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Abstract
We explore the interplay between nematicity (spontaneous breaking of the sixfold rotational
symmetry), superconductivity, and non-Fermi liquid behavior in partially flat-band (PFB)
models on the triangular lattice. A key result is that the nematicity (Pomeranchuk instability),
which is driven by many-body effect and stronger in flat-band systems, enhances
superconducting transition temperature in a systematic manner on the Tc dome. There, a
plausible sx2+y2 − dx2−y2 − dxy-wave symmetry, in place of the conventional dx2−y2-wave,
governs the nematicity-enhanced pairing with a sharp rise in the Tc dome on the filling axis.
When the sixfold symmetry is spontaneously broken, the pairing interaction is shown to become
stronger with more compact pairs in real space than when the symmetry is enforced. These are
accompanied by a non-Fermi character of electrons in the PFBs with many-body interactions.
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1. Introduction

Strongly correlated systems have become an epitome in
the condensed-matter physics, as exemplified by the high-
temperature superconductivity in the cuprate [1], and iron-
based [2] families. These compounds exhibit rich phase
diagrams as hallmarked by the emergence of unconven-
tional superconductivity, and a plethora of symmetry-broken
phases such as spin and charge nematicity and stripe
orders.

Quest for finding novel high-temperature superconductors
spurs interests in exploring many-body systems with short-
range repulsions but with (nearly) flat subregions in the band
dispersion arising from hopping beyond nearest neighbors or
from lattice structures [3, 4]. These systems with dispersion-
less band portions permit numerous scattering channels for the
electrons and can give rise to various exotic quantum phases
such as spin and charge density waves [5, 6], Mott insulat-
ing [7], and bad-metallic phases [8], as well as the formation
of spatially extended Cooper pairs [9, 10].

Interaction and the flatness of the band structure can be
intimately related to geometric and quantum frustration in pro-
ducing strong correlation effects. The spin liquid behavior in
hexagonal lattices, such as organic compounds [11, 12] and
inorganic Herbertsmithites [13, 14], are typical examples. In
these exotic liquids, the classical picture is no longer valid,
and their quantum phase transitions cannot be describedwithin
Landau’s phase transition theory.

Aside from these many-body phenomena, the electron
nematicity, i.e. spontaneous breaking of spatial rotational
symmetry triggered by many-body interactions, is another
manifestation of the correlation effects [15, 16]. It is an
intriguing direction to pursue the physical origins of these
symmetry-broken phases [17–19], and to grasp the interplay
between nematicity and other phases such as superconduct-
ivity [10, 20–24] and non-Fermi liquid [25]. Various studies
report different roles of nematic fluctuations on the supercon-
ductivity including the competition between these two phases,
e.g. in doped BaFe2As2 [26], the assistance of nematicity to
enhance the superconductivity transition temperature, e.g. in
twisted bilayer graphene [27], and the negligible effect of
nematicity on the superconducting phase, e.g. in FeSe [28].
One crucial aspect is figuring out which of these possibilities
occur in systems that have a flat or partially flat band (PFB) in
their dispersions [5, 6, 29, 30].

In this paper, we bring these features together to explore
the interplay between the nematicity and superconductiv-
ity in PFB models on the triangular lattice, effective model
for Moire-produced basis states [31]. Here the lattice struc-
ture frustrates magnetic orders, thereby giving opportunities
for nematic instabilities to arise. As a key finding, we shall
demonstrate that nematicity can significantly enhance trans-
ition temperatures (Tc) in the superconducting phase, with a
sx2+y2 − dx2−y2 − dxy-wave pairing symmetry. This occurs for
an intermediate Hubbard repulsion and in a non-Fermi liquid
regime.

Figure 1. Momentum-dependent spectral function along
high-symmetry momenta (see labels in the inset) in the PFB system
with t ′ = 0.15 for ⟨n⟩= 0.9 and U= 4.5. Dashed black lines
represents the shifted noninteracting band structure (εk−µ) with a
chemical potential µ=−0.9. (Inset) Hexagonal Brillouin zone for
the triangular lattice with high symmetry points marked, i.e. Γ at
(kx,ky) = (0,0), K at (4π/3,0), K′ at (2π/3,2π

√
3/3), K′′ at

(2π/3,−2π
√
3/3), M at (0,2π

√
3/3), and M′ at (0,−2π

√
3/3).

