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1. Introduction

Ferrohydrodynamics describes the motion of fluids comprised 
of particles with significant magnetic (or electric) dipole 
moments [1, 2]. The dipole–dipole (from henceforth: dipolar) 

inter-particle interaction causes magnetostriction (or elec-
trostriction) and gives rise to spectacular instabilities such as 
the normal field instability [3] that can lead to complex pattern 
formation. Classical ferrofluids have been investigated since 
the 1960s, the first ferrofluid having been invented at NASA 
with the intention of making a jet fuel whose flow could be 
directed in a zero-gravity environment using a magnetic field 
[4]. They have subsequently found a broad range of applica-
tions reaching from liquid seals around rotating shafts (such 
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Abstract
The experimental realization of quantum-degenerate Bose gases made of atoms with sizeable 
magnetic dipole moments has created a new type of fluid, known as a quantum ferrofluid, 
which combines the extraordinary properties of superfluidity and ferrofluidity. A hallmark of 
superfluids is that they are constrained to rotate through vortices with quantized circulation. 
In quantum ferrofluids the long-range dipolar interactions add new ingredients by inducing 
magnetostriction and instabilities, and also affect the structural properties of vortices and 
vortex lattices. Here we give a review of the theory of vortices in dipolar Bose–Einstein 
condensates, exploring the interplay of magnetism with vorticity and contrasting this with 
the established behaviour in non-dipolar condensates. We cover single vortex solutions, 
including structure, energy and stability, vortex pairs, including interactions and dynamics, 
and also vortex lattices. Our discussion is founded on the mean-field theory provided by the 
dipolar Gross–Pitaevskii equation, ranging from analytic treatments based on the Thomas–
Fermi (hydrodynamic) and variational approaches to full numerical simulations. Routes for 
generating vortices in dipolar condensates are discussed, with particular attention paid to 
rotating condensates, where surface instabilities drive the nucleation of vortices, and lead 
to the emergence of rich and varied vortex lattice structures. We also present an outlook, 
including potential extensions to degenerate Fermi gases, quantum Hall physics, toroidal 
systems and the Berezinskii–Kosterlitz–Thouless transition.
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as in hard disks), where the fluid is held in place using mag-
nets, to magnetically targeted drugs in medicine [5]. However, 
the focus of this review is upon quantum ferrofluids as first 
realized in 2005 with the creation of a Bose–Einstein conden-
sate (BEC) in a vapour of 52Cr atoms by the Stuttgart group 
[6]. These atoms have a magnetic dipole moment of 6 B µ , six 
times larger than that found in the alkalis which are used in 
the majority of BEC experiments. 52Cr atoms therefore have 
dipolar interactions which are 36 times larger than in stan-
dard BECs. The relatively high density and small kinetic 
energy of atoms in BECs (in comparison to thermal gases) 
allows interparticle interactions to play an important role in 
their physics. Other groups have also studied 52Cr BECs [7, 
8], as well as BECs made of atoms with even larger magnetic 
dipoles such as 164Dy [9, 10], and 168Er [11]. Many of the 
signatures of ferrohydrodynamic behaviour have now been 
observed, including magnetostriction [12]4, collapse due to 
dipolar interactions [13, 14], and the quantum analog of the 
Rosensweig instability [10, 15]. Recently, fully self-bound 
dipolar droplets have been reported [16, 17]. Additionally, the 
production of ultracold fermionic 40K–87Rb [18] polar mol-
ecules and the cooling of fermonic 161Dy [19] and 167Er [20], 
all with significant dipole moments, pave the way for a new 
generation of quantum degenerate Fermi gas experiments, 
where dipolar interactions dominate. In Fermi gas systems the 
partially attractive nature of the dipolar interaction opens up 
the possibility of Bardeen-Cooper-Schrieffer (BCS) pairing at 
sufficiently low temperatures [21–29]. Excellent reviews of 
the field of ultracold dipolar gases can be found in [30–34].

