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1.  Introduction

Thirty years of theoretical modeling of cuprates demon-
strating high-temperature superconductivity by separating one 
‘main’ interaction failed to explain their properties. Obviously 
this points out that simultaneous interplay of charge, spin and 
lattice degrees of freedom is crucial. Recently such complex 
approach was successfully applied to quasi-1D cuprates: 
experimental results on resonant inelastic x-ray scattering 
turned out to be in complete accordance with the theoretical 

description based on simultaneous consideration of electron 
relaxation and electron–phonon interaction (EPI) [1].

Here we consider photoemission from a system modeling 
cuprate high-temperature superconductors taking into account 
joint relaxation of two fields—a field of correlated electrons 
and phonon field—coupled by strong long-range EPI. The 
choice of the model is mainly due to the results of the ARPES 
experiments on superconducting cuprates, which have made 
a significant breakthrough in recent years. Broad bands of 
Gaussian shape [2–5] and ‘vertical dispersion’ patterns [6–10] 
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were observed in ARPES spectra of cuprates universally on 
both sides of cuprates’ phase diagram (in hole- and electron-
doped systems) as well as in undoped parent compounds 
[11]. Progress in qualitative theoretical description of broad 
bands in ARPES spectra of cuprates was achieved due to con-
sideration of joint influence of electron correlations (in the 
frames of t–J model) and strong Holstein (short-range) EPI 
resulting in small polaron (SP) formation [12, 13]. However, 
‘vertical dispersion’ patterns do not appear in this approach. 
Consideration in the frames of Hubbard model or other models 
without strong EPI [7, 9, 10] yielded the low-energy part of 
the ARPES band in good agreement with the experiments at 
essential doping but did not yield the broad band of Gaussian 
shape observed experimentally well below the Fermi energy 
at low doping [2–5, 11].

Simultaneous presence of broad Gaussian bands and ‘ver-
tical dispersion’ emerges in a model with strong long-range 
(Frohlich) EPI [14] favoring large polarons (LP), whose 
radius is larger than the lattice constant [15]. The main dis-
tinction of systems with strong long-range EPI at high carrier 
concentration is coexistence of autolocalized and delocal-
ized carriers [14] due to large size of the autolocalized state 
(AS). Such coexistence influences strongly the properties of a 
system. In particular, the electron subsystem can participate 
in the system relaxation after photoemission. The relaxation 
pathways are different at photoemission from AS and from 
delocalized state (DS), with different energy cost. Since 
according to Pauli exclusion rule ASs and DSs occupy dif-
ferent regions in the momentum space [14] their coexistence 
displays itself in ARPES spectrum as presence of ‘vertical 
dispersion’ universally observed in superconducting cuprates 
[6–10]. Reconstruction of the phonon vacuum during relaxa-
tion when initial or final carrier state or both these states are 
autolocalized results in broad ARPES bands of Gaussian 
shape [16]. Therefore below we consider photoemission at 
arbitrary carrier concentration in a system with strong long-
range EPI generalizing the relaxational approach [13, 16–20] 
to higher doping case.

However, to obtain the ARPES spectrum features being 
in quantitative agreement with the experiments on cuprates 
simultaneous taking into account carriers correlations and 
strong Frohlich EPI is necessary. Therefore here we develop a 
relaxational approach based on joint results of Hubbard or t–J 
model with the model of strong long-range EPI. As is shown 
below the dispersion of correlated carriers can be taken into 
account in the effective mass approximation at considering 
autolocalization of carriers with momentums near extrema of 
the Hubbard bands. The approach under consideration allows 
simple analytical calculation of high-energy part (HEP) of the 
ARPES spectrum according to Fermi Golden rule. The sug-
gested method takes advantages of using the coherent states 
basis for description of the phonon field state in AS [14, 16, 
19, 21] in the following way. The phonon vacuum reconstruc-
tion during the system relaxation after photoemission from AS 
(or at formation of AS by a photohole) is accompanied with 
radiation of different number of phonons in different acts with 
Poissonian distribution of the probability; the average number 
of phonons is determined by a change of the phonon vacuum 

energy [16, 19]. The energy conservation equation rigidly ties 
the number of radiated phonons with the binding energy of 
photoelectron.

Only two system characteristics are necessary for the 
calculation: dispersion of the correlated carriers and effective 
dielectric constant 1/ε∗ = 1/ε∞ − 1/ε0 characterizing the 
strength of the long-range EPI [22]. The former can be taken 
either from theoretical models (for example, t–J model [23] 
or Hubbard model [9]) or extracted from ARPES spectrum. 
Indeed, below we show that in highly doped cuprates in certain 
area of the momentum space the ARPES band dispersion fol-
lows the ‘bare’ (without EPI) carrier dispersion; for undoped 
or slightly doped with holes cuprates this was demonstrated 
earlier [12]. The latter, in principle, can be calculated using 
static and high-frequency dielectric constants. However, some 
renormalization of the EPI strength due to its interplay with 
carrier correlations caused by their strong Coulomb interac-
tion can occur [24]. Besides, the value of ε∞ is determined 
from optical spectra ambiguously: supposing the mid-infrared 
band has a contribution from EPI, ε∞ should be taken from 
Reε(ω) spectrum above the mid-infrared band frequency. The 
value obtained (about 3 [25]) differs from one taken above 
the phonon frequencies but below the mid-infrared band fre-
quency. Therefore here we use effective dielectric constant 
deduced from ARPES spectrum of undoped or low-doped 
cuprates.

Predicted energetic and momentum position and line-width 
of the features in the HEP of ARPES spectrum of cuprates 
are in good quantitative agreement with the experiments at 
any doping with both types of carriers [2–11]. In particular, 
the momentum position of a high-energy anomaly (HEA) and 
the double scale of energy of HEA in electron doped cuprates 
[9, 10] with respect to that in hole doped ones [6–8] receive 
natural explanation. Thus, combination of two models—Hub-
bard or t–J model with the model of strong Frohlich EPI—
generates new approach that results in significantly improved 
agreement of calculated HEP of ARPES spectrum of cuprates 
with experiments. The approach suggested modifies our 
notion about the ground state of cuprates (in the normal state) 
by demonstrating coexistence of autolocalized and delocal-
ized carriers. In future works this finding may help fitting 
better temperature and doping dependence of other charac-
teristics of cuprates (e.g. transport, optical and magnetic). 
The results obtained allow us also making some notes on 
such long discussed problems as appearance/disappearance of 
HEA in some cuts in different BZs at photon energy change 
[26–28] (sometimes considered as confirmation of matrix-ele-
ments nature of HEA) and charge ordering in doped cuprates 
[29–34].

The article is organized as following. First we discuss the 
methods that allow considering high carrier concentrations in 
a system with simultaneous presence of strong electron cor-
relations and strong long-range EPI and develop analytical 
method to calculate the HEP of ARPES spectrum from such 
systems. Then it is applied to systems doped with electrons 
and holes to any doping level including undoped system. 
The calculated spectra are compared with the experimental 
ARPES spectra of cuprates from undoped up to overdoped 
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with electrons or holes, good quantitative agreement is dem-
onstrated. Then we briefly discuss the implications of the 
results obtained.

2.  Methods

The complexity of the system under consideration demands 
applying a non-trivial combination of several models and 
methods and some their development to reach the goal of the 
study. We start from the results of the Hubbard model [9] or 
t–J model [23] for the correlated carriers dispersion in the 
lower and upper Hubbard bands and consider autolocaliza-
tion of carriers with the momentums near the Hubbard bands 
extremes. Variational method is used to calculate the binding 
energy of the AS and the energy of the deformed phonon 
vacuum in dilute and high-density systems; in the average 
energy functional the electronic correlations are taken into 
account in the effective mass approximation [22]. The vector 
of the system state is written in adiabatic approximation with 
using coherent states representation for the phonon field [21]. 
Applying this representation makes possible analytical calcul
ation of the HEP of the ARPES spectrum according to Fermi 
Golden rule [16].

