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Abstract
We study the evolution of initial temperature profiles in a two-dimensional isolated harmonic
graphene lattice. Two heat transfer problems are solved analytically and numerically. In the
first problem, the evolution of a spatially sinusoidal initial temperature profile is considered.
This profile is usually generated in real experiments based on the transient thermal grating
technique. It is shown that at short times the amplitude of the profile decreases by an order
magnitude and then it performs small decaying oscillations. A closed-form solution,
describing the decay of the amplitude at short times is derived. It shows that due to symmetry
of the lattice, the anisotropy of the ballistic heat transfer is negligible at short times, while at
large times it is significant. In the second problem, a uniform spatial distribution of the initial
temperature in a circle is specified. The profile is the simplest model of graphene heating by an
ultrashort localized laser pulse. The corresponding solution has the symmetry of the lattice and
many local maxima. Additionally, we show that each atom has two distinct temperatures
corresponding to motions in zigzag and armchair directions. Presented results may serve for
proper statement and interpretation of laboratory experiments and molecular dynamics
simulations of unsteady heat transfer in graphene.

Keywords: graphene, ballistic heat transfer, unsteady heat transport, thermal anisotropy

(Some figures may appear in colour only in the online journal)

1. Introduction

Description of heat transfer in low-dimensional systems at
micro- and nanoscale is one of the topical problems for mod-
ern mechanics and physics of solids. Unique mechanical, ther-
mal, and other properties of 2D materials are discussed e.g. in
the review [1]. In such materials, significant deviations from
conventional macroscopic heat transfer laws are observed. In
particular, recent experimental and theoretical works show that

∗ Author to whom any correspondence should be addressed.
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the Fourier law, assuming linear dependence of the heat flux on
the temperature gradient, is usually violated in low dimensions
(see e.g. [2]). Development of alternative heat transfer models
is then required.

In the literature, the majority of real experiments on heat
transfer are carried out in the so-called nonequilibrium steady
state [3–6], notably a stationary heat transfer between two
thermal reservoirs having different constant temperatures is
considered. It is shown that the effective thermal conductiv-
ity, defined as the ratio of the heat flux and the temperature
gradient, significantly depends on the system size (distance
between the reservoirs). Therefore, conductivity cannot be
regarded as a material constant. The nonequilibrium steady-
state formulation is widely used in analytical [7] and numer-
ical [8] studies on heat transfer. Dependence of the effective
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thermal conductivity on system size allows distinguishing
ballistic, diffusive, and anomalous heat transfer regimes.
Moreover, it allows determining some characteristics on the
fundamental solution of unsteady problems (see e.g. paper
[9]). However, the information provided by the nonequilib-
rium steady-state experiments and simulations is insufficient
for a complete description of unsteady heat transfer. Therefore,
in the present paper, we consider the unsteady formulation of
the problem. More specifically, we consider evolution of initial
temperature profiles in the isolated lattice.

Significant progress in the analytical description of
unsteady ballistic heat transfer has been achieved in the
harmonic approximation [10–19]. In particular, an equation
describing unsteady ballistic heat transfer in the Hooke’s crys-
tal4 was derived in papers [12, 13]. Generalization of results
[12] for the case of one- and two-dimensional scalar lattices
with arbitrary harmonic interactions was carried out in paper
[14]. The influence of interactions with non-nearest neigh-
bors on heat transfer in harmonic one-dimensional chains was
studied in paper [15]. Unsteady heat transfer problems with
heat supply were solved e.g. for the damped one-dimensional
chain [16], two-dimensional scalar square lattice [17], and
scalar graphene lattice [18]. A theory describing unsteady heat
transport in polyatomic lattices has been formulated in paper
[19]. In the present work, we employ this theory for analytical
description of heat transport in harmonic graphene lattice.

Heat transport in graphene is studied in many theoreti-
cal and experimental works (see e.g. review [20] and refer-
ences therein). Mostly, the steady-state formulation described
above is considered. Papers on the unsteady heat transfer in
graphene are scarce and mostly based on numerical simula-
tions. For example, propagation of a planar thermal wave in
graphene was investigated using molecular dynamics in paper
[21]. In paper [22], one-dimensional problem of thermal con-
tact between hot and cold half-spaces was simulated using
molecular dynamics and Boltzmann transport equation. Sev-
eral analytical solutions of ballistic heat transport problems
were obtained in paper [19] using a simple model with pair
interactions between particles. This model is irrelevant for sim-
ulation of the in-plane heat transfer in graphene. Therefore
we consider a graphene model with more realistic multi-body
interactions.

In the present paper, we investigate peculiarities of unsteady
ballistic heat transfer in the harmonic graphene lattice per-
forming in-plane oscillations. We present analytical and
numerical solutions of two heat transfer problems. In the first
problem, the initial temperature profile is sinusoidal. This pro-
file is chosen because in real experiments it can be generated
via the transient thermal grating technique [23, 24]. We show
analytically that in this problem the anisotropy of heat transfer
can be neglected at short times, while at large times it is sig-
nificant. In the second problem, a uniform spatial distribution
of the initial temperature is specified in a circle. We show that
the solution of this problem has symmetry of the lattice and
many local maxima. Additionally, the presence of two distinct

4 One-dimensional harmonic chain consisting of identical particles interacting
with the nearest neighbors via identical springs.

kinetic temperatures, corresponding to two spatial directions,
is demonstrated.

