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Abstract
Neutron scattering experiments have been performed to elucidate magnetic properties of the
quasicrystal approximant Au70Si17Tb13, consisting of icosahedral spin clusters in a
body-centered-cubic lattice. Bulk magnetic measurements performed on the single crystalline
sample unambiguously confirm long-range ordering at TC = 11.6 ± 1 K. In contrast to the
simple ferromagnetic response in the bulk measurements, single crystal neutron diffraction
confirms a formation of intriguing non-collinear and non-coplanar magnetic order. The
magnetic moment direction was found to be nearly tangential to the icosahedral cluster surface
in the local mirror plane, which is quite similar to that recently found in the antiferromagnetic
quasicrystal approximant Au72Al14Tb14. Inelastic neutron scattering on the powdered sample
exhibits a very broad peak centered at �ω � 4 meV. The observed inelastic spectrum was
explained by the crystalline-electric-field model taking account of the chemical disorder at the
fractional Au/Si sites. The resulting averaged anisotropy axis for the crystalline-electric-field
ground state is consistent with the ordered moment direction determined in the magnetic
structure analysis, confirming that the non-coplanar magnetic order is stabilized by the local
uniaxial anisotropy.

6 Author to whom any correspondence should be addressed.

Keywords: quasicrystal approximant, non-coplanar magnetic structure, crystalline electric
field splitting, neutron scattering

S Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1361-648X/20/415802+14$33.00 1 © 2020 IOP Publishing Ltd Printed in the UK

https://doi.org/10.1088/1361-648X/ab997d
https://orcid.org/0000-0003-2511-4998
mailto:taku@tohoku.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-648X/ab997d&domain=pdf&date_stamp=2020-7-16
https://doi.org/10.1088/1361-648X/ab997d


J. Phys.: Condens. Matter 32 (2020) 415802 T Hiroto et al

1. Introduction

Icosahedral quasicrystals are solids that exhibit sharp Bragg
reflections with the icosahedral rotational symmetry, first
observed in an electron diffractogram [1]. It has been well
known that the icosahedral rotational symmetry is incompat-
ible with the lattice periodicity; indeed, atomic structure of
the icosahedral quasicrystals is described as a quasiperiodic
packing of icosahedral atomic clusters [2]. When the bulk
icosahedral symmetry is relaxed, the atomic clusters may form
a periodic lattice, by deforming the cluster slightly and/or
introducing glue atoms between the clusters. Indeed, such
approximant crystals have been known to form in the vicin-
ity of icosahedral quasicrystal phases in alloy phase diagrams;
several detailed studies on atomic structures confirmed that the
approximant crystals are made of quite similar atomic clusters
to those in the icosahedral quasicrystals [2, 3].

Among various quasicrystals and approximants ever found,
the icosahedral Cd–Yb quasicrystal and related approximants
opened a new era for the research of the magnetism of qua-
sicrystals. These quasicrystals and approximants consist of the
so-called Tsai-type icosahedral clusters, which are made of
four matryoshka-like successive shells [4, 5]; the first shell is
a dodecahedron composed of 20 Cd atoms, the second shell
is an icosahedron of 12 rare-earth (R) atoms, the third shell
is an icosidodecahedron of 30 Cd atoms, and the outermost
shell is a defect rhombic triacontahedron of 84 Cd atoms. To
date, the Tsai-type icosahedral clusters have been identified in
a number of approximants, e.g., Cd–R [6–8], (Cd, Zn)–Mg–R
[9–12], Ag–In–R [13], and Au–SM–R (SM = Si, Ge, and
Sn) [13–15]. The unique feature of the Tsai-type clusters is
that the second icosahedral shell is exclusively occupied by
the R elements (see figure 1(a)), realizing a defectless net-
work of magnetic moments. It should be noted, however, that
the cluster center is occupied by a Cd4 tetrahedron that is
in most cases orientationally disordered at room temperature
[16–18]. In addition, for the ternary and quaternary systems,
there are fractional sites occupied by the elements other than R,
and hence the randomness due to the chemical disorder exists.
Nonetheless, effect of such disorder is presumably much
weaker compared to the disorder in the magnetic-moment
network itself, and hence the Tsai-type quasicrystals and
approximants are believed to be suitable to study magnetism
of quasiperiodic and periodic arrays of the icosahedral spin
clusters.

While long-range magnetic orders have not yet been
observed in the Tsai-type quasicrystals, various magnetic
orders, i.e., antiferro-, ferri-, and ferro-magnetic orders, have
been observed in Cd6R (R = Nd, Sm, Gd, Tb, Dy, Ho, Er, and
Tm) [19–21] and Au–SM–R (SM = Si, Ge, and Sn; R = Gd,
Tb, Dy, and Ho) [22, 23] approximant crystals. Most of them
have been identified by bulk magnetic measurements, whereas
a few were investigated by synchrotron x-ray magnetic diffrac-
tion experiments [24, 25]. Microscopic magnetic-structure
analysis in their long-range-ordered state has been rather lim-
ited; only ferromagnetic (ferrimagnetic) Au–Si–R (R = Tb
and Ho) and antiferromagnetic Au–Al–Tb approximants were
investigated to date. For Au–Si–Tb, the ferrimagnetic-like

Figure 1. (a) Body-centered-cubic array of Tsai-type icosahedral
clusters in the Au–Si–Tb approximant. (b) Multiple shell structure
of the Tsai-type cluster. Magnetic Tb3+ ions occupy the second
shell, selectively. The drawings are produced by VESTA [47].

collinear magnetic structure was proposed based on a pow-
der neutron diffraction experiment [26]. According to their
model, the Tb3+ moment sizes substantially vary from 1.7 to
8.2 μB, although all 12 Tb atoms on the icosahedron belong
to a single crystallographic site (24g). Very recently, a pre-
liminary result has been reported on the magnetic structure
analysis of the Au–Si–Ho and Au–Si–Tb approximants. A
somewhat non-collinear magnetic structure was proposed with
moments mostly orthogonal to each other [27], nonetheless
details are not yet published to date. Phenomenological the-
oretical investigation was also performed on a possible non-
collinear order in the Au–Si–Tb approximant, in which effect
of the single ion anisotoropy was emphasized [28].

For the antiferromagnetic quasicrystal approximant
Au72Al14Tb14, we have recently determined the magnetic
structure using neutron diffraction with the aid of the mag-
netic representation analysis [29]. The magnetic structure was
found to be made of non-coplanar whirling spins on the icosa-
hedral spin cluster, arranged in an antiferroic manner breaking
the body-centered-cubic (bcc) translational invariance.
It was suggested that the ordered spin directions were primar-
ily fixed by the local anisotropy reflecting the symmetry of the
icosahedral cluster. It is rather puzzling to see very different
magnetic ordering in the two seemingly similar alloy systems,
Au–Si–Tb and Au–Al–Tb, and hence, it may be worthwhile
to revisit the magnetic structure of the Au–Si–Tb quasicrystal
approximant.

