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Abstract

Recent advances in medical countermeasures (MCMs) has been dependent on
the Food and Drug Administration (FDA) animal rule (AR) and the final guid-
ance document provided for industry on product development. The criteria
outlined therein establish the path for approval under the AR. The guidance
document, along with the funding and requirements from the federal agencies
provided the basic considerations for animal model development in assessing
radiation effects and efficacy against the potential lethal effects of acute radi-
ation injury and the delayed effects of acute exposure. Animal models, essential
for determining MCM efficacy, were developed and validated to assess organ-
specific, potentially lethal, radiation effects against the gastrointestinal (GI)
and hematopoietic acute radiation syndrome (H-ARS), and radiation-induced
delayed effects to lung and associated comorbidities of prolonged immune sup-
pression, GI, kidney and heart injury. Partial-body irradiation models where
marginal bone marrow was spared resulted in the ability to evaluate the con-
comitant evolution of multiple organ injury in the acute and delayed effects
in survivors of acute radiation exposure. There are no MCMs for prophylaxis
against the major sequelae of the ARS or the delayed effects of acute expos-
ure. Also lacking are MCMs that will mitigate the GI ARS consequent to
potentially lethal exposure from a terrorist event or major radiation accident.
Additionally, the gap in countermeasures for prophylaxis may extend to mixed
neutron/gamma radiation if current modelling predicts prompt exposure from
an improvised nuclear device. However, progress in the field of MCM devel-
opment has been made due to federal and corporate funding, clarification of
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the critical criteria for efficacy within the FDA AR and the concomitant devel-
opment and validation of additional animal models. These models provided
for a strategic and tactical approach to determine radiation effects and MCM
efficacy.

Keywords: radiation, medical countermeasures, FDA animal rule, animal
model

1. Medical countermeasure (MCM) development against acute and delayed
effects of acute radiation exposure (DEARE)

The development of MCM against the effects of radiation, chemotherapeutic drugs and organ-
specific disease processes on normal tissues has been ongoing for decades. The potential for
nuclear terrorism, military conflict or large sale scale radiation accidents focused renewed
efforts to develop MCM against the effects of potentially lethal, acute radiation exposure, as
well as prolonged effects due to fallout and cutaneous radiation-induced injury. This object-
ive, to develop MCM that would increase survival from potentially lethal doses of radiation,
introduced the federal funding agencies, the Food and Drug Administration (FDA) and cor-
porate sponsors of MCM development to the study of acute, high-dose radiation effects and
the concomitant multi-organ injury (MOI) of the acute radiation syndrome (ARS) and the
delayed effects of acute radiation exposure (DEARE). The consequent development of the
FDA ‘animal rule’ (AR), funding agency requirements relative to the context of the post nuc-
lear radiation environment and relevant animal models to assess the efficacy of new or re-
purposed MCM outlined the many variables, hurdles and gaps in knowledge along the critical
path of MCM development toward FDA approval.

1.1. The FDA AR for MCM approval

The requirements for FDA approval of MCM to treat personnel against the ARS and/or
DEARE are framed by the guidance document that provides critical information and recom-
mendations on MCM development when human efficacy studies are not ethical or feasible.
“The Animal Rule states that the FDA will rely on evidence from animal studies to provide
substantial evidence of effectiveness only when all of the following four criteria are met:

(a) The animal model must be well characterized and the mechanism of action of radiation
on the specific organ system, as well as how the respective MCM affects that mechanism
must be reasonably well understood.

(b) The effect is demonstrated in more than one animal species expected to react to radiation
with a response predictive for the human response to radiation and its treatment.

(c) The experimental endpoint is clearly related to the desired benefit in humans, generally
the enhancement of survival or prevention of major morbidity.

(d) The pharmacokinetics and pharmacodynamics of the MCM or other relevant information
in the animal models and humans allows selection of an effective MCM dose in humans.

If these criteria are met, it is reasonable to expect the effectiveness of the drug in animals
to be a reliable indicator of its effectiveness in humans’ (US Food and Drug Administration
2015).
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The FDA guidance document also provides information on essential elements of animal
models that are required to establish a critical path toward approval of the MCM. These ele-
ments are underscored with additional consideration of essential elements of the radiobiology
and tissue-specific effects of the dose- and time-dependent MOI within the ARS and DEARE
within the significant species- and strain-dependent radiation effects.