M and M′ are equivalent, in both of twofold (in the presence of the
nematicity) and sixfold (in its absence) rotational symmetries. In the
presence of sixfold symmetry, K′ and K′′ are equivalent as well.

2. Model

The Hubbard Hamiltonian on the isotropic triangular lattice
reads

H=
∑
k,σ

εkc
†
kσckσ +U

∑
i

ni↑ni↓ −µ
∑
iσ

niσ, (1)

where c†kσ(ckσ) creates (annihilates) an electron with
momentum k= (kx,ky) and spin σ at site i, niσ ≡ c†iσciσ. The
repulsive Hubbard interaction is denoted as U(> 0), and µ is
the chemical potential. The non-interacting band dispersion
for the triangular lattice is given as

εk(t, t
′) =−t

[
− 2cos(kx)− 4cos(kx/2)cos(

√
3ky/2)

]
+ t ′

[
− 2cos(

√
3ky)− 4cos(3kx/2)cos(

√
3ky/2)

]
,

(2)

where t is the nearest-neighbor hopping (taken as a unit of
energy) and t′ is the second-neighbor hopping. Here, we con-
sider (t, t ′) = (1.0,0.15), which possesses a nearly flat region
along K−K ′ −K ′ ′, see dashed line in figure 1. For the inter-
action, we set an intermediate U= 4.5t, with the inverse tem-
perature set to be β ≡ 1/(kBT) = 30/t except in figure 3(c).

3. Numerical method

To study paramagnetic phases with no spin imbalance, we
employ the dynamical mean-field theory (DMFT) com-
bined with the fluctuation exchange approximation (FLEX),
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known as the FLEX+DMFT [32]. This method comprises
DMFT and FLEX double loops, solved self-consistently at
each FLEX+DMFT iteration. In this work, we solve the
DMFT impurity problem by the modified iterative perturba-
tion theory [33, 34]. The momentum-dependent FLEX self-
energy is constructed from the bubble and ladder diagrams.
After removing the doubly-counted diagrams in the local
FLEX self-energy, the FLEX+DMFT self-energy is updated.
The momentum-dependent self-energy in the FLEX+DMFT
incorporates vertex corrections generated from the DMFT iter-
ations into the local part of the FLEX self-energy. Even though
our FLEX+DMFT method does not deal with spatial vertex
corrections, larger coordination number and frustrated mag-
netic fluctuations in the triangular lattice give rise tomore local
self-energies and less dominant spatial vertex corrections than
in the square lattice [35]. As a result, the FLEX+DMFT is
considered to be a reliable approach that incorporates local and
nonlocal correlations.

When we start from the non-interacting tight-binding
Hamiltonian, equation (1), that has the sixfold rotational (C6)
lattice symmetry, the solution of the many-body problem may
exhibit a lower symmetry. To study the phases with/without
C6 symmetry, we solve the FLEX+DMFT loops with/without
imposing the C6 constraints. To explore the Pomeranchuk
instability with the broken C6 symmetry, we take an initial
self-energy as Σin = 0.05[cos(kx)− cos(

√
3ky/2)cos(kx/2)]

which acts as a seed for distorting the Fermi surface for the
FLEX+DMFT iterations. The FLEX+DMFT calculations are
here performed on a 64× 64 momentum grid and an energy
mesh with 2048 points.

4. Nematicity and non-Fermi liquid behavior

We start with presenting the momentum distribution function
plotted in panels (a–c) in figure 2 (top rows). For a system
with awell-defined Fermi surface, ⟨nk⟩ should take the value of
unity (zero) inside (outside) the Fermi surface for T→ 0. For
all band fillings in our results, the maxima of the momentum-
dependent distribution function are below unity. The system
exhibits a filling-dependent degrading ofC6 down to a twofold
C2 symmetry in ⟨nk⟩. Namely, we have here an emergence of
nematicity, or a Pomeranchuk instability. The breaking of C6

is seen to occur even right at half-filling, while the electron-
doped case shows a preserved C6.