Related to the local anisotropy, another key information
to understand the magnetic structure is the details of the
crystalline-electric-field (CEF) ground state for 4f electrons
of the R3+ ions. The CEF splitting in the Tsai-type clus-
ter compounds was investigated by bulk measurements in
the Zn–Ag–Sc–Tm quasicrystal and Zn–Sc–Tm approximant
[30], as well as by neutron inelastic scattering in the Cd6Tb
approximant [31]. Both the studies infer the dominant second
order uniaxial B0

2 term in the CEF Hamiltonian, whereas the
former suggests existence of additional weak pseudo five-fold
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(5f) term B5
6. This result consequently infers that the uniaxial

anisotropy axis of the rare-earth ions is along the pseudo 5f-
axis of the icosahedral cluster, and is apparently inconsistent
with the results of the magnetic structure determinations.

As briefly summarized in the above, the microscopic
arrangement of spins in the ordered phase, as well as the
details of CEF anisotropy, is still controversial. This may be
due to the fact that there is no complete study of magnetic
structure and excitations in one quasicrystal approximant sys-
tem. We, therefore, undertook thorough elastic and inelas-
tic neutron scattering study on the quasicrystal approximant
Au70Si17Tb13. The neutron diffraction study using a high-
quality single crystalline sample clearly shows that the mag-
netic order is non-collinear and non-coplanar, and is closely
related to the whirling spin order observed in the antifer-
romagnetic counterpart Au72Al14Tb14. The neutron inelastic
scattering shows existence of a broad excitation peak around
�ω � 4 meV, which is attributable to the excitation between
the CEF splitting levels. The point-charge calculation taking
account of the chemical disorder successfully reproduces the
broadness of the excitation peak. The average moment direc-
tion obtained in the point-charge calculation is nearly perpen-
dicular to the local pseudo 5f-axis, and is in good accordance
with the observed moment direction. By combining both the
magnetic structure and excitation results, we conclude that the
dominant term in the CEF Hamiltonian is B0

2, as inferred in
the earlier studies, nonetheless, the quantization (anisotropy)
axis is nearly perpendicular to the pseudo 5f-axis in the present
Au70Si17Tb13 approximant.

2. Experimental

High purity elements better than 99.9 wt% of Au, Si, and Tb
with a nominal composition of Au74.9Si17.1Tb8 were placed
in an alumina crucible sealed inside a quartz ampule under
an argon atmosphere. The ampule was placed inside an elec-
tric furnace and melted at 1373 K for 5 h, and then cooled to
923 K. Single grains were grown by slow cooling of the melt to
823 K at a rate of 1 K h−1. At 823 K, the ampule was taken out
from the furnace and the melt was removed by using a cen-
trifuge. The obtained single grains have well-defined {100}
and {110} facets with sizes up to 2.5 mm.

The phase constitution was checked by the powder x-ray
diffraction (XRD) using the CuKα radiation (Rigaku, Mini-
Flex). The quality of the single grains was examined by trans-
mission high-energy x-ray Laue method (YXLON MG452
x-ray generator operating at 450 kV/5 mA, equipped with
a CCD camera). The alloy composition was checked by the
energy dispersive x-ray spectroscopy (EDX) measurement
in the scanning electron microscope (JEOL, JEM-2010F),
and resulting alloy composition was Au69.5(5)Si17.2(4)Tb13.3(3).
(We use an approximate chemical formula Au70Si17Tb13 in
the following for simplicity.) The DC magnetization was mea-
sured using a superconducting quantum interference device
(SQUID) magnetometer (Quantum Design, MPMS-XL) down
to 2 K with the external magnetic field up to 50 000 Oe. A
single crystal with dimensions of about 1.5 × 1.5 × 0.5 mm3

(16 mg) was used for the magnetization measurement.

Figure 2. |Fobs|2 versus |Fcalc|2 for nuclear Bragg reflections. |Fobs|2
were collected at T = 15 K. The parameters used for the |Fcalc|2
calculation are summarized in table 1. The final conventional
R-factor is 0.047, and weighted χ2 is 1.75.

The polycrystalline sample was synthesized from high
purity (> 99.9 wt%) elements Au, Si and Tb by arc-melting.
As-cast alloy was subsequently annealed at 973 K for 50 h
under an Ar atmosphere to obtain a single-phase sample. The
phase purity and crystal structure were checked by the powder
XRD using the CuKα radiation. The magnetic susceptibility
was checked in a similar manner as described above.

The single crystal neutron diffraction experiment was per-
formed using the four-circle diffractometer HB-3A at the high
flux isotope reactor (HFIR), Oak Ridge national laboratory
(ORNL), USA. Diffraction datasets were collected at 15 K (in
the paramagnetic phase) and 5 K (in the ferromagnetic phase)
with a constant wavelength of 1.542 Å−1 selected by a bent
perfect Si 220 monochromator [32]. The mass of the used sin-
gle crystal was approximately 16 mg. The temperature uncer-
tainty during the experiments was less than 1 K. Integrated
intensity of nuclear and magnetic Bragg reflections was mea-
sured for 0 < h < 9, 0 < k < 9, 0 < l < 8 in the reciprocal-
lattice space (2θ < 61.5◦). Total 90 (for nuclear) and 100
(for magnetic) reflections with I > 2σ were used for the
crystal-structure and magnetic-structure refinements, respec-
tively. For the magnetic structure refinement, the differences
in the Bragg peak intensities between T = 5 and 15 K were
used. Basis vectors of the irreducible representations of the
magnetic representation were obtained using the MSAS pro-
gram [33], and the least-square fitting was performed using the
linear combination of the basis vectors as a trial spin structure.

The neutron inelastic scattering experiment has been per-
formed using the high-resolution chopper (HRC) spectrome-
ter, installed at the materials and life science facility (MLF),
Japan proton accelerator research complex (J-PARC) [34].
Since the single crystal with sufficiently large mass cannot be
obtained to date, we used the powder sample with the mass
of approximately 10 g for the inelastic scattering experiment.
The inelastic scattering spectra were obtained mainly using the
incident energy Ei = 13.29 meV, whereas other higher inci-
dent energies were also used to see overall features of the exci-
tation spectrum. Typical energy resolution for Ei = 13.29 meV
wasΔE/E � 3% (full-width at half-maximum; FWHM) at the
elastic position in the present setup. The detector efficiency
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Table 1. Refined structural parameters at T = 15 K for the Au70Si17Tb13 approximant. The space group Im3̄ were used in the refinement.
The lattice constant is a = 14.726 Å. Number of reflections used in the refinement was 90 (I > 2σ), whereas number of refined parameters
was 20. Calculated chemical formula is Au68Si18Tb14, and calculated density is 14.73 g cm−3. The absorption coefficient for λ = 1.542 Å is
μ = 3.3 cm−1, however, since the sample was small and almost spherical, no absorption correction was made. Secondary extinction effect
was corrected assuming exponential deviation from the calculated squared structure factor. The conventional R-factor is R = 0.047, whereas
weighted χ2 = 1.75.