1.2. Animal models and the FDA AR

MCM are focused on prophylaxis, mitigation and therapeutics against acute, potentially lethal,
radiation-induced, organ-specific injuries to the bone marrow, gastrointestinal (GI) system
and lung. Radiation-induced injury to the kidney and heart have been defined in response
to high-dose, acute radiation exposure but not in the context of lethal dose response relation-
ships (DRRs) in the nonhuman primate (NHP). These survivable, dose- and time-dependent
sequelae are predominant within the ARS and the DEARE. While these sequelae form organ-
specific sub-syndromes, they evolve within the context of concomitant MOI defined as pro-
longed GI damage and severe immune suppression, delayed injury to the vascular system,
kidney and heart, as well as the potential for combined cutaneous radiation injury and asso-
ciated co-morbidities (Farese et al 2012, 2013, Macvittie et al 2012a, 2012b, 2014, de Faria
et al 2015, Plett et al 2015, Unthank et al 2015, 2019, Fish e al 2016, 2020, Cohen et al 2017,
2020, Chua et al 2019, Jacobs et al 2019, Parker et al 2019a, 2019b, Miller et al 2020). The
clinical definition and natural history of the MOI concomitant with the evolution of the ARS
and DEARE required validated animal models that mimic the human response to potentially
lethal radiation and treatment.

1.3. Where are the MCMs?

The question is focused on the modest development of approved MCM under criteria of the
US FDA AR, published in 2002 (US Food and Drug Administration 2002). The final Guidance
for Industry on Product Development Under the Animal Rule was published in 2015 (US Food
and Drug Administration 2015). Additional, critical considerations were recommended by the
federal funding agencies based on knowledge of the radiation exposure environment, timely
triage and dosimetry, and patient care consequent to a large- scale nuclear terrorist event. The
research community is still reacting to the multitude of variables defined by criteria associated
with drug development, relevant small and large animal models, study design relative to organ-
specific and all-cause mortality, the potential link between acute and delayed effects, validated
biomarker analysis and adequate funding.

14. Current status

There are four MCM approved via the FDA AR for use to increase survival in personnel
exposed to acute, myelosuppressive doses of radiation. These are Neupogen® (filgrastim),
Neulasta® (pegfilgrastim), Leukine® and Nplate® (romiplostim, Amgen Inc. 2015a, 2015b,
Partner Therapeutics Inc. 2018, 2021). The leucocyte growth factors (LGF), Neupogen, Neu-
lasta and Leukine were approved based on the common mechanism of enhancing recovery of
neutrophils, thereby preventing infection and sepsis. Nplate’s approval was based on its abil-
ity to hasten platelet recovery, thereby mitigating severe thrombocytopenia and haemorrhage.
The four MCM:s significantly increased survival relative to respective controls in pivotal trials
conducted with validated models in rhesus macaques of total-body irradiation (TBI). Efficacy
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was assessed when the MCM were administered at least 24 h post exposure through the MCM-
specific route and schedule. It is important to recognise that these MCM are not radioprotect-
ive and are limited to mitigation against the hematopoietic (H)-ARS. Also, they do not protect
or mitigate against other potentially lethal ARS or DEARE sequelae, e.g. the GI-ARS, pro-
longed immune suppression, and lung, kidney or heart injury characteristic of the DEARE.
Thus, there are marked gaps in MCM development for radioprotectants against lethality from
all major sequelae and for mitigation against the lethal sequelae of the GI-ARS and DEARE.
Singh and Seed and colleagues have provided a cogent series of articles focused on the status
of MCMs, strategies for further MCM development and the respective use of animal models
(Seed 2015, Singh and Olabisi 2017, Singh and Seed 2017a, Singh et al 2017b, 2019). These
articles present detailed reviews of prolonged MCM development that underscores the diffi-
culty in solving the issues presented by potentially lethal exposure in the context of a nuclear
event.