2. Nomenclature

Here and below matrices are denoted by bold italic symbols,
while invariant vectors, e.g. position vector, are denoted by
bold symbols. The following notation is used:

• a is an equilibrium interatomic distance;
• ak, k = 1, . . . , 6, are vectors connecting atoms from a unit

cell with the nearest neighbors;
• A(t) is an amplitude of the sinusoidal temperature profile;
• b j, j = 1, 2 are primitive vectors of the lattice;
• b̃ j, j = 1, 2 are vectors of the reciprocal basis;
• i, j are unit vectors of the Cartesian system;
• k is the wave vector;
• M is the mass of a carbon atom;
• ω j(k), v j

g(k), j = 1, . . . , 4, are jth branch of dispersion
relation and corresponding group velocity;

• rn,m is the position vector of the unit cell {n, m};
• T(rn,m, t) is kinetic temperature of the unit cell {n, m},

proportional to mathematical expectation of its kinetic
energy;

• T(rn,m, t) is 4 × 4 temperature matrix of the unit cell
{n, m};

• T0(r) is an initial temperature field;
• TF, TS are ‘fast’ and ‘slow’ components of the tempera-

ture field, describing changes in temperature due to equal-
ization of kinetic and potential energies and due to heat
transfer respectively;

• Ux
n,m, Uy

n,m, Vx
n,m, Vy

n,m are x, y components of vectors of
displacements Un,m, Vn,m for atoms from the unit cell
{n, m}.

3. Statement of the problem

In this section, we present equations describing in-plane
motions of an isolated harmonic graphene lattice and ini-
tial conditions, corresponding to a given initial tempera-
ture profile. For simplicity, the out-of-plane vibrations are
ignored. This simplification is justified by the fact that in har-
monic approximation in-plane and out-of-plane vibrations of a
stretched graphene are formally decoupled. However the ques-
tion on the accuracy of this approximation for realistic val-
ues of bending stiffness and pretension of graphene requires
additional investigation. We refer to paper [19] for analy-
sis of ballistic heat transfer by out-of-plane vibrations. Also,
we consider the perfect lattice, although it was shown that
defects and chemical functionalization significantly change
graphene’s properties [25, 26].

3.1. Lattice geometry

Graphene has a regular honeycomb lattice with a unit cell con-
taining two carbon atoms (see figures 1(a) and (b)). Each atom
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Figure 1. Graphene lattice (a) and corresponding unit cell (b).
Carbon atoms are located in the nodes of the lattice. Reproduced
with permission from [27]. [Copyright © 2019 The Royal Society.
All rights reserved].

has two independent translational degrees of freedom; as a
result, the unit cell has four degrees of freedom. Unit cells are
numbered by pairs of indices {n, m}. Position vectors of unit
cells {n, m} and {s, p} are related as5

rn,m = rs,p + (n − s)b1 + (m − p)b2. (1)

Here primitive vectors of the lattice, b1, b2, are represented in
Cartesian basis i, j as

b1 = a

√
3

2

(
i +

√
3j
)

, b2 = a

√
3

2

(
−i +

√
3j
)

, (2)

where a is an equilibrium bond length in graphene; in
figure 1(b) vector i is horizontal and vector j is vertical.

Vectors a1, . . . , a6 connect two atoms of the unit cell with
their nearest neighbors (figure 1(b)). The vectors are intro-
duced such that a4 = −a1, a5 = −a2, a6 = −a3.

3.2. Equations of motion and initial conditions

We consider the equations of motion for two atoms from the
unit cell with indices {n, m}. Each atom has two degrees of
freedom. Displacements of atoms from the unit cell {n, m}
are denoted as 2D vectors Un,m, Vn,m. Following [27], we
use the harmonic approximation for the potential energy of
the lattice. Each atom is connected with three nearest neigh-
bors by linear springs (bonds) with stiffness c. Additionally,
the nearest bonds between particles are connected by angular
springs with stiffness g. Equations of motion for this system
were obtained using the Euler–Lagrange formalism in paper
[27]. For the sake of completeness, we derive these equations
in the appendix A by entirely different means. The resulting
equations are

MÜx
n,m =

c
√

3
4

[√
3Vx

n+1,m + Vy
n+1,m − 2

√
3Ux

n,m

+
√

3Vx
n,m+1 − Vy

n,m+1

]
5 Here and below position vector of the unit cell is defined as the vector
connecting the origin with center of mass of the cell in the undeformed state.

+
g
4

[
2
(
−Ux

n−1,m +
√

3Uy
n−1,m

− Ux
n,m−1 −

√
3Uy

n,m−1

)
+ Ux

n+1,m−1+

+
√

3Uy
n+1,m−1 + Ux

n−1,m+1 −
√

3Uy
n−1,m+1

− 2
(
Ux

n+1,m + Ux
n,m+1

)
−

+ 6
(

Vx
n+1,m −

√
3Vy

n+1,m − 5Ux
n,m

+ 4Vx
n,m + Vx

n,m+1 +
√

3Vy
n,m+1

)]
,

MÜy
n,m =

c
4

[√
3Vx

n+1,m + Vy
n+1,m − 6Uy

n,m + 4Vy
n,m

−
√

3Vx
n,m+1 + Vy

n,m+1

]
+

+

√
3g
4

[
Ux

n−1,m+1 −
√

3Uy
n−1,m+1

− Ux
n+1,m−1 −

√
3Uy

n+1,m−1 + 2Ux
n+1,m−

− 2Ux
n,m+1 − 10

√
3Uy

n,m

+ 6
(

Vx
n,m+1 +

√
3Vy

n,m+1 − Vx
n+1,m

+
√

3Vy
n+1,m

)]
. (3)

