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Abstract
X-ray computed tomography (X-CT) plays an important role in non-destructive quality
inspection and process evaluation in metal additive manufacturing, as several types of defects
such as keyhole and lack of fusion pores can be observed in these 3D images as local changes in
material density. Segmentation of these defects often relies on threshold methods applied to the
reconstructed attenuation values of the 3D image voxels. However, the segmentation accuracy is
affected by unavoidable X-CT reconstruction features such as partial volume effects, voxel
noise and imaging artefacts. These effects create false positives, difficulties in threshold value
selection and unclear or jagged defect edges. In this paper, we present a new X-CT defect
segmentation method based on preprocessing the X-CT image with a 3D total variation
denoising method. By comparing the changes in the histogram, threshold selection can be
significantly better, and the resulting segmentation is of much higher quality. We derive the
optimal algorithm parameter settings and demonstrate robustness for deviating settings. The
technique is presented on simulated data sets, compared between low- and high-quality X-CT
scans, and evaluated with optical microscopy after destructive tests.

Keywords: denoising, X-CT, additive manufacturing, selective laser melting, segmentation,
porosity
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1. Introduction

Selective laser melting (SLM) has become a common and
relatively mature manufacturing technique for fabrication of
complex or near net-shape metallic parts [1, 2]. This process
allows a larger design freedom than is possible with conven-
tional manufacturing techniques and it enables the produc-
tion of functional parts with good material and part properties.
Although it offers a great advantage over conventional manu-
facturing, the process is very sensitive to many factors to form
the desired component. This process involves complex mul-
tiphysics phenomena, such as absorption, transmission and
reflection of laser light [3], material evaporation [4], melt pool
dynamics and microstructure evolution [5], and rapid melting
and solidification of metallic powder material [6]. The slight-
est deviation of processing parameters such as laser power and
scan speed from their optimum can affect physical phenom-
ena, which highly influences the amount of defects in the SLM
parts. Therefore, defects are an inevitable issue in SLM parts
[7] and may influence the mechanical and physical properties
of parts. Most common defects are keyhole and gas porosit-
ies, insufficient fusion, solidification cracking and solid-state
cracking.

Different techniques have been used for the evaluation of
defects in SLM parts. 2D cross-sectioning of parts has been
used for pore characterization of parts, however this method is
destructive and non-repeatable [8]. Archimedes’ method has
also been used for parts with porosity to determine their rel-
ative density, but the limitation is that this approach does not
provide the size, location and morphological information of
defects [9]. X-ray computed tomography (X-CT) has shown
the potential for non-destructive assessment of defects in SLM
parts [10, 11]. However, multiple factors influence the final
X-CT reconstruction quality, and the level at which defects can
be resolved depends on the resolution, noise level and artefacts
present in the X-CT reconstruction. Imaging artefacts such
as cone-beam artefacts, beam hardening and several types of
noise influence the quality of the reconstruction and ultimately
the porosity segmentation. Image noise in a X-CT projection
is caused primarily by physical phenomena affecting the x-ray
photons (e.g. scattering and the intrinsic discrete nature of
photons), but can also originate from other sources, such as
themeasurement or device settings (e.g. source voltage, source
power, target material, exposure time, averaging and filtering),
object properties (e.g. object attenuation coefficient, object
geometry, object placement), electronic noise of the detector
and the employed image reconstruction algorithm [12].

In this paper, we explore the performance of a 3D image
denoising method based on total variation (TV) denoising
in improving pore segmentation in parts that are additively
manufactured via SLM. TV denoising is an edge preserving
denoising technique, as opposed to alternatives like non-local
means or sparse domain transformationmethods such aswave-
let or Fourier transforms, and has already shown promising
results in image denoising of regular 2D images and in med-
ical X-CT imaging, e.g. with applications in cardiac, pulmon-
ary and brain imaging [13, 14]. It is demonstrated that this
type of denoising can also successfully improve segmentation

results in AM manufacturing, with significant qualitative and
quantitative improvements in segmentation metrics. Further-
more, a parameter space exploration is performed for X-CT
reconstructions that are typically encountered in SLM applic-
ations, leading to a robust set of parameters that can be used to
denoise and improve segmentation results. The main goal of
this work is to demonstrate the improvements in pore segment-
ation results that arise from including a recent state of the art
TV denoising step in the X-CT segmentation workflow and to
provide the details of the employed algorithm and its paramet-
ers. Note that many alternative algorithms are available that
can perform similarly.

