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Abstract
In guided wave pipeline inspection, echoes reflected from closely spaced reflectors generally 
overlap, meaning useful information is lost. To solve the overlapping problem, sparse 
deconvolution methods have been developed in the past decade. However, conventional 
sparse deconvolution methods have limitations in handling guided wave signals, because the 
input signal is directly used as the prototype of the convolution matrix, without considering 
the waveform change caused by the dispersion properties of the guided wave. In this paper, 
an adaptive sparse deconvolution (ASD) method is proposed to overcome these limitations. 
First, the Gaussian echo model is employed to adaptively estimate the column prototype 
of the convolution matrix instead of directly using the input signal as the prototype. Then, 
the convolution matrix is constructed upon the estimated results. Third, the split augmented 
Lagrangian shrinkage (SALSA) algorithm is introduced to solve the deconvolution problem 
with high computational efficiency. To verify the effectiveness of the proposed method, 
guided wave signals obtained from pipeline inspection are investigated numerically and 
experimentally. Compared to conventional sparse deconvolution methods, e.g. the l1-norm 
deconvolution method, the proposed method shows better performance in handling the echo 
overlap problem in the guided wave signal.

Keywords: non-destructive testing, ultrasonic guided waves, pipeline inspection,  
adaptive sparse deconvolution

(Some figures may appear in colour only in the online journal)

1. Introduction

Pipelines are widely used in the fields of petroleum, chemi-
cals, aerospace, nuclear power, etc. Many of these pipelines 
carry valuable or hazardous liquids such as petrochemicals or 
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nuclear reactor coolant, and any leakage of these substances 
could result in serious environmental problems and enor-
mous economic losses. Therefore, the non-destructive testing 
(NDT) of pipelines has become an important discipline for 
infrastructure management. Using ultrasonic guided waves is 
an effective method for long-range pipeline inspection; it has 
received considerable attention [1–4] and has been exploited 
successfully from a commercial point of view [5]. In guided 
wave pipeline inspection, the guided waves are emitted by 
active sensors which propagate along the pipeline structure 
under inspection. At each discontinuity that the guided wave 
meets, an echo is reflected and captured by sensors. Therefore, 
the captured signals contain abundant information as to the 
interference existing in the path of wave propagation, such 
as that relating to structural damage. Theoretically, some 
changes always occur in the observed signals when damage 
exists. The aim of inspection is to correctly find out about 
these changes and then associate them with the physical 
properties of the damage, such as its location and size [6, 7]. 
However, if the distance between different features is shorter 
than half the bandwidth of the incident pulse, the reflected 
echoes may overlap, meaning that the useful information is 
lost. Moreover, the reflected echoes from small defects can 
be completely or partly drowned in noise due to their small 
amplitudes. Besides this, the existence of dispersion, multiple 
wave modes and broadband noise make defect detection in 
pipelines an extremely challenging problem. Therefore, effec-
tive signal processing methods are required to improve the 
time resolution of the guided wave signal.

As an effective signal processing method for improving 
the time resolution of the measured signal, deconvolution has 
been widely used in ultrasonic NDT fields. Hayward et  al 
[8] assessed some non-adaptive deconvolution techniques 
for improving the time resolution of ultrasonic signals. They 
concluded that the Wiener pulse-shaping filter was a suitable 
choice for ultrasonic applications. Honarvar et al [9] proposed 
a new deconvolution method based on Wiener filtering and 
autoregressive (AR) spectral extrapolation to improve the 
SNR and time resolution of the ultrasonic NDE signals. This 
method was also employed by Mirahmadi et al [10] to solve 
the overlapping problem in plate-like structure inspection, 
utilizing the S0 Lamb wave mode. Although the Wiener filter 
deconvolution method has obtained satisfactory results with 
ultrasonic signals, it still has limitations for guided wave sig-
nals, because the performance of the Wiener filter depends on 
the signal-to-noise ratio (SNR) and the effective bandwidth 
of the input signal. Meanwhile, phase shifts caused by dif-
ferent structural features are also a key factor for deconvolu-
tion performance.