MV̈ x
n,m =

√
3c
4

[√
3Ux

n−1,m + Uy
n−1,m − 2

√
3Vx

n,m

+
√

3Ux
n,m−1 − Uy

n,m−1

]
+

+
g
4

[
6
(

Ux
n−1,m −

√
3Uy

n−1,m

+ Ux
n,m−1 +

√
3Uy

n,m−1 + 4Ux
n,m

)
−

− 2
(

Vx
n+1,m −

√
3Vy

n+1,m + Vx
n,m+1

+
√

3Vy
n,m+1

)
+ Vx

n+1,m−1 −
√

3Vy
n+1,m−1

+ Vx
n−1,m+1 +

√
3Vy

n−1,m+1 − 30Vx
n,m

− 2(Vx
n,m−1 + Vx

n−1,m)
]

,

MV̈y
n,m =

c
4

[√
3Ux

n−1,m + Uy
n−1,m

+ 4Uy
n,m − 6Vy

n,m −
√

3Ux
n,m−1 + Uy

n,m−1

]
×

√
3g
4

[
2
√

3
(
−
√

3Ux
n−1,m + 3Uy

n−1,m

− 5Vy
n,m +

√
3Ux

n,m−1 + 3Uy
n,m−1

)
+ Vx

n+1,m−1 −
√

3Vy
n+1,m−1 − Vx

n−1,m+1

−
√

3Vy
n−1,m+1 − 2

(
Vx

n,m−1 − Vx
n−1,m

)]
, (4)

3
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where M is the mass of the carbon atom; c, g are stiffnesses of
linear and angular springs respectively. In further calculations,
we use the following values of parameters for graphene:

c = 730.2 N m−1 g = 66.9 N m−1, a = 0.142 nm.
(5)

In paper [28] it is shown that the given values of stiffnesses
yield correct in-plane elastic moduli of graphene.

We consider random initial conditions corresponding to a
given initial kinetic temperature profile T0(rn,m) (see definition
(10)):

Ux
n,m = Uy

n,m = 0, Vx
n,m = Vy

n,m = 0,

U̇x
n,m = βx

n,m

√
kB

M
T0(rn,m), U̇y

n,m = βy
n,m

√
kB

M
T0(rn,m),

(6)

V̇ x
n,m = γx

n,m

√
kB

M
T0(rn,m), V̇y

n,m = γy
n,m

√
kB

M
T0(rn,m).

where kB is the Boltzmann constant. It is assumed that the
function T0 is defined for all points of the graphene plane and
slowly changes at distances of order of the interatomic dis-
tance. In (6), parameters βx

n,m, βy
n,m and γx

n,m, γy
n,m are uncorre-

lated random values with zero mathematical expectation and
unit variance, i.e.〈

βx
n,m

〉
=

〈
βy

n,m

〉
=

〈
γx

n,m

〉
=

〈
γy

n,m

〉
= 0,〈

(βx
n,m)2

〉
=

〈
(βy

n,m)2
〉
=

〈
(γx

n,m)2
〉
=

〈
(γy

n,m)2
〉
= 1, (7)〈

βx
n,mβ

y
n,m

〉
=

〈
γx

n,mγ
y
n,m

〉
=

〈
βx

n,mγ
y
n,m

〉
=

〈
γx

n,mβ
y
n,m

〉
= 0.

Here and below 〈. .〉 stands for the mathematical expec-
tation. We note that the initial conditions (6) are such that
mathematical expectations of kinetic energies (and tempera-
tures (9)), corresponding to four degrees of freedom of the unit
cell are equal.

3.3. Kinetic temperatures

To define thermodynamic properties of the system, we con-
sider an infinite number of realizations with random initial
conditions (6). Initially, kinetic temperatures corresponding to
four degrees of freedom of the unit cell are equal. Further it
is shown that during ballistic heat transfer these temperatures
are generally different. Therefore we introduce the temperate
matrix [19], T, such that

kBT = M

⎛⎜⎜⎝
〈
U̇x2

〉 〈
U̇xU̇y

〉 〈
U̇xV̇ x

〉 〈
U̇xV̇y

〉〈
U̇xU̇y

〉 〈
U̇y2

〉 〈
U̇yV̇ x

〉 〈
U̇yV̇y

〉〈
U̇xV̇ x

〉 〈
U̇yV̇ x

〉 〈
V̇ x2

〉 〈
V̇ xV̇y

〉〈
U̇xV̇y

〉 〈
U̇xV̇y

〉 〈
V̇ xV̇y

〉 〈
V̇y2

〉
⎞⎟⎟⎠ . (8)

In this subsection, arguments rn,m, t of temperatures as well as
indices n, m of velocities are omitted for brevity.

The diagonal elements of the temperature matrix define
the kinetic temperatures, corresponding to four degrees of
freedom of the unit cell:

kBT11 = M
〈
U̇x2

〉
, kBT22 = M

〈
U̇y2

〉
, (9)

kBT33 = M
〈
V̇ x2

〉
, kBT44 = M

〈
V̇y2

〉
.

We also introduce the conventional (average) kinetic tempera-
ture as

T =
1
4

(T11 + T22 + T33 + T44) . (10)

Under initial conditions (6), all temperatures are equal at t = 0,
i.e. Tii = T = T0.

The main goals of the present paper are to investigate
evolution of the temperature field in the harmonic graphene
lattice and to show that during ballistic heat transport the
temperatures Tii are different.

4. Analytical solution for an arbitrary initial
temperature profile

In this section, we present an analytical solution of the heat
transfer problem with arbitrary initial temperature profile T0

in graphene.