Vortical structures have been generated experimentally in 
non-dipolar condensates in the form of single vortices [35, 36], 
vortex–antivortex pairs [37, 38], vortex rings [39] and vortex 
lattices [40, 41], as well as disordered vortex distributions char-
acteristic of quantum turbulence [42–44]. These excitations 
underpin a variety of rich phenomena, including vortex lattices, 
quantum turbulence, the Berezinskii–Kosterlitz–Thouless 
transition and Kibble–Zurek defect formation. In geometries 
approaching the one-dimensional limit, so-called solitonic vor-
tices have been formed [45, 46] which share properties between 
vortices and their one-dimensional analogs: dark solitons. 
Several reviews exist which summarise the significant exper-
imental and theoretical aspects of vortices and vortex lattices in 
non-dipolar BECs [47–52]. Vortices have yet to be observed in 
quantum ferrofluids, although numerical simulations suggest 
the formation of vortex rings in the dipolar collapse experi-
ment of [13], and the formation of vortex–antivortex pairs [53] 
in the droplet experiment of [10].

Here we establish the properties of vortices and vortex 
lattices in quantum ferrofluids, reviewing the theoretical pro-
gress that has been made over the last decade. Whilst it is 
possible to also consider the properties of vortices and vortex 
lattices in dipolar Fermi gases, this review is confined to the 
bosonic case and only a brief discussion of fermionic systems 
will be given in the summary and outlook (section 9). The 
structure of this review is built upon the philosophy of taking 
the reader on a journey. This journey starts in section 2 where 

the properties of classical and strongly correlated quant um 
ferrofluids are briefly discussed. Sections 3 and 4 provide a 
brief introduction to the properties of dipolar BECs in the 
absence of vortices. In section 3 we examine the mathemati-
cal form of the dipolar interaction in quantum ferrofluids, and 
present the most widely used model for quantum ferrofluids—
the dipolar Gross–Pitaevskii equation (GPE)—along with its 
hydrodynamical interpretation. Section 4 builds on this theory 
to consider the stability of dipolar BECs. Specifically, we look 
at stability in the Thomas–Fermi (hydrodynamic) regime, 
where interactions dominate, and more general dipolar GPE 
solutions, in three-dimensional and quasi-two-dimensional 
systems. Section  5 focuses on the properties of single vor-
tex lines in three-dimensional condensates and single vortices 
in quasi-two-dimensional systems. In section 6 we consider 
vortex–vortex and vortex–antivortex dynamics in quasi-two-
dimensional dipolar BECs, primarily focusing on solutions 
of the dipolar GPE. Section 7 addresses the routes to vortex 
and vortex lattice formation. This focuses primarily on sta-
tionary solutions (in the rotating frame) and their dynamical 
stability, enabling us to ascertain under what conditions it 
might be expected that vortices will nucleate into the dipo-
lar BEC. Section  8 analyses how dipolar interactions can 
induce changes to vortex lattice structures. This revisits previ-
ous work and presents some new variational calculations that 
elucidate the properties of vortex lattice structures in dipolar 
condensates. In section 9 we give a brief summary and pro-
vide an outlook to several topical aspects for future develop-
ment which are not covered in the main body of the review. 
Prospects for quantum turbulence with quantum ferrofluids, 
which are not covered here, are discussed elsewhere [54].

2. Classical ferrofluids and strongly correlated 
quantum ferrofluids

A classical ferrofluid can be formed from a suspension of small 
permanently magnetized particles, with a typical size of 0.01 μm, 
in a non-magnetic solvent [1]. Their most closely related electri-
cal counterparts are known as electrorheological fluids which 
are suspensions of electrically polarizable particles, typically 
1–100 μm in size, in an insulating solvent [55–57] (there are also 
magnetorheological fluids where small micelles of magnetizable 
fluid are suspended in a nonmagnetizable fluid [58, 59].)

