This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy. Close this notification
Paper

Quantitative comparison of Anderson impurity solvers applied to transport in quantum dots

, , and

Published 2 December 2019 © 2019 IOP Publishing Ltd
, , Citation Bruno Max de Souza Melo et al 2020 J. Phys.: Condens. Matter 32 095602 DOI 10.1088/1361-648X/ab5773

0953-8984/32/9/095602

Abstract

We study the single impurity Anderson model (SIAM) using the equations of motion method (EOM), the non-crossing approximation (NCA), the one-crossing approximation (OCA), and Wilson's numerical renormalization group (NRG). We calculate the density of states and the linear conductance focusing on their dependence on the chemical potential and on the temperature paying special attention to the Kondo and Coulomb blockade regimes for a large range of model parameters. We report that some standard approximations based on the EOM technique display a rather unexpected poor behavior in the Coulomb blockade regime even at high temperatures. Our study offers a critical comparison between the different methods as well as a detailed compilation of the shortcomings and limitations due the approximations involved in each technique, thus allowing for a cost-benefit analysis of the different solvers that considers both numerical precision and computational performance.

Export citation and abstract BibTeX RIS

Access this article

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

Login

IOPscience login

Find out more about journal subscriptions at your site.

Purchase from

Article Galaxy
CCC RightFind

Purchase this article from our trusted document delivery partners.

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutional subscribers have access to the current volume, plus a 10-year back file (where available).

Please wait… references are loading.
10.1088/1361-648X/ab5773