Site Wyckoff position x y z Biso (Å2) Occupancy

Au1 48h 0.107(4) 0.338(4) 0.204(4) 0.58(46) 1
Au2 24g 0 0.401(6) 0.355(6) 0.93 1
Au3 12d 0.406(9) 0 0 1.71 1
Au4 16f 0.151(4) 0.151 0.151 0.97 1
Au6 24g 0 0.239(7) 0.083(7) 0.89 0.63
Si6 24g 0 0.239 0.083 0.89 0.37(30)
Au7 12e 0.200(14) 0 0.5 0.81 0.19
Si7 12e 0.200 0 0.5 0.81 0.81(38)
Au8 24g 0 0.093(28) 0.054(30) 1.85 0.11
Si8 24g 0 0.093 0.054 1.85 0.23(47)
Si9 8c 0.25 0.25 0.25 0.91 1
Tb1 24g 0 0.187(6) 0.306(5) 0.42 1

was corrected by the vanadium incoherent scattering. The
powdered sample was inserted in the double annular sample
container to reduce the self attenuation effect. The container
was then sealed in a standard aluminum can with the He heat-
exchange gas, and set to the cold head of the closed cycle 4He
refrigerator with the lowest working temperature around 3 K.
For most of the presented datasets, background was subtracted
by using the empty-sample-can results obtained under the
same condition as the corresponding sample runs. Throughout
this paper, the inelastic scattering results are shown in the form
of double-differential cross-section without absolute intensity
normalization.

3. Results and discussion

3.1. Structural refinement

First, we performed structural refinement of the Au70Si17Tb13

compound in the paramagnetic region, i.e., at 15 K, using
the reported model [35] as an initial structure. The atomic
positions and the occupancies of Au/Si fractional sites were
refined simultaneously. The resulting |Fobs|2 versus |Fcalc|2 plot
is given in figure 2. The final conventional reliability factor
R and weighted χ2 parameters are 0.047 and 1.75, respec-
tively. Table 1 shows the refined structural parameters for the
Au70Si17Tb13 approximant obtained in the present study. The
refined parameters are mostly consistent with the one reported
in the earlier study [35]. It may be noted that the center of clus-
ter was assumed to be empty in the above refinement; we have
tried to incorporate finite Tb occupancy at the cluster center,
however, it only degrades the fitting quality. In the earlier work,
it is reported that the occupancy of cluster-center Tb becomes
finite as the Tb concentration increases from the minimum
value of 13.63%. Since the Tb concentration (14%) determined
in our neutron diffraction has rather large uncertainty, we can-
not compare the estimated composition with sufficiently high
precision. Nonetheless, since we grew the single crystal from
the low Tb-concentration liquid (see experimental), we believe
that our sample is at the lower-Tb-concentration edge, and

hence should correspond to the 13.63% Tb concentration in the
earlier work. Indeed, the Tb concentration of the present sin-
gle crystal determined by the EDX measurement is 13.3(3)%,
which is rather close to the minimum Tb concentration of the
earlier work. Therefore, having this Tb composition in mind,
the absence of the cluster-center Tb deduced in the present
structure analysis is consistent with the earlier work.

3.2. Magnetic susceptibility, magnetization and neutron
diffraction intensity

The field-cooled (FC) and zero-field-cooled (ZFC) magnetiza-
tion was measured under various external magnetic field up to
100 Oe along �H ‖ [100]. Figure 3(a) shows the resulting tem-
perature dependence of the magnetic susceptibility (M/H ),
together with the inverse susceptibility in its inset. The inverse
magnetic susceptibility shows apparent linear behavior above
50 K, which is in accordance with the Curie–Weiss law with
an additional temperature independent background χ0,

χ =
C

T −Θ
+ χ0, (1)

where C is the Curie constant, and is related to the effective
moment meff as C = Nm2

eff/3kB with kB being the Boltzmann
constant. The effective magnetic moment and paramagnetic
Curie temperature were estimated as meff = 9.66(4)μB/Tb and
Θ = 12.4(3) K, respectively, where μB is the Bohr magne-
ton. The value of meff is very close to that of the Tb3+ free
ion (9.72μB/Tb). The positive Θ value indicates the pres-
ence of ferromagnetic interaction between the Tb3+ magnetic
moments. At low temperatures, the magnetic susceptibility
exhibits a clear anomaly at TC = 11.6 K. The increasing FC
susceptibility with decreasing temperature, together with the
decreasing behavior of the ZFC susceptibility, indicates for-
mation of the ferromagnetic (or ferrimagnetic) phase with a
finite anisotropy barrier below TC.

Figure 3(b) shows the magnetization curve measured at
T = 2 K (< TC). The inset shows the magnified view in
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Figure 3. (a) Temperature dependence of the magnetic
susceptibility measured under the external magnetic field along the
[100] axis. For the field-cooled (FC) runs, data taken under H = 20,
50 and 100 Oe are shown, whereas only H = 100 Oe data are shown
for the zero-field-cooled (ZFC) run. Inset: inverse susceptibility for
the wide temperature range up to 300 K. The solid line stands for the
result of the Curie–Weiss fitting. (b) External magnetic field
dependence of the magnetization (M–H Curve) observed at
T = 2 K. Magnetic field was applied along the [100] direction.
Inset: a magnified figure in the low-field region.

the low-field region. A hysteresis is clearly observed in the
low field region, indicating an occurrence of the ferromag-
netic/ferrimagnetic order below TC. The coercivity is about
200 Oe, which suggests that the anisotropy barrier that pins the
magnetic domain wall is quite small. Accordingly, the rema-
nent magnetization was found to be quite small as 0.59μB/Tb,
indicating the soft magnetic nature of Au70Si17Tb13. In the
high field region, even at highest field of H = 50 000 Oe, the
magnetization does not saturate to the full moment per Tb3+,
gJμBJ = 9μB, where J = 6 is the total angular momentum and
gJ = 3/2 is the Landé g factor for the J = 6 states of Tb3+.
This definitely indicates the existence of the CEF anisotropy,
and is in clear contrast to the Au–Si–Gd approximant, where
the CEF anisotropy is not expected due to the half filled nature
of 4f level [21, 23].

Figure 4 shows the temperature dependence of the neu-
tron diffraction intensity (I510) measured at the 510 Bragg-
reflection position. At higher temperatures, the intensity does
not show temperature dependence, whereas the intensity
increases significantly with decreasing temperature below

Figure 4. Temperature dependence of the integrated intensity of the
510 Bragg reflection. Results of the two independent heating runs
are shown. Inset: ω-scans at the two temperatures T = 5 and 15 K
around the 510 reflection position.

Figure 5. Distribution of the observed magnetic structure factors
|Fobs| (represented by radius of circles) of the magnetic Bragg
reflections in the hk0 plane. The magnetic intensity was deduced by
taking difference of the integrated reflection intensities between
T = 5 and 15 K.

TC � 11 K, which reasonably corresponds to the anomaly tem-
perature in the susceptibility data (figure 3(a)). Note that the
510 reflection is crystallographically allowed reflection, and
hence, the increasing magnetic component below TC corre-
sponds to the ferromagnetic order. The inset shows the ω-
scan profile around the 510 peak measured at T = 15 and
5 K. A significant enhancement of the Bragg peak intensity
is observed below TC, superimposed on a small nuclear Bragg
peak component remaining above TC.