According to the theory of convolution, for guide wave 
inspection, the occurrence of an echo in the observed signal 
generates a value in the reflection sequence accordingly. 
Hence, when echoes exist in the measured signal, spikes 
occur in the reflection sequence correspondingly, and the 
other values in the reflection sequence will be zeroes. This 
implies that the reflection sequence will be sparse—i.e. have 
the fewest non-zero values—and this is a powerful constraint 
that needs to be exploited for deconvolution. Based on the 

sparse properties of the reflection sequence, some sparse 
algorithms, such as sparse deconvolution methods and sparse 
decomposition techniques, have been developed to improve 
the time resolution of the ultrasonic signal. In order to recover 
a sparse spike time series from an ultrasonic signal, the l1 norm 
minimization method was applied by O’Brien et al [11]. The 
result shows that the l1 norm provides a better solution than the 
l2 norm minimization scheme. In [12], sparse deconvolution 
techniques based on l1 and l0 regularizations were employed 
to solve the resolution enhancement problem of the acoustic 
signal. Both the MP and the approximate Prony sparse decon-
volution methods are presented in [13], and the test results 
indicate that the methods perform well, even for high noise 
levels. Other sparse deconvolution methods have also been 
developed to obtain a sparse solution. For example, matching 
pursuit (MP) [14], basis pursuit (BP) [15] and l0 norm regular-
ized minimum entropy deconvolution [16] methods have been 
employed to analyze ultrasonic signals, respectively.

Unfortunately, the aforementioned sparse deconvolution 
methods are not robust to guided wave signals, because they 
do not consider the waveform changes caused by the disper-
sion properties of the guided wave. The prototype of the echo 
response is an important factor for obtaining good deconvo-
lution results [17]. The results may differ considerably, even 
when two slightly different prototypes are used. In theory, the 
input pulse can be selected as the prototype; however, due to 
the dispersion properties of guided waves, the incident pulse 
observed by the received sensors usually changes consider-
ably while it propagates along the structure being tested. 
In practice, the prototype is usually chosen by the operator 
directly from the measured signal, because the exact nature 
of the changes in the incident pulse is poorly known. In this 
case, reproducible deconvolution results cannot be obtained, 
because the deconvolution method is very sensitive to vari-
ations in the prototype, which are caused by the subjective 
choices.

In this paper, an adaptive sparse deconvolution (ASD) 
method is proposed to solve the echo overlap problem in the 
guided wave signal. The time-varying pulse caused by dis-
persion is adaptively estimated by the Gaussian echo model, 
instead of being subjectively chosen by the operator directly 
from the measured signals. Thus, compared with conventional 
sparse deconvolution methods, the ASD method is robust to 
the changes caused by dispersion. Furthermore, to reduce 
computational cost, the split augmented Lagrangian shrinkage 
algorithm (SALSA) [18] is utilized to restore the reflection 
sequence from the measured signals. The ASD method is 
applied to determine the position of the cracks in the pipe-
line structure to verify its reliability and efficiency. Simulation 
and experiment demonstrate that the ASD method is effective 
for distinguishing the overlapping echoes in the guided wave 
signal.

The remainder of the paper is organized as follows. In sec-
tion  2, the convolution model of the guided wave pipeline 
inspection is introduced. In section 3, the theory of the ASD 
method is presented. In sections 4 and 5, the proposed method 
is applied to process the simulation and experimental signal, 
respectively. The conclusions are summarized in section 6.

Meas. Sci. Technol. 28 (2017) 035002
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2. Convolution model of guided wave inspection

The measured signal s t( ) obtained from the guided wave 
inspection can be modeled as the convolution of the incident 
pulse h t( ) with the reflection sequence x t( ), plus additive 
noise n t( ). The incident pulse h t( ) is related to the transducer 
impulse response and the propagation path. The reflection 
sequence x t( ) is influenced by the characters of the reflector, 
such as location and size. The convolution model can be rep-
resented as

s t h t x t n t( ) ( ) ( ) ( )= ∗ + (1)

where x t( ) and h t( ) are the length of N and L, respectively, 
the measured signal s t( ) will be of length M N L 1= + − , the 
noise n t( ) is the same length as s t( ), and the symbol ∗ denotes 
the convolution operation. Equation (1) is also illustrated in 
figure 1, shown as follows.

According to the convolution model, two common prob-
lems regarding guided wave inspection will be discussed. 
The echo overlap problem is shown in figure  2, and each 
spike in the reflection sequence (as shown in figure 2(a)) rep-
resents a defect in the test specimen. Theoretically, there are 
six spikes in the reflection sequence, thus there should be six 
reflection echoes in the test signal correspondingly. In fact, 
only three reflection echoes occur in the test signal—mainly 
because some of the spikes are very close to each other, 
leading to the reflection echoes overlapping in a common 
echo. Another problem is that the reflected echoes from 
small defects can sometimes be drowned in noise, as shown 
in figure 3. There are only two clear reflected echoes in the 
test signal (shown in figure 3(b)), because the amplitude of 
the second spike is smaller than the other two spikes, which 
leads to the second reflected echo being completely drowned 
in noise.