2. Continued effort to define the critical path to efficacy and approval

The growth factors previously mentioned were considered the most obvious pharmaceuticals
to be submitted for approval as MCMs under the FDA AR, due to the substantial, multi-species
preclinical database and extensive clinical database demonstrating efficacy and safety. Con-
sequently, the result is that there are four MCM available for mitigating the lethal H-ARS
for both severe neutropenia and thrombocytopenia. Unfortunately, there are no MCM against
lethal GI-ARS or delayed effects, characterised by lung, kidney or heart injury. A substantial
number of potential MCM have been assessed under the criteria utilised by the FDA and the
respective funding agencies with no additional approval by the FDA.

The route to successful approval for ARS for new MCM or repurposed drugs is to under-
stand the rules established by the FDA and the funding agencies considered within the context
of potentially lethal exposure in a nuclear terrorist event. There are several hurdles along the
critical path to approval under the AR and funding agency considerations. In addition to the
four criteria enumerated by the AR, the following variables must be addressed: (a) the differ-
ential radiation effect on species, mouse strain and sex, (b) the variable route and schedule
of administration to include the stress of handling and anaesthesia relative to small and large
animals and (c) efficacy determined by prophylaxis and/or mitigation of clinically relevant
parameters that significantly enhance survival and/or mitigation of key signs of major organ-
specific morbidity when administered at least 24 h post exposure.

2.1. The timeline for MCM approval under the FDA AR

It is important to recognise the time required for FDA approval of the leucocyte and platelet
GF’s noted above. Years of preclinical development by the corporate sponsors and collabor-
ative research sites were required. Many experimental efficacy studies were conducted over
more than a decade in small and large animal models of sublethal, radiation-induced myel-
osuppression in multiple species, mice, rats, canines and NHPs (Lord et al 1989, Schuening
et al 1989, Tanikawa et al 1989, Macvittie et al 1990, 2005, Patchen et al 1990, Farese et al
1996, Neelis et al 1997, Herodin et al 2007, Fish et al 2016). The LGFs were subsequently
FDA-approved for clinical use in 1991 (Neupogen, Leukine) and 2002 (Neulasta) to mitigate
cytotoxic therapy-induced myelosuppression. World-wide use in a multitude of patients had
proven them to be efficacious and safe in the clinic.
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Itis of interest that thrombopoietin, the physiologic regulator of platelet production, remains
an investigational drug as of 2001. The efficacy of thrombopoietin was shown to significantly
enhance platelet production in small and large animal models of radiation-induced myelosup-
pression and thrombocytopenia. It was shown efficacious as a single agent and when used in
combination with granulocyte colony stimulating factor (G-CSF) (Farese et al 1996, Neelis
et al 1997). More recent development of thrombopoietin receptor agonists, Eltrombopag and
Romiplostim was initiated in 2008.

Following the 2001 terrorist event in the United States, the enhanced threat of nuclear ter-
rorism changed the course of MCM development. The sequential evolution of these events to
include publication of the FDA AR in 2002, set the stage for the predominant LGFs to clear
the final hurdles. There were many other potential MCM, such as growth factors, cytokines
and biologics, with a similar history of successful preclinical studies yet to falter for various
reasons. The FDA AR requirement for efficacy defined as an increase in survival and con-
sideration of initial treatment conditions and schedule—must be able to show efficacy when
administered at least 24 h post lethal exposure—in the context of the nuclear terrorist event
created a series of critical variables relative to the radiation effect and MCM mechanism of
action in a requisite small and large animal species.

The LGFs, due to the large database on mechanism of action, treatment schedule and effic-
acy in animal models and the clinic were considered ideal candidates for MCM approval under
the FDA AR. Their clinical efficacy and safety had been validated for decades. However, they
now faced the most difficult criteria for efficacy; the third component of the AR: the experi-
mental endpoint is clearly related to the desired benefit in humans, generally the enhancement
of survival or prevention of major morbidity. The LGFs were approved for clinical use based
on significant mitigation of myelosuppression. They were not approved for clinical use based
on animal data that showed a significant increase in survival after whole-body radiation doses
that were lethal for at least 50% of the control cohort.