For a number of reciprocal lattice points, integrated inten-
sity was measured at two temperatures T = 5 and 15 K (para-
magnetic). Magnetic component was obtained from the dif-
ference between the two temperatures, and was converted to
the squared magnetic structure factor |Fobs|2. Figure 5 shows
the distribution of |Fobs| in the hk0 plane. Finite magnetic
intensity was observed only at h + k + l = even positions,
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Table 2. List of BVs of all the irreducible representations for the Tb site in the Au70Si17Tb13 approximant with the space group Im3̄ and the
magnetic modulation vector qm = (0, 0, 0). ε = (1 +

√
3i)/2. Site indices for Tb atoms are defined as the d = 1 atom at (0, y, z), 2 at (z, 0, y),

3 at (y, z, 0), 4 at (−y,−z, 0), 5 at (z, 0,−y), 6 at (−y, z, 0), 7 at (−z, 0, y), 8 at (−z, 0,−y), 9 at (y,−z, 0), 10 at (0,−y, z), 11 at (0,−y,−z), and
12 at (0, y,−z), where y = 0.187 and z = 0.306.

IRν:
λ(:μ) d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10 d = 11 d = 12 dim

IR1:1:1 1 0 0 0 1 0 0 0 1 0 0 1 0 −1 0 0 0 −1 0 −1 0 0 1 0 0 0 −1 −1 0 0 1 0 0 −1 0 0 1
IR2:1:1 0 1 0 0 0 1 1 0 0 −1 0 0 0 0 −1 −1 0 0 0 0 1 0 0 −1 1 0 0 0 −1 0 0 −1 0 0 1 0 1
IR2:2:1 0 0 1 1 0 0 0 1 0 0 −1 0 1 0 0 0 1 0 −1 0 0 −1 0 0 0 −1 0 0 0 1 0 0 −1 0 0 −1 1
IR3:1:1 1 0 0 0 −ε 0 0 0 −ε∗ 0 0 −ε∗ 0 ε 0 0 0 ε∗ 0 ε 0 0 −ε 0 0 0 ε∗ −1 0 0 1 0 0 −1 0 0 1
IR4:1:1 0 1 0 0 0 −ε −ε∗ 0 0 ε∗ 0 0 0 0 ε ε∗ 0 0 0 0 −ε 0 0 ε −ε∗ 0 0 0 −1 0 0 −1 0 0 1 0 1
IR4:2:1 0 0 1 −ε 0 0 0 −ε∗ 0 0 ε∗ 0 −ε 0 0 0 −ε∗ 0 ε 0 0 ε 0 0 0 ε∗ 0 0 0 1 0 0 −1 0 0 −1 1
IR5:1:1 1 0 0 0 −ε∗ 0 0 0 −ε 0 0 −ε 0 ε∗ 0 0 0 ε 0 ε∗ 0 0 −ε∗ 0 0 0 ε −1 0 0 1 0 0 −1 0 0 1
IR6:1:1 0 1 0 0 0 −ε∗ −ε 0 0 ε 0 0 0 0 ε∗ ε 0 0 0 0 −ε∗ 0 0 ε∗ −ε 0 0 0 −1 0 0 −1 0 0 1 0 1
IR6:2:1 0 0 1 −ε∗ 0 0 0 −ε 0 0 ε 0 −ε∗ 0 0 0 −ε 0 ε∗ 0 0 ε∗ 0 0 0 ε 0 0 0 1 0 0 −1 0 0 −1 1
IR7:1:1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 3
IR7:1:2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
IR7:1:3 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
IR7:2:1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 −1 3
IR7:2:2 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IR7:2:3 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
IR7:3:1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3
IR7:3:2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
IR7:3:3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
IR7:4:1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 3
IR7:4:2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 −1 0
IR7:4:3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
IR7:5:1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3
IR7:5:2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
IR7:5:3 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IR8:1:1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 −1 0 0 3
IR8:1:2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
IR8:1:3 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
IR8:2:1 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
IR8:2:2 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
IR8:2:3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 0 0 1
IR8:3:1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 3
IR8:3:2 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
IR8:3:3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 −1 0
IR8:4:1 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3
IR8:4:2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 0 0 1 0 0
IR8:4:3 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

whereas no magnetic intensity was detected for h + k + l =
odd positions. Absence of the magnetic intensity at some half-
integer and other incommensurate positions were also con-
firmed. Since no extra magnetic peaks were observed other
than h + k + l = even positions, we conclude that the mag-
netic structure obeys the bcc translational symmetry. This
requires magnetic-moment configuration in all the icosahedral
clusters to be identical, being consistent with the occurrence
of the bulk ferromagnetic moment.

3.3. Magnetic structure determination

The initial magnetic structure model was obtained by using
the magnetic representation analysis [36, 37]. In the represen-
tation analysis, one assumes that the magnetic structure may
be modeled by a linear combination of magnetic basis vectors
(BVs) belonging to a single irreducible representation of the

‘�k-group’ of underlying crystallographic space group. Since
the magnetic unit cell is the same as the chemical unit cell, con-
serving the bcc centering-translational symmetry, the magnetic
modulation vector should be �qm = (0, 0, 0). For this magnetic
modulation vector, the �k-group coincides with the crystallo-
graphic space group itself (Im3̄), and magnetic representations
is reduced into six one-dimensional representations and two
three-dimensional representations. The BVs for the irreducible
magnetic representations are listed in table 2.

Using the BVs, the initial magnetic structure may be mod-
eled as:

〈�J�l,�τ ,�d〉 =
J
2

{
�a�d exp

[
−i�qm · (�l + �τ )

]
+ c.c.

}
, (2)

where 〈�J�l,�τ ,�d〉 stands for the ordered spin direction (vector) at

the �d + �τ site in the unit cell at the position�l, and �τ = (0, 0, 0)

6
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or (1/2, 1/2, 1/2), which are the centering translation vectors
for the bcc lattice. The complex magnetic moment vector�a�d is

given as a linear combination of all the BVs �Ψ
�d
ν,λ(μ) in a given

(ν-th) irreducible representation as:

�a�d =
∑
λ(μ)

Cν
λ(μ)

�Ψ
�d
ν,λ(μ), (3)

where Cν
λ(μ) is the linear combination coefficient for a given

BV, λ numbers each BV, and μ(= 1, 2, 3) specifies its compo-
nent only used for the three dimensional BVs (ν = 7 and 8).
From the table, it can be immediately seen that only the seventh
irreducible representation (ν = 7 or IR7) can be compatible
with the bulk ferromagnetic moment; all the other representa-
tions give rise to compensating antiferromagnetic structures.
Hence, we only test a magnetic structure model consisting
of the BVs in the ν = 7 irreducible representation (i.e., C7

λ(μ)
only in equation (3)) for the magnetic structure analysis. We
further assumed that the ordered moment sizes of all the
Tb3+ ions are identical; this was most simply achieved by
setting C7

λ(1) = C7
λ(2) = C7

λ(3). Consequently, five independent
coefficients (C7

λ(1) with λ = 1, . . . , 5) were used as adjustable
parameters. It should be noted that the magnetic structure
given by equations (2) and (3) breaks the original crystallo-
graphic (paramagnetic) symmetry; Hence, independent mag-
netic structures obtained by operating the crystallographic
(paramagnetic) symmetry operations form magnetic domains.
Under the assumption of equal moment size, all the 48 sym-
metry operations of Im3̄ results in eight independent magnetic
domains associated with the bulk magnetic-moment directions
[111], [1̄11], [11̄1][111̄], [1̄1̄1], [1̄11̄], [11̄1̄] and [1̄1̄1̄]. Among
them, those related by the time-reversal symmetry cannot
be distinguished by neutron diffraction, and hence we intro-
duce four parameters, vn, for the domain volume fraction,
of which only three are independent due to the condition∑

n vn = 1 for n = 1, . . . , 4. All the other parameters, includ-
ing isotropic atomic displacement and secondary extinction
parameters, were fixed to the values obtained in the crystal
structure refinement.