The ground state of the system at varying carrier density 
(in the normal state) is determined by the distribution function 
for systems with strong Frohlich EPI constructed with Gibbs 
method [14] and modified here to take into account compress-
ibility of the large bipolaron liquid. Its main feature is possible 
coexistence of autolocalized and delocalized carriers occu-
pying different regions in the momentum space. As a result 
photoemission from these different regions of the momentum 
space has different energetic cost. It is calculated according to 
the energy conservation equations including the change in the 
electron and phonon fields energy due to post-photoemission 
relaxation.

2.1.  A model of system with strong electron correlations  
and strong Frohlich EPI and methods of its analysis

As strongly correlated systems are under intensive discussion 
for many years let us begin with brief introduction concerning 
systems with LP. The usage of terms LP and SP in literature 
is ambiguous: sometimes LP is understood as weak-coupling 
polaron (delocalized carrier state) and SP as strong-coupling 
(localized) one. We use more traditional terminology in which 
the LP is AS of a charge carrier, whose size is larger than 
the unit cell [22, 35] whereas the SP is localized inside the 
unit cell. LP can be studied in continual approximation, it can 
move coherently with sufficiently high mobility as distinct 
from SP [15, 36]. Although the LP’s ground state properties 
were calculated in late forties [22, 35], experimental observa-
tion of LP was complicated due to necessity of doped strongly 
polarizable ionic crystals of high quality to prevent carrier 
trapping by defects. The first success in experimental test of 
the polaron theory was achieved by Feynman and Thornber. 
They found a system needed—oxide covering of cold cathode 
devices—and managed to calculate giant losses of carriers 

energy in them (with a path integral method) [37] consistent 
with experiments. Similar result was later obtained in LP 
model considering Cherenkov radiation of the polarization 
waves [21].

Doped cuprates are systems where polarons can occur, 
and broad bands observed in their optical absorption and 
ARPES spectra [2–5, 11, 15, 38, 39] were discussed in this 
context. However, the initial LP theory considered polariza-
tion field as classical one with the energy equal to its average 
value (doubled binding energy [22]). As a result the width of 
the predicted band in optical absorption spectrum caused by 
LP photodissociation was determined only by electron wave 
function in LP [15]. Taking into account quantum fluctuations 
of the phonon field in LP with using quantum coherent states 
basis [21] allowed analytical calculation of broad Gaussian 
bands in optical conductivity [19] and ARPES spectra [16], 
resulting from generation of different number of phonons in 
different acts of the LP photodecay with Poissonian prob-
ability. The optical conductivity band caused by carrier pho-
toexcitation into excited state in the polaronic polarization 
potential well was calculated with other methods [20, 40]. 
Bands caused by LP photodecay and photoexcitation along 
with Drude contribution form optical conductivity spectrum 
of cuprates (below the charge-transfer band) close to ones 
observed experimentally [38, 39], their partial spectral weight 
at different doping are to be calculated. Finally, the region 
where LP and large bipolaron exist is limited in temperature 
[14, 41]. Together with their enhanced effective mass this can 
cause an upturn in the underdoped cuprates’ resistivity (in 
normal state) at lowering temperature [42] like one observed 
experimentally [23].

Now let us discuss a model of a system with strong car-
rier correlations and strong Frohlich EPI and its applicability 
to cuprates demonstrating high-temperature superconduc-
tivity. LP is formed by a carrier at strong long-range EPI, if 
the ‘bare’-carrier bandwidth W (i.e. without EPI) exceeds the 
carrier average kinetic energy in the polaron [15, 36] which is 
equal to the polaron binding energy Ep [22]. In the opposite 
case as well as at the dominance of short-range EPI the SP 
is formed [15, 36]. Let us check which of these conditions 
is satisfied in the cuprates doped with holes where carriers 
are considered to appear in the so called lower Hubbard band 
(LHB) and in cuprates doped with electrons introduced into 
upper Hubbard band (UHB).

For the LHB case both W and Ep values can be extracted 
from the dispersion of ARPES band at zero or low doping 
with holes. Indeed, it follows the ‘bare’ carrier dispersion 
[12, 13] shifted deeper due to hole polaron formation, and the 
binding energy εmax in its maximum is about 2Ep for SP [36] 
and 3Ep [22], or, more precisely, about 3.2Ep for LP [16]. The 
polaron binding energy Ep in the UHB is obtained similarly 
from the position of the ARPES band maximum at low doping 
with electrons [4, 5]. The UHB bandwidth W can be deduced 
from the ARPES spectrum at high doping with electrons in 
which the dispersion of the ARPES band crossing the Fermi 
level also follows ‘bare’ carrier dispersion as is shown below. 
Since in cuprates W  ≈  0.4 ÷ 0.5 eV for the LHB [11] and is 
larger for the UHB [9], whereas |εmax|  ≈  0.42 eV [4, 5, 11] 
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in both LHB and UHB, Ep does not exceed W, and LP model 
is appropriate for both bands. This conclusion is confirmed 
by comparison of the predictions obtained below with the 
experiments.

Carrier tunneling between nodes inside the LP polariza-
tion potential well is much quicker (adiabatical) than the ions 
motion, as the ratio of the carrier average kinetic energy in LP 
Ekin  =  Ep   ≈  εmax/3.2 [16] to the average phonon energy [13] 
shows. Therefore at considering the effects of strong EPI the 
electron correlations can be taken into account in the effective 
mass approximation. The dispersion of correlated carriers can 
be taken either from theoretical calculations [9, 23] or from 
experimental ARPES spectra of cuprates [2–11] (excluding 
the region separated by ‘vertical dispersion’), the more so 
that they demonstrate good correspondence. The fact that 
dispersion of the polaronic ARPES band (observed in exper
imental spectra at low or zero doping) follows the ‘bare’ car-
rier dispersion (shifted downward by |εmax|) was revealed in 
[12]. Below we show that the dispersion of the ARPES band 
crossing the Fermi level at high doping (both with electrons 
or holes) in systems with strong Frohlich EPI also follows the 
‘bare’ (without EPI) carrier dispersion, or quasi-particle dis-
persion, in terms of [9] (please, see1 for refining the use of 
terms LHB and UHB dispersion below).

Therefore here we use the UHB dispersion in nodal direc-
tion (kx  =  ky) which is taken from the lower-energy band in 
experimental ARPES spectrum of electron-doped cuprate 
(near optimal doping) [9] in nodal direction (in eV):

Enodal
UHB (k) = −0.5 (cos(kxa) + cos(kya)) + 1,� (1)

where a is the in-plane lattice constant. Analogously, the 
LHB dispersion in nodal direction is taken from the disper-
sion of the lower-energy band in experimental ARPES spec-
trum of highly overdoped Bi2201 in nodal direction [6]. The 
experimental ARPES spectrum of undoped cuprates (shifted 
upward by |εmax|) follows approximately the same dispersion 
in nodal direction [11]. In the region kx = ky � 0.5π/a con-
sidered below it can be approximated as following (in eV):

Enodal
LHB (k) = −0.125 (cos(2kxa) + cos(2kya))− 0.25.� (2)

It is also consistent with theoretical t–J model dispersion 
[23]. Zero energy in (1) and in (2) is in the bottom of UHB 
and top of LHB, respectively, that corresponds to very low 
doping with electrons (equation (1)) or holes (equation (2)). 
Dispersions of UHB and LHB modified by strong Frohlich 
EPI as it is discussed below are shown by figures 1(a) and (b).