Figure 1. Test signal from guided wave inspection.
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Figure 2. A convolution model of the echo overlapping problem, (a) reflection sequence; (b) test signal.
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Figure 3. A convolution model of the echo drowning problem, (a) reflection sequence; (b) test signal.
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3. The adaptive sparse deconvolution method

The main difference between the ASD method and the pre-
vious sparse deconvolution methods is that the prototype of 
the time-varying pulse caused by dispersion is adaptively esti-
mated by the Gaussian echo model. This guarantees that the 
ASD method will be more robust to the changes caused by 
dispersion than conventional sparse deconvolution methods. 
Meanwhile, the SALSA is employed to obtain better conv-
ergence properties.

3.1. Model estimation of incident pulses

An obvious phenomenon caused by dispersion is that the 
width of the pulse will be extended in the time domain, and 
the amplitude of the pulse will decrease. The changed pulse 
can be treated as an energy-attenuated, time-shifted and fre-
quency-dissipated version of the excitation pulse [19, 20]. In 
this paper, we utilize the Gaussian echo model to analyze the 
incident pulse. The model can be expressed as

f t t; e cos 2t2( ) ( )θ β πω φ= +α− (2)

where , , ,( )θ β α ω φ=  is the parameter vector, β is the ampl-
itude, α expresses the bandwidth factor, ω describes the center 
frequency, and φ is the phase of the pulse. Each parameter has 
an intuitive meaning for the incident pulse. The amplitude β 
is related to the properties of the active and received sensors.

The main purpose of this work is to predict the parameter 
vector , , ,( )θ β α ω φ=  according to the observed incident 
pulse. The Gauss Newton (GN) algorithm was employed to 
estimate the parameter of the parameter vector. According to 
the computing principle of the GN algorithm, the estimation 
of a parameter vector can be expressed as

θ θ θ θ θ θ= + −+ −G G G h fk k T k k T k k1 1( ( ) ( )) ( )( ( ))( ) ( ) ( ) ( ) ( ) ( ) (3)

where G( )θ  is the gradient of the echo model for each param-
eter in the parameter vector , , ,( )θ β α ω φ= . The whole itera-
tion process of the GN algorithm has the following steps:

1.  Choose the initial parameter vector 0( )θ , and set the initial  
number k 0= .

2. Compute the gradients G k( )( )θ  and the model s k( )( )θ .

3. Compute θ θ θ θ θ θ= + −+ −G G G h fk k T k k T k k1 1( ( ) ( )) ( )( ( ))( ) ( ) ( ) ( ) ( ) ( ) .

4. If tolerancek k1( ) ( )θ θ− <+ , then stop.

5. Set k k 1→ +  and go to step 2.

3.2. l1-norm regularization

According to the principle of mathematical convolution, the 
operation in equation (1) can be constructed as a matrix multi-
plication, where one of the inputs is converted into a Toeplitz 
matrix. Thus, the convolution model of the guided wave 
inspection (equation (1)) can be formulated as

s Hx n= + (4)

where H is the convolution matrix. Meanwhile, it is also a 
Toeplitz matrix of size M N×  with M N> . The columns of 
the Toeplitz matrix are the incident pulse h t( ) in the convolu-
tion model of the guided wave inspection.

Due to the sparse properties of the reflection sequence x in 
equation  (4), the desired reflection sequence x can be intui-
tively recovered from the measured signal s by solving

x s Hxmin subject to
x

0 2
2 ⩽ δ− (5)

where x 0 is the l0-norm of the solution, and is defined as 
x xm m0 0= ∑  , which is used to count the number of non-

zero values in x, and the tolerance δ is the noise level. The 
problem of finding the optimization solution of l0-norm regu-
larization is NP-hard [21, 22]. Compared with l2-norm regu-
larization, which controls the energy of the unknown solution, 
the l1-norm regularization typically yields a sparse solution, 
and the reason for this has been proofed in [23, 24]. Thus, 
Chen in [25] replaces the l0-norm with the l1-norm, because 
minimizing the l1-norm can help us to find a sparse solution; 
meanwhile, the l1-norm is a simple convex problem which can 
be solved by some classical optimization methods [26, 27]. 
This transforms the NP-hard problem into a convex optim-
ization problem

x s Hxmin subject to
x

1 2
2 ⩽ δ− (6)

where x xi
m

i1 1= ∑ =  is the l1-norm of the solution. The uncon-
strained version of equation (6) is given by

s Hx xarg min
1

2x
2
2

1λ− + (7)

where λ is the regularization parameter, which is an important 
factor for controlling the sparsity of the solution. The method 
for finding the optimum value of the regularization parameter 
has been discussed in [12]. The l1-norm regularization defined 
in equation  (7) is also known as basis pursuit denoising  
(BPD) [25].