The least-square fitting was performed to |Fobs|2 using the
above model structure with the coefficient C7

λ(μ) and domain
volume fractions vn as adjustable parameters. The resulting
calculated optimal |Fcalc|2 is compared with |Fobs|2 in figure 6.
The satisfactorily linear correspondence can be seen in the
observed and calculated structure factors. The conventional
R-factor was 0.049, which is almost the same value as that
obtained for the crystal structure refinement shown in figure 2.
The resulting refined magnetic-structure parameters are given
in table 3. The ordered moment size is rather small as 6.9μB

compared to the free Tb3+ moment size gJμBJ = 9μB. This
may be partly due to the relatively high temperature (5 K) at
which the magnetic intensity was collected, and also partly
due to the CEF effect discussed later. It can be also seen from
the refined parameters that the volume fractions of the four
domains are mostly the same. The dominant component of the
ordered moment is given by the first BV of IR7, �Ψ7,1, to which
small contribution from the second BV �Ψ7,2 is added. Other
contributions from the other three BVs are relatively small,

Figure 6. |Fobs|2 versus |Fcalc|2 for magnetic Bragg reflections. The
magnetic |Fobs|2 were obtained by subtracting paramagnetic (T =
15 K) intensity from the low-temperature (T = 5 K) data. The
calculated |Fcalc|2 were obtained using the parameters listed in
table 3. The conventional R-factor is 0.049, whereas weighted χ2 is
0.26.

Table 3. Refined parameters for the magnetic structure at T = 5 K.
Number of magnetic Bragg reflections used in the refinement was
100 (I > 2σ), whereas number of refined parameters was 8. The
conventional R-factor is R = 0.049, whereas weighted χ2 = 0.26.

Parameter Refined value

Moment size 6.9 (μB)
Domain 1 population 0.22(4)
Domain 2 population 0.30(4)
Domain 3 population 0.24(4)
Domain 4 population 0.24
Coefficient for IR7:1 6.67(11) (μB)
Coefficient for IR7:2 −2.63(34) (μB)
Coefficient for IR7:3 0.84(25) (μB)
Coefficient for IR7:4 −0.19(68) (μB)
Coefficient for IR7:5 0.44(19) (μB)

and thus may be ignored. It may be noted that �Ψ7,1 gives rise to
the bulk ferromagnetic moment, whereas �Ψ7,2 corresponds to
strictly antiferromagnetic order, and hence cannot give rise to
the bulk ferromagnetic moment. Both �Ψ7,1 and �Ψ7,2 have their
ordered magnetic moment being in the local mirror plane at the
Tb3+ sites. Hence, we can conclude that the ordered magnetic
moments are dominantly in the local mirror plane.

The refined magnetic structure in one icosahedral cluster
at the body-center position is illustrated in figure 7. As noted
above, the dominant components of the ordered moments are
in the local mirror planes, which is depicted by the semi-
transparent rectangular planes in the figure. Ordered moment
direction is tilted from the crystallographic axis (either �a,�b,
or �c, depending on the Tb3+ site) due to the finite �Ψ7,2 com-
ponent, and tilting angle is estimated as ∼ 22◦ from the cor-
responding (nearest) crystallographic axis. Or, if we measure
the angle between the moment direction and the pseudo 5f-
axis, which is the axis passing through the origin and the
Tb3+ site, then the moment direction is approximately 80
degrees away from the axis. Hence, we can conclude that the
moment direction is nearly perpendicular to the local pseudo

7
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Figure 7. (a) Magnetic structure proposed in the present study. The
spin configuration of the domain 1 is illustrated on the icosahedral
spin cluster at the body center position. (b) Magnified view of the
single cluster with the emphasis on the three rectangular planes on
which the spins have uncompensated ferromagnetic components.
Each rectangular unit has net moment along the crystallographic a-,
b- or c-axis, resulting in the net ferromagnetic moment of the
icosahedral cluster along the [111] direction for this domain. One of
the (pseudo) 5f-axis is depicted by the dashed lines. It may be noted
that all the axes from the center of the (pseudo) icosahedron to the
vertices are (pseudo) 5f-axes.

5f-axis. Apparently, the refined magnetic structure is non-
collinear and non-coplanar, as found in the antiferromagnetic
Au72Al14Tb14 approximant, and cannot be a simple collinear
ferrimagnetic structure envisaged earlier.

Detailed comparison of the presently refined magnetic
structure to that obtained for Au72Al14Tb14 approximant may
be informative. First, the ordered moment direction presently
determined in the ferrimagnetic Au70Si17Tb13 approximant is
mostly parallel or antiparallel to that observed in the antifer-
romagnetic Au72Al14Tb14 approximant; only approximately 5
degrees (or 175 degrees when antiparallel) difference in the
ordered moment directions in the two compounds. Hence,
we can speculate that the local anisotropy direction, possi-
bly due to the local CEF, is mostly the same. Secondly, on
the other hand, there are apparent difference in the ordered
moment arrangement in a single icosahedral cluster; the mag-
netic moments at the opposite vertices are parallel (ferro-
magnetic) in the present Au70Si17Tb13, in striking contrast to
the antiparallel (antiferromagnetic) arrangement found in the
Au72Al14Tb14 approximant. This suggests delicate balance of
the exchange coupling results in the decisive difference in
the bulk magnetic properties. We further note that the non-
coplanar ferrimagnetic order in the present Au70Si17Tb13 does
not break the inversion symmetry around the cluster center,
which is also in striking contrast to that in the Au72Al14Tb14

approximant.

3.4. Neutron inelastic scattering spectra

The magnetic structure analysis indicates that the ordered
moment of Tb3+ is in the local mirror plane, and is nearly
perpendicular to the pseudo 5f-axis. This suggests exis-
tence of strong easy-axis anisotropy along this direction for
the Tb3+ magnetic moment. For the rare-earth compounds,
the anisotropy usually originates from the CEF splitting of
the ground J-multiplet for the open-shell 4f electrons. Such
energy splitting can be most effectively studied by neutron

inelastic scattering, and hence we have performed the neutron
inelastic scattering experiment on the powder sample of the
Au70Si17Tb13 approximant.