The AR was approved in 2002 following consideration that MCM would likely be used to
treat potentially lethally irradiated personnel consequent to a terrorist event. Neupogen and
Neulasta were FDA-approved under the AR in March and November of 2015, respectively
and Leukine-approval followed in March 2018. Each MCM was approved based on pivotal
efficacy studies performed using lethal models of the H-ARS in rhesus macaques (Farese et al
2013, Hankey et al 2015, Amgen 2015a, 2015b, Clayton et al 2016, Partner Therapeutics
2018, Zhong et al 2020). Although these LGFs were approved for clinical use in the treatment
of myelosuppressed patients, gaining FDA-approval for the treatment of potentially lethally
irradiated personnel, occurred 13 years after the publication of the FDA AR. Similarly, Nplate,
Romiplostim, gained FDA approval in 2008 for mitigating idiopathic thrombocytopenia pur-
pura however, subsequent approval for the treatment of potentially lethally irradiated personnel
via the FDA AR did not follow until 2021.

2.2. The FDA AR and other critical criteria, requisite for MCM efficacy. The context of the
post nuclear exposure environment

The following requisites set the path for efficacy and approval of MCM to be approved and
administered in the context of the post exposure environment: (a) the ability to significantly
enhance survival, given dose- and time-dependent mortality in animal models, (b) the radiation
exposure environment that strictly limits the initial time to triage and treatment for many per-
sonnel, (c) schedule of administration post exposure in an animal model, (d) route of adminis-
tration, (e) a stable pharmacokinetic and pharmacodynamic for the MCM relative to the route
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of and concurrent, organ-specific sequelae in the irradiated animal, (f) considered radiation
exposure geometry and likely differential dose distribution relative to survival and organ injury
and (g) the use of medical management post exposure.

2.3. The critical hurdles in MCM development

2.3.1. Continued advancement in MCM development requires a clear focus on severalcriteria
identified within the FDA AR.  These are the animal model(s), dose- and time-dependent
organ-specific injury, achieving statistically significant improvement in survival and the con-
tinued use of multiple species and strains. Each animal species must establish mortality and
DRRs relative to constructing the model that defines the relevant organ-specific injury to assess
MCM efficacy. A cautionary note, ‘an animal model is only an animal model’, underscored the
difficulty in establishing the predictive validity of multi-species and strain-dependent animal
models irradiated using variable exposure protocols. To date, only a single predominant expos-
ure model that requires an organ-specific DRR, has been used to assess organ-specific radiation
effects and efficacy under the criteria of the FDA AR. Specifically, it is uniform, bilateral, TBI
to assess H-ARS mortality in the NHP, rhesus macaque.

Several models and exposure protocols have been used to show MCM efficacy in small and
large animals. These are: unilateral, nonuniform TBI, whole thorax lung irradiation (WTLI)
and bilateral, partial-body exposure with bone marrow sparing. Published DRRs have not been
established for unilateral, nonuniform TBI using a moderate dose rate for small animals or the
NHP. A pulse dose rate was used to establish a DRR for mixed neutron/gamma radiations from
anuclear reactor several decades ago (Turbyfill ez al 1968, Wise and Turbyfill 1968). A nuclear
test site series was also reported for two cohorts of rhesus macaques exposed to prompt mixed
neutron/gamma radiation (Zellmer and Pickering 1960). Pulse rate exposures to mimic a nuc-
lear detonation have not been reported on since Operation Plumbbob. The respective LD50/60
were estimates at 395 and 403 rad. A limited data set was used to estimate the LD50/60 in
response to uniform TBI with Co-60 radiation at 800 cGy min~'. The LD50/60 was estimated
at approximate 438 cGy midline tissue dose (Allen et al 1960). Additional exposure protocols
using nonuniform, unilateral TBI were established to assess the efficacy of potential MCM,
as well as mimic the nonuniform exposure from a nuclear terrorist event. Unfortunately the
exposure protocols did not establish respective DRRs and only used a single radiation dose at
a moderate dose rate to assess MCM efficacy against the H-ARS (Chapel et al 2003, Drouet
et al 2004, 2008). The partial-body exposure with variable BM-sparing and variable dose rate
has been used to evaluate MCM efficacy in several protocols using Co-60 gamma radiation
(Monroy et al 1988, Bertho et al 2005a, 2005b). Monroy et al used a bilateral, partial body
exposure model at a high dose rate of 500-735 cGy min~! to expose NHP to 800 cGy with
variable shielding sparing the partial iliac crest, femora and tibiae. However, only a single
series of DRRs were developed for GI- and H-ARS as well as DEARE-lung and MOI at a
moderate dose rate using the PBI/BM-sparing protocol (Macvittie et al 2012a, 2015b, 2019,
Farese et al 2019). The FDA’s Division of Imaging and Radiation Medicine is responsible for
reviewing MCM efficacy under the FDA AR and have approved models of uniform TBI and
PBI/BM-sparing to assess pivotal MCM efficacy.