To quantify the broken C6 symmetry, we introduce
point-group resolved Pomeranchuk order parameters
defined as ξdx2−y2

=
∑

k dx2−y2(k)nk and ξdxy =
∑

k dxy(k)nk,
with

∑
k = 1 [36]. The form factors, dx2−y2 = cos(kx)−

cos(
√
3ky/2)cos(kx/2) and dxy =

√
3sin(

√
3ky/2)sin(kx/2),

describe the distortion of the Fermi surface in the point group
C6, and ξ is a real number with values between zero (when C6

is preserved) and unity.
Figure 3(a) displays ξ against the band filling. We can see

that, as the band filling is reduced, ξ starts to grow, and at a crit-
ical band filling ⟨nc1⟩= 1.02 (vertical blue line in figure 3(a)),
ξdxy undergoes a first-order phase transition [37, 38]. At this

filling, the onset of nematicity is accompanied by a Lifshitz
transition, where the Fermi surface delineated by the ridges in
|Gk|2(not shown) is not only distorted but undergoes a topolo-
gical change from closed to open structures.

We further notice that the filling dependence of the nemati-
city differs between ξdx2−y2

and ξdxy in the PFB model; com-
pare purple and magenta lines in figure 3(a). For 0.986<
⟨n⟩< ⟨nc1⟩, ξdx2−y2

is dominant, while ξdxy takes over below
⟨n⟩= 0.986, which we call the second characteristic band
filling, ⟨nc2⟩ (vertical dashed sky-blue line in figure 3(a)).
While ξdx2−y2

displays a first-order transition at ⟨nc1⟩, ξdxy
exhibits a crossover at ⟨nc2⟩. This suggests that thermody-
namic parameters such as temperature at which ξdxy and ξdx2−y2

experience the first-order transitions are different from each
other.

To trace back the origin of the nematic phases, let us
next present the momentum-dependent spin susceptibility
χs(k) for the PFB model in figures 2(d)–(f). In the electron-
doped regime where the Pomeranchuk instability is absent, χs
respects the sixfold rotational symmetry of the lattice, with
peaks at k= (

√
3π/2,0) and its equivalent positions underC6.

As band filling is decreased below the half-filling, the spin sus-
ceptibility develops spikes around k= (

√
3π/3,2π/3) and the

equivalent places under a C2 subgroup of the original C6 rota-
tional symmetry. The appearance of spikes at mid-momenta in
the spin susceptibilities indicates the presence of long-range
spin fluctuations in our systems [39].

In general, an electronic nematicity without breaking the
translational symmetry can be driven by structural transitions,
charge [40] or spin [41] fluctuations. OurHamiltonian does not
deal with the distortion of the lattice or phonons and thus pre-
cludes structural transitions. We have checked that the charge
susceptibility is at least an order of magnitude smaller than
the spin susceptibility. Thus the spin-mediated correlations
should be responsible for the emergence of the Pomeranchuk
instability [24].

Now let us turn to a non-Fermi liquid character of the
present electronic systems, since the flat portions of the band
may well exert peculiar effects. We can quantify this in terms
of the impurity self-energy in DMFT by fitting the imaginary
part of the self-energy onMatsubara axis to |ImΣDMFT(iωn)| ∝
ωα
n , and present the result for the exponent α in figure 3(b).