Neutron inelastic scattering was measured at several tem-
peratures in the range 3 < T < 100 K. As the representa-
tive results, figures 8(a)–(c), (e) and (f) show the inelastic
spectra with three different incident neutron energies Ei =
13.29, 70.97 and 200 meV. No significant magnetic sig-
nal can be seen in the high energy regions as shown in
figures 8(a), (b), and (e) (see also figure S1 in the supplemen-
tal material (https://stacks.iop.org/JPCM/32/415802/mmedia)
for constant-Q spectra at two representative Q positions up
to 40 meV); only weak dispersive signal is seen up to �ω =
40 meV in the high-Q region (Q > 4 Å−1), which may be a
phonon contribution. Strictly speaking, the absence of scatter-
ing intensity in the high-energy and low-Q region could only
be concluded within our experimental accuracy; any weak col-
lective excitations localized in the (�Q, �ω)-space, either mag-
netic or phononic, would give rise to further weaken intensity
by powder averaging, falling down below our detection limit.
In addition, the phonon origin of the dispersive mode in the
high-Q region is only speculative. To clarify these points,
future single crystal neutron inelastic scattering with prefer-
ably polarization analysis may be necessary. On the other
hand, in the low energy region shown in figures 8(c) and (f),
inelastic excitation can be clearly seen around �ω � 4 meV.
This is the only significant inelastic signal we could observe
in the present inelastic-scattering experiment. We further note
that the spectra at the paramagnetic temperature (15 K) and
ordered temperature (3 K) are mostly the same.

The Q-dependence of the �ω � 4 meV peak was checked
by taking an energy integration of the inelastic spectra in 2 <
�ω < 6 meV. The results for the selected temperatures T = 3,
15, 30 and 50 K are shown in figure 8(d). It is clear in the
figure that the scattering intensity is almost independent of Q
except for the trivial Tb3+ magnetic form factor (indicated by
the solid lines) [38]. This strongly suggests magnetic origin of
the broad inelastic peak observed at �ω � 4 meV. It should be
noted that the Q dependence is weak even at T = 15 K, which
is quite close to the ferrimagnetic transition temperature TC.
This suggests that inter-site spin correlations are not significant
in this Au70Si17Tb13 approximant, and that the broad inelastic
peak at �ω � 4 meV may likely originate from the local single-
site transition. As speculated in the beginning of this subsec-
tion, for the 4f-electrons of Tb3+, such local energy levels
may most likely be the CEF splitting levels. Nonetheless, weak
wiggling of the Q-dependence around the squared form factor
curve may be seen in figure 8(d), leaving a slight possibility
of inter-site correlations, either magnetic or phononic, for the
�ω � 4 meV mode. To exclude such possibility, future single
crystal neutron inelastic scattering, preferably with polariza-
tion analysis to separate out the phonon contribution, is again
desired.

To better visualize the temperature dependence of the
inelastic scattering, Q-integrated energy spectra were obtained
with the integration range 1.0 < Q < 1.5 Å−1. The resulting
energy spectra for the temperatures T = 3, 15, 30, and 50 K
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Figure 8. (a)–(c), (e) and (f ) Neutron inelastic scattering spectra observed with the three different incident energies Ei = 13.29, 70.97, and
203 meV. The measurement temperatures were 3 K for (a), (e) and (f ), and 15 K for (b) and (c). (d) Q-dependence of the inelastic intensity
integrated in a range 2 < �ω < 6 meV measured at T = 3 K, 15 K, 30 K and 50 K. The solid lines stand for the square of the magnetic form
factor for the Tb3+ ion scaled to the observations. The background was estimated by measuring the empty Al-can, and was subtracted from
all the data except (a) where background subtraction was not performed.

are shown in figure 9(a). As already noted above, at the low-
est paramagnetic temperature T = 15 K, there appears only a
single broad peak around �ω � 4 meV. It should be noted that
the energy resolution for this experiment is Δ�ω � 0.4 meV
(FWHM) at the elastic position, and hence, the width of
the inelastic peak cannot be explained by the instrumental
resolution, but has to be regarded as intrinsic. Indeed, the
elastic peak is much sharper compared to the inelastic signal.

As the temperature is increased, the broad peak shifts to lower
energies with drastic increase of the scattering intensity in
the low energy region (�ω < 4 meV). On the other hand, at
the base temperature, despite the magnetic ordering, the spec-
trum shows only subtle shift to the higher energy. By convert-
ing the observed spectra to the imaginary part of the gener-
alized susceptibility Imχ(Q, �ω), we found clear decreasing
behavior of Imχ(Q, �ω) for increasing temperature (see figure

9
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Figure 9. Atom configuration around the Tb3+ ion. (a) A view along the pseudo 5f-axis. (b) A view normal to the mirror plane. Yellow, blue
and violet spheres denote Au, Si and Tb atoms, respectively. The fractionally occupied sites are indicated by shared colors on spheres. The
red arrows indicate ordered moment direction determined in the magnetic structure analysis, whereas the dotted line indicate local mirror
plane around the Tb3+. Directions of the pseudo 5f-axis are shown in the figure, too.

S2 in the supplemental material). Hence, the corresponding
magnetic excitation does not follow the Bose-temperature
factor.

For local excitations, such as the CEF excitations, the
broadening is often attributed to finite lifetime of the ground
and excited states due to scattering by other degree of freedom,
such as phonons or conduction electrons. The present experi-
ment shows that the broadening occurs even at the lowest tem-
perature where phonons of a few meV are already suppressed
significantly, and hence, the phonon scattering is unlikely ori-
gin of the CEF peak broadening. The hybridization and/or spin
scattering by conduction electrons may give rise to the broad-
ened CEF peaks at very low temperatures, however, we found
that the elastic peak is mostly resolution limited, indicating
negligible effect of such hybridization. These results suggest
that a certain mechanism other than the shortened lifetime is
in effect. In addition, the increasing behavior of the inelas-
tic scattering intensity at higher temperatures is unusual, since
in general the inelastic scattering intensity between the CEF
splitting levels decreases at high temperatures, as it depends
on the population of the ground state. Hence, although the Q-
independence strongly indicates that the inelastic signal is of
the CEF origin, above issues suggest further detailed analysis
is in order to conclude the CEF origin. In the next section, we
propose a possible microscopic CEF model which explains the
broadness of the inelastic peak and its intriguing temperature
dependence, and will show that such a model is also consistent
with the ordered moment direction determined in the previous
subsection.

3.5. Point-charge analysis for the CEF excitations

Quite often, the CEF excitations are analyzed using the
operator equivalent technique [39]; the CEF Hamiltonian
is rewritten in terms of the Stevens’ operator equivalents
Ôq

k with their coefficients as adjustable parameters: HCEF =∑
k,qBq

kÔq
k (k = 2, 4, 6 and q = −k,−k + 1, . . . , k). For a rare-

earth ions at a high-symmetry site, the condition that the CEF

Figure 10. (a) Inelastic neutron scattering spectra at T = 3, 15, 30,
50 K in the Au70Si17Tb13 approximant. The calculated CEF
excitation spectra using the point-charge model incorporating
chemical disorder are platted by the solid lines for the corresponding
temperatures. (b) Frequency of appearance of the CEF excited states
(ES) as a function of energy, estimated in the present point-charge
calculation. Most of the ESs are approximately doubly degenerated,
except the 4th, 5th and 6th ESs. There are 5000 variations for each
ES, corresponding to the 5000 different atomic configurations
around the Tb3+ ions assumed in the present point-charge
calculation. The drawings are produced by VESTA [47].

