional activation functions under variable working
conditions, and the average accuracy of fault diagnosis of

the DRSN-GPReLU reaches more than 98%. In addition, it
is worth mentioning that the DRSN-APReLU has superior
fault diagnosis accuracy compared to other methods, with
the exception of our method. This further demonstrates that
self-adaptive nonlinear transformation can better adapt to the
effects of variable working conditions.
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Figure 13. Confusion matrices of (a)–(e) other methods and (f) the DRSN-GPReLU.

Next, to more clearly identify the actual diagnosis res-
ults of each category, the confusion matrix of the DRSN-
Sigmoid, the DRSN-ReLU, the DRSN-LReLU, the DRSN-
PReLU, the DRSN-APReLU and the DRSN-GPReLU are

represented in figure 13, when the SNR = 6 dB. From
the confusion matrix in figure 13, our developed method
achieves the best diagnostic performance compared to other
methods.
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Figure 14. Visualization of feature spaces of (a)–(e) other methods and (f) the DRSN-GPReLU.

Then, the superiority of the DRSN-GPReLU is graphically
demonstrated using the t-SNE method from the viewpoint of
spatial feature distribution. As indicated in figure 14(f), it can
be observed that the sample points after dimensionality reduc-
tion become more separable in the DRSN-GPReLU proposed
in this paper under variable working conditions. In contrast, as
indicated in figures 14(a)–(e), there are still some classes with
highly overlapping features in the other methods.

3.3. The comparison with previous studies on bearing fault
diagnosis

In this section, the reported studies on bearing fault diagnosis

are given and compared with our proposed method in this
paper. Table 6 demonstrates that there has not been enough
research carried out on bearing fault diagnosis under vari-
able working conditions. In addition, better results have been
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Table 6. The reported studies on bearing fault diagnosis.

Methods Dataset Fault type Accuracy (%)

FMM-RF (2017) [34] • CWRU • Normal condition (N), inner ring fault (IF),
outer ring fault (OF), and ball fault (BF)

• 99.90

SVM + PCA (2018) [35] • Experimental setup of
authors

• N, IF, OF, and BF • 97.44

CNN (2019) [36] • CWRU • N, IF, OF, and BF • 97.74

SGMM (2019) [37] • CWRU • N, IF, OF, and BF • 100

• The bearing data of
Hunan University

• N, IF, and OF • 99.83

Signal2Image + LBP
(2020) [38]

• Experimental setup of
authors

• N, IF, OF, and BF • 100

• Fault size • 100

• Motor speed • 95.90

DFT–IDFT autoencoders
(2020) [39]

• Experimental setup of
authors

• N, IF, OF, BF, Cage • 99.92

Spark-IRFA (2021) [40] • CWRU • N, IF, OF, and BF • 98.12

RCFOA-ELM (2021) [41] • CWRU • N, IF, OF, and BF • 98.34

• N, and IF (consider fault size) • 95.34

GMA-DRSNs (2022) [20] • CWRU • N, IF, OF, and BF (consider fault size
and noise conditions)

• 100

VMD + FE + IBOA-DBN
(2022) [42]

• Experimental setup of
authors

• N, IF, OF, and BF • 98.33

• 100• CWRU

MD + SGM + CNN
(2022) [43]

• CWRU • N, IF, OF, and BF • 97.21

Proposed method • Experimental setup of
authors

• N, IF, OF, and BF (consider
variable working conditions and
noise conditions)

• 99.3

• 99.03
• CWRU • N, IF, OF, and BF (consider variable

working conditions, fault size and noise
conditions)

achieved in several previous studies, some of which have
even reached 100% accuracy. However, they ignore the effect
of variable working conditions and noise conditions. In this
paper, the DRSN-GPReLU can still achieve more than 99%
diagnosis accuracy under variable working conditions and
noise conditions, which illustrates the superiority of the pro-
posed method.

4. Conclusions

Variable working conditions inevitably bring a challenge to
the effectiveness of traditional intelligent diagnostic methods.
Specifically, the characteristics of different vibration signal
samples in the same health state may vary as the working con-
ditions change and, similarly, the characteristics of different
samples in different health states may become similar as the
working conditions change. Therefore, the traditional activ-
ation function uses fixed nonlinear transformation for each
sample, which reduces the classification ability of the model,
i.e. projecting the intra-class signals to neighboring regions
and the inter-class signals to distant regions.

To effectively solve the above problem, this paper devel-
ops a novel deep neural network architecture called the
DRSN-GPReLU. Specifically, firstly, the DRSN is used as
the basic architecture to improve the anti-noise ability of
this method. Secondly, a new activation function called the
GPReLU is developed, which is the main innovation of this
article. The advantages of the GPReLU over traditional activ-
ation functions are: (a) it can perform adaptive nonlinear trans-
formations on different vibration signal samples, thus enhan-
cing the classification capability of the model; and (b) the non-
linear transformation of the GPReLU takes into account global
features, thus allowing features to be extracted more suffi-
ciently. Finally, a novel sub-network is designed based on an
attention mechanism, to automatically infer the slope of the
GPReLU.

The results of experiments on the two bearing fault dia-
gnosis datasets have shown that the GPReLU proposed in
this study outperforms other traditional activation functions
under variable working conditions. The primary factor con-
tributing to the improvement is that the attention GPReLU
can perform adaptive nonlinear transformation for each vibra-
tion signal sample and considers the global signal features,
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which allows the DRSN-GPReLU to achieve a higher level
of diagnosis accuracy under variable working conditions. We
highlight that the GPReLU developed in this article can easily
be inserted into other deep learning architectures to improve
their performance.

In this study, the GPReLU has a more complex network
structure than traditional activation functions and, therefore,
inevitably increases the computational complexity, which
leads to lower execution efficiency in real industrial field
applications. In future study, we will further optimize the net-
work structure of the GPReLU and reduce its computational
complexity.
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