Strong Frohlich EPI results in autolocalization of carriers 
with the momentums near extremes of the correlated carrier 
bands determined by equations (1) and (2). The binding ener-
gies of the large-radius ASs of charge carriers are calculated 
with variational method, first used at classical description of 
the polarization field [22], then developed applying quantum 
coherent states representation for the phonon field in the 
polaron [21] and bipolaron [14]. Besides carrier dispersion, 
the only values we need to calculate the polaron and bipo-
laron binding energy are effective dielectric constant ε* and 
high-frequency dielectric constant ε∞. As discussed in the 
Introduction ε* should be deduced from experimental ARPES 
spectrum using the relation between the binding energy εmax 
in the ARPES band maximum and the polaron binding energy 
Ep: Ep ∼= εmax/3.2 [16, 22] and the well-known Pekar result 
[22, 35] (the second equation is in eV):

Ep = 0.0544m∗e4/�2ε∗2 = 1.47(ε∗)−2m∗/me.� (3)

Equation (3) is obtained for the isotropic case but contains the 
carrier effective mass which is anisotropic in the considered 
cuprates. Nevertheless, we can use equation (3) with ‘effec-
tive’ isotropic m* to determine ‘effective’ ε* without intro-
ducing essential mistake into further calculations as the value 
of ε* enters in them only in expressions for energies (bipo-
laron binding energy and the phonon field energy in the bipo-
laron, equation (4) below) which contain ε* and m* similarly 
to equation (3). Therefore we use below the carrier effective 
mass m∗ ≈ me near the bands extremes according to equa-
tions  (1) and (2). Then equation  (3) yields (ε*)−1  ≈  0.3 for 
both electron- and hole-doped cuprates and we use this value 
in further calculations.

For the ARPES spectrum calculation we will also need the 
value of the energy stored in the deformed phonon vacuum in 

the polaron Epol
pvd = 2Ep [22] and in the bipolaron Ebip

pvd and the 
binding energy of the bipolaron. The binding energy per car-

rier Eb and the energy of the deformed phonon vacuum Ebip
pvd in 

the one-center bipolaron with taking into account carriers cor-
relation [14] are determined by the same medium parameters 
m*, ε* and ε∞. They can be calculated approximately with the 
mistake lower than 5% according to the following expressions 
obtained with the variational method (in eV):

Eb = −1.44(c2 + ε∗cd + 1/80)m∗/me,

Ebip
pvd = 8 ∗ 1.44(c/ε∗ + d − 1/140)m∗/me,

�
(4)

where c = 2/ε∗ − 1/ε∞, d = 2/(21ε2
∞). We use below 

the value of ε∞ = 3 [25] observed at frequencies above the 
mid-infrared band in optical spectra as was discussed in the 
Introduction.

2.2.  Methods of studying the system with strong Frohlich EPI 
at high carrier concentration

Here we study the HEP of the ARPES spectrum which does 
not change at the superconducting transition. Therefore below 
we limit ourselves to consideration of the normal state of the 
system. The ground state of the system at high carrier density 

1 Theoretical study of the Hubbard model spectrum at high doping [9] 
reported presence of dispersing quasi-particle band and incoherent LHB or 
more precisely oxygen valence band [9]. Here we deal only with the former, 
quasi-particle band. The filled states from the incoherent band obviously 
have large effective mass even without EPI, so that at taking into account 
strong EPI they (if charged) form SPs as described in the beginning of sec-
tion 2. As a consequence they do not participate in the phase space division 
between large ASs and DSs (due to Pauli exclusion rule) studied in the ar-
ticle as a reason of HEA. Therefore we do not consider them below and for 
short denote the dispersion of the quasi-particle bands [9] as UHB and LHB 
dispersion. Nevertheless, the filled states from the incoherent band [9] can 
be the source of features observed in ARPES experiments at high binding 
energy which are not restricted in the momentum space.
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is described with the carrier distribution function in systems 
with strong Frohlich EPI obtained with Gibbs method [14]. 
The carrier momentum in LP and in large bipolaron has large 
uncertainty �k0 tied with the (bi)polaron volume V0 (the LP 
and bipolaron have close volumes [14]) by the uncertainty 
relation:

4
3
π(�k0)

3V0 = (2π�)3.� (5)

k0 is ordinarily about π/(4a) ÷ π/(3a), therefore the momentum 
is not suitable to characterize the carrier AS. Spontaneous 
breaking of the translational symmetry in a system with strong 
EPI results in the ground state degeneration as polarons can be 
located in different regions of the crystal [43]. Thus, ASs can 
be characterized by their center position, and different carrier 
states take place when the distance between the AS centers 
is larger than their diameter or when the momentums of the 
ASs with the same location differ to the value higher than 
k0. The latter is, however, impossible due to limitation of the 
AS velocity by the group velocity of phonons [21]. Therefore 
there exists a maximum ASs density [14, 44, 45] n0  =  2/V0, 
where V0 is the bipolaron volume at high carrier concentration.

At carrier concentration n  >  n0 delocalized carriers are 
present in the system even at zero temperature. But Pauli 
exclusion rule limits the momentums of the delocalized car-
riers: they cannot be lower than �k0 if the carrier density is 
higher than n′

0 = 2/V ′
0 where V ′

0 is the bipolaron volume in 
the dilute system. The DS unavailable at n  >  n′

0 are shown 
with dashed line on figures 1(a) and (b). Two different values 
of the critical carrier density—n0 and n′

0—appear due to 
the fact that at high carrier density the bipolaron volume 
depends essentially on the carrier density. For example, at 
(ε*)−1  =  0.3, m∗ = me and ε∞ = 3 [25] the single bipolaron 
radius R′

bip ≈ 13.5 Å [14] (we estimate it as the radius of 
the region, that contains 0.9 part of the polarization charge) 
whereas at high carrier density n � n0 the calculation yields 

Rbip ≈ 6.5 ÷ 7 Å [46]. For clarity, let us estimate doping 
levels p′

0 and p0 corresponding to the carrier densities n′
0 

and n0 in a system with (ε*)−1  =  0.3, ε∞ = 3, m∗ = me. Two 
slightly different estimates are obtained in the models with 

square grid of bipolarons and at their most close packing: 

p′
0 = a2 ∗ 2/(2R′

bip)
2 ≈ 0.04, p0 = a2 ∗ 2/(2Rbip)

2 ≈ 0.176 
and p′

0 = a2 ∗ 2/π(R′
bip)

2 ≈ 0.05, p0 = a2 ∗ 2/π(Rbip)
2 ≈ 0.225,  

respectively.
The value of the bipolaron radius at high carrier concen-

tration is obtained by minimizing the total system energy. 
First the energy of ‘compressed’ bipolaron as function of its 
radius is calculated by means of conditional (at fixed bipo-
laron radius) minimization of the average value of bipolaron 
Hamiltonian [14] with respect to parameters of the electron 
wave function in the bipolaron. The dependence of the bipo-
laron energy on its radius is used to calculate the total energy of 
the system (comprising the maximal number of bipolarons at 
given their radius and the rest carriers in DS with momentums 
higher than k0) as function of the bipolaron radius at given 
carrier concentration. The minimum of this function yields the 
equilibrium bipolaron radius as function of the carrier concen-
tration. At (ε*)−1  =  0.3, m∗ = me and ε∞ = 3 and high car-
rier density Rbip ≈ 6.5 ÷ 7 Å [46]. According to equation (5) 
the corresponding k0 value is about 0.35–0.37 Å−1. When the 
momentum is along the nodal direction the corresponding 
value of k0 projection on kx or ky axis is 0.2 ÷ 0.27 Å−1,  
where different possible values of the momentum projection 
onto the normal to the crystal surface are taken into account.