Hamiltonian has to be invariant under point group opera-
tions greatly reduces the number of non-zero coefficients, i.e.,
adjustable parameters. However, in the present Au70Si17Tb13

approximant, the Tb3+ site only has a mirror symmetry m (Cs),
and hence, only one condition Bq

−k = Bq
k is imposed even the

quantization axis is appropriately taken. Furthermore, there
are several sites with fractional Au/Si occupancy in the vicin-
ity of the Tb3+ sites (see figure 10). This introduces local
mirror-symmetry breaking, and consequently, different CEF
potential for different Tb3+ site depending on the local Au/Si
arrangement at the fractional sites. Hence, with the Stevens’
operator equivalent method, we have to deal with all the Bq

kÔq
k

terms, and much complicatedly, they have to be taken as
site dependent. This method, hence, includes a huge number
of adjustable parameters, and practically is impossible to be
pursued.
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To reduce the adjustable parameter number, as well as to
incorporate with the site-dependent CEF potential, we, here,
use the point-charge model for the CEF energy level calcu-
lation taking account of the statistically distributed Au and
Si elements at the fractionally occupied sites. The details of
the calculation for the energy levels and corresponding 4f
wavefunctions are given in appendix A.

In the present CEF calculation, it is assumed that the frac-
tional sites (Au6/Si6, Au7/Si7, and Au8/Si8 sites listed in
table 1) within the radius Rin = 6 Å from the center Tb3+ atom
are statistically occupied either by Au or Si (or left vacant) with
the probability given by the occupancy. For the fractional sites
between Rin < R < Rmax = 30 Å, we use occupancy-weighted
averages of Au and Si valences. In total nconf = 5000 atomic
configurations were generated.

For the nconf atomic configurations, the CEF energy levels
Ei

n and corresponding wavefunctions |n〉i were calculated,
where i numbers each configuration. The configuration-
averaged scattering intensity for the transitions between the
CEF splitting levels from a powder sample may be given as:

(
d2σ

dΩ dEf

)
inel

=
2
3

(γr0)2

[
1
2

gJ fmag(Q)

]2 N
nconf

∑
i

∑
nmα

× exp(−Ei
n/kBT)

Zi
|〈m|Ĵα|n〉i|2δ(�ω − Ei

m +Ei
n),

(4)

whereα = x, y, or z, kB is the Boltzmann constant, γ = −1.91,
and r0 is the classical radius of the electron. Zi is the parti-
tion function for the ith configuration. N and fmag(Q) are the
number and the magnetic form factor [38] of the Tb3+ ions,
respectively. As seen above, we ignored intrinsic line widths
of the CEF levels; this point will be discussed later. The cal-
culated S(Q, �ω)inel is further convoluted by the instrumental
resolution function estimated from the elastic peak shape.

To avoid any possible complexity originating from finite
internal field due to the magnetic order, least square fitting
was performed to the Q-integrated spectra measured at the
paramagnetic temperatures T = 15, 30 and 50 K with the
point-charge parameters qAu, qSi and qTb (for Au, Si and Tb,
respectively) being adjustable parameters. In the fitting, we
assumed that the point charges for one element species are the
same regardless of their site symmetry. The resulting optimal
point-charge parameters are qAu = 0.223(3), qSi = 0.578(3),
and qTb = 0.00(5). The calculated inelastic spectra with the
optimal charge parameters are shown by the solid lines in
figure 9(a). The distribution of CEF levels obtained for 5000
different atomic configurations is also shown in figure 9(b).
It can be seen that the inelastic spectra in the paramagnetic
temperature range up to 50 K are reasonably reproduced by
the point-charge model with the statistically distributed Au
and Si atoms. By comparing figures 9(a) and (b), one finds
that the broad peak corresponds to the transition from the
quasi-degenerated ground- and first-excited states to the quasi-
degenerated second- and third-excited states. It should be
emphasized that the characteristic broad peak shape of the
inelastic excitation at the low temperature T = 15 K is well

reproduced in the calculation; this indicates that the broadness
is attributable to the distribution of the second excited states
due to the spatial fluctuation of the local CEF. On the other
hand, it is found that such local CEF fluctuation does not affect
ground state pseudo doublet, and hence, the elastic peak is still
resolution limited even with the chemical disorder.

At high temperatures, we note that slight discrepancy
between the calculation and observation is found in the
quasielastic region around �ω = 0. This may be due to the sim-
plification used in the fitting; the intrinsic width was assumed
to be negligible in the entire temperature range in order to
reduce the number of adjustable parameters. Certainly, at high
temperatures the lifetime of the CEF levels shortens, and hence
quasielastic tail should naturally appear in reality.

Using the optimal point-charge parameters, we estimate
the principle axes of the magnetic moment distribution by
diagonalizing the following expectation value matrix:

⎛
⎜⎝
〈0|JxJx|0〉i 〈0|JxJy|0〉i 〈0|JxJz|0〉i

〈0|JyJx|0〉i 〈0|JyJy|0〉i 〈0|JyJz|0〉i

〈0|JzJx|0〉i 〈0|JzJy|0〉i 〈0|JzJz|0〉i.

⎞
⎟⎠ (5)

The eigenvector with the largest eigenvalue (i.e., largest
moment direction) is obtained for each atomic configura-
tion, and then averaged moment direction was obtained
as 〈�m〉‖(0, 0.76,−0.65) for the d = 1 site. The direc-
tion may be compared to the magnetic moment direction
(0, 6.67,−2.63)μB (for the d = 1 site) determined in the mag-
netic structure analysis. Having the crudeness of the point-
charge model in mind, we think they are in reasonable agree-
ment showing only 20◦ difference.

The average value of the quantization-axis component of
the moment (1/nconf)

∑
i〈0|JzJz|0〉i is estimated as 25 (after

resetting the quantization axis to the above averaged moment
direction), which corresponds to 7.5μB for the ordered
moment. This reduced moment size is due to the spatial fluc-
tuation of the local CEF; some Tb3+ has much smaller quanti-
zation axis component. It may be noteworthy that this moment
reduction is in good agreement with the ordered moment size
estimated in the magnetic structure analysis, further support-
ing that the chemical disorder is essential in the Au70Si17Tb13

approximant.
We also estimate the averaged coefficients q̄kq =

1/nconf
∑

i qi
kq for the spherical harmonic expansion of

the CEF potential defined as equation (A2). Dominant
terms of the estimated atom-configuration-averaged q̄kq are
q̄2−2 = q̄22 = −0.005 and q̄20 = −0.007. (|q̄kq| < 0.002 for
other k and q.) It can be clearly seen that the dominant term in
the spherical harmonic expansion is q̄20, which corresponds to
the B0

2 term in the Stevens’ operator notation (see appendix B
for the relation between qkq and Bq

k). It is well known that the
point-charge model is not realistic at all, and in reality we need
to take account of several other effects, such as hybridiza-
tion and/or covalency. Hence, the estimated point-charge
parameters have no physical meanings. Nevertheless, the
obtained averaged coefficients q̄kq have quantitative physical
meanings, and clearly indicate that the dominant term in the

11



J. Phys.: Condens. Matter 32 (2020) 415802 T Hiroto et al

CEF Hamiltonian is the second order uniaxial term (q̄20 or
B0

2). This is in agreement with the earlier two CEF studies.
There is, however, stringent discrepancy in the present and

the earlier studies of CEF in the quasicrystal approximant; the
quantization (easy-) axis was inferred to be along the pseudo
5f-axis in the earlier studies, whereas it is nearly perpendicular
to the pseudo 5f-axis in the present Au70Si17Tb13. In this study,
both the magnetic-structure and CEF analyses consistently
conclude the easy-axis direction to be nearly perpendicular to
the pseudo 5f-axis. Therefore, we believe that the pseudo 5f
symmetry is not the main symmetry that dominates the CEF
Hamiltonian, but it is a rather weak uniaxial anisotropy in the
mirror plane perpendicular to the pseudo 5f-axis that gives rise
to the dominant B0