4.1. Dispersion relation

Ballistic heat transfer is carried out by elastic waves traveling
in the lattice. Therefore description of the heat transfer requires
knowledge of the dispersion relation for the lattice and corre-
sponding group velocities (see e.g. papers [10–12, 14, 19]). To
obtain the dispersion relation we seek the solution of equations
of motion (3) and (4) in the form of plane waves

Un,m = U(k)ei(ωt−k·rn,m), Vn,m = V(k)ei(ωt−k·rn,m),

(11)

where i2 = −1; U(k), V(k) are the amplitudes of the waves; ω
is a frequency; rn,m stands for position vector of the unit cell; k
is a wave vector represented in a reciprocal basis b̃i such that
b̃i · b̃ j = 2πδi j:

k = k1b̃1 + k2b̃2, b̃1=
2π
3a

(√
3i + j

)
, b̃2=

2π
3a

(
−
√

3i + j
)
.

(12)

Here and below k1, k2 ∈ [0; 1] are dimensionless compo-
nents of the wave vector. Taking formulae (12) into account,
we substitute (11) into (3) and (4). The substitution leads to
a homogeneous system of four linear equations with respect
to components of the amplitudes. The system has nontriv-
ial solutions only if its determinant is equal to zero. This
condition yields quartic equation with respect to ω2. Solving
the equation numerically, we obtain the dispersion surfaces
ω j(k1, k2), j = 1, 2, 3, 4. Plots of the surfaces are presented in
paper [27].

4



J. Phys.: Condens. Matter 34 (2022) 165402 A Panchenko et al

Given known the dispersion relation, the group velocities
v j

g, j = 1, 2, 3, 4 are calculated as

v j
g(k1, k2) =

∂ω j

∂k1
b1 +

∂ω j

∂k2
b2, j = 1, . . . , 4. (13)

Further, the frequencies ω j and group velocities v j
g are

employed for description of the heat transfer.

4.2. General solution

Analytical description of the ballistic heat transfer, presented
e.g. in paper [19], is based on the assumption that the initial
temperature field T0 slowly changes in space on the distances
of order of the interatomic distance. Using this assumption the
following formulae, describing evolution of the temperature
field, are derived:

T(r, t) = TF(r, t) + TS(r, t),

TF(r, t) =
T0(r)

8

4∑
j=1

∫
k

cos(2ω jt)dk,

TS(r, t) =
1
8

4∑
j=1

∫
k
T0(r + v j

gt)dk,

∫
k
. . . dk

def
=

∫ 1

0

∫ 1

0
. . . dk1 dk2, (14)

where k1, k2 are defined by formula (12). Detailed derivation
of formula (14) is given in paper [19].

In formula (14), the first term, TF, describes high-frequency
oscillations of the temperature caused by local transition
to thermal equilibrium at short times. This process in the
graphene lattice is considered in detail in paper [27]. In partic-
ular, it is shown that TF practically vanishes at times of order
of ten periods of atomic vibrations. Here we focus on behavior
of the second term, TS, describing slow changes in the tem-
perature profile due to ballistic heat transport. Characteristic
time scale of the heat transfer is much larger than the time
scale of the transition to thermal equilibrium (see section 6.1
for details). Therefore in further analysis TF is neglected.

In the following section, formula (14) is employed for
description of evolution of sinusoidal and circular initial tem-
perature profiles.

5. Simulation setup

In all further numerical simulations, a square graphene sheet
under periodic boundary conditions is considered. Numeri-
cal integration of equations of motion (3), (4) with initial
conditions (6) is carried out using symplectic leap-frog inte-
grator with empirically chosen time-step of 1.76 × 10−3τ ∗,
where τ∗ = 2π

√
M/C. Calculations are performed using the

in-house C++ code combined with compute united device
architecture to increase the performance [34]. For each realiza-
tion, random velocities of atoms (6) with normal distribution
are set using the cuRAND library [35]. Then forces acting
on atoms are calculated using the right part of equations (3)

and (4). At every time step, all forces acting on a single atom
from the neighbor atoms are computed by a single graphic pro-
cessor unit (GPU) thread. If the number of atoms exceeds the
number of threads then each thread consequently computes
the forces acting on several atoms. Then, the threads inte-
grate the equations of motion to obtain the velocities and dis-
placements of the atoms. At reference steps, kinetic energies
of the atoms, corresponding to motion in x and y directions,
are saved. To compute the kinetic temperatures, the kinetic
energies for each atom are then averaged over realizations
(see formula (9)).

6. Sinusoidal initial temperature profile

In this section, we investigate anisotropy of ballistic heat
transport in graphene by solving two problems with spatially
sinusoidal initial temperature profiles in zigzag and armchair
directions. This particular profile is chosen for two reasons.
Firstly, the profile can be realized in experiments by two
crossed laser pulses (see references on transient thermal grat-
ing for more details [23, 24]). Secondly, since the tempera-
ture varies only in one spatial direction then the heat transfer
problem is quasi one-dimensional and it requires much less
computational resources than truly two-dimensional problems
(e.g. the one considered in section 7).

6.1. Analytical solution in the integral form

We consider sinusoidal initial temperature profile in the direc-
tion given by unit vector e (e.g. for zigzag e = i, while for
armchair e = j):

T0(r) = Tb +ΔT sin
2πr · e

L
, (15)

where Tb, ΔT are constants such that Tb > ΔT; L is the wave-
length of sine. In this case, the general solution (14) is simpli-
fied. Additionally, we obtain an approximate solution in the
closed form.

Substituting formula (15) into (14) after some transforma-
tions yields

T = TF + TS,

TF =
1
8

(
Tb +ΔT sin

2πr · e
L

) 4∑
j=1

∫
k

cos(2ω jt)dk,

(16)

TS =
Tb

2
+

ΔT
8

sin
2πr · e

L

4∑
j=1

∫
k

cos
2πe · v j

gt

L
dk.