The structure of this paper is as follows: In section 2, the TV
denoising algorithm is briefly described, with enough details
that allow the interested reader to implement this, and ref-
erences to recent literature for an in-depth analysis of this
algorithm. In section 3, the employed data set is described.
Section 4 contains a detailed parameter space exploration to
determine ideal settings for the algorithm and to demonstrate
its robustness against parameter deviations. Section 5 contains
several experiments on real and simulated data sets, followed
by the conclusions in section 6.

2. TV denoising

To suppress noise and improve edges in a X-CT reconstruc-
tion, we employ a TV denoising method where a target func-
tion consisting of a data fidelity term and a TV regularizing
term is minimized. A computationally efficient implementa-
tion for solving such a minimization problem is based on the
primal-dual optimization algorithm of Chambolle and Pock
[15], and has recently been presented by several authors in the
medical X-CT literature [16–18].

The implementation used here is as following: Consider
a 3D voxel cube y= {yijk}ijk with non-negative voxel values
∀i, j,k : yijk ∈ R+ and dimensions [N1,N2,N3]: i ∈ 1, . . . ,N1,
j ∈ 1, . . . ,N2, k ∈ 1, . . . ,N3. We consider the optimization
problem

min
x∈X

F(x− y)+λG(x) (1)

where

• The variable x ∈ X is the variable to be optimized, which is
a 3D voxel data cube with similar size as y

• The function F describes a data fidelity term that aims to
keep the denoised solution x close to the original data y. This
can be accomplished by choosing the Fröbenius norm for F:

F(x− y) = ∥x− y∥2F (2)

=
∑
ijk

(xijk− yijk)
2. (3)

• The second term G(x) regularized the solution. In our case
we choose the TV of x, which is the overall sum of absolute
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differences between neighbors. TV penalizes differences
between neighbors, and is well fit to denoise several types
of noise:

G(x) = |x|TV (4)

=
∑
(i,j)

|xi− xj|. (5)

The sum runs over all neighboring voxel pairs (i, j) in
the volume x, where we use the six-neighborhood in 3D
(top/bottom, left/right and front/back neighbors).

• The constant λ determines the strength of the TV regulariz-
ing term.

Several equivalent formulations of the Chambolle–Pock
optimization algorithm exist for solving equation (1), with
often different names in literature (see [15] for an overview
and derivations). The version we employ is described in detail
in [19]. First, define the following operators and functions
where x is a variable representing a 3D voxel cube and u rep-
resents its dual (a 3D vector space, obtained e.g. by taking a
numerical gradient of x):

K(x) =∇(x) (6)

K∗(u) =−div(u) (7)

Pτy(x) =
x+ τy
1+ τ

(8)

Pg(u) = v ⇐⇒ ∀ijk : vijk =
λuijk

max(uijk,λ)
. (9)

Initialize the variables:

x2 = y (10)

u2 = Pg(K(x2)). (11)

The solution is iterated using algorithm 1 until conver-
gence is reached. We refer to [15] and [19] for more details,
e.g. on the proper boundary conditions for the numerical gradi-
ent and divergence operations. Under certain conditions, this
algorithm is shown to quickly converge towards a solution
that minimizes equation (1). Convergence can be monitored
by evaluating the gap between the primal and dual solutions:
when this gap becomes zero, both terms balance each other
and convergence has been reached. A detailed parameter ana-
lysis is presented in section 4.

We have implemented the above algorithm inMatlab, based
upon extending a 2D implementation for image denoising
provided by the author of [19]. As the algorithm is an iter-
ative algorithm, its runtime scales linearly with the number of
iterations. Note that the algorithm is very well fitted for paral-
lellization, and GPU-accelerated versions should be relatively

Algorithm 1: The proposed algorithm.