3.3. Split variable augmented Lagrangian shrinkage  
algorithm (SALSA)

The l1-norm regularization must be solved by iterative methods 
due to the lack of an analytic solution; thus, l1-norm regular-
ization problems can be solved by convex optimization algo-
rithms. Actually, many researchers have made a lot of effort 
to develop many effective algorithms for solving l1-norm regu-
larization problems, such as the two-step iterative shrinkage/
thresholding algorithm (TwIST) [30], sparse reconstruction 
by separable approximation (SpaRSA) [31] and SALSA  
[18, 30]. In this paper the latter is employed to solve the 
deconvolution problem, because its convergence properties 
are better than TwIST and SpaRSA in practice [18, 30, 31].

A deconvolution problem like equation  (7) is an uncon-
strained optimization problem, which must be transformed 
into a constrained optimization problem. Equation (7) can be 
decomposed into two functions: f x1( ) and f x2 ( )

Meas. Sci. Technol. 28 (2017) 035002
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f x f xmin
x

1 2( ) ( )+ (8)

where f x s Hx1
1

2 2
2( ) = − , f x x2 1( ) λ= . Under the con-

strain x c= , equation (8) is equivalent to

f x f c x cmin subject to
x c,

1 2( ) ( )+ = (9)

which is the so-called variable splitting method. Using the 
augmented Lagrangian problem to represent this problem as 
follows

E z Az bmin subject to 0
z

( ) − = (10)

where E z f x f c1 2( ) ( ) ( )= + , z x
c

⎡
⎣⎢

⎤
⎦⎥= , b 0= , [ ]= −A I I . The 

solution of equation (10) can be written as

z E z Az varg min
2

k
z

k1 2
2( ) µ

= + −+ (11)

v v Az bk k k1 1( )= − −+ + (12)

where k denotes the iteration index and µ is the penalty param-
eter. Alternating between minimization with respect to x and 
c, equation (11) can be written as

x f x x c varg min
2

k
x

k k1 1 2
2( ) µ

= + − −+ (13)

c f c x c varg min
2

.k
c

k k1 2 1 2
2( ) µ

= + − −+ + (14)

Equations (13) and (14) should be substituted with the 
explicit form for the two functions f1 and f2; then, the SALSA 
algorithm can be obtained as follows:

x s Hx x c varg min
1

2 2
k

x
k k1 2

2
2
2µ

= − + − −+ (15)

c c x c varg min
2

k
c

k k1 1 1 2
2λ

µ
= + − −+ + (16)

v v x c b .k k k k1 1 1( )= − − −+ + + (17)

By running the iterative SALSA until the stopping criterion 
is satisfied, the solution of equation (7) can be found.

3.4. Adaptive sparse deconvolution

The procedure of the proposed ASD method is illustrated 
in figure 4. In theory, the columns of the Toeplitz matrix in 
equation (7) are the input signal. However, the input signal is 
substantially changed due to the dispersion properties of the 
guided wave, and the specific changes in the input signals are 
barely known. Thus, the Gaussian echo model is employed 
in this paper to estimate the incident pulse in the measured 
signal. This model is sensitive to the signal characteristics: 
center frequency, amplitude, bandwidth, and the phase of the 
incident pulse. Then, the estimation results are used as the col-
umns of the Toeplitz matrix. Compared to the ASD method, 
the l1-norm deconvolution method does not have a model 
estimation procedure (step 2 in figure 4), which is the main 

Figure 4. Flow chart of the ASD method.

Meas. Sci. Technol. 28 (2017) 035002
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difference between the two deconvolution methods. Because 
of this difference, the time-varying pulse problem caused 
by dispersion is solved well by the ASD method, whereas it 
cannot be solved by the conventional l1-norm deconvolution 
method.

4. Numerical simulation

In this section, the simulation signals are investigated to verify 
the effectiveness of the ASD method, and the results are com-
pared with the l1-norm deconvolution method mentioned in 
[7]. Moreover, to prove the convergence of the SALSA algo-
rithm, both the TwIST and SpaRSA method are employed.