Formula (16) shows that the temperature profile remains
sinusoidal at any moment in time. Therefore instead of calcu-
lating the entire temperature field, we only compute amplitude,
A, of the sine defined as

A(t) =
2
L

∫ L

0
T(r, t) sin

2πz
L

dz, z = r · e. (17)

5
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Substitution of (16) into (17) yields

A(t) =
ΔT
8

4∑
j=1

∫
k

(
cos(2ω jt) + cos

2πe · v j
gt

L

)
dk. (18)

According to formula (16), TF and TS have different time
scales, proportional to 1/ω∗ and L/c∗ respectively, whereω∗ =√

c/M, c∗ = ω∗a. The first time scale is determined by fre-
quencies of vibrations of individual atoms. The second time
scale is determined by a time required for a sound wave to
pass distance L. The ratio of these time scales, L/a, is usually
a large parameter. Therefore the time scales are well separated.
In further calculations, we focus on behavior of sine at large
times of order of L/c∗. Neglecting the first term in brackets in
formula (18), we obtain

A(t) ≈ ΔT
8

4∑
j=1

∫
k

cos
2πe · v j

gt

L
dk. (19)

Formula (18) shows that time evolution of amplitude A
depends on direction, e, of the initial thermal perturbation.
Therefore, in general, the ballistic heat transport in graphene
is anisotropic, although graphene’s in-plane elastic properties
are isotropic for small strains [36]. The accuracy of formula
(19) is examined below.

6.2. Closed-form solution at short times

How strong is the anisotropy of ballistic heat transfer in
graphene? To address this question, we derive an approximate
expression for A(t) at short times.

Consider behavior of A(t) at 1/ω∗ � t � L/c∗. Series
expansion of the cosine in (19) then yields

A(t) ≈ ΔT
2

(
1 − βt2

)
, β =

π2

2L2

4∑
j=1

e ·
∫

k
v j

gv j
gdk · e.

(20)
It is seen that the dependence of A on the direction e is
determined by the second rank tensors

∫
kv j

gv j
gdk. Since the

graphene lattice has the third order symmetry then all these
tensors are spherical and then

β =
π2

4L2

4∑
j=1

∫
k
v j

g
2
dk. (21)

Numerical evaluation of the integrals in (21) yields

βL2/c2
∗ ≈ 1.88, (22)

where c∗ = ω∗a, and ω∗ =
√

c/M.
The complete solution (19) and approximate short-time

solution (20) are shown in figure 2. It is seen that at times
t ∼ L/c∗ sinusoidal profiles in zigzag (e = i) and armchair
(e = j) directions decay almost identically, as predicted by
formula (20).

Thus for t < L/c∗ the decay of amplitude, A, of the sinu-
soidal temperature profile is described by the parabola (20).
For symmetry reasons, the coefficient of the parabola is inde-
pendent on the direction, e, of the initial temperature pertur-
bation. Therefore at short times the anisotropy of heat transfer

Figure 2. Decay of amplitude of the sinusoidal temperature profiles
in zigzag (solid red line) and armchair (dashed blue line) directions,
calculated by formula (19). Approximate solution (20) is shown by
dotted green line.

is negligible. The behavior of the amplitude at larger times is
considered below.

6.3. Numerical simulations

In this subsection, we compare analytical predictions with
results of numerical solution of equations of motion (3) and
(4) with initial conditions (6).

Sinusoidal temperature profiles in zigzag (x = r · i) and
armchair (y = r · j) directions are considered, i.e.

T0 = Tb +ΔT sin
2πx

L
or T0 = Tb +ΔT sin

2πy
L

. (23)

Analytical solutions of heat transfer problems with initial con-
dition (23) are given by formula (16) with e = i and e = j.
Since the profile remains sinusoidal then we only compute
its amplitude A. Analytical expression for A is given by (19).
Integral in this formula is evaluated numerically. The first
term in this integral, describing high frequency oscillations of
temperature, is neglected.

When solving the equations of motion (3) and (4) numeri-
cally, we obtain the temperature field T(r, t) and calculate the
amplitude, A, as

A(t) =
2
L2

∫ L

0

∫ L

0
T(r, t) sin

2πx
L

dx dy (24)

for the temperature profile in zigzag (x) direction (for the arm-
chair direction the formula is similar). Note that in contrast to
(17), formula (24) involves additional averaging in y direction.
The averaging is added to reduce the influence of randomness
of the initial conditions. The temperature field in formula (24)
is calculated by averaging kinetic energies of particles with
respect to large number

(
104

)
of realizations. In simulations

ΔT/Tb = 0.9901, L = 182a. We note that since the lattice is
harmonic then neither absolute values ofΔT , Tb nor their ratio
influence the results shown below.

Comparison of predictions of formula (19) with results
of numerical solution of equations of motion are shown in
figure 3. It is seen that analytical and numerical results are in
a good quantitative agreement. Figure 3 demonstrates several
specific features of ballistic heat transport in graphene. Firstly,
the curves corresponding to zigzag and armchair directions
practically coincide for t < L/c∗. Therefore at short times the

6
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Figure 3. Decay of amplitude of the sinusoidal temperature profiles,
A/ΔT , for zigzag (circles, solid red line) and armchair (triangles,
dashed blue line) directions. Analytical solution (19) (solid and
dashed lines) and results of numerical solution of equations of
motion (triangles and circles) are shown.

heat transfer is nearly isotropic, as predicted by formula (20).
For t 
 L/c∗, the anisotropy is significant. The anisotropy is
caused by the fact that propagation of short waves in graphene
is directional dependent. Secondly, the decay of amplitude at
large times is non-monotonic. This is due to ballistic (wave)
nature of heat transfer. Thirdly, in both directions the ampli-
tude decays inversely proportional to time (see the subplot in
figure 3), while in systems with the Fourier heat transport the
decay is exponential.