In the presence of an external field, a classical ferrofluid can 
form a zoo of different patterns including hexagonal cells [3], 
columns [60], stripe and bubble phases [61], and disordered 
stripe phases producing labyrinthine structures [1]. Some of 
these patterns also occur in quantum ferrofluids: stripe phases 
(density wave modulations) will be discussed in the quantum 
case in the absence of vortices in section 4.2.2 and in the pres-
ence of vortices beginning in section  5.2. Vortex lattices in 
quant um fluids tend to form hexagonal patterns (Abrikosov 
lattices) even in the absence of dipolar interactions where the 
long-range logarithmic hydrodynamic interaction between vor-
tices plays an important role. However, as we shall see in sec-
tions 8.2 and 8.3, the presence of dipolar interactions can change 
the lattice configuration to square and bubble geometries.4 This paper coined the term ‘quantum ferrofluid’.
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The above patterns can all be captured to some degree by 
mean-field theory where no attempt is made to describe the 
fluid at the molecular level. However, it has long been pre-
dicted that with strong dipolar interactions ferrofluid mole-
cules can form chains and rings [62–64]. In order to describe 
such strong correlation effects, which lie beyond the mean-
field description, it is necessary to use computationally 
intensive Monte Carlo and molecular dynamics techniques 
[65–68]. These methods suggest a complex and rich phase 
diagram. In zero applied field at relatively low temperatures, 
and as the density is increased from low to high, the molecules 
initially form rings which unbind into chains which then clus-
ter into networks, which break down into a normal liquid, then 
form a ferroelectrically ordered liquid, followed by a possible 
ferroelectric columnar ordering, and finally form a ferroelec-
tric solid. In the presence of an external field chains, columns, 
sheets, bent walls, lamellar, labyrinthine or worm-like struc-
tures, and hexagonal structures all appear [68]. Transitions 
from single chains to double chains (zig–zag) can also occur 
if initially strong transverse confinement is reduced [69].

In the rest of this review we restrict ourselves to mean-
field phenomena. It is important to mention, however, that 
there is a sizeable body of theoretical work in strongly cor-
related quantum dipolar systems in two dimensions. Strongly 
correlated dipolar gases do not yet exist in the laboratory but 
ideas to realize them include using ultracold molecules with 
very large dipole moments dressed by microwaves [70] and 
Rydberg dressed ultracold gases [71]. One of the main inter-
ests in these systems is the formation of so-called supersolids 
which are crystalline and yet also have superfluid properties 
[70, 72–76]. Unlike the density wave structures we shall study 
later in this review, which have many atoms per wavelength, 
in the strongly correlated case the periodicity can be at the 
single atom or few atom length scale. Liquid crystal phases 
have also been identified [77].

3. Quantum ferrofluids: theory and basic properties

The successful Bose–Einstein condensation of gases of 52Cr 
atoms [6, 7], 164Dy [9, 10] and 168Er [11] have realized BECs 
with significant dipolar interactions. A basic property of these 
interactions is that their net effect depends on the shape of the 
BEC, as illustrated in figure  1. For dipoles polarised along 
the long axis of a prolate (elongated) dipolar gas (figure 1(a)) 
the net contribution to the dipolar interaction is attractive. By 
contrast, for dipoles polarised along the short axis of an oblate 
(flattened) dipolar gas (figure 1(b)) the net contribution to the 
dipolar interaction is repulsive. Compared to BECs with inter-
actions which are dominated by isotropic s-wave scattering, 
a dipolar BEC will be elongated along the direction of the 
polarising field (magnetostriction) [78–80].