4.1. Dispersive propagation model

The dispersive propagation model of the guided wave pre-
sented in [32, 33] is employed in this paper. A field quantity 
f x t,( ) is used to describe the propagation of the mode of 
interest in time and space, where x is the propagation distance 
and t is time. At position x 0= , where the transducers are 
located, f x t f t,( ) ( )=  is the input signal. If the propagation 
characteristics of the model of interest are known, then f x t,( ) 
can be evaluated at any other point:

f x t F, e dk x ti( ) ( ) ( ( ) )∫ ω ω= ω ω

−∞

∞
− (18)

where F( )ω  is the Fourier transform of the input signal f t( ), ω 
is the angular frequency, the wavenumber k( )ω  is a function of 
the angular frequency ω, by the simple relationship:

k
v

.
p

( )
( )

ω
ω
ω

= (19)

Substituting equation (19) into equation (18) yields

f x t F, e dv
x ti

p( ) ( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟

∫ ω ω=
ω
ω ω

−∞

∞ −
 (20)

where vp is the phase velocity of the guided wave mode of 
interest. Knowing the phase velocity dispersion curve of the 
pipeline means that f x t,( ) can be calculated at any point in 
time and space.

In practical situations, the received time-trace y t( ) usually 
contains numerous echoes from different features at different 
positions. In ideal conditions, y t( ) can be formulated as the 
superposition of (18):

y t A F n te d
j

j
v

x ti
p( ) ( ) ( )( )

⎛
⎝
⎜

⎞
⎠
⎟

∫∑ ω ω= +
ω
ω ω

−∞

∞ −
 (21)

where Aj is the reflection coefficient of each reflector and n t( ) 
is noise.

4.2. Conditions

In this paper, a stainless steel pipe is selected as the research 
object, and its geometric size and material properties are 
shown in table 1. According to the parameters in table 1, the 
group velocity dispersion curves of the stainless steel pipe 
are obtained, as shown in figure 5. In total, there are three 
types of modes in the stainless steel pipe—longitudinal, tor-
sional and flexural—labeled as L(m, n), T(m, n) and F(m, n), 
respectively. Here the integers m and n denote the circum-
ferential order and group order of a mode. According to the 
energy distribution in the circumferential direction, these 
modes can also be divided into two categories: axisymmetric 
modes (L(m, n) and T(m, n)), and non-axisymmetric modes 
(F(m, n)). An axisymmetric mode has the circumferential 
number m  =  0. Thus, the longitudinal and torsional modes 
can be represented as L(0, n) and T(0, n), respectively. In this 

Table 1. The geometric size and material properties of the experimental pipe.

Outer diameter (mm) Wall thickness (mm) Young’s modulus (GPa) Poisson’s ratio Mass density (kg m−3)

100 1 206 0.29 7850
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Figure 5. The group velocity dispersion curves for the stainless steel pipe.

Meas. Sci. Technol. 28 (2017) 035002



Y Chang et al

7

paper, the L(0, n) modes are selected as our inspection mode, 
because the direction of particle motion in the L(0, n) modes 
is perpendicular to the cracks.

Figure 6 shows the geometry of the pipe with three cracks, 
which are labeled as cracks 1–3. Crack 1 is smaller than the 
other two cracks. The distance between crack 2 and crack 3 is 
10 mm, which is shorter than a wavelength. Two PZT arrays 
are used as the actuator and sensor, respectively. The input 
signal is shown in figure  7, where the center frequency is 
500 kHz. To compare the stability of the ASD method and the 
l1-norm deconvolution method, a simulation study is carried 

out under dispersion and non-dispersion conditions. In case 1, 
the L(0, 2) mode is used as the input signal, because the dis-
persion phenomenon does not occur at the center frequency. 
In case 2, the L(0, 1) mode is selected, which shows a clear 
dispersion phenomenon around the center frequency.

4.3. Results and discussion

The dispersive propagation model shown in equation  (20) 
is employed to illustrate the test results of case 1 and case 
2, as shown in figures 8(a) and (b), respectively. Comparing 

Actuator
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PipeCrack 1 Crack 2 Crack 3

70mm
120mm

130mm

Figure 6. A schematic diagram of the pipe with three cracks.
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Figure 7. The input signal and its frequency spectrum.
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Figure 8. (a) Test result of case 1, (b) test result of case 2.
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figure  8(b) with (a), in the former it is clear that there is a 
decrease in the amplitude of the wave-packets and an increase 
in the width of the pulse in the time domain, caused by the dis-
persion properties of the L(0, 1) mode. Meanwhile, the wave-
packets in figure 8(b) obviously lag behind the wave-packets 
in figure 8(a), because the group velocity of L(0, 1) is slower 
than the L(0, 2) mode at the same center frequency.

