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Abstract
Liquid heliums are intriguing substance. Superfluid states below certain critical temperatures,
notably liquid helium-4 and helium-3 exhibit ultra-high thermal conductivity ( TC) in the
superfluid phase. However, the microscopic origin of the TC of liquid heliums in the normal
phase remains unclear. In this work, we employ the thermal resistance network model to
calculate the thermal conductivities of normal liquid helium-4 (He I) and helium-3. Predicted
values are not only in good agreement with the measurements but also reproduce the
experimental trend of TC increasing with temperature and pressure.

Keywords: liquid helium, random walk, thermal conductivity

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum liquid helium-4 (4He) and its isotope liquid helium-3
(3He) exhibit unique behaviors different from normal liquids.
Liquid heliums without a triple point are not solid even
at absolute zero temperature unless pressurized. When the
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temperature T< Tλ, where Tλ is the superfluid transition
temperature, liquid heliums transit from a normal fluid to a
superfluid. Helium-4 is a superfluid (termed as ‘He II’) at tem-
peratures below the Tλ of 2.17K, otherwise it is a normal
liquid helium (termed as ‘He I’). The Tλ of 3He is 2.6mK,
which is three orders of magnitude lower than 4He. And the
properties of normal liquid 3He and liquid 4He differ signific-
antly as the temperature decreases. Below 0.1K, liquid 3He is
a Fermi liquid and the first sound velocity is independent of
temperature [1]. The Pauli Exclusion Principle causes thermal
conductivity (TC) to be proportional to T−2 as the case of elec-
tron thermal conductibilities in metals. When the temperature
0.1K < T< 1K, the TC firstly decreases to its minimum and
then increases with increasing temperature [2]. Above 1K,
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the degeneracy effect of Fermi fluids no longer works, and
interestingly, the TC of liquid 3He becomes similar to the TC
of He I. Thus, the aim of this paper is to establish a theoretical
model of TCs valid for both He I and liquid 3He above 1K.

The TC for simple liquids decreases with increasing tem-
perature except for a few liquids such as He I, 3He above
1K, and water near room temperature [3]. In addition, it has
also been established that the heat capacity of He I and liquid
3He above 1K linearly increases with increasing temperat-
ure. Andreev [4, 5] successfully explained the linear growth
trend of heat capacity and the TC by introducing tunneling
states similar to amorphous materials [6, 7] considering the
quantum effects related to zero-point oscillations. As shown
by Andreev, semi-quantum liquids are characterized by a uni-
versal temperature dependence of the thermodynamic quant-
ities. The main contribution to their thermodynamics is made
by a mechanism similar to that proposed by Anderson et al [6]
and by Phillips [7] to explain the low-temperature properties
of glasses. Therefore, in a semi-quantum liquid, the quantum
information present in TC is equivalent to that found in heat
capacity. Kerrisk and McLaughlin [8] calculated the TC of
normal liquid helium based on the classical cell theory of the
liquid state of Lennard-Jones and Devonshire [9], assuming
that a molecule of the liquid quasi-lattice is confined to its
cell composed of adjacent molecules, and the results were all
lower than the experimental values. Classical TC models for
liquids, such as the Bridgman formula in 1923 [10, 11] and the
Eyring model in 1938 [12], deviate substantially from experi-
mental measurements of He I. In 1951, Grenier [13] observed
that the TC trend of He I depicts a more gas-like behavior
than a normal liquid because of the quantum effects of the
uncertainty principle separating atoms from each other. Thus,
the kinetic theory of monoatomic gas (KTMG, κ= 2.5ηCv)
was employed to describe the TC of He I [13], where η is
the viscosity and Cv is the heat capacity at constant volume.
Although the predicted values of this theory are comparable
to the measurements, it still fails to capture the positive tem-
perature dependence of the TC (i.e. the TC increases with
increasing temperature). In 1980s, Tam and Ahlers [14–16]
used the group theory to analyze the TC of He I. However, due
to the large number of fitting parameters and the complexity of
the calculation, this theory is hardly applied in calculating the
dependence of TC on temperature, pressures, etc. Numerical
simulation is also an essential tool for TC prediction [17, 18].
Imaoka and Kinugawa [19], in 2017, calculated the TC of He I
by using the molecule-based simulation of centroid molecular
dynamics (CMD), which is a semi-classical method for estim-
ating the collective transport properties of quantum liquids.
The predicted values also could not reproduce the experi-
mental trend of TC increasing with temperature.