1 Initialize all variables, choose τ > 0, σ > 0 and ρ ∈ [1,2[
2 for n⩾ 0 do
3 x= Pτy(x2 − τK∗(u2))
4 u= Pg(u2 +σK(2x− x2))
5 x2 = x2 + ρ(x− x2)
6 – u2 = u2 + ρ(u− u2)

easy to implement. A possible concern is the memory require-
ment: 3D X-CT images are typically large, and the algorithm
requires multiple copies of similar size to store the gradient
and other intermediate solutions. Possible solutions are the use
of disk caching for intermediate solutions or block-wise exe-
cution of the algorithmwhere only subsets of the entire dataset
are processed at once.

3. Description of the data set

To assess the performance of the algorithm on improving pore
segmentation in additive manufactured parts, a real data set
was created under controlled conditions where pores were
induced in certain predefined regions by deviating from the
optimal system parameters. To this end, a cubic object of size
9 mm × 9 mm × 7.5 mm (length, width, height) was prin-
ted in 316 L stainless steel with a 3D Systems ProX DMP320
SLM machine. The bulk of the object was printed with nom-
inal settings with layer thickness 30 µm, laser power 215 W,
laser speed 900 mm s−1 and interlayer time 8 s. The top layer
was remelted, and 14 lines of length 8 mm and with a line dis-
tance of 0.5 mm were printed on top of the cube with varying
system settings to investigate the effect of the system settings
on defect formation (see figure 1).

Depending on the system settings, these pores will have
different pore densities and size distributions, and due to the
construction we can relate every observed pore with the sys-
tem settings that created these. In this work, we focus on a
single line, namely the line with ID 4, that shows a high dens-
ity of keyhole pores. Line ID 4was printed with 400% nominal
energy density, obtained with a nominal laser power (215 W)
and 25% laser speed (225 mm s−1). Note that in the nom-
inal bulk material no pores are typically present except for
subsurface pores. After detachment from the build plate by
wire electrical discharge machining (EDM), the object was
CT scanned. The UAntwerp FleXCT scanner [20] was used
to acquire and reconstruct the x-ray projections. The CT scans
were performed with a peak voltage of 220 kV and 23 W as
tube power, using a 1 mm thick copper filter. The x-ray source
was placed 63.33 mm distant from the object and 950 mm
distant from the detector, while 4283 projections have been
acquired. Two CT scans were performed: one with a lower of
exposure time per projection (1110ms), and the other one with
a longer exposure (5000 ms). The former scan yields a noisy,
low-quality, CT reconstruction compared to the more accur-
ate reconstruction given by the latter scan. The two CT scans
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Figure 1. The top layer of the cube with 14 numbered lines. The
direction is indicated with an arrow. The cube sides have length
9 mm.

Figure 2. The histograms of the low and high quality X-CT scan
reconstructions after histogram matching.

have a resolution of 10 µm, where beam hardening correc-
tion was performed to minimize reconstruction artefacts. As
both CT data sets were collected successively and with dif-
ferent settings, the obtained reconstructions do not align. To
allow comparison, both data sets were geometrically aligned
with the CAD model of the object with a software based on
a mesh registration algorithm [21], which also aligned both
data sets with each other. Furthermore, histogram matching
was applied, where the histogram of the high-quality recon-
struction was rescaled via a linear transformation so that the
two modes of the bimodal distribution representing the air and
metal voxels were mapped to each other. The resulting histo-
grams of both voxel distributions are shown in figure 2, and
two slices are shown in figure 3.

Furthermore, only a subset of the full data set is considered
in each experiment:

• A smaller 3D selection containing many pores is sufficient
to demonstrate the technique, and easier to process and visu-
alize.

• As the segmentation will also segment air outside the object,
a subset that does not contain this air component is con-
sidered for the segmentation quality assessment, either by
removing this air component via 3D region selection or by
focusing on a selection that contains only bulk metal.