The binding energy per carrier in large bipolaron calculated 
with taking into account carrier correlation is close to that in 
LP, therefore at low doping the ground state of the system with 
strong Frohlich EPI can be either polarons or bipolarons, or 
they coexist [14]. At n′

0 < n < n0 it is a system of bipolarons 
at zero temperature or bipolarons and delocalized carriers at 
non-zero temperature and carrier density essentially higher 
than n′

0, at n  >  n0 it is a system of bipolarons and delocalized 

Figure 1.  (a) and (b) Upper and lower Hubbard band dispersion in nodal direction (expressed by equations (1) and (2)) modified by strong 
Frohlich EPI, respectively; kx

0 is k0 projection on x or y axis; Ep, Eb are binding energies of electron polaron and bipolaron, respectively, 
Eh

p, Eh
b  stand for binding energy of hole polaron and bipolaron.
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carriers. Below we will denote n  >  n0 the case when delocal-
ized carriers are present in the system, however, if the temper
ature is non-zero, it occurs at slightly lower carrier density.

Screening of EPI by delocalized carriers in the systems 
under consideration is prohibited by Pauli exclusion rule. 
Indeed, at n  >  n0 delocalized carriers are present in the system 
(or at n  >  n′

0 at non-zero temperature). However, to form a 
screening charge the squared modulus of a DS wave function 
should be non-zero in a localized area whose size is of the 
order of the polaron size. Then the carrier momentum should 
be from the interval k < k0, that is prohibited by Pauli exclu-
sion rule at n  >  n′

0 (n′
0 < n0).

Ground state of a single hole at strong EPI is a hole polaron. 
However, at strong EPI completely filled band contains about 
n0/2 electron bipolarons. Then where in the coordinate space 
do the hole ASs locate? Obviously the hole is not localized 
inside the electron bipolaron as it is not profitable energeti-
cally. The more so that between electron bipolarons there 
are areas of negative polarization charge attracting the holes 
whereas inside the electron bipolarons the positive polarization 
charge repulsing the holes is concentrated. The coexistence of 
the hole ASs with the electron ones allows understanding the 
peculiar dependence of the charge ordering period in hole-
doped cuprates on the carrier density. The charge ordering 
period does not depend on the holes concentration in wide 
interval of the latter [30, 32] since at hole density lower than n0 
it is dictated by the electron AS size. It is worth noting that due 
to large radius of the carrier ASs in cuprates the electron bipo-
larons and the hole ASs contain phonon vacuum deformation 
in mainly different harmonics with the wave vectors around Γ 
and (π/2, π/2) points of the first Brillouin zone, respectively.

2.3. The method of calculating the HEP of ARPES spectrum 
of the systems under study

The simplest analytical calculation of the band in ARPES 
spectrum caused by photodissociation of the LP [16] is based 
on Fermi golden rule

Wif =
2π
�

∣∣∣〈 f | Ĥint |i〉
∣∣∣
2
δ(Ei − Ef),

〈 f | Ĥint |i〉 ∝
ˆ

dr exp (−ikr) Ĥintψ(r)
∏

q

〈νq|dq〉,

�
(6)

with the vector of the system initial state written in the adia-
batic approximation as a product of the electron wave func-

tion ψ(r) in the polaron and a vector of the phonon field state ∏
q
|dq〉 in the coherent states representation. Рarameters dq of 

the phonon vacuum deformation in the qth harmonics due to 
EPI are simply expressed through the corresponding Fourier-
transform of the squared electronic wave function [21], νq is 
a number of phonons in the qth harmonics radiated at decay 
of the coherent state after the photoelectron escape [16, 19].

The energy conservation law (δ-function argument in equa-
tion  (6)) relates the photoelectron energy and the number ν 
of radiated phonons: Ep + �Ω = Ekin +Φ+ ν�ω, where 
Ep, �Ω, Ekin and Φ are the polaron binding energy, photon 

energy, photoelectron energy and work function, respectively. 
Ordinarily in ARPES studies three latter values are replaced 
by binding energy ε = Ekin − (�Ω− Φ) so that the energy 
conservation law has the form Ep = ε+ ν�ω. It (and, conse-
quently, the argument of δ—function in equation (6)) contains 
only two variables: ε and ν. Then in neglecting the phonon 
dispersion a probability A(k,ε) to catch a photoelectron with 
the momentum k and binding energy ε results from summa-
rizing the probabilities (6) over all the cases with equal total 
number ν of radiated phonons [16, 19]:

A(k, ε) ∝ |ψk|2Pν(ε),� (7)

Pν(ε) =
∑

{νq}=ν

∏
q

|〈νq|dq〉|2 =
ν̄ν(ε)−1

(ν(ε)− 1)!
e−ν̄ ,� (8)

ν(ε) = (Ep − ε)/�ω, ν̄ =
∑

q

|dq|
2
= ∆Epvd/�ω,� (9)

where ψk is Fourier-transform of the electron wave function in 
the initial state, ν̄  is the average number of radiated phonons 
and ∆Epvd is the change in the phonon vacuum energy due 
to deformation caused by EPI. For the photoemission from 

the polaron state ∆Epvd = Epol
pvd , the average polarization field 

energy in the polaron state due to the phonon vacuum defor-

mation. According to known Pekar results [22] Epol
pvd = 2Ep, 

and Ep is determined by equation (3). Due to phonon disper-
sion the energy distribution curves A(k  =  const, ε) are enve-
lopes of points obtained according to equations (7)–(9). Such a 
calculation yields broad bands of Gaussian shape [16] located 
in the momentum region k  <  k0 where ψk is noticeable, which 
are in good agreement with the experimental results [4, 5].

The method (6)–(9) is applicable to calculate the pho-
toemission from the large bipolaron state [14], with the first 
equation (9) replaced by

Eb = Ep + ε+ ν�ω� (10)

and
∆Epvd = Ebip

pvd − Epol
pvd,� (11)

where ∆Epvd is the difference between the energies of the 
phonon vacuum deformation in the bipolaron and in the 
polaron. However, if delocalized carriers appear in the system 
(at zero temperature this occurs at carrier concentration higher 
than the double maximum density of bipolarons, n  >  n0, this 
case will be supposed below) they have energy higher than that 
of degenerated [43] bipolaron states, and electron subsystem 
starts to participate in the post-photoemission relaxation. It 
turns out that the method (6)–(9) can be applied to this case 
too. Let us discuss first the pathways of the resulting relax-
ation and then the corresponding energy conservation equa-
tion and change of the phonon filed energy used to replace the 
first of equations  (9) and for substitution into the second of 
them, respectively, at n  >  n0.

At high carrier density n  >  n0, if photoelectron origi-
nates from bipolaron state so that its in-plane momentum 
k  <  k0 (supposing the band minimum is in k  =  0 point), the 
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intermediate state with one carrier remained in bipolaronic 
polarization potential well (it does not change during electron 
phototransition according to Frank–Condon principle) in pres-
ence of delocalized carriers relaxes due to EPI in other way 
than in their absence. Namely, relaxation results in restoration 
of the bipolaron and emptying the state from the Fermi sur-
face (or hole appearance at the Fermi surface). If photoelec-
tron comes from DS, i.e. its in-plane momentum k > k0, the 
system relaxation is absolutely different and simple, without 
changing the phonon vacuum. A ‘boundary’ k  =  k0 between 
the two types of the system relaxation with different relaxa-
tion energy displays itself in ARPES spectrum as ‘vertical 
dispersion’. It should be noted that in systems where SPs are 
formed there is not a coexistence of localized and delocalized 
carriers and correspondingly there is not ‘vertical dispersion’ 
pattern in the ARPES spectrum.