In general, α= 1 at small ωn (c.f., α= 2 on real frequency
axis as |ImΣDMFT(ω)| ≈max(ω2,T2) at small T) character-
izes the Fermi liquid, while α< 0.5 will signify a non-Fermi
liquid (bad metal) behavior [42–45]. Above the first order
Pomeranchuk transition for ⟨n⟩> ⟨nc1⟩, α’s computed for sys-
tems with (dashed lines) and without (solid lines) the enforced
C6 constraint trivially coincide with each other. We can see
that both systems display strong non-Fermi liquid behavior
with α well below 1. If we turn to ⟨n⟩< ⟨nc1⟩ for which we
have revealed the nematicity, figure 3(b) shows notable dif-
ferences in α between the cases where C6 is enforced or not.
After a sharp drop at ⟨nc1⟩ as the band filling is reduced, α
gradually increases (decreases) in the presence (absence) of
the imposed sixfold constraint. Eventually α starts to decrease

3
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Figure 2. Momentum distribution functions (top panels) and spin susceptibilities (bottom) are displayed in momentum space for band
fillings ⟨n⟩ = 0.9 (a), (d), 1.0 (b), (e), and 1.1 (c), (f). All results are calculated for the PFB systems with t ′ = 0.15 and U= 4.5. The black
hexagon in each panel indicates the Brillouin zone. Note different color bars between different band fillings.

Figure 3. (a) Pomeranchuk order parameter ξ. ξdx2−y2
for t ′ = 0.15

is represented by purple lines. ξdxy is shown by magenta lines. (b)
Exponent α of the impurity self-energy for systems with (dashed
curves) and without (solid) imposed sixfold symmetry. (c) The
largest eigenvalue λ of the linearized Eliashberg equation for the
singlet pairing symmetry against band filling for the PFB system
with t ′ = 0.15 and U= 4.5, with the broken (dark blue curves) or
unbroken (sky-blue) sixfold symmetry. Black horizontal line marks
λ= 1, and an arrow points to the dip in λ when C6 is enforced.
Vertical blue solid lines indicate ⟨nc1⟩ (see text). Vertical dotted
sky-blue lines are at ⟨nc1⟩= ⟨nc2⟩.

with decreasing ⟨n⟩ at ⟨n⟩ ≈ 0.85 in the PFB system. The per-
sistent α< 0.5 for ⟨n⟩< ⟨nc1⟩ implies that the nematic phase
resides in the non-Fermi liquid regime.

5. Superconductivity

Now let us come to our key interest in pairing instabilities, for
which we solve the linearized Eliashberg equation, λ∆(k) =
− 1

β

∑
k ′ Veff(k− k ′)Gk ′G−k ′∆(k ′), to find the largest eigen-

value λ for the spin-singlet, even-frequency superconduct-
ing gap function ∆. Here, k≡ (k, iωn) with ωn the fermionic
Matsubara frequency, and the effectiv interaction for singlets
given as Veff(k) = U+ 3U2χs(k)/2−U2χc(k)/2. The pairing
is identified when λ exceeds unity [46]. Figure 3(c) depicts λ
in the presence (dashed green lines) or absence (solid blue) of
imposed C6 symmetry in PFB.

When the sixfold rotational symmetry is enforced, we get
λ< 0.8 in PFB model, indicating that the singlet supercon-
ductivity does not arise for the temperature (kBT= t/30) con-
sidered here. We can still notice that λ displays a double-peak
structure with aminimum at ⟨n⟩min = 0.95. The dip is shown to
occur at the band filling at which the dx2−y2 gap function with
two-nodal lines for ⟨n⟩> ⟨n⟩min changes into a more com-
plicated multi-nodal-line gap functions for ⟨n⟩< ⟨n⟩min, see
[47] supplemental material for details. This behavior of the
gap function reflects a crossover from the antiferromagnetic
spin structure with a single nesting vector for ⟨n⟩> ⟨n⟩min, to
a more complex spin structure for ⟨n⟩< ⟨n⟩min where single
peaks in the spin susceptibility evolve into extended struc-
tures (see figures 2(d)–(f)). Thus the system for ⟨n⟩< ⟨n⟩min

goes beyond the conventional nesting physics. Similar struc-
ture in λ and associated gap function have also been reported
for PFB systems on the square lattice [9], again in the absence
of nematicity.