A critical variable that introduced yet another set of hurdles (concerns) is the markedly dif-
ferent radiation sensitivity of species and strain. The multiplicities of these factors lessen the
number of available, validated models since established DRRs that define the mortality/dose
relationship are minimal. It is of interest that a workshop on animal models for MCM recom-
mended, ‘...that every laboratory establish the lethal dose-response relationship for each of
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its strains at least twice a year. Additionally, it is also appropriate to design each study testing
agent efficacy using radiation doses across the hematopoietic syndrome, ...” (Williams et al
2010).

2.3.2. TBI, WTLI and PBI/BM-sparing protocols. = Uniform TBI does not mimic the likely
exposure geometry in a nuclear terrorist event. The threshold dose range (9—11 Gy) required
for the GI-ARS and delayed lung injury characteristic of the DEARE, does not allow sur-
vival for the valued analysis of prolonged GI injury, immune suppression or lung injury due to
the concomitant, 100% lethal H-ARS. Furthermore, the WTLI model is focused on radiation
exposure to the lung and heart but negates exposure to the major volume of bone marrow and
the GI system, thus eliminates the ARS. Additionally, the WTLI model due to its selected
organ-focus may lack predictive validity relative to the nuclear scenario. The FDA has projec-
ted concern that the WTLI model does not provide a valid exposure geometry for a nuclear
event and is thus marginalised relative to the conduct of pivotal studies to assess MCM effic-
acy against lethal lung injury (Laniyonu and Marzella 2018). The FDA’s Division of Imaging
and Radiation Medicine has indicated that ‘PBI/BMS is a superior model to WTLI given its
allowance for full evolution of DEARI-lung within the context of multi organ injury’.

2.3.3. PBI/BM-sparing protocols. ~ PBI/BM-sparing protocols were developed to provide rel-
evant animal models, small and large, that allowed focus on all three, potentially lethal, organ-
specific sequelae, the GI-, H-ARS and lung-DEARE, during the 180 d in-life study duration
(Booth et al 2012a, 2015, Macvittie et al 2012a, 2019, Fish et al 2016, 2020, Farese et al
2019, Accardi et al 2020). The PBI/BM-sparing models also permitted analysis of the con-
comitant prolonged GI injury and cellular and functional immune recovery, as well as kidney
and heart injury (Cohen et al 2017, 2019, de Faria et al 2015, Macvittie et al 2012a). The
animal model research platform provides essential information for interpreting and defining
the complex interrelationships in clinically relevant MOI models of the human response to
potentially lethal irradiation and treatment.

2.3.4. Added value of respective protocols; PBI/BM-sparing and high-dose, uniform TBI
survivors.  The PBI/BM-sparing models allowed analysis of concurrent, potentially lethal
MOI of the GI- and H-ARS and associated early immune suppression, kidney injury and con-
comitant co-morbidities. Furthermore, the MOI of the ARS occurred during the latent period
characteristic of the dose- and time-dependent MOI of the DEARE. The most predominant
injury within the DEARE is the characteristic radiation-induced pneumonitis and fibrosis in
lung injury and associated species- and strain-dependent incidence and severity of kidney and
heart injury. Note, that the MOI of the DEARE is concomitant with continued prolonged
immune suppression and GI injury (Macvittie et al 2012a, 2014, Booth et al 2012a, 2015,
de Faria et al 2015, Fish et al 2016, Cohen et al 2017, 2019, Medhora et al 2019, Jacobs et al
2019).

2.3.5. Time of administration, combined MCM. The attendant MOI within both the ARS and
DEARE allows the efficacy testing of organ specific MCM on potential influential effects on
other organ injury. Additionally, the efficacy testing of combined, organ specific MCMs, on
early survival due to the ARS sequelae will allow assessment of deleterious or positive effects
on the latency, incidence and severity of the DEARE. The time of administration of MCMs
against the DEARE is a critical question that continues to be evaluated. Specifically, if MCMs
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against the ARS are administered early post exposure, is it possible to delay administration of
a MCM against the DEARE, until a more delayed, selected trigger point for intervention? This
may increase the MCM utility and logistics with a more efficient combined treatment efficacy.
Additional questions can be asked relative to the effect of the early administration of MCMs
against the ARS on the latency, incidence, severity of the DEARE.