Even more interesting relaxation occurs in undoped or hole-
doped systems. The hole left after the photoelectron escape 
relaxes to the Fermi surface near the LHB maximum and forms 
AS due to strong EPI. Such final state occurs for doping lower 
than the ASs maximum concentration n0. At higher doping the 
final state is delocalized hole at the Fermi surface (similarly 
to the electron doping case with n  >  n0). If the photoelec-
tron originates from the electron AS the electron bipolaron is 
restored in the final state. Each relaxation way is discussed in 
details below at calculating its display in the ARPES spectrum.

To calculate the HEP of the ARPES spectrum of sys-
tems with high carrier concentration the described above 
method is generalized on the base of developing the relaxa-
tional approach [13, 16–20]. The energy conservation equa-
tion describing the relaxation result includes (apart from the 
change of the phonon field energy caused by formation or 
decay of the phonon vacuum deformation) the energies of two 
electronic quasiparticles which change their states in the final 
state in comparison with the initial one: the photoelectron 
and the electron with the maximum energy in the initial state 
(at the Fermi surface). The energy of the latter (varied with 
doping) is transferred to the phonon field in the final state. 
The matrix element of phototransition determines the posi-
tion of the spectral weight in the momentum space whereas 
the energy conservation equation determines its position with 
respect to the binding energy axis.

At n  >  n0, k  <  k0 the initial state is electronic bipolaron. 
Therefore |ψk|2 in (7) results in the same localization of the 
bipolaron band in the momentum space as at n  <  n0. However, 
the other relaxation way changes its position in the binding 
energies. Similarly to n  <  n0 case after photoelectron escape 
the bipolaron polarization cloud begins to decay down to the 
polaron one with radiation of phonons, their average number 
is ν̄1  =∆E′

pvd/�ω, provided the process is completed. The 
stroke designates that at n  >  n0 the difference between the 
polarization field energy in the bipolaron and in the polaron 
is slightly larger than in the single bipolaron case due to ASs 
contraction in the system ground state at high carrier density.

At n  >  n0 the relaxation due to strong EPI restores the 
bipolaron after photoelectron with k  <  k0 escape. First a trans
ition of a delocalized carrier towards the minimum energy 

state (or relaxation of the photohole) occurs. This process and 
decay of the bipolaron polarization ‘coat’ into polaron one 
are both multiphonon processes and occur during the char-
acteristic phonon times. Therefore there will be a distribution 
of probabilities for the degree of the latter process complete-
ness. As a result some decrease of ν̄1 will take place. However, 
this decrease is compensated to some degree by increase of 
∆E′

pvd due to bipolarons contraction at high carrier density. 
Therefore for rough estimate of energetic position of the 
spectral weight at k  <  k0 we suppose ν̄1 ≈ ∆Epvd/�ω, where 
∆Epvd is defined by equation  (11). The possible mistake is 
not essential in comparison with extremely large width of the 
ARPES band at k  <  k0.

Relaxation empties the Fermi-surface state, its excess 
energy and momentum are transferred to the phonon field with 
creating the appropriate average number ν̄′ = �2k2

F/(2m∗�ω) 
of phonons. The bipolaron restoration from the polaron is also 
accompanied with the radiation of phonons, their average 
number ν̄2 ≈ ν̄1 since the initial and final phonon vacuums for 
the cases of decay and restoration are simply interchanged. 
According to Gaussian distribution property the average 
number of radiated phonons

ν̄ = ν̄1 + ν̄2 + ν̄′ ∼= 2ν̄1 + ν̄′ ∼= 2(Ebip
pvd − Epol

pvd)/�ω + �2k2
F/(2m∗�ω).

�
(12)

The energy conservation equation  at n  >  n0, k  <  k0 has the 
form

Eb + 0 = Eb + ε+ ν�ω.� (13)

Using it to express ν(ε) for substitution into Pν (8) simultane-
ously with ν̄  value (12) we calculate the spectrum at k  <  k0 
according to equation (7).

At n  >  n0 and the photoelectron momentum k  >  k0 the 
relaxation does not affect the phonon vacuum. In this case 
two variants of the calculation yield the same result presented 
by figure 2(c): traditional one where the final state is a hole 
with the in-plane momentum k and one including relaxation 
of the hole to its minimum energy state on the Fermi surface. 
The energy conservation equation for the second calculation 
is 0 + E(k) = E(k) + ε+ ν�ω, where E(k)  =  EUHB(k) is 
determined by equation (1) with zero of energy at the Fermi 
surface (changing with the doping), ν = (0 − E(k)) /�ω 
is the number of radiated phonons. This yields ε(k)  =  E(k), 
i.e. spectral weight in the region k  >  k0 follows ‘bare’ (i.e. 
without EPI) electron dispersion crossing the Fermi level.

Thus, the correlated electrons dispersion can be extracted 
from the lower-energy part of the experimental ARPES spec-
trum of highly doped samples as we have done to obtain equa-
tion (1). Broadening of the lower-energy part of the ARPES 
band is not related with changing the phonon vacuum. As we 
do not calculate here such-type broadening, to visualize the 
lower-energy part of the ARPES spectrum in figure 2(c) (the 
region k  >  k0) we use the dispersion (1) as bare band disper-
sion and real and imaginary parts of the self-energy extracted 
from the experimental spectrum according to [47]. It should 
be noted that the broadening of the k  >  k0 part of ARPES 
spectrum (as it is not associated with change in the phonon 
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vacuum) as well as ‘kinks’ in it are successfully calculated 
in the weak-coupling EPI model [48]. Thus, the supposition 
often made in the literature in relation with the observed (in 
ARPES) dichotomy of the momentum space that EPI strength 
in cuprates depends on the carrier momentum is in good 
agreement with the picture of strong Frohlich EPI.

Now let us consider the boundary k  =  k0. Obviously, exist-
ence of a sharp boundary in the momentum space between 
the AS and DSs is a consequence of the too rough model. In 
reality the wave function of a carrier in the AS vanishes expo-
nentially both in the coordinate and momentum spaces, i.e. 
the autolocalized carrier can have the momentum k slightly 
higher than k0, but with small probability. Accordingly, the 
HEP of the ARPES band slightly extends into the momentum 
region k  >  k0, but with low intensity. Then delocalized car-
riers with momentums about k0 cannot penetrate into the very 
inner region of the ASs where the momentum of autolocalized 
carriers reaches the values about k0. Thus, the volume which 
can be occupied by delocalized carriers decreases with their 
momentum from the whole volume of the system for carriers 
with k � k0 to zero for carriers with k slightly lower than k0. 
This change in the number of available DSs with k can be 
approximated with corresponding Gaussian function of the 
momentum, as we have done calculating figure 2(c).

3.  Results

3.1.  Electron-doped systems at increasing doping

The ARPES spectrum of system of single polarons (elec-
tron doped system at low carrier concentration) calculated 
according to equations (7)–(9) is demonstrated by figure 2(a) 
in the form of intensity map. It is in good agreement with the 
experimental ARPES spectrum of electron-doped cuprates 
at low doping [4, 5] (of course, as we use the experimental 

band maximum to determine ε* the comparison at low doping 
makes sense for the width and shape of the calculated band in 
the energy and momentum space).