Note that, strictly speaking, the rate of decay of the ampli-
tude should be estimated using asymptotic methods, e.g. the
stationary phase method [29]. However, in two dimensions
application of this method is not straightforward and requires
a separate study, which is beyond the scope of the present
paper. Therefore in this paper, we limit our-self to less rig-
orous numerical arguments. The inset plot in figure 3 shows
the oscillations of the function Ac∗t/(ΔTL) over the time scale
corresponding to the main plot. The amplitude of these oscil-
lations neither decrease nor increase in time. We have checked
numerically that similar behavior is also observed at large
times (at least up to c∗t/L = 150). Therefore we conclude that
the amplitude decays approximately as 1/t in the most inter-
esting time interval in which the changes in temperature are
most noticable.

7. Circular initial temperature profile

In this section, we consider time evolution of a circular initial
temperature profile:

T0(r) =

{
T1, r2 � R2,

0, r2 > R2,
(25)

where R is the radius of the circle with non-zero initial tem-
perature. In further calculations R = 7.04a ≈ 10 Å.

The main goal is to show that during the heat transfer
kinetic temperatures T11 and T22, corresponding to two spa-
tial directions, are different. Additionally, we show how the
kinetic energies, obtained in numerical simulations and aver-
aged over realizations, converge to prediction of the analytical
solution (14).

7.1. Comparison with the analytical solution

In this subsection, we compare results of numerical solution of
equations of motion with the analytical solution (14).

In numerical simulations, we consider two square samples
of length L = 182a and L = 1818a. We compute the tempera-
ture profiles in these samples at t = 15.91τ∗ and t = 176.8τ∗
respectively. These moments in time are chosen such that the
temperature front reaches the boundary of the corresponding
sample.

To construct the analytical solution, we substitute the ini-
tial temperature distribution (25) into the general solution (14).
Integral in this formula is evaluated numerically. Tempera-
ture profiles at t = 15.91τ∗ and t = 176.8τ∗ calculated using
formula (14) are shown in figure 4.

To compare analytical solution (14) with numerical sim-
ulation results, we consider convergence of the temperature
field with respect to number of realizations. In each realiza-
tion, kinetic energies of all atoms are calculated. To compute
the temperature field, the kinetic energies are averaged over
10, 102, 104 and 105 realizations (see figure 5). Figure 5 shows
that the temperature field converges with increasing number of
realizations. The convergence is practically achieved for 104

realizations.
We also check that numerical results converge to the ana-

lytical solution (14). For this purpose we plot the distribu-
tion of temperature T(x, 0) along the x axis (see figure 6) at
t = 15.91τ∗ and at t = 176.8τ∗. In this calculation, atoms that
are at a distance less than or equal to 0.5a from the x axis are
taken into account. If two atoms belong to the same unit cell
then the average of their temperatures is plotted. To compute
the temperatures, kinetic energies of the atoms are averaged
over 105 realizations for a small sample and over 104 realiza-
tions for a large one. Figure 6 shows that the analytical solution
(14) describes results of numerical simulations with acceptable
accuracy.

7.2. Peculiarities of the solution

In this subsection, we discuss several peculiarities of the
solution, shown in figures 5 and 6.

To start, we consider similar problem in a material with the
Fourier heat transfer. In this case, the temperature profile has
Gaussian-like shape, i.e. it has one local maximum at the center
and it monotonically decrease with increasing distance from
the center. In other words, the hottest point is always at the
center of the sample.

In the case of ballistic heat transfer, the shape of the tem-
perature field is qualitatively different. Firstly, the temperature
profile has well-defined circular front, moving with the max-
imum group velocity. Secondly, in addition to the local max-
imum at the center, there are multiple local maxima, moving
with different speeds. Thirdly, the position of the global max-
imum of the temperature changes in time, i.e. the hottest point
is not always at the center. For example, at t = 15.91τ∗ the
hottest point is at the center, while at t = 176.8τ∗ there are six
identical hottest points located at distance about 600a from the
center (see figures 5 and 6). At larger times, the hottest points

7
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Figure 4. Temperature profiles T/T1 in graphene at t = 15.91τ ∗ (a) and (c) and at t = 176.8τ ∗ (b) and (d) in samples with circular
distribution of initial temperature (25). Isometric (a) and (b) and top (c) and (d) views are shown.

move along the main lattice directions and form a regular
hexagon.

To explain these peculiarities, we analyze the analytical
solution (14). The solution may be interpreted in terms of the
kinetic theory of heat transfer6. In the kinetic theory, the tem-
perature is carried out by quasi-particles moving with group
velocities. These quasi-particles are sometimes erroneously
associated with phonons. We believe that they should be asso-
ciated with the wave-packets (see discussion in paper [37]).
Then the kinetic temperature at some point is proportional to
density of quasi-particles at this point. Formula (14) shows that
there are four types of quasi-particles, corresponding to four
branches of the dispersion relation. Initially, the quasi-particles
are uniformly distributed in a circle. Since the quasi-particles
move freely then their motion is completely determined by the
distribution of group velocities.