This selection is indicated with a dashed rectangle in
figure 3, with a cross-section shown in figure 4 and a 3D visual-
ization of pores segmented by the popular Otsu’s thresholding
method [22] in figure 5.

4. Parameter space exploration

As the proposed algorithm contains several parameters, a para-
meter space exploration was carried out first to evaluate the
influence of each parameter on the result and to identify a good
parameter set. It must be noted that Chambolle–Pock based
algorithms typically show a relatively low dependence on sev-
eral of their algorithmic parameters and will converge to the
same final solution for many parameter sets. This was also
observed in this case, which illustrated the robustness of the
method. The algorithm parameters are the following:

• Relaxation parameter ρ, which should be in the interval
[1,2[.

• Step size σ and its dual τ . For the 3D TV regularization
algorithm, we choose σ = (16τ)−1, as this choice guaran-
tees convergence [15]. Only the step size τ then remains to
be chosen.

• The number of iterations N should be chosen large enough
to reach convergence.

• The regularization parameter λ weights the strength of the
TV term, and plays an important role in setting the denois-
ing level. This parameter will be evaluated further for each
experiment.

To assess the influence of these parameters, the low-energy
X-CT reconstruction was denoised with different parameter
settings. The convergence was assessed by evaluating the
primal cost F and dual cost G in equation (1), and the primal-
dual gap F−G [15].

The typical evolution of the primal and dual cost as a func-
tion of the number of iterations of the algorithm is shown in
figure 6. The inset shows the primal-dual gap, which is the
absolute difference between primal and dual cost. The erratic
behavior of this gap after iteration 200 is due to numerical
noise and indicates that convergence has been reached down
to the level of the employed numerical accuracy. The para-
meter values are indicated in the caption. This graph indicates
that iterating for more than 200 iterations is not useful, as the
two terms in the optimization equation (1) balance each other
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(a) Low quality (b) High quality

Figure 3. A X-CT slice of the specimen parallel to the build platform for the low (a) and the high-quality (b) aligned and
histogram-matched reconstructions. Voxels are cubic with size (10 µm)3. Two distinct lines of pores are clearly visible, corresponding to
line ID 4 with 400% nominal energy density, obtained with nominal laser power and 25% of the nominal laser speed. The total data set has a
size of 1081× 1081× 809 voxels. The top view of the selection used below is indicated with the dashed rectangle.

Figure 4. A selection of a vertical slice through the line with pores
on the right for the low (a) and high (b) quality X-CT
reconstructions. Note the increased noise level in the low-quality
reconstruction. Only the bulk material below the dashed line was
employed for quality assessment to avoid air and border
segmentation issues.

up to the level of numerical noise. Note that the decrease in
the primal-dual gap is exponential, so good results are already
reached well before this point.

The dependence on the algorithmic parameter τ is shown in
figure 7. The algorithm converges for all values of τ , ranging
over several orders of magnitude, but the convergence speed
is affected by the choice of τ . The fastest initial decrease is
observed for σ = τ = 1/4, a value also often suggested as a

Figure 5. A 3D representation of the segmented pores in this
selection, obtained via Otsu’s threshold applied to the high-quality
reconstruction and removal of the air component outside the object.
Pores are indicated in white, the border of the selection in red, and
the top surface of the object in transparent grey. Voxels are cubic
with size (10 µm)3. The red selection has size 3.0 mm × 1.5 mm ×
0.50 mm.

good starting point in literature, and convergence is reached
after only 50 iterations.

Dependence on the algorithmic relaxation parameter ρ
is shown in figure 8, and is surprisingly low. The choice
of this parameter in its allowable range ρ ∈ [1,2[ has but a
minor effect on the convergence speed. Fastest convergence is
observed for high values. From these graphs, we can conclude
that the algorithm is robust for a wide range of parameter set-
tings, and that the results after convergence are very similar.
We therefore fix these algorithmic settings to the optimal set
observed in these tests: σ = τ = 1/4, ρ= 1.99 and Nit= 100.