Equations (6)–(9) were first generalized to describe pho-
toemission from large bipolaron when its binding energy and 
wave function are calculated with taking into account carriers 
correlation inside polarization potential well [14]. However, 
the exact expression obtained was cumbersome. To simplify 
it one can calculate the electronic matrix element neglecting 
carriers correlation in the bipolaron (electronic wave func-
tion in the bipolaron is approximated as a product of two 
polaron ones), but still taking it into account calculating bipo-
laron binding energy. Then |ψk|2 in (7) coincides with the 
polaron case and the difference of bipolaronic A(k, ε) from 
the polaronic one is in the energy conservation equation (10) 
which determines ν(ε) to be substituted in equation (8) and in 
average number of radiated phonons (11).

The average number of phonons (11) radiated at the bipo-
laron polarization cloud decay down to polaron one is larger 
than that in the case of photoemission from the polaron state, 
therefore the bipolaronic band in ARPES spectrum calculated 
according to equations (7), (8), (10) and (11) lies essentially 
deeper than the polaronic band. Figure 2(b) shows them both 
that corresponds to carrier concentration characteristic for 
coexistence of polarons and bipolarons (occurring in a narrow 
interval of the carrier concentration [14]). Similar smearing of 
the spectral weight over a wide area of binding energy values 
has been managed to observe in a cuprate severely underdoped 
with holes (Tc  =  5 K) [49], it is represented in figure 3(d).

At n  >  n0 as it was discussed above the system relaxation 
after photoemission involves electron subsystem, at k  <  k0 the 
initial state is bipolaron whereas at k  >  k0 the initial state is 
delocalized carrier. Different relaxation after photoemission 
from these different initial states results in two distinct parts 
in the calculated ARPES spectrum. The calculated according 

Figure 2.  (a)–(c) Calculated HEP of the ARPES spectrum of electron-doped cuprate at low doping, at doping corresponding to coexistence 
of polarons and bipolarons and at electron concentration n  >  n0, respectively, red (shorter) and blue (longer) lines on panel c are dispersions 
inferred from the calculated EDCs and MDCs, respectively; (d) experimental spectrum along the nodal cut of Nd1.83Ce0.17CuO4 [9].
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to described above method with using equations (1), (7), (8), 
(12) and (13) HEP of the ARPES spectrum in nodal direc-
tion for the case n  >  n0 is demonstrated by figure 2(c). It is 
in good quantitative agreement with the experimental spec-
trum of slightly overdoped with electrons Nd1.83Ce0.17CuO4 
[9] shown in figure 2(d) in the same scale. The left half of 
both figures 2(c) and (d) shows also dispersions inferred from 
the calculated energy distribution curves (EDC, intensity 
as function of the binding energy at fixed momentum) and 
momentum distribution curves (MDC, intensity as function 
of the momentum at fixed binding energy) and dispersions 
obtained from experimental EDCs and MDCs, respectively.

The dispersions of the calculated EDC and MDC are in 
good agreement with those of experimental ones. It may seem 
that such a comparison is meaningless, since the dispersion 
and the self-energy for the calculation of the lower-energy 
part of the spectrum are extracted from the experimental spec-
trum. However, the dispersion of the calculated MDCs in the 
energy region where EDC-dispersion vanishes is the result of 
joint influence of the lower- and higher-energy parts of the 
spectrum, the latter is calculated according to equations (7), 
(8), (12) and (13). Remarkably, the back-bending MDCs dis-
persion observed in experiments [7, 9] arises naturally in the 
suggested approach, confirming the supposition made in lit-
erature that MDC-inferred dispersion does not obligatory rep-
resent the quasiparticle dispersion, unlike the EDC-inferred 
dispersion which follows equation (1).

3.2.  Undoped and hole-doped systems

To calculate photoemission from undoped and hole-doped 
cuprates we use the correlated carriers dispersion (2) modified 
by strong Frohlich EPI (figure 1(b)). Similarly to the electron-
doped systems with n  >  n0 there are two types of the initial 
state: autolocalized (bipolaron) for photoelectrons with the 
momentums k  <  k0 and delocalized for k  >  k0. The relaxation 
process is also similar to high (n  >  n0) electron doping case 
with the only difference in the final state. The system states 
with delocalized hole or electron polaron which are created at 

the photoemission from the states k  >  k0 and k  <  k0, respec-
tively, are not its stationary state. Strong EPI results in hole 
polaron formation (with preceding hole transition into a state 
near the electron band maximum). Deformation of the phonon 
vacuum during the hole polaron formation is accompanied by 
multiple phonon radiation. As a result the whole ARPES spec-
trum both in k  <  k0 and k  >  k0 regions is shifted deeper in the 
binding energy by about 3Eh

p (where Eh
p is the hole polaron 

binding energy) and in the region k  >  k0 the ARPES band is 
broad analogously to polaronic band in electron-doped system.

At k  <  k0 the energy conservation equation and the average 
number of radiated phonons are

Eb + 0 = Eb + ε+ Eh
p + ν�ω, ν̄ ∼= (2∆Epvd + 2Eh

p − ELHB(k))/�ω,
� (14)
where ELHB(k) is determined by equation (2) with zero energy 
at the Fermi level (changing with doping). Thus, in undoped 
cuprates the ARPES band in the region k  <  k0 lies deeper 
than in the electron doped ones at high doping by the energy 
released at hole polaron formation and preceding hole relax-
ation towards its minimum energy state. At k  >  k0

ELHB(k) + 0 = ε+ ELHB(k) + Eh
p + ν�ω, ν̄ ∼= (2Eh

p − ELHB(k))/�ω.
� (15)
The ARPES band dispersion at k  >  k0 obtained as average of 
the first equation (15) has the form

ε̄(k) = −Eh
p − ν̄�ω = −3Eh

p + ELHB(k),� (16)

i.e. it follows the ‘bare’ carrier dispersion shifted deeper by 3Eh
p. 

This is similar to the SP model [12, 13] result but in SP model 
this dispersion is predicted for the whole k axis whereas in the 
LP model the ‘vertical dispersion’ emerges at k  ≈  k0 due to dif-
ferent system relaxation ways in different k regions. Figures 3(a) 
and (b) demonstrate calculated and experimental [11] ARPES 
spectrum from undoped cuprate in one and the same scale. 
They are in good quantitative agreement except low calculated 
spectral weight in the intermediate energy region which may be 
caused by the fact that the calculation does not take into account 
the band broadening due electron correlations.

Figure 3.  (a) and (b) Calculated and experimental (along nodal cut of Ca2CuO2Cl2) [11] ARPES spectra of undoped parent compound, 
respectively, in the same scale; (c) calculated ARPES spectrum at hole doping corresponding to two possible final states: hole polaron 
and bipolaron; (d) experimental spectrum along nodal cut of highly underdoped Bi2Sr2CaCu2O8+δ (Tc  =  5 K) [49] in the same scale as 
panel (c); (e) calculated ARPES spectrum at hole concentration n  >  n0, blue line is the dispersion inferred from the calculated MDCs; (f) 
experimental ARPES spectrum of highly overdoped Bi2201 in nodal direction [6] in the same scale as panel (e).
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Figure 4 represents the calculated EDCs obtained from the 
spectral function shown by figure 3(a) at constant values of k 
� k0. The shape of the calculated band is Gaussian, its width 
(determined by ν̄  value (15)) increases at moving away from 
the band extremum in accordance with the experiment [3]. In 
experimental ARPES spectra this effect was highlighted in [3] 
where the ratio of the binding energy in the EDC maximum 
to the EDC halfwidth (width at the half height) was obtained 
approximately constant and equal to 1.8. In the calculated 
EDCs presented in figure 4 this ratio depends on the phonon 
energy and for the average phonon energy 0.04 eV it is 1.8 at 
kx  =  ky  =  0.5π/a (in the ARPES band maximum) and 1.9 at 
kx  =  ky  =  0.25 π/a (where the ‘vertical dispersion’ emerges) 
in good agreement with the experiment [3].