We compute the distribution of group velocities as follows.
We calculate absolute values of the group velocities |v j

g(ks
1, kp

2)|
at vertices of the square mesh ks

1 = sΔk, kp
2 = pΔk, s, p =

0, . . . , Nk − 1, where Δk = 1/Nk. The values of group veloc-
ities form four arrays of length N2

k . These arrays are sorted in
ascending order and maximum group velocities max |v j

g| are
calculated. Each interval from 0 to max |v j

g| is divided into
equal segments of length Δv. Number of array elements in
all these intervals is calculated. Then the distribution function
is calculated as

φ j(v) =
n j(v −Δv/2, v +Δv/2)

ΔvN2
k

, (26)

6 The relation between the solution (14) and the kinetic theory for a simple
one-dimensional system is discussed in detail in paper [37].

where n j(v −Δv/2, v +Δv/2) is a number of elements from
array j in the interval from v −Δv/2 to v +Δv/2. Function
φ j(v) shows the relative number of quasi-particles with veloc-
ities close to v. Further we assume that each quasi-particle
carries the same amount of thermal energy [37] (see formula
(14)).

The functions (26) are shown in figure 7. It can be noted that
the maximum group velocities max |v j

g|, j = 1, 2, 3, 4 are equal
to 0.583c∗, 0.795c∗, 0.535c∗, and 0.277c∗ respectively. It is
seen that the distributions are non-uniform. In particular, three
out of four distributions have multiple sharp local maxima.
The most pronounced maxima are at points 0.068c∗, 0.277c∗,
0.424c∗, 0.517c∗, 0.525c∗, 0.795c∗. Since the temperature is
proportional to the density of quasi-particles then the presence
of local maxima on distributions causes the maxima of the
temperature field shown in figures 4–6. In particular, the high-
est maxima in figure 6(b) (at x/a ∼ 580 and x/a ∼ 620) are
formed by the quasi-particles moving with velocities close to
0.517c∗ and 0.525c∗. Since the difference between the veloci-
ties is small then these maxima merge at short times and form
a single maxima at x/a ∼ 50 (see figure 6(a)).

Thus interpretation of the analytical solution (14) in terms
of the kinetic theory yields simple explanation of the presence
of multiple local maxima of the temperature field (hot points)
shown in figures 4–6. The hot points are formed by the quasi-
particles moving at speeds corresponding to maxima of the
distribution function φ j, defined by formula (26).

7.3. Two distinct kinetic temperatures

The theory suggests that in heat conducting harmonic crystals
the kinetic temperatures, corresponding to different degrees

8
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Figure 5. Temperature profile T/T1 in graphene at t = 15.91τ ∗ in samples with circular distribution of initial temperature (25). Results of
molecular dynamics simulations averaged over 1 (a), 102 (b), 104 (c), and 105 (d) realizations are shown.

Figure 6. Distribution of kinetic temperature along the x axis (T|y=0/T1) at t = 15.91τ ∗ (a) and at t = 176.8τ ∗ (b) in samples with circular
distribution of initial temperature (25). Analytical solution (16) (solid black line) and results of numerical simulations (dashed red line) are
shown.

of freedom of the unit cell, are generally different (see
paper [19] for discussion). In particular, in papers [19, 38]
this phenomenon have been observed in the harmonic one-
dimensional chain with alternating masses. In this subsection,
we show that this phenomenon is also present in the graphene
lattice.

The presence of several distinct temperatures is
demonstrated by numerical solution of the problem with
circular initial temperature profile (25). Simulation results

show that during heat transfer each atom has two distinct
temperatures, corresponding to motions in zigzag (x) and
armchair (y) directions even though initially these tempera-
tures are equal. For each unit cell, the temperatures (9) satisfy
the relations (except for a small number of cells, where all
four temperatures are equal):

T11 ≈ T33, T22 ≈ T44, T11 �= T22. (27)

9
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Figure 7. The distribution functions φ j(v) show the relative number of quasi-particles with velocities close to v. Functions φ1 (red solid), φ2
(black dashed), φ3 (blue dotted), φ4 (magenta dot dashed) correspond to four branches of the dispersion relation.

Figure 8. Temperatures corresponding to motion of atoms along x axis (T11 ≈ T33, left) and y axis (T22 ≈ T44, right) at t = 15.91τ ∗. The
temperatures are normalized by the initial temperature T1. Simulations result are averaged over 105 realizations. Initial temperature
distribution is given by (25).

To demonstrate this phenomenon, we plot temperatures (9) of
individual atoms at t = 15.91τ∗, obtained in computer sim-
ulation (see figures 8(a) and (b)). Figure 8(a) shows tem-
peratures T11/T1 and T33/T1 corresponding to motion along
the x axis, while figure 8(b) shows temperatures T22/T1 and
T44/T1 corresponding to motion along the y axis. It is seen that
kinetic energies of thermal motion (and corresponding kinetic
temperatures) are significantly different.

8. Conclusions

We have presented analytical and numerical solutions of
two heat transfer problems. The solutions revealed several
peculiarities of purely ballistic heat transfer in the graphene
lattice.

In the first problem, sinusoidal initial temperature profile
in different spatial directions was considered. It was shown

that amplitude of the temperature profile decays by an order
of magnitude at short times (t < L/c∗). At this time scale, the
anisotropy of heat transfer is negligible. Decay of the ampli-
tude is independent on the direction in which the initial temper-
ature profile is specified. For all directions, it is described by
simple approximate formula (20). At larger times (t 
 L/c∗),
the amplitude performs small oscillates, decaying inversely
proportional to time. The oscillations are directional depen-
dent and therefore the effect of anisotropy is significant. The
anisotropy should be taken into account when performing real
experiments with quasi-ballistic regime of heat transfer (e.g.
at low temperatures).

Similar phenomenon (isotropy at short times and anisotropy
ant large times) was observed in a different graphene model in
paper [19]. However in [19], no theoretical explanation of this
phenomenon have been given. We have shown that the isotropy
at short times is caused by the third order symmetry of the
lattice.