The parameter λweighs the TV term and indirectly determ-
ines the magnitude of the TV noise correction. For λ= 0 there
is no correction and the output of the algorithm equals the
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Figure 6. Typical evolution of the primal and dual cost as a
function of the number of iterations, and the primal-dual gap (inset).
The parameters were λ= 1000, τ = 0.01, ρ= 1.99.

Figure 7. The evolution of the primal-dual gap for different values
of τ , indicated in the legend. The other parameters were λ= 1000,
ρ= 1.99.

input. For very large values of λ the TV term becomes domin-
ant, which results in one or several large uniform values across
the reconstruction (the so-called cartoon-like effect of strong
TV regularization, extended to 3D). Note that this parameter is
scale-dependent: rescaling the input data set requires appropri-
ate rescaling of the λ parameter to obtain qualitatively similar
results. The scale of the employed data set can be seen from
its histogram in figure 2.

The effect of using different values of λ is illustrated in
figure 9, where the original data set and several denoised ver-
sions are put next to each other for comparison. The effect
of thresholding with a fixed threshold T = 33664 (in the
employed unit-less uint16X-CT attenuation values) obtained
via Otsu’s method applied on the original data set is also
shown.

Figure 8. The evolution of the primal-dual gap for several values of
the relaxation parameter ρ, indicated in the legend.

5. Experiments

5.1. Overview of experiments and quality metrics

We design three different experiments to assess the proposed
technique’s performance in improving X-CT pore segmenta-
tion in additive manufactured parts:

• Weuse the high-quality X-CT reconstruction to create a pore
segmentation that is considered as ground truth, and com-
pare the pore segmentation on the low-quality X-CT with
this ground truth.

• We select a small number of pores from the high-quality X-
CT reconstruction, use these to construct a simulated low-
quality reconstruction, and compare the results with the
known segmentation.

• We assess the segmentation against ground truth obtained
via destructive testing of the object.

The binary segmentation Sx is obtained by thresholding
the 3D volume x with the threshold T: Sx = x< T. This way,
voxels belonging to pores are considered logical true. Themet-
ric employed to assess the correspondence between two differ-
ent segmentations Sx and Sy is the Dice coefficient D(Sx,Sy),
also known by several alternative names such as F1 score or
Sørensen-Dice index:

D(Sx,Sy) =
2|Sx ∩ Sy|
|Sx|+ |Sy|

(12)

where |.| is the cardinality operator of a set, returning the num-
ber of elements in this set, and the union indicates the over-
lap between two sets. The Dice coefficient is often used to
assess binary segmentation problems in 2D and 3D. It ranges
from zero to one, reaching one for identical segmentations.
Note that several alternative segmentation metrics exist, e.g.
the Jaccard index or intersection-over-union [23]. These other
metrics lead to similar conclusions, and preference was given
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Figure 9. A slice of the X-CT data set and denoised versions with increasing λ, indicated above each figure (top row). The segmentations
obtained with the same threshold calculated by Otsu’s method on the original data set (bottom row).

to using only a single well-known segmentation metric to
improve readability.

5.2. Comparison with high-quality X-CT

In the first experiment the pore ground truth was extracted
from the high-quality X-CT reconstruction and the lower-
quality X-CT data set was employed to assess the proposed
technique (a similar technique was used in [24]). The first dif-
ficulty in this approach is to properly segment the high-quality
X-CT reconstruction to extract the ground truth, as also this
data set contains noise, although significantly less than the
low-quality reconstruction. Possible segmentation levels are
shown in figure 10, which shows that also here a balance must
be found between selecting undesired areas such as border
artefacts with lower attenuation values and missing too much
of the true pore volumes. For this experiment, the threshold
between the yellow and green ranges was selected, corres-
ponding to the unit-less attenuation value 32 125.

Once this ground truth was generated, the low-quality
X-CT reconstruction was denoised with the ideal settings
found via the parameter space exploration, thresholded with
several fixed thresholds, and the Dice coefficient versus the
ground truth segmentation was calculated. This quality metric
is plotted in figure 11 as a function of the denoising level λ and
the applied threshold.