The analysis of MOI after MCM administration are described in the following PBI models.
A PBI/BM model used ‘leg-out’ BM-sparing in the WAG/RijCmer rat strain that enabled defin-
ition of the concurrent ARS and DEARE, e.g. the GI-, H-ARS and lung, kidney and cardiac
injury (Fish et al 2016). The PBI/BM-sparing model allowed single and combined analysis
of delayed administration of a potential MCM, lisinopril, to mitigate lung, kidney injury, car-
diac remodeling and additional combined treatment of lisinopril and G-CSF, to include early
efficacy against the H-ARS. The effect of organ-specific LGFs, Neupogen and Neulasta, were
investigated in NHP models of PBI/BM-sparing to assess mitigation of potentially lethal H-
ARS and evidence of the LGF’s on the latency, incidence and severity of delayed lung and
kidney injury (Macvittie et al 2015b, 2019, Cohen et al 2019, Farese et al 2019).

2.3.6. Murine high-dose, H-ARS survivors: MOl at <10 Gy TBI.  'TBI is the established model
for the direct approach to ascertain MCM efficacy against the lethal H- and GI-ARS. Recent
advances have been made through a more strategic approach that investigates both the dur-
ability of delayed radiation effects and efficacy of MCM in survivors of the H-ARS. The use
of medical management in combination with approved MCM will increase survival from the
potentially lethal H-ARS. Orschell and colleagues have expanded the value of the TBI model
by investigating the prolonged, residual hematopoietic stem cell injury and delayed MOI of
cohorts that survived the high-lethal effects of the H-ARS (Chua et al 2012, 2014, Unthank
et al 2015). This strategic approach defined marked impairment of hematopoietic stem cell
function to produce multi-lineage reconstitution, prolonged, skewed recovery of the immune
system and the development of significant delayed effects in lung, kidney and cardiovascular
injury in the heart in long-term survivors of the H-ARS. The approach to determining the role
of MCM against the H-ARS evolved to defining the durability of long-term recovery of hem-
atopoietic stem cell function, the latency and incidence of modified dose- and time-dependent
thresholds for the MOI of the DEARE and long-term survival effects.

2.3.7 A continued challenge; the ARS and DEARE, animal models, species and strain
differences.  The systematic approach to understand acute and delayed radiation effects of
acute exposure relative to MCM development and utility in the context of the nuclear exposure
environment, required as noted above, a different set of questions. The ability to address the
challenge of efficacy for varied MCMs is exacerbated data obtained in multiple mouse and rat
strains and a single NHP, the rhesus macaque. MCM efficacy evaluation under the criteria of
the FDA AR requires validated animal models relative to TBI and PBI/BM-sparing.

The published database relative to animal models required for efficacy testing provided
an organised view of species-, strain, organ sequelae-, time-, radiation quality- and dose-
dependent MOI within the ARS and DEARE relative to established exposure protocols. The
comparative value of multi-species data sets is dependent on the established DRR and natural
history from each well-characterised model. The DRR provides the relative dose-dependent
values for mortality, the slope for the DRR and characteristic LD50 or any LD value for com-
parison of the equivalent biological effect, e.g. organ-specific sequelaec and MOL.

S445



J. Radiol. Prot. 41 (2021) T J MacVittie and A M Farese

The persistent challenge is the ability for movement among research sites that lack
published, peer-reviewed, validated models for TBI-induced GI- and/or H-ARS and PBI/
BM-sparing protocols to assess the MOI of the ARS and DEARE. The available research
sites and qualified investigators have developed ‘models’ or exposure protocols in different
animal species, strains, sex, radiation quality and exposure geometry. There are currently only
four research sites that have published models for PBI/BM-sparing exposure protocols in the
mouse and rat, and NHP (Macvittie et al 2012a, Booth et al 2012b, 2015, Fish et al 2016,
2020, Accardi et al 2020).