3.1. The dipolar interaction

At low energies, and far from any two-body bound states, 
the interatomic interactions can be described by an effec-
tive pseudo-potential which is the sum of a contact term 

originating from the van der Waals interactions and a bare 
dipolar term [32, 79],

( ) ( ) ( )

( )δ
π

θ
− − −

−

= +

= − +
−
| |

′ ′ ′

′
′

U U U

g
C
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r r
r r4

1 3 cos
,

vdW dd

dd
2

3
 (1)

where we have assumed the dipoles are polarised by an 
external field with θ being the angle between the polarisa-
tion direction and the inter-atom vector r r− ′. The short-
range interactions are characterized by the coupling constant 
g a m4 s

2ħ /π= , where as is the s-wave scattering length and 
m is the mass of the atoms. The strength of the dipolar inter-
actions is set by Cdd. For magnetic dipoles C ddd 0

2µ=  [81], 
where 0µ  is the permeability of free space and d is the magn-
etic dipole moment of the atoms. Equation (1) also holds for 
electric dipoles induced by a static electric field EE k̂= , for 

which the coupling constant is C Edd
2

p
2

0/α= ε  [82, 83], where 

pα  is the static polarizability and 0ε  is the permittivity of free 
space. The formation and cooling to degeneracy of polar mol-
ecules, with significant electric dipole moments, is proving to 
be challenging. However, progress is ongoing with 40K87Rb 
[84] and 133Cs87Rb [85], which are expected to have a signifi-
cant coupling constant for electric fields on the order of sev-
eral hundred V cm−1. The dipolar interaction Udd, illustrated 
in figure 2, is negative for 0θ = , representing the attraction 
of head-to-tail dipoles, and positive for 2/θ π= , representing 
the repulsion of side-by-side dipoles. At the ‘magic angle’, 

arccos 1 3 54.7m ( / )θ = ≈ �, the dipolar interaction is zero.
It is often convenient to work in momentum space. The 

Fourier transform U U Uk r re dk r
dd dd dd

i˜ ( ) [ ] ( )∫= = − ⋅F  of the 
dipolar interaction is [81],

U Ck cos
1

3
,dd dd

2˜ ( ) ⎜ ⎟
⎛
⎝

⎞
⎠α= − (2)

where α is the angle between k and the polarization direction.
The strength of the dipolar interactions is conveniently 

parameterized by the ratio [32],

(a)

(b)

Figure 1. (a) For a prolate trapped condensate the net dipolar 
interaction is attractive. (b) For an oblate system the net dipolar 
interaction is repulsive.

J. Phys.: Condens. Matter 29 (2017) 103004



Topical Review

4

C

g3
,dd

ddε = (3)

where g can be tuned between −∞ and +∞ via a Feshbach 
resonance [86, 87]. In effect ddε  gives the relative impor-
tance of the anisotropic, long-range dipole–dipole interac-
tions to the isotropic, short-range van der Waals interactions. 
It is defined with a factor of 3 in the denominator so that 
the homogeneous dipolar condensate is unstable when 

1ddε > —see section  4.1.1. For 52Cr, 168Er and 164Dy, the 
natural value of ddε  is 0.16 [88], 0.4 [11] and 1.45 [9, 89], 
respectively.

While Cdd is conventionally positive and set to the natu-
ral value of the given atom, it is predicted to be possible to 
reduce Cdd below its natural value, including to negative val-
ues, by tilting the polarization direction off-axis and rotating 
it rapidly [90]. Hence it is feasible to consider ddε−∞< <∞, 
with both negative and positive Cdd. Note that for C 0dd<  the 
dipole–dipole interaction becomes repulsive for head-to-tail 
dipoles and attractive for side-by-side dipoles.