10
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In the second problem, constant initial temperature in a cir-
cle was specified. The solution of this problem demonstrates
several peculiar features. The temperature profile has a front
moving with the maximum group velocity and multiple local
maxima. The global maxima (the hottest point) is located
at the center of the specimen at short times only. At large
times, the temperature has six identical global maxima moving
along symmetry axes of the lattice. Additionally, the tempera-
ture field has multiple local maxima. These peculiarities were
explained using interpretation of the results in terms of the
kinetic theory and analysis of distribution of group velocities.

It was also shown that during the heat transfer each atom has
two distinct temperatures, corresponding to motions in zigzag
and armchair directions. The presence of several temperatures
in the ballistic regime was predicted by the theory developed in
paper [19]. The theory suggests that in general, the number of
temperatures is equal to the number of degrees of freedom for
the unit cell (four in the case of graphene). Our calculations
show that in graphene only two out of four temperatures are
different.

Presented results were obtained using the harmonic
graphene model with purely ballistic regime of heat transfer.
In real graphene, anharmonic effects are always present. How-
ever, in papers [30–33] it was shown that at small spatial and
short time scales the behavior of weakly anharmonic crystals
is described by harmonic models with acceptable accuracy.
Therefore we believe that similar phenomena will be observed
in anharmonic graphene models and real experiments.
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Appendix A. Equations of motion for the harmonic
graphene lattice

In this appendix, we derive equations of motions (3)and (4) for
two atoms in a unit cell. It is assumed that atoms are connected
with the nearest neighbors by linear spring with stiffness c.
Additionally, the neighboring bonds are connected by angular
springs with stiffness g. The resulting equations of motion can
be represented in the form

MÜn,m = FA
U + FT

U , MV̈n,m = FA
V + FT

V , (A.1)

where FA
U , FA

V are forces caused by linear springs, while FT
U ,

FT
V are forces caused by angular springs; ¨(. . .) stands for the

second derivative with respect to time. Forces caused by the

linear springs are given by

FA
U = c

(
a1a1 · (Vn+1,m − Un,m) + a2a2 · (Vn,m+1 − Un,m)

+ a3a3 · (Vn,m − Un,m)
)

,

FA
V = c

(
a4a4 · (Un−1,m − Vn,m) + a5a5 · (Un,m−1 − Vn,m)

+ a6a6 · (Un,m − Vn,m)
)
. (A.2)

Here c is an axial stiffness, a4 = −a1, a5 = −a2, a6 = −a3.
The angular part of interaction corresponds to the change

of the angle between the interatomic bonds. As long as any
angle can be described with positions of three atoms this type
of interatomic potential can be referred to as triple interaction.
According to the figure A.1(a) atoms in the unit cell take part
in 14 triple interactions.

Consider forces caused by one angular spring (see
figure A.1(b)). The potential energy of this spring is

Π =
1
2

ga2(Θ−Θ0)2, Θ0 =
2π
3
. (A.3)

Here Θ = Θ(r0, r1, r2) is a function of position vectors of the
atoms. For small Θ−Θ0 formula (A.3) can be approximated
by

Π(r0, r1, r2) ≈ ga2(1 − cos Θ cos Θ0 − sin Θ sin Θ0).
(A.4)

Hence, angular interaction is an example of the triple interac-
tion, meaning it is determined by the positions of three neigh-
boring atoms. We introduce new variables η and ζ such that

η = r1 − r0 − a1, ζ = r2 − r0 − a2. (A.5)

Then specific forces acting to the atoms can be found using the
following expressions:

F102 = − ∂Π

∂r1
= −∂Π

∂η

= ga2

(
cosΘ0

∂ cos Θ

∂η
+ sin Θ0

∂ sin Θ

∂η

)
,

F201 = − ∂Π

∂r2
= −∂Π

∂ζ

= ga2

(
cos Θ0

∂ cos Θ

∂ζ
+ sinΘ0

∂ sinΘ
∂ζ

)
,

F012 = −F102 − F201. (A.6)

Here the first index is a number of atom on which the force
is acting, while the second and the third indices are numbers
of the neighboring atoms involved in the interaction. Note that
the forces satisfy the relation Fi jk = Fik j.

To calculate the derivatives of cosΘ in (A.6), we represent
it as

cos Θ =
(a1 + η) · (a2 + ζ)
|a1 + η‖a2 + ζ| (A.7)

and use the well-known relation

∂|a + x|
∂x

=
(a + x)
|a + x| , (A.8)
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Figure A.1. Angles numbering in honeycomb lattice (a), reproduced with permission from [27]. [Copyright © 2019 The Royal Society. All
rights reserved]. Angle between two carbon bonds (b).

where a is some vector constant and x is a vector variable. Then
∂ cos Θ

∂η
=

(
a2 + ζ

(a1 + η) · (a2 + ζ)
− a1 + η

(a1 + η)2

)
cos Θ.

(A.9)
Similarly, for sinΘ we obtain

∂ sin Θ

∂η
=

∂
√

1 − cos2 Θ

∂η
= − cot Θ

∂ cos Θ

∂η
. (A.10)

Relations for the ∂ sin Θ
∂ζ and ∂ cos Θ

∂ζ can be found in a similar
way.

Given known the forces F j caused by individual angular
springs, the total forces are calculated as

FT
U =

∑
j

F j FT
V =

∑
k

Fk,

j = 1–4, 6 − 10 k = 1, 3–6, 11–14. (A.11)

Here the indices j, k show the angles to be taken into account to
calculate the corresponding force using (A.6) (see figure A.1).

Substitution of formulae (A.2) and (A.11) into (A.1) yields
equations of motion in the vector form. Projections of these
equations onto x and y axes yield formulae (3) and (4).
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