2.3.8. Model constraints relative to small and large animal species. ~ An established DRR
within species, strain, sex, and age necessitates the knowledge and control of several factors
critical for a well-characterised model; e.g. radiation physics, veterinary conditions, Institu-
tional Animal and Care Use Committee criteria for euthanasia and blood volume limitations
for assays, animal behaviour, MCM route and schedule of administration, and medical man-
agement. Knowledge of these conditions permits relevant assessment of MCM efficacy and
extrapolation to the NHP and human database (Plett et al 2012, 2015, Fish et al 2016). The
route and schedule of MCM administration, e.g. oral or intravenous for long durations, will
cause considerable design problems for small animal models. Stress to the animal may result
in increased morbidity and mortality and shift the DRR. Small animals also limit the use of
medical management that will be used in NHP models and considered as standard of treatment
for humans relative to the context of use. Medical management shifts the DRR to the right and
will be the standard of care relative to context of use and enhanced MCM efficacy (Taketa
1962, Macvittie et al 1991, 2005, Plett et al 2012, 2015, Booth et al 2012b, Yu et al 2015).

2.3.9. Model constraints, acute, pulse rate, mixed neuron/gamma radiation exposure, the ARS
and DEARE.  The renewed effort to model the radiation exposure environment consequent
to the prompt exposure from an improvised nuclear device has suggested that survival form
blast and thermal effects is possible in an urban environment (Kramer ef al 2016). The research
community is lacking small and large animal models of unilateral, nonuniform, mixed neur-
on/gamma, pulse dose rate, exposure protocols and validated DRRs for the ARS and DEARE
(Macvittie ef al 2020a). Several variables are critical to relevant model development, these
are, (a) the neutron energy, (b) the neutron/gamma ratio, (c) the depth dose consequent to the
unilateral, nonuniform exposure, (d) the dose delivered to critical organs, (e) variable exposure
geometry to include partial-body exposure with marginal bone marrow sparing, determination
of the DEARE, (f) relative biologic effect and (g) biomarkers for organ involvement.

The research database for NHP consists predominantly of male, rhesus macaque, Macaca
mulatta. This fact has been an advantage relative to validation and accumulation of a large
database on required models, respective DRRs for each model, varied radiation quality and
organ subsyndromes, use of medical management to mimic human clinical support, differen-
tial dose distribution to organ volume, and a comparison of the hematopoietic syndrome to
human radiation accident cases (Doerr et al 2014, Graessle et al 2015, Macvittie et al 2015a,
2020a, 2020b). A potential concern is the lack of research studies that have used female rhesus.
Another concern is that there is a marginal database relative to the rhesus in the less commonly
studied cynomolgus macaque. Therefore, additional model development and validation would
be required for them to join the rhesus in enhancing the effort in MCM approval. The focus
on the rhesus has created a potential dilemma, if a national research program required use of
all available rhesus due to sex and age, the research using rhesus macaque NHP for MCM
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development would halt or be significantly reduced and require consideration of expanding
model development to include the cynomolgus macaque.

3. Animal model consolidation

A cohesive approach to animal models, small and large, is required to marginalise the use of
animals, especially the NHP. This will reduce cost and effort and increase research efficiency.
The current effort to identify established and validated NHP models has taken the form of
evidence-based reviews. The reviews have focused on models of the ARS and DEARE that
include critical variables such as radiation source, nuclear exposure context, FDA considera-
tion, exposure geometry, species of rhesus macaque and medical management. The reviews
have provided the context for assessing lethality within an established DRR relative to expos-
ure by, (a) predominant LINAC-derived photons and ®*Co gamma radiation and use of medical
management as population-based or subject-based care (Farese et al 2012, Yu et al 2015, Singh
et al 2017b, Thrall et al 2020, Beach et al 2021) and (b) mixed gamma/neutron radiations via
unilateral reactor-based pulse rate exposure and prompt nuclear weapon exposure (MacVit-
tie et al 2015a, 2020b). Other reviews have focused on, (a) the comparative analysis of lung
injury, the predominant, lethal sequelae characteristic of the delayed effects of acute exposure
relative to exposure geometry (MacVittie et al 2020b), (b) the evidenced-based comparative
analysis of the H-ARS dose response and myelosuppression between the macaque species, M.
mulatta and Macaca fasicularis (Farese et al 2021b) and (c) the natural history of the MOI
within the lethal H-ARS (Farese et al 2021a). The extent of these published, evidence-based
reviews has provided considerable, validated information for the conduct of focused research
toward MCM development and approval under the criteria of the FDA AR and federal funding
agencies.