3.2. The dipolar Gross–Pitaevskii equation

In the mean-field limit, at zero temperature, a single wave-
function, tr,( )Ψ , can be used to describe the condensate. The 
condensate density ( ) ( )= |Ψ |n t tr r, , 2 is normalized such that

N rd ,2∫= |Ψ| (4)

where N is the number of atoms in the condensate. The wave-
function obeys the dipolar GPE [78, 81, 82],

∂Ψ
∂
= − ∇ + + |Ψ| +Φ Ψ

⎡
⎣⎢

⎤
⎦⎥t m

V gi
2

,
2

2 2ħ ħ
 (5)

where V V r( )=  is the external potential acting on the con-
densate (which in principle may also be time-dependent, but 
here we consider it to be static). The local term, g 2|Ψ| , arises 
from the van der Waals interactions and the non-local term, Φ, 
arises from the dipolar interactions [79],

t U n tr r r r r, , d .dd( ) ( ) ( )∫Φ = − ′ ′ ′ (6)

If we take the dipoles to be polarized along the z-direction, 
then using identities from potential theory the dipolar poten-
tial can be expressed as [91, 92],

t g
z

t n tr r r, 3 ,
1

3
, ,dd

2

2
( ) ( ) ( )

⎛
⎝
⎜

⎞
⎠
⎟ε φΦ = −

∂
∂

+ (7)

where φ is a fictitious ‘electrostatic’ potential defined as

t
n

r
r, t

r r
r,

1

4
d .( ) ( )

∫φ
π

=
−
′
′
′ (8)

This effectively reduces the problem of calculating the dipolar 
potential Φ to one of calculating an electrostatic potential of 
the form (8) which is easier to compute because the Green’s 
function r r1/ − ′  has no angular dependence. Furthermore, 
hundreds of years of literature exists providing analytic 
methods for solving electrostatic and gravitational problems 
with this form of interaction [93–96]. Alternatively, Φ can be 
evaluated in momentum space by exploiting the convolution 
theorem,

t U n tr k k, , ,1
dd( ) [ ˜ ( ) ˜( )]Φ = −F (9)

where ˜( ) [ ( )]= Fn t n tk r, , .
In condensate experiments the external potential V is typi-

cally harmonic with the general form,

V m x y zr
1

2
,x y z

2 2 2 2 2 2( ) ( )ω ω ω= + + (10)

where jω  (j  =  x, y, z) are the trap’s angular frequencies. In 
general, this gives rise to three harmonic oscillator lengths, 

mj jħ/ ω=� , which are the characteristic length scales 
imposed by the trap on the wavefunction in the three different 
directions. However, cylindrically-symmetric traps are com-
mon, defined as,

V m z m zr
1

2

1

2
,z

2 2 2 2 2 2 2 2( ) ( ) ( )ω ρ ω ω ρ γ= + = +⊥ ⊥ (11)

where z /γ ω ω= ⊥ is the so-called trap ratio. When 1γ�  the 
BEC shape will typically be oblate (flattened) while for 1γ�  
it will typically be prolate (elongated).

Time-independent solutions of the GPE satisfy,

tr r, e ,ti( ) ( ) ħ/ψΨ = µ− (12)

where μ is the chemical potential5. Inserting this into  
equation  (5), the time-independent dipolar GPE for the  
time-independent wavefunction r( )ψ  is

m
V g

2
.

2
2 2ħ

µψ ψ ψ ψ ψ ψ= − ∇ + + | | + Φ (13)

Solutions of the time-independent GPE are stationary solu-
tions of the system, and the lowest energy of these is the 
ground state.

The energy of the condensate is given by,

Figure 2. Illustration of the dipole–dipole interaction. The magic 
angles, at which the dipole–dipole interaction reduces to zero, are 
indicated by the black dashed lines (on the right-hand portion of the 
figure).

5 Throughout this review Ψ (ψ) denotes the time-(in)dependent condensate 
wavefunction.

J. Phys.: Condens. Matter 29 (2017) 103004



Topical Review

5

ħ
∫= |∇Ψ| + |Ψ| + |Ψ| +

Φ
|Ψ|

= + + +

⎡
⎣⎢

⎤
⎦⎥

E
m

V
g

E E E E

r
2 2 2

d

.

2
2 2 4 2

kin pot vdW dd

 (14)

The terms represent (from left to right) kinetic energy Ekin, 
potential energy Epot, the van der Waals interaction energy 
EvdW and the dipolar interaction energy Edd. Provided that the 
potential V is independent of time, then the total energy E is 
conserved during the time evolution of the GPE.