Theoretically, there should be three echoes in figure 8(a), 
except the incident pulse and the pipe end echo. However, 
in fact, there are only two echoes in the received signal, and 
the echo of crack 1 is unclear as a consequence of its small 
dimension and low noise level in the test. In addition, the 
distance between crack 2 and crack 3 is shorter than the 
half-bandwidth of the incident pulse, leading to the reflected 
echoes overlapping, resulting in a single common echo. Such 

a situation also happens in figure 8(b). It is hard to directly 
determine the position of the cracks from the original signals 
without further processing. Thus, the ASD and the l1-norm 
deconvolution method are employed to process the test sig-
nals of case 1 and case 2, respectively, and the results are 
shown as follows.

4.3.1. Case 1. From figure  9, it is obvious that the echoes 
overlap, and the drowning problems are well solved in the two 
deconvolution results. The echo of crack 1 that drowns in noise 
is restored, and the overlapping echoes of cracks 2 and 3 are 
well distinguished. Besides the necessary information about 
the structural features, there are also some interference comp-
onents caused by noise in the deconvolution results. Accord-
ing to the time difference between the incident response and 
the cracks in figure 9(a), and the known group velocity of the 
L(0, 2) mode 5335 m s−1, the distances between the sensor 
and the cracks are 69.2 mm, 120.6 mm and 131.2 mm, respec-
tively. These results are highly consistent with the crack loca-
tion shown in figure 5. Comparing figure 9(b) with (a), there 
is no significant difference in the former. 

As can be seen in table  2, the calculation results of the 
two methods are consistent. This is mainly because the input 
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Figure 9. Deconvolution result of case 1, (a) result of the ASD method, (b) result of the l1-norm deconvolution method.

Table 2. The test results of case 1.

Crack
Distance between the  
sensor and crack (mm)

Calculation result of  
the ASD method (mm)

Calculation result of l1-norm 
deconvolution method (mm)

Crack 1 70 69.4 70.4
Crack 2 120 120.6 120.6
Crack 2 130 131.2 131.2
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Figure 10. The prototype of the convolution matrix in case 1.

Table 3. Computational cost of three algorithms in case 1.

Algorithm TwIST SpaRSA SALSA

CPU time (s) 10.16 0.546 0.4524
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signal is the non-dispersion mode L(0, 2), which does not 
cause large waveform changes in the input signal. The proto-
type of the columns of the convolution matrix used in the ASD 
and the l1-norm deconvolution method are shown in figure 10, 
and there is no more difference between the two prototypes. 
Thus, in the absence of dispersion, both the ASD method and 
the l1-norm deconvolution method show good performance 
in improving the time resolution of the guided wave signal. 
Table 3 shows the CPU times of TwIST, SpaRSA and SALSA 
in case 1. As excepted, the SALSA is slightly faster than 
SpaRSA and clearly faster than TwIST when the same stop-

ping criterion (the relative change in the objective function 

λ− +s Hx x1

2 2
2

1 falls below 10 5− ) is satisfied.

4.3.2. Case 2. The deconvolution results of case 2 are 
shown in figure  11. It is clear that the result of the ASD 
method is better than the result of the l1-norm deconvolution 
method. In figure 11(a), the echoes drown, the overlapping 
problems are well solved, and the result is sparser than that 
in figure 11(b). In figure 11(b), although the useful informa-
tion is recovered from the received signal, there are still a 
lot of interference components which make the result more 
complex. The group velocity of the L(0,1) mode at 500 kHz 
is 2929 m s−1, and the position of the cracks can be deter-
mined, as shown in table 4.

From table  4, the crack position calculated by the ASD 
method is more accurate than that calculated by the l1-norm 
deconvolution method, especially for the overlapping echoes. 
This is mainly because the l1-norm deconvolution method uses 
the input signal as the prototype of the columns of the con-
volution matrix, without considering the waveform changes 
caused by dispersion. For the ASD method, the prototype 
of the convolution matrix is adaptively estimated from the 
received signal, and the difference between the two prototypes 
is shown in figure 12. Thus, when the dispersion phenomenon 
exists, the ASD method shows better performance than the 
l1-norm deconvolution method. As can be seen from table 5, 
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Figure 11. The deconvolution result of case 2, (a) the result of the ASD method, (b) the result of the l1-norm deconvolution method.

Table 4. Test results of case 2.

Crack
Distance between the  
sensor and crack (mm)

Calculation result of the  
ASD method (mm)

Calculation result of the l1-norm 
deconvolution method (mm)

Crack 1 70 70.9 70.9
Crack 2 120 119.5 114.4
Crack 3 130 129.5 122.5
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Figure 12. The prototype of the convolution matrix in case 2.