4. Knowledge gaps

4.1. The continued advancement of MCM development and FDA approval under the criteria
of the AR will require a strategic approach to close the critical gaps in knowledge

There remain clear gaps in knowledge relative to the in vivo effects of acute radiation exposure
on the MOI of the ARS and DEARE. These are focused on:

(a) The durability of organ-specific effects on the ARS and DEARE. Unless we know the
progression and duration of organ-specific effects, we do not know the ‘true effect’ and there-
fore do not know the ‘true’ DRR, as well as the ‘true efficacy’ of a selected MCM. Defining the
‘true duration’ of an organ injury may result in several time-dependent descriptive LD values,
e.g. LD50/60 LD50/180, LD50/250, etc. To this end, we need to know the natural history of
the organ-specific injury, i.e. the latency, incidence, severity, progression AND resolution post
exposure, (b) can key signs of morbidity predict clinical outcome and satisfy the key criteria
of the FDA AR? To date, the use of key signs of morbidity has not been shown to be predictive
of MCM efficacy. A critical definition of the natural history of organ-specific sequelae my
support the use of keys signs of morbidity, (c) what is the optimal model(s) for early effic-
acy and pivotal efficacy trials for FDA approval? PBI/BM, Unilateral, non-uniform exposure,
other? Should models of unilateral exposure be considered? These non-uniform models will
support consideration of prompt exposure of mixed neutron/gamma radiations from an IND,
(d) do we need to know the ‘true effect’ of organ injury for appropriate study design to assess
‘true efficacy’ of MCMs. In this context, will the longer study duration, required to assess the
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true effect of selected organ injury, reveal other lethal, radiation-induced organ injury to the
kidney, heart? (e) There are no validated FDA-approved biomarkers for DEARE. Does the
MOI of the ARS, manifest during the latent or early active phase of DEARE effect defini-
tion of valid biomarkers? Does the administration of MCM against the ARS affect biomarker
definition for DEARE? (f) Radiation effect scenario. If prompt exposure is relevant to the
nuclear radiation effect scenario, then, additional research (acute and delayed effects, MOI,
biodosimetry, biomarkers, organ dose, MCM efficacy) is required relative to non-uniform, uni-
lateral or partial-body exposure consequent to pulsed, mixed neutron:gamma dose and ratio
of mixed neutron:gamma and neutron energy (Kramer et al 2016). (g) The database for acute
radiation-induced ARS and the use of MCM are marginal in the cynomolgus macaque. Model
development is required for the ARS and DEARE sequelae.

5. Conclusions

Recent advances in MCM development require validated animal models, small and large. The
lack of new MCM are due to the strict requirements of the FDA AR and those of the federal
funding agencies relative to the treatment schedule within the nuclear terrorist environment.
Recent advances point to the continued development of animal models that permit strategic
and tactical approaches to assessing MCM efficacy. Well characterised mouse, rat or NHP
models that have established DRRs, relative to the context of use, i.e. (a) characterise the
animal response to acute radiation exposure; (b) ensure consistent radiation physics and pre-
scribed dose delivery; (c) have clearly defined primary, secondary and tertiary endpoints; (d)
established natural history over the study duration to include latency, incidence, severity and
progression of organ-specific sequelae and trigger points for pathophysiology and intervention
and/or treatment, will provide a comparative small and large animal database to support MCM
development predictive of human radiation effects and treatment.

The FDA AR and guidance document is critical for approval of MCM that prevent and/or
mitigate the lethal consequences of acute radiation exposure ‘when human efficacy studies
are not ethical’ (US Food and Drug Administration 2002, 2015). Success in the efficient use
of the FDA Guidance document, linked to federal funding agency requirements adherent to
the context of the nuclear exposure environment is dependent on all criteria noted above. The
efficient use of effort, funds and animals is dependent on knowledge of the field of radiation
effects and MCMs relative to the focused effort to utilise the most relevant animal models in
concert with recommendations of the FDA’s Division of Imaging and Radiation Medicine.
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