2 term.
Further note may be given by comparing the peak shape

observed in the present Au70Si17Tb13 approximant to the one
observed in Cd6Tb [31]. We found very broad inelastic peak
in the present study, and attributed it to the chemical disor-
der inherent to this ternary approximant. On the other hand,
the peak width is much narrower in the binary Cd6Tb approx-
imant, where the chemical disorder is less significant. This
contrasting peak widths for the CEF peaks in the binary and
ternary approximant further support the decisive role of the
chemical disorder for the CEF Hamiltonian in the approxi-
mant crystals. The chemical disorder may also explain sub-
tle change of inelastic spectrum upon magnetic ordering; the
possible splitting of pseudo-degenerated ground- and first-
excited-states (and related splitting of second- and third-
excited states) due to the finite internal field in the ordered
phase may be smeared out by the broadening due to the chem-
ical disorder, resulting in the subtle shift of broad peak only,
as observed in the experiment.

A final note may be given on the CEF wavefunctions. Since
O0

2 ∝ Ĵ2
z , the large (and negative) q̄20 (or B0

2) infers that the
CEF wavefunctions mainly consists of |Jz〉 (with larger J2

z cor-
responding to the lower energy states). Hence, the transitions
between the same or adjacent levels may be dominantly vis-
ible in neutron inelastic scattering, due to its selection rule
ΔJz = 0,±1. Consequently the calculated spectral weight is
largely located in the low energy region (�ω < 10 meV) as
shown in figure 9(a). This is consistent with the observed
inelastic spectrum where no significant magnetic signal was
observed in high energy region (figure 8(b)), while the point-
charge calculation suggests existence of the high energy CEF
levels (figure 9(b)).

4. Conclusions

Neutron elastic and inelastic scattering experiments have been
performed to elucidate the microscopic magnetic properties of
the quasicrystal approximant Au70Si17Tb13. Using single crys-
tal neutron diffraction, the magnetic structure was found to be
of non-collinear and non-coplanar spin order, being quite sim-
ilar to the whirling spin order found in the antiferromagnetic
counterpart Au72Al14Tb14. The neutron inelastic scattering
clearly shows that there is only one broad magnetic-excitation
peak at low temperatures. The CEF analysis using the point-
charge model taking account of the chemical disorder indicates

that the dominant CEF parameter in the single-site Hamilto-
nian is B0

2, representing dominant uniaxial anisotropy for the
Tb3+ in this compound. Combining the result of magnetic
structure and CEF analyses, it is concluded that the CEF gives
rise to the predominantly uniaxial anisotropy axis in the local
mirror plane, being nearly perpendicular to the pseudo 5f-axis,
in the Au70Si17Tb13 quasicrystal approximant.
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Appendix A: Point charge calculation of the CEF
Hamiltonian with chemical disorder

For the present CEF calculation, the atoms within a radius of
R < Rmax from the center Tb3+ site are included. To generate
list of atom positions in this range, crystallographic parameters
determined in the present structure analysis (given in table 1)
were used. For the point charge parameters, we assumed the
same charge for the same element, regardless of the differ-
ence in the crystallographic site symmetry. To take account of
the chemical disorder resulting from the fractionally occupied
sites, we assume statistical distribution of atoms at the frac-
tional sites in a certain range R < Rin(< Rmax) around the cen-
ter Tb3+ ion. Specifically, nconf configurations of atoms were
generated in which fractional sites are occupied by either Au or
Si (or vacancy for the Au8/Si8 site) with the appearance prob-
ability given by the occupancy parameter; e.g. a Au6/Si6 site
in this R < Rin range is assumed to be occupied by Au with
63% probability, or by Si with 37% probability. For the atoms
farer than R � Rin, point charges at the fractionally occupied
sites are assumed to be occupancy-weighted averages of indi-
vidual elemental charges, e.g., q = 0.63qAu + 0.37qSi for the
Au6/Si6 sites in this range.

The electrostatic potential from the surrounding point
charges (qi

j with j = 1, . . . p) situated at the positions
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(Rj, θj,φj) in the spherical coordinate for the ith atomic
configuration is then calculated as usual [40, 41],

vi
CEF(r, θ,φ) =

∑
k=0,2,4,6

k∑
q=−k

rkqi
kqc(k)

q (θ,φ), (A1)

where,

qi
kq =

√
4π

2k + 1

p∑
i= j

qi
jc

(k)∗
q (θ j,φ j)

Rk+1
j

, (A2)

and c(k)
q =

√
4π/(2k + 1)Y (k)

q (θ,φ) with Y (k)
q being the spher-

ical harmonic function of the kth rank. For the CEF poten-
tial, the matrix elements (−e)〈JJz|vi

CEF|JJ′
z〉 were calculated,

where e stands for the electron charge. As the expectation val-
ues of the rn operator for the Tb3+4f wavefunction, we use
〈r2〉 = 0.2302 Å2, 〈r4〉 = 0.1295 Å4, and 〈r6〉 = 0.1505 Å6,
obtained using the Dirac–Fock calculation [38]. The matrix
is then diagonalized to obtain the eigenfunctions for the ith
configuration |m〉i, where m indexes the CEF levels. The eigen-
functions were used in the calculation of the neutron inelastic
scattering cross-sections described in the main text.

Appendix B. Some notes on the conventions in
CEF calculations

The matrix elements of equation (A1) may be rewritten in
terms of the spherical tensor operator (or Racah operator) Ô(k)

q

so that they coincide for the ground J-multiplet [42, 43]:

(−e)qkq〈rk〉〈JJz|c(k)
q |JJ′

z〉 = B(k)
q 〈JJz|Ô(k)

q |JJ′
z〉. (B1)

The spherical tensor operator may be obtained from its maxi-
mum state:

Ô(k)
k =

(−1)k

2kk!
[(2k)!]1/2(Ĵ+)k, (B2)

and the commutation relation:

[Ĵ±, Ô(k)
q ] =

√
k(k + 1) − q(q ± 1)Ô(k)

q±1. (B3)

Using the reduced matrix elements for c(k) and Ô
(k)

, B(k)
q and

qkq are related as:

B(k)
q = (−e)qkq〈rk〉 〈J‖c(k)‖J〉

〈J‖Ô(k)‖J〉
. (B4)

The reduced matrix element for Ô
(k)

is given as:

〈J‖Ô(k)‖J〉 = 1
2k

[
(2J + k + 1)!

(2J − k)!

]1/2

. (B5)

The reduced matrix elements of c(k) can be calculated as
prescribed in the standard text [40, 44].

The Stevens’ operator equivalents Ôq
k used frequently in

the crystal field analysis are based on the tesseral harmon-
ics, instead of the spherical harmonics, and in addition, the
some factors are dropped [39, 45]. The relation between the
Racah operator equivalents Ô(k)

q given above and the Stevens’

operators Ôq
k are given in reference [46].
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