A contour plot of the Dice coefficient as function of the
denoising level λ and the applied threshold value is shown in
figure 12. Note that the plateau where the Dice coefficient is
maximal is relatively broad and flat, as there are many para-
meter pairs that yield a similar performance and the method is
relatively robust against parameter settings that deviate from

Figure 10. Segmentation of the high-quality reconstruction with
different thresholds: the histogram of the distribution with different
color-coded value ranges (a), a slice through the original data set (b)
and the segmented image with the same color codes as the
histogram (c).

the optimum. Furthermore, the performance metric is well-
behaved and does not seem to show sharp peaks, discontinuit-
ies or local minima, which allows the application of gradient-
based or steepest descent maximization strategies. In figure 13
the denoised result and its histogram and threshold are shown,
along with the original data set for comparison, for λ= 1000
and a threshold T= 32500.

5.3. Comparison with X-CT simulations

While the previous experiment illustrates the improvements in
the segmentation obtained by TV denoising when compared
with a high-quality X-CT scan, there are some drawbacks to
this type of experiment:

7
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Figure 11. The Dice coefficient as a function of the denoising level
λ, for several fixed thresholds and Otsu’s threshold indicated in the
legend.

Figure 12. The contour plot of the Dice coefficient as a function of
the denoising level λ and the fixed threshold.

• Although a lot of care was put into the alignment of the
low- and high-quality reconstructions, these alignments can-
not be guaranteed to be perfect. Furthermore, the performed
alignment can only be spatially accurate down to discrete
steps equal to the voxel size, and further subvoxel alignment
might be required.

• Geometrical transformations of a X-CT data cube (trans-
lation/rotation) for alignment require a voxel interpolation
method such as trilinear interpolation or nearest-neighbor,
which will introduce interpolation errors. In the case of tri-
linear interpolation, noise statistics will be affected also.

• The high-quality X-CT reconstruction is used for ground
truth generation, but this reconstruction also suffers from
noise, partial volume effects and X-CT artefacts, although to

Figure 13. A 2D slice of the original (a) and denoised (b) data set,
the segmentation result obtained by thresholding the denoised image
(c), and the histogram of the voxel values before and after denoising
with the employed threshold indicated (d). The employed parameter
values yield the highest Dice coefficient.

a lesser extent than the low-quality reconstruction. Further-
more, a proper threshold must also be selected. This intro-
duces errors and uncertainty in the ground truth.

To resolve these issues, a second experiment was designed
where a simulated X-CT data set was created, with a known
pore segmentation ground truth. This was accomplished by the
following steps:

(a) A rectangular 3D subset of the high-quality X-CT data set
that contains pores of different sizes was manually selec-
ted. Care was taken that no pores are observed within two
voxels of the subset borders.

(b) A pore segmentation was created with a manually selected
threshold, a connected-component analysis was performed
on the segmented voxels, and all connected components
with less than eight voxels were removed. The minimal
pore size is thus eight voxels. This results in the segment-
ation shown in figure 14.
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Figure 14. The ground truth pore segmentation used as input for the
simulated X-CT volume. The volume indicated in red has 161 × 41
× 41 voxels.

(a) Segmentation

(b) Simulated CT

Figure 15. The central slice through the ground truth pore
segmentation (a) and the corresponding simulated X-CT slice (b).
Each image has 161 × 41 pixels.

(c) X-CT values were assigned to each voxel in this segment-
ation corresponding with the modes observed in figure 2
(4.1× 104 for metal voxels and 2.3× 104 for pore/air
voxels).

(d) A partial volume effect was simulated by convolving the
volume with a 5× 5× 5 truncated and normalized Gaus-
sian kernel, and Gaussian noise with a standard deviation
σ= 3000 was added. The noise level was derived from the
noise observed in the histogram in figure 2. See figure 15
for an example slice through the simulated volume.

This result can well be compared to the literature [23, 25]
where an in-depth study on the generation of simulated X-CT
data for pore detection in metal parts was made. The data set
created in this way has a similar distribution of voxel val-
ues as the real data sets, has known ground truth based on
real pores, and is visually indiscernible from a real X-CT
data set.