Table 5. Computational cost of three algorithms in case 2.

Algorithm TwIST SpaRSA SALSA

CPU time (s) 16.82 0.702 0.5616
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for the same convergence condition, the SALSA algorithm is 
faster than TwIST and SpaRSA.

5. Experimental verification

5.1. Experimental setup

A damage identification system based on the guided waves 
consists of a signal excitation unit, a data acquisition unit and 
a certain number of actuators and sensors. The experimental 
apparatus employed in the test is shown in figure  13. The 
signal generation subsystem is mainly constructed by an arbi-
trary waveform generator (Agilent 33511B), a linear power 
amplifier (PIEZO EPA-104) and an exciter ring, which con-
sists of 16 PZT strain gauges. The role of the signal generation 
subsystem is to activate the diagnostic guided waves in the 
pipeline structure. First, the Agilent 33511B arbitrary wave-
form generator delivers the excitation signal of the desired 
waveform and central frequency to the PIEZO EPA-104 linear 
power amplifier; the excitation signal is amplified by the power 
amplifier in a suitable voltage range. Then the amplified exci-
tation signal is sent to the exciter ring to convert the electrical 
excitation into a mechanical drive to activate the waves that 
can travel along the structure. The data acquisition subsystem 
is composed of a digital oscilloscope (Tek TDS5032B) and 
a receiver ring whose elements and number of units are the 
same as the exciter ring. The main purpose of the data acquisi-
tion subsystem is to receive guided waves after their propaga-
tion in the test structure. The PZT elements of the receiver 
ring, which serve as sensors, receive the dynamic responses 
of the test structure. Then the signal from the receiver ring is 
transferred to the TDS5032B digital oscilloscope for capture.

The stainless steel pipes in this experiment are the same 
as the pipe mentioned in section 4.2; the geometric size and 
material properties of the experimental pipes are shown in 
table 1. In total, there are two groups of test pipe samples with 
defects labeled as cases 1 and 2, as shown in figure 14. There 
is only one crack in the test pipe in case 1, and case 2 has 
three artificial cracks. The pipe samples are all 1200 mm, and 
the cracks are located at different positions in the test sam-
ples. The distance between the receiver rings and the cracks is 
shown in the figure. In case 2, the radial depths of the cracks 
are 0.3 mm (crack A), 0.6 mm (crack B) and 0.9 mm (crack C ), 
respectively.

5.2. Model selection

To make the test signal easy to interpret, it is better to excite a 
single non-dispersive mode in the guided wave inspection. At 
the same time, it is also essential to utilize the fast mode because 
it is helpful to separate the signals of interest from the rest of 
the measured signals in the time domain [34, 35]. The group 
velocity dispersion curves for the stainless steel pipe (as shown 
in figure 6) show that the L(0, 2) is the fastest mode, and at 
frequencies of around 70 kHz it is practically non-dispersive.  
Therefore, this mode is well suited for our application and 
satisfactory results can be obtained in the frequency range 
50–100 kHz. Meanwhile, to guarantee that the desired mode 
can only be excited in the interested frequency region, the 
incident pulse can be obtained by employing a sinusoidal 
signal modulated using a Hanning window [36], as shown in 
figure 7(a).

5.3. Experimental results

5.3.1. Case 1. The test result of case 1 is shown in figure 15,  
and the fitting result of the incident pulse in case 1 is shown 
in figure  16. In the original test signal (figure 15(a)), the 
crack echo is partly drowned in noise, and thus it is hard to 

Figure 13. Experimental setup.

exciters
receivers crack

1200mm

pipe

850mm

Case 1

exciters
receivers

1200mm

pipe

850mm
550mm

250mm

crack A crack B crack C
Case 2

(a)

(b)

Figure 14. (a) Case 1: the distance between the receiver ring and 
the crack is 850 mm, (b) case 2: the distance between the receiver 
ring and the cracks is 250 mm, 550 mm and 850 mm, respectively.
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determine the position of the crack because of the lack of 
time resolution. The original test signal is processed by the 
ASD and the l1-norm deconvolution method, respectively, and 
the result is shown in figures  15(b) and (c). Obviously, the 
result of the ASD method is better than that of the l1-norm 
deconvolution method. In figure  15(b), there are only three 
spikes, namely the incident response, crack response and end 
response, respectively. The group velocity of the L(0, 2) mode 
is 5335 m s−1, and according to the time difference shown in 
figure 15(b), the position of the crack and the length of the pipe 
can be calculated as 840.3 mm and 1203 mm, respectively. The 
calcul ation result is highly consistent with the actual situation. 
Moreover, the result also contains a lot of interference comp-
onents, which make the deconvolution result more complex, 
as shown in figure  15(c). Thus, it is difficult to obtain use-
ful information from the deconvolution result of the l1-norm 
deconvolution method.