In a dramatic contrast, if we allow the C6 symmetry to be
broken spontaneously, λ soars from those with C6 restriction,
as seen for ⟨nc⟩< ⟨n⟩< 1.15. This occurs concomitantly with
the Pomeranchuk order parameters (ξ’s), which grow precisely

4
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Figure 4. (a) Superconducting transition temperature Tc against
band filling for the PFB. Vertical solid line indicates ⟨nc1⟩, while
vertical dotted line indicates ⟨n⟩= ⟨nc2⟩. (b)–(d) Gap functions in
momentum-space with singlet pairing for the PFB system with
t ′ = 0.15 for U= 4.5 and β= 30 for ⟨n⟩= 0.9 (a), 1.0 (b) and 1.1
(c). Black hexagons indicate the Brillouin zone. Color code for the
gap function is bluish (reddish) for negative (positive) values, for
which we have omitted the color bars since the linearized Eliashberg
equation does not indicate magnitudes of ∆.

in this filling region. Just below ⟨nc⟩, λ in the systems with
broken C6 (solid blue lines in figure 3(c)) exhibits a rapid
growth and exceeds unity. This is inherited in the supercon-
ducting transition temperatures (Tc), presented in figure 4(a).
Tc, with the broken C6, exhibits a single-dome structure as

a function of band filling. We can observe that the presence of
a flat portion in PFB or a van Hove singularity for t ′ = 0 have
similar effects on the largest values of Tc when ξdxy ⩾ ξdx2−y2

.
One should note that, while a van Hove singularity at EF only
occurs at a single point on the filling axis, a flat portion of the
band can accommodate a range of band filling. This difference
is reflected in the width of the Tc dome at a given temperat-
ure; see figure 4(a) and SM. The maximum of Tc in the PFB is
seen to take place close to ⟨nc2⟩ at which ξdxy exceeds ξdx2−y2

.
Note that the superconducting transition temperature becomes
almost doubled as we pass through ⟨nc1⟩, see figure 4(a), which
should come from the interplay between nematicity, spin fluc-
tuations, and superconductivity.

Let us now delve into the gap function in momentum space
in figures 4(b)–(d). In the electron-doped regime, the PFB
model exhibits a conventional dx2−y2 paring symmetry [48].
This behavior of the gap function persists for ⟨n⟩> ⟨nc⟩. On
the other hand, below ⟨nc1⟩ where the C6 symmetry is broken
down to itsC2 subgroup, the dominant channel of instability is
a mixture of sx2+y2 , dx2−y2 and dxy-wave symmetries, see figure
S16 in SM.

To better understand the role of nematicity in superconduct-
ing phases, we can look at ∆Veff = Veff −VC6

eff , where V
C6
eff is

the effective interaction with the imposed C6 constraint. As
shown in figure S19 in SM, Veff is much intensified when C6

is lifted. Since χc is much smaller than χs, the effective pairing
interaction reflects the momentum-dependence of the spin-
susceptibility under the Pomeranchuk distortions. This effect-
ive interaction assists electrons to nonlocally form Cooper
pairs [15, 38, 49]. The deformation in∆Veff allows first-order
perturbation corrections in the distortion, which should be
responsible for the drastic changes in λ below ⟨nc⟩. This con-
trasts with the previous study on the interplay between nemati-
city and superconductivity, where the enhancement of λ ori-
ginates from the second-order perturbation corrections and
thus results in much smaller changes [24].

6. Discussion and summary

We have studied whether and how an emergent nematicity
affects superconductivity in PFBs on the regular triangular
lattice. We have shown with the FLEX+DMFT that nemati-
city dramatically affects pairing symmetry, and the TC is sig-
nificantly enhanced by the lowered point-group symmetry in
the electronic structure. This is shown to occur in a non-
Fermi liquid regime, which is characterized by blurred Fermi
surfaces, momentum-dependent fractional occupations of the
band, and a fractional power-law in the self-energy. In the pres-
ence of nematic order, the superconducting symmetry changes
from an (extended) dx2−y2-wave to a sx2+y2 − dx2−y2 − dxy-
wave, where unlike the conventional nesting-driven case, the
pairing interaction is governed by an intricate spin susceptib-
ility structure.

Future works should include the elaboration of the way
in which the non-Fermi liquid property affects the supercon-
ductivity, and exploration of the interplay between Pomeran-
chuk instability and superconductivity in multi-band/orbital
systems with flat regions.
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