Very recently, a thermal resistance network (TRN) model
was proposed by several co-authors in this paper to calcu-
late the TC of amorphous polymers whose structures can be
described by the random coil model [20]. After that, we exten-
ded the TRN model to disordered condensed systems by fol-
lowing Einstein’s idea of thermal random walk. A unified

formula suitable for various liquids and amorphous solids at
high temperatures has been developed in agreement with the
experimental results [21]. This unified formula portrays the
arrangement characteristics of atoms inside the disordered sys-
tem, i.e. short-range order and long-range disorder. This phys-
ical picture should provide a new insight into depicting the TC
behavior of He I and liquid 3He above 1K.

In this paper, we extend our unified formula by focus on
the temperature and pressure dependence of TC of He I and
liquid 3He for T > 1K. The calculated values are not only in
excellent agreement with the experimental data without fitting
parameters, but also reproduce the experimental trend of TC
increasing with temperature and pressure.

2. Methods

In 1911, Einstein [22] employed the random walk between an
atom and its surrounding neighbors for thermal conductivit-
ies in liquids. While, our TRN model in this paper is more
general and analogous to the nodes-links-blobs (NLB) model
[23–25]. The NLBmodel is based on the concept that an infin-
ite cluster contains a backbone network with a characteristic
length scale. This backbone network consists of links, nodes
(crossing points of links), and blobs (condensed parts of links).
Thermal transfer within the condensed parts of blobs is sig-
nificantly faster compared to the parts of links. In our TRN
model, the backbone network consists of thermal transport
channels (links), atoms (nodes), and clusters of atoms (blobs).
The clusters of atoms are composed of atoms exhibiting short-
range order, such as molecules in polymers or atomic groups
in amorphous solids. Thermal transfer within the atoms and
clusters of atoms is much faster compared to the parts of the
thermal transport channels. By introducing a network struc-
ture that characterizes disordered systems, we can derive a uni-
fied formula for TC of liquids and amorphous solids as follows
[21]:

κ=

(
Z
6
ñ

)1/3

h, (1)

where Z is the average number of adjacent nodes, which is
the average coordination number, and ñ is the number dens-
ity of nodes. Then, in a three-dimensional isotropic system,
the number density of the connecting paths is Zñ/6. h is the
thermal conductance between nodes representing the average
energy flow across links per unit time per temperature drop.
If only inter-nodal thermal transport is considered, h can be
given by

h=
Cpervs
δ

, (2)

where vs is the speed of sound, δ is the distance between nodes,
and Cper is the heat capacity of the particle. Compared to lat-
tice TC caused by phonon diffusion, the TRN model focuses
more on thermal transport channels and the atomic/molecular
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Figure 1. Calculated and observed TC of He I as a function of temperature when (a) P= 1.2 atm and (b) P= 1 atm. The TCs predicted by
the Bridgman formula [10], from the Eyring model [12], and the KTMG, (κ= 2.5ηCv) [27] are plotted for analysis. The experimental data
are taken from the measurements by Bowers [29], Grenier [13], Kerrisk and Mclaughlin [8], Tam and Ahlers [15] and Sciver [28].

structure within nodes/blobs. This approach reveals the sim-
ilarity of heat conduction in liquids and amorphous solids at
themicroscopic level. In both long-range disordered and short-
range ordered systems, thermal transport essentially becomes
a thermal random walk within a specific network structure.
(Zñ/6)1/3 in the unified formula corresponds to the number
of transport channels along the temperature gradient per unit
volume. And h represents the thermal conductance of each
channel. Following Einstein’s concept, we assume that each
atom transfers energy to its neighboring atoms within half a
period. As such, we estimate the thermal conductance of each
channel by dividing the heat capacity of the nodes/blobs by
the number of half periods. The time taken for one-half period
can be estimated using the speed of sound and the length of
the links.

In the high-temperatures limit, the heat capacity is (3/2+
Dv/2)kB with three corresponding to the translational degree
of freedom and Dv is the average vibrational degree of free-
dom of nodes/blobs. The value of Dv should be from 0 to 3.
However, at low temperatures, the quantum effect is embed-
ded in the heat capacity, which serves as an input parameter
for the TRN model, directly affecting the magnitude of TC.

The cases of He I and liquid 3He are straightforward to
formulate because each atom can be regarded as a node. At
a constant pressure, Cper = Cper,p, where Cper,p is the average
heat capacity of each particle. ñ= nmole = ρ/mmole, where ρ is
density andmmole is molecular mass. Thus, the unified formula
can be expressed as,

κ=

(
Z
6

ρ

mmole

)1/3 C(per,p)vs
δ

. (3)

It is obvious that mmole is 4 and 3 atomic mass unit for 4He
and 3He, respectively. Cper,p = Cp/NA, where Cp is the molar
heat capacity at constant pressure andNA is the Avogadro con-
stant. δ can be estimated as (ρ/mmole)

−1/3, and ρ and vs can
be adopted from experimental measurements. Therefore, Z is
the only variable to be determined in our model for different
temperatures and pressures. We use the Monte Carlo method
to calculate Z by considering 3He and 4He atoms as randomly
packed spheres. The details of the Monte Carlo method have
been presented in our previous work [21].