When at increasing doping the hole polaron states become 
filled the final photohole state is no longer a hole polaron but a 
hole bipolaron. The energy conservation equations read

Eb + Eh
p = Eb + ε+ Eh

b + ν�ω,

ν̄ ∼= (2∆Epvd +∆Eh
pvd − ELHB(k))/�ω, k < k0,

�
(17)

ELHB(k) + Eh
p = ε+ ELHB(k) + Eh

b + ν�ω,

ν̄ ∼= (∆Eh
pvd − ELHB(k))/�ω, k > k0,

�
(18)

where ELHB(k) is determined by equation  (2) with zero of 
energy at the Fermi level. Similarly to the electron doping 
system the spectral weight in the case of bipolaron final state 
is shifted deeper in comparison with the polaron one since 

the energy ∆Eh
pvd + Eh

b − Eh
p (where h denotes hole ASs) is 

larger than 3Eh
p. Its location in the momentum space does not 

change.
If due to close binding energy per carrier in the polaron and 

bipolaron state the photohole can appear in some concentra-
tion interval with comparative probability in both these states 

the spectral weight will be smeared over more wide area of 
energies. Interestingly, that this stage of the spectral weight 
transfering deeper upon doping the authors of [49] managed 
to observe on the very underdoped cuprate with Tc  =  5 K. 
Calculated and experimental ARPES spectra demonstrating 
smearing the spectral weight over very wide area of energies 
are shown on figures 3(c) and (d), respectively, in one and the 
same scale. Smaller intensity of the polaronic band in com-
parison with the bipolaronic one in experimental spectrum 
(figure 3(d)) likely means that the doping level of the pattern 
correponds to almost filled hole polaron states, the same situ-
ation is chosen for calculated spectrum shown on figure 3(c).

At hole concentration n  >  n0 the final state of the photohole 
is DS at the Fermi surface. Since it does not induce the phonon 
vacuum deformation the whole HEP of the ARPES spectrum 
is lifted (in comparison with the n  <  n0 case) along the energy 
axis by the value 3.2Eh

p + |E(π/2a)− E(kF)|. Energy conser-
vation equations have the form

Eb + 0 = Eb + ε+ ν�ω, ν̄ ∼= (2∆Epvd − ELHB(k))/�ω, k < k0,
� (19)

ELHB(k) + 0 = ε+ ELHB(k) + ν�ω, ν = −ELHB(k)/�ω, k > k0.
� (20)
As equation (20) show, the ARPES band dispersion at k  >  k0 
follows ‘bare’ (without EPI) carrier dispersion similarly to the 
electron doping case at n  >  n0. Analogously to the electron 
doping case, as we do not calculate here the band broadening 
not related with changing the phonon vacuum, to visualize 
the lower-energy part of the spectrum at high doping on 
figure 3(e) we use the dispersion (2) and real and imaginary 
parts of the self-energy extracted from the experimental spec-
trum. Generally, the situation at high doping with holes is very 
close to that at high doping with electrons, the difference is in 
the dispersion: equation (2) is used instead of equation (1).

The calculated HEP of the ARPES spectrum in nodal direc-
tion at hole doping n  >  n0 is presented in figure 3(e). Figure 3(f) 
shows the experimental spectrum of highly overdoped Bi2201 
in nodal direction [6] in the same scale. The comparison is 
somewhat complicated due to crossing of several bands in the 
experimental spectrum [6], but similar dispersion was also 
reported in [7], the similar dispersion and band crossing were 
observed in [8]. Taking into account that the LHB dispersion 
can be slightly different in Ca2CuO2Cl2 studied in [3, 11] and 
in Bi2201 and Pb-Bi2212 studied in [6–8] whereas we use one 
and the same equation (2) to model all these systems, the calcu-
lated HEPs of the ARPES spectra are in good agreement with 
experimental results. The MDC-inferred dispersion shown in 
figure 3(e) with blue line demonstrates back-bending in agree-
ment with experiments [7] whereas the quasi-particle disper-
sion (equation (2)) displays itself in the EDC dispersion (not 
shown).

4.  Discussion

Comparing the results obtained with the previous models’ 
results, one can note two main points in which the Hubbard 
model with taking into account strong Frohlich EPI 

Figure 4.  EDCs calculated for undoped system with the nodal 
dispersion (2) and (ε*)−1  =  0.3.
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demonstrates advance in comparison with the Hubbard-only 
model (without EPI) [9]. First, the matrix elements vanishing 
near Γ point are no longer needed to obtain HEA. Indeed, 
vanishing spectral weight near Γ point in the Hubbard-only 
approach [9] was obtained after multiplying the calculated 
spectral function by the matrix elements obtained in a spe-
cial way [47]. Namely, the matrix elements are fitted from 
the experimental spectrum in supposition that it is formed by 
continuous spectral function of the Lorentzian form (repre-
senting the LDA band broadened due to many-body interac-
tions) multiplied by the matrix elements [47]. Such method 
obligatory yields the matrix elements vanishing near Γ point 
if the experimental spectral weight vanishes there. However, 
several strong arguments against using vanishing matrix ele-
ments near Γ-point to obtain HEA are given in [11].

Second, the lowest-lying band observed in experimental 
ARPES spectra of cuprates at low doping with electrons [4, 
5] and zero or low doping with holes [2, 3, 11] is the broad 
band of Gaussian shape [3]. The models without strong EPI 
do not yield the broad bands of Gaussian shape. The calcul
ations with taking into account strong EPI according to equa-
tions  (7)–(9) in the electron-doped case and according to 
equations (7) and (8) in the undoped or low-doped with holes 
cases result in broad Gaussian bands (shown on figures 2(a) 
and (b) for electron doping and on figures 3(a), (c) and 4 for 
zero and low doping with holes) whose position and width are 
in good agreement with the experiments [2–5, 11].

Moreover, there is quantitative agreement between the 
calculated and experimental relation of the Gaussian band 
widths and the position of its maximum. The measured exper
imentally ratio of the binding energy in the EDC maximum 
to the EDC halfwidth (width at the half height) was approxi-
mately independent on k and equal to 1.8 [3]. In the calculated 
EDCs presented in figure 4 this ratio depends on the phonon 
energy and for the average phonon energy 0.04 eV it is 1.8 at 
kx  =  ky  =  0.5π/a (in the ARPES band maximum) and 1.9 at 
kx  =  ky  =  0.25 π/a (where the ‘vertical dispersion’ emerges) 
in good agreement with the experiment [3].

The experimentally observed double scale of HEA energy 
in electron-doped cuprates with respect to that in hole-doped 
cuprates arises naturally in the frames of model under con-
sideration. Indeed, in this approach the momentum k0 of the 
break in the delocalized carrier dispersion at essential doping 
due to Pauli exclusion rule is invariant in electron and hole-
doped cuprates due to close size of the bipolarons in them. But 
the corresponding energy E(k0) (the energy of HEA) is deter-
mined by the LHB and UHB dispersion which are different as 
it is illustrated for nodal direction by equations (1) and (2) and 
figures 1(a) and (b).

The back-bending MDC-inferred dispersion observed in 
experiments [7, 9] also naturally appears in the suggested 
approach (figures 2(c) and 3(e) for systems with high doping 
with electrons and holes, respectively) as a result of super-
position of spectral weight from two contributions present 
mainly in different but partially interpenetrating areas of the 
momentum space (the lower-energy part of ARPES spectrum 
caused by delocalized carriers and present mainly in the region 
of momentums k  >  k0, and the HEP of the ARPES spectrum 

caused by autolocalized carriers and located basically in the 
region k  <  k0). Thus, the results of the present consideration 
confirm the supposition made in literature that MDC-inferred 
dispersion does not obligatory represent the quasiparticle dis-
persion, unlike the EDC-inferred dispersion which follows 
equation (1) in the electron-doped case (figure 2(c)) and equa-
tion (2) in the hole-doped case (not shown).