A similar evaluation as in previous subsection was
performed on this data set, where it was denoised and seg-
mented for different values of λ and the threshold, and the

Figure 16. The contour plot of the Dice coefficient as a function of
λ and threshold.

resulting Dice coefficients with the ground truth segmentation
were calculated. The contour plot of this analysis can be found
in figure 16. This plot shows that also in this experiment, a
large plateau of significantly improved values can be found
compared to the original segmentations (given by the values
at λ= 0), which illustrates the improvements in segmentation
that this technique can deliver.

The optimal segmentations for the original data set and the
denoised data set, in terms of maximal Dice coefficient, are
shown in figure 17 as concatenated 3D visualizations. The typ-
ical segmentation issues in a regular X-CT data set are clearly
present here:

• Voxel noise shows up as individually segmented voxels. This
is not present in the denoised segmentation.

• The partial volume effect combined with voxel noise causes
ragged edges in the segmentation, which improves signific-
antly in the denoised version.

• Small protruding parts of a pore are difficult to segment
in either method, although this problem occurs more often
without denoising.

5.4. Destructive testing

After the X-CT scans of the object were acquired and valid-
ated, the object was prepared for metallography by mounting
in resin, and mechanically cut along one of the tracks that con-
tains a high pore density via EDMwire cutting. This cut plane
was polished to reveal a 2D cross section of pores, which was
imaged at high resolution with optical microscopy. A careful
manual alignment of the X-CT data with metallography cross-
section was made.

The cross-section image is shown in figure 18, along with
the original X-CT slice that corresponds with this cut, and
the X-CT slice denoised with the proposed TV denoising
technique. Segmentations are presented as well, where the

9
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Figure 17. A 3D visualization of the pore segmentations, with the ground truth solution in white, the best scoring segmentation on the
simulated data set in red, and the segmentation of the denoised solution with λ= 2000 and threshold 36 000 in green.

(a) Cut image (b) Segmented cut image

(c) Original CT (d) Segmented original CT

(e) Denoised CT (f) Segmented denoised CT

Figure 18. The high-resolution image of the cut and polished object (top row), the original X-CT slice that corresponds maximally with this
cut (middle row) and the same slice after denoising (bottom row). The right columns shows the segmentation results.

10
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thresholds were manually selected based upon the image his-
tograms and the resulting segmentation.

Quantitative results are hard to obtain in this type of exper-
iment, as the employed metric is very sensitive to geomet-
rical issues such as alignment and scaling, and threshold
selection. Qualitatively, the denoised X-CT image looks visu-
ally smoother with better defines borders around the complex
pores. Also the segmentation shows less false positives, while
retaining at least the larger pores visible in the cut image.

6. Conclusions

We have presented a TV denoising technique for denoising
X-CT images of additive manufactured parts with the goal of
improving pore segmentation. The technique is based upon
a popular optimization scheme developed by Chambolle and
Pock [15], which already finds other applications in image
denoising and medical X-CT imaging. The parameter space
of the algorithm is explored within the context of the pore seg-
mentation problem, an optimal parameter set is derived, and
robustness against deviations from this set is demonstrated.

Several experiments are presented, where low- and high-
quality X-CT scans are compared, a simulated X-CT data
set is used to assess the technique, and destructive testing is
employed to obtain a ground-truth 2D cut through the object.
These results clearly indicate that pore segmentation improves
in quality after application of the TV denoising technique,
assessed by the Dice coefficient against a ground-truth seg-
mentation. As the proposed algorithm can be easily imple-
mented and can be sped up by parallellization, practical imple-
mentation in additive manufacturing quality processing chains
should be relatively straightforward.

Possible future work is the inclusion of the proposed
TV denoising technique into the X-CT reconstruction
algorithm itself. This approach can be accommodated by the
Chambolle–Pock algorithm, and has already been shown to be
feasible in medical X-CT image reconstruction. The advant-
age then would be to have a single-step algorithm where the
optimization happens against the actually measured X-CT
sinogram, as compared to the current two-step approach of
reconstruction followed by denoising. We expect such an
integrated algorithm to perform superior to the currently pro-
posed version.
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