3. Results and discussions

We now use equation (3) to calculate the TC of He I at dif-
ferent pressures from 2.4K to 5.1K. This range is chosen
because the gas–liquid transition temperature of helium-4 is
5.2K, and the superfluid transition temperature is 2.17K. The
mass density, the sound velocity, and molar heat capacity as
a function of temperature and pressure are taken from [26].
Figures 1(a) and (b) show the calculated and observed TC of
He I as a function of temperature when P= 1.2 atm and 1 atm,
respectively. The values calculated by the Bridgman formula
[10], the Eyring model [12], and the KTMG [27] (κ= 2.5ηCv)
are also plotted in figure 1(a) for comparison. The calculated
TC from the Bridgman formula and the Eyring model deviate
substantially from measurements, as shown in figure 1(a). We
further show that the KTMG ( κ= 2.5ηCv) cannot lead to the
increase of TC with increasing temperature. The values pre-
dicted by our model not only agree with the experimental data,
but also reproduce the experimental tendency of TC increas-
ing with temperature without using any fitting parameters. In
figure 1(b), our calculated results are in agreement with the
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Figure 2. (a) Calculated TC of He I as a function of temperature with different pressures. (b) Calculated TC with different pressures versus
the observed values by Tam and Ahlers [15].

Figure 3. (a) Calculated TC of liquid 3He as a function of temperature with different pressures. (b) Calculated TC with different pressures
versus the observed values. The observed values with 1, 10, 20, and 40 atm are from Betts and Marshall [33] and 4 atm is from Tam and
Ahlers [15].

TC data by Grenier [13] and slightly larger than the TC data
measured by other groups [8, 13, 15, 28, 29]. This deviation
mainly originates from the experimental errors due to the inter-
facial Kapitza resistance [30, 31]. In Grenier’s work [13], the
effect of the Kapitza resistance between plates and He I was
eliminated by adjusting the separation distance between the
plates.

Figure 2(a) shows the calculated TC of He I as a function of
temperature with different pressures. Below 1 atm, the effect
of pressure on TC is negligible. When P⩾ 1 atm, the increase
in pressure leads to an increase in TC. When T > 4K, the TC

of He I is found to be strongly affected by pressure. Figure 2(b)
shows that TC calculated from ourmodel is slightly larger than
the observed values taken from [15]. The main reason could
be the underestimation of TC due to the presence of Kapitza
resistance in measurements. Our model captures the charac-
teristics of the thermal transport behaviour of He I, which in
turn perfectly reproduces the tendency of TC as a function of
temperature and pressure.

We further study the TC of liquid 3He when T > 1K.
The mass density, sound velocity, and molar heat capacity
as a function of temperature and pressure are taken from
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[32]. Although many physical properties of fermionic 3He and
bosonic 4He are fundamentally different, the thermal trans-
port behavior of liquid 3He and He I is surprisingly similar.
Figure 3(a) shows temperature dependence of TC of liquid
3He under different pressures. The calculated values of TC
always increase with increasing temperature.When P< 1 atm,
the effect of pressure on TC is negligible. When P> 1 atm,
the increase in pressure leads to a significant increase in
TC. Figure 3(b) compares the calculated results with experi-
mental ones from several groups [15, 33, 34]. Excellent agree-
ment between calculation and experiments is achieved at high
pressures. A slight deviation is found at low pressures which
may result from the measurement error due to convective
thermal transfer [35].

The successful prediction of the TC of normal liquid
helium extends the applicability of the high-temperature TRN
model to encompass the regime below Debye temperat-
ure. The main distinction between the high-temperature and
low-temperature models lies in the definition of heat capacity,
which incorporates information not only about the system’s
degrees of freedom but also its state.

4. Conclusion

By redefining the heat capacity, we utilized the TRN model to
calculate the thermal conductivities of normal liquid helium-4
and helium-3 at temperatures above 1K. The calculated values
not only exhibit excellent agreement with experimental meas-
urements but also accurately reproduce the observed trend of
TC increasing with temperature and pressure. This theoretical
explanation elucidates the anomalous temperature dependence
of the thermal conductivity of normal liquid helium, which
deviates from that of other simple liquids due to the variability
of heat capacity, reflecting the quantum characteristics inher-
ent in liquid helium.
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