Comparing the results of the present approach with those 
of Hubbard model with taking into account strong short-range 
(Holstein) EPI [12, 13] one can note that both approaches result 
in the same dispersion of the hole-polaronic band in ARPES 
spectrum which follows the ‘bare’ band dispersion. The broad 
Gaussian bands arise at low doping in both approaches (with 
strong long-range and short-range EPI), too. However, the 
‘vertical dispersion’ patterns appear in the ARPES spectrum 
only in the model with strong long-range EPI, as the large 
radius ASs formed in such systems can coexist with delocal-
ized carriers at high carrier density.

The present approach allows also understanding several 
experimental findings being unclear in some earlier models. 
First, manganites are also characterized by broad bands in 
ARPES spectrum but do not demonstrate ‘vertical dispersion’ 
patterns. This fact was sometimes considered as proof that 
strong EPI cannot be the reason of this feature [50]. As we have 
shown strong long-range EPI causes ‘vertical dispersion’ at suf-
ficiently high doping due to coexistence of autolocalized and 
delocalized carriers, whereas strong short-range EPI resulting 
in SP formation does not. However both types of EPI result 
in broad Gaussian bands in ARPES spectrum [12, 13, 16] 
provided the EPI is strong. Thus, the mentioned difference in 
ARPES spectra of cuprates and manganites is likely caused by 
different dominating type of EPI, long-range in the former case 
and short-range in the latter, albeit EPI is strong in both cases.

Second, some notes concerning the observation conditions 
of HEA can be made. They are important because changes in 
HEA manifestation in some cuts in different BZs at change 
of the photon energy observed experimentally [26–28] posed 
a question whether it is not an effect of the matrix elements 
only. We show that the break of the delocalized carrier dis-
persion in essentially doped systems due to strong EPI exists 
in restricted region of the k space: at |k| < k0. Thus, two of 
three cuts studied in [26] are out of the region where HEA 
occurs and the third cut kx = 3π/(8a) is just on the boundary 
|k| = k0. Likely, this is the reason of unordinary behavior of 
the spectrum [26] taken from this cut at the photon energy 
change. Earlier the similar behavior was observed in the 
second and third BZs [27, 28]. However, if the HEA nature 
is related with the strong long-range EPI breaking the transla-
tional symmetry due to ASs formation then the appearance of 
HEA in the second and third BZs in the same form as in the 
first one is questionable.

Finally, demonstrated broken by strong EPI translational 
symmetry in cuprates allows also discussion of charge ordering 
observed in doped cuprates [29–34] in terms of the large-radius 
ASs formation. Indeed, the estimated radius of the bipolaron at 
their maximum density in cuprates is Rbip ≈ 6.5 ÷ 7 Å [46]. 
This value is in good agreement both with the k0 value marking 
the HEA position in the momentum space [6–11] and with 
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measured experimentally period of charge ordering (3.3 ÷ 4a) 
[29–34] in cuprates. Moreover, the experimental finding that the 
charge ordering period in hole-doped cuprates is independent on 
the carrier density in wide interval of it [30–33] is quite under-
standable in the present approach where the hole ASs are located 
in-between the electron ASs, whose density is maximal. Thus, 
the electron ASs location dictates the hole ASs one, and charge 
ordering period does not depend on the holes density while it 
is lower than n0. For the electron-doped systems the present 
approach predicts change of the charge ordering period with 
doping: the ASs size becomes smaller with increasing doping 
(an example of such dependence is presented in figure 5(a) [46]), 
rendering the wave vector of the charge ordering larger. Similar 
behavior was observed in the electron doped cuprate exper
imentally [34], as it is illustrated with stars in figure 5(a). Of 
course, charge ordering in a system of ASs is a subject for sepa-
rate consideration as we used here the simplest quasi-isotropic 
model whereas to obtain the square grid of ordered charges 
or stripes [29–34] one should take into account the system 
anisotropy.

Doping dependence of the bipolaron radius in electron-
doped systems results in doping dependence of k0 value (the 
boundary momentum separating autolocalized and delocal-
ized carriers in the momentum space and representing the 
‘vertical dispersion’ momentum in the ARPES spectra) in 
them, illustrated by figure 5(b). It should be noted that k0 pro-
jection kx

0 onto x or y axis used as the momentum axis scale 
in ARPES spectra (figures 2 and 3) and shown on figure 1 is 
distributed in the limits k0/

√
3 ÷ k0/

√
2 due to uncertainty 

of z-projection of k0. In undoped and hole-doped systems the 
value of k0 determining the position of ‘vertical dispersion’ in 
the ARPES spectrum does not depend on the doping level as 
electron density in these systems is higher than n0.

5.  Conclusion

In summary, we suggest a new approach to studying the normal 
state of cuprate superconductors which allows simultaneos 

taking into account high concentration of correlated charge car-
riers and strong long-range EPI. We show that in such systems 
photoemission is accompanied by joint relaxation of strongly 
coupled fields—a field of correlated electrons and phonon 
field—due to coexistence of autolocalized and delocalized car-
riers. Sharing of the momentum space between two these types 
of carrier states according to Pauli exclusion rule together with 
different relaxation pathways for autolocalized and delocalized 
initial (final) states result in fragmentation of the band in ARPES 
spectrum into two parts in different regions of the wave vector 
space. Predicted theoretically value of the ‘vertical dispersion’ 
momentum position (the k0 value) is in good agreement with 
the experiments on cuprates with both types of doping.

Besides realizing the possible reason of fragmentation 
of the HEP in ARPES spectrum of cuprates we suggest a 
method to calculate analyticaly the HEP of ARPES spectrum 
in systems with strong carrier correlations and strong long-
range EPI at arbitrary carrier concentration. It takes advan-
tages of applying coherent states basis for the phonon field 
state description and the fact that only two electrons change 
their state together with the phonon field as the result of pho-
toemission and subsequent system relaxation. The calculated 
position, width and shape of the bands in the HEP of ARPES 
spectrum of cuprates are consistent with the experiments at 
any level of doping with both types of carriers.

The agreement of the calculated HEP of the ARPES spec-
trum with the experiments on cuprates confirms presence 
of ASs of the large radius and coexistence of autolocalized 
and delocalized carriers in them. This result changes the idea 
about the ground state of the superconducting cuprates in the 
normal state. It may be useful for understanding temperature 
and doping dependence of transport and magnetic properties 
of cuprates [23]. Suggested approach may be also effective in 
theoretical modeling the evolution of the optical conductivity 
spectra of cuprates with doping and temperature [38, 39]. 
Finally, it allows to describe charge ordering in systems with 
strong long-range EPI at high carrier density, the predicted 
value of the charge ordering period and its concentrational 

Figure 5.  (a) and (b) Doping dependence of the bipolaron radius (determining charge ordering period) and k0 value, respectively, in 
electron-doped systems. The system parameters used are (ε*)−1  =  0.3, ε∞ = 3, m∗ = me. The doping level p is calculated in a model with 
square grid of bipolarons. Stars on panel (a) demonstrate a half of the charge ordering period experimentally measured on electron-doped 
cuprate at two doping levels [34].
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behavior (independence on the carrier density in wide interval 
in hole-doped systems and change with doping in electron-
doped system) are in agreement with the experimental data.
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