5.3.2. Case 2. In case 2, three artificial cracks are located at 
different positions in the test pipeline, as shown in figure 17.  
In theory, there should be three reflected echoes in the origi-
nal test signal (figure 17(a)) correspondingly. In fact, there 
are only two crack echoes in the test signal, apart from the 

incident pulse and pipe end echo. The echo of crack A is hard 
to identify, because it completely overlaps the incident pulse. 
The echoes of cracks B and C are hazy because of noise. In 
order to distinguish the overlapping echoes and restore those 
that have been drowned from the noise, the ASD and the 
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Figure 15. Test result of case 1, (a) the original test signal, (b) the result of the ASD method, (c) the result of the l1-norm deconvolution 
method.
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Figure 16. The fitting result of the incident pulse in case 1.
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Figure 17. The test result of case 2, (a) the original test signal, (b) the result of the ASD method, (c) the result of the l1-norm deconvolution 
method.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

x 10
-5

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time(s)

A
m

pl
itu

de

Figure 18. The fitting result of the incident pulse in case 2.

Table 6. Computation cost of the three algorithms in the 
experiment.

Algorithm
CPU time  
in case 1 (s)

CPU time 
in case 2 (s)

TwIST 5.975 13.62
SpaRSA 2.621 2.59
SALSA 1.825 1.716

Table 7. Test results of the experiment.

Case
Distance between the  
receiver ring and crack (mm)

Measured  
distance (mm)

Error 
(%)

1 850 840.3 1.14
2 Crack A 250 336.1 34.4

Crack B 550 546.8 0.58
Crack C 850 821.6 3.34
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l1-norm deconvolution method are used to process the origi-
nal test signal; the results are shown in figures 17(b) and (c), 
respectively. The fitting result of the incident pulse in case 2 
is shown in figure 18.

In figure  17(b), the overlapping echoes are well distin-
guished and the echoes that have been drowned in noise are 
also restored. According to the time difference shown in 
figure  17(b), the position of the cracks can be determined: 
the positions are 336.1 mm, 546.3 mm and 821.6 mm, respec-
tively. The spike next to crack C is the F(1,1) mode, which is 
caused by mode conversion when the L(0,2) mode arrives in 
crack A. The time difference between crack A and the interfer-
ence spike is 0.000 158 s, the distance between crack A and the 
sensor is 250 mm, and then the velocity of the wave packet is 
1582.3 m s−1. At the excitation frequency, the group velocity 
of the F(1,1) mode is 1574 m s−1, considering the error in 
the arrival time of the echo in crack A; thus, the spike next to 
crack C is the F(1,1) mode. As can be seen in figure 17 (c), 
the deconvolution result of the l1-norm deconvolution method 
is grossly distorted. The result contains too much interfer-
ence component leading to it not being not sparse enough. 
Meanwhile, the necessary information for crack A and crack 
B is missed in figure 17(c).

5.4. Discussion

As can be seen from table 7, except for the fact that the mea-
surement error in crack A is relatively large, the measurement 
results of the other cracks are consistent with the actual situ-
ation. The main reason for the large error is probably that the 
cross-section of crack A is the smallest one of the three cracks 
in the same pipe, which makes the echo in crack A weak. As a 
result, the measurement can easily be influenced by noise. In 
general, the ASD method is better at solving the echo overlap 
and the drowning problem of the guided wave signal than the 
l1-norm deconvolution method. Meanwhile, table 6 shows that 
the computing speed of the SALSA algorithm is faster than 
TwIST and SpaRSA for solving the deconvolution problem.

6. Conclusions

In this paper, an ASD method is proposed to overcome the 
instability problem that occurs in conventional sparse decon-
volution methods for guided wave signals. The robustness of 
the proposed method is obtained by utilizing the Gaussian 
echo model to adaptively estimate the prototype of the col-
umns of the convolution matrix instead of directly using the 
input signal or being subjectively chosen by the operator from 
the inspection data. To obtain good convergence properties, 
the proposed method uses the SALSA algorithm to solve 
the sparse deconvolution problem. Both the simulation and 
the experiment show that the ASD method is more robust 
regarding the guided wave signal than the conventional sparse 
deconvolution method. Meanwhile, the proposed method also 
shows better performance in the convergence rate. Hence, the 
ASD method is an effective tool for improving the time reso-
lution of guided wave signals.
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