Comparing the relative size of the kinetic term and the net 
interaction term in the dipolar GPE in an untrapped (V  =  0) 
system defines a length scale termed the healing length,

m
,

ħ
ξ

µ
= (15)

which may be interpreted as the minimum length-scale over 
which the wavefunction changes appreciably.

Efficient numerical methods for solving the dipolar GPE 
are available [97–101] and progress has been made on extend-
ing this treatment to include finite temperature effects and 
quantum fluctuations [102–105].

3.3. Dipolar hydrodynamic equations

There is a deep link between the GPE and fluid dynamics. 
Indeed, the condensate can be thought of as a fluid, character-
ised by its density and velocity distributions. This is revealed 
by writing the condensate wavefunction in the Madelung form 

t n tr r, , e S tri ,( ) ( ) ( )Ψ = , where the local phase, S tr,( ), defines 
the fluid velocity field tv r,( ),

t
m

S tv r r, , .
ħ( ) ( )∇= (16)

Inserting the Madelung form into the GPE, and separating 
real and imaginary terms, yields two equations which together 
are exactly equivalent to the GPE. The first is the continuity 
equation,

n

t
nv 0.( )∇∂

∂
+ ⋅ = (17)

This embodies the conservation of the number of atoms. The 
second equation is

m
t

mv V gn
m

n

n

v 1

2 2
.2

2 2ħ⎛
⎝
⎜

⎞
⎠
⎟∇∂

∂
= − + + + Φ−

∇
 (18)

The n n2 /∇ -term is the quantum pressure, arising from the 
zero-point kinetic energy of the atoms. It can be dropped when 
the interactions and external potential dominate the zero-point 
motion, leading to the Thomas–Fermi approx imation. In 
this regime, and in the absence of dipolar interactions, equa-
tions (17) and (18) resemble the continuity and Euler hydro-
dynamical equations for inviscid fluids. As such they are often 
referred to as the superfluid hydrodynamic equations  [106–
110]. Equations (17) and (18) have been extended to include 
dipolar interactions and are referred to as the dipolar super-
fluid hydrodynamic equations.

4. Vortex-free solutions and stability

Before discussing vortices, we next describe the solutions and 
stability of the dipolar condensates themselves, in homoge-
neous and trapped systems, and introduce some key analytical 
tools and physical concepts.

4.1. Homogeneous condensate

4.1.1. Three-dimensional case. For V r 0( ) =  (uniform con-
densate of infinite extent), the stationary solution is,

n n g, 1 ,0 0 dd( )ψ µ ε= = − (19)

i.e. a state of uniform density n0. The two contributions to the 
chemical potential μ are the uniform mean-field potentials 
generated by the van der Waals and the dipolar interactions, 
respectively. In the absence of dipolar interactions ( 0ddε = ), 
the corresponding solution has chemical potential n g0µ = . 
By comparison, the homogeneous dipolar system is akin to a 
non-dipolar system but with an effective coupling

g g 1 .eff dd( )ε= − (20)

For a three-dimensional homogeneous dipolar condensate, 
the Bogoliubov dispersion relation between the energy EB and 
momentum p of a perturbation is given by,

E c p
p

m
p

2
,B

2 2
2 2

( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟θ= + (21)

where c( )θ  is the speed of sound,

c
gn

m
1 3 cos 1 .0

dd
2( ) [ ( )]θ ε θ= + − (22)

The angle θ is that between the excitation momentum p and 
the polarization direction. For low momenta the spectrum is 
linear E c pB ( )θ≈  which is characteristic of phonons with a 
phase velocity c( )θ  that depends on direction. For higher 
momenta the relation becomes quadratic in p which is charac-
teristic of free-particle excitations.

The amplitude of a mode specified by momentum p 
evolves in time as iE tpexp B ħ( ( ) / )− . If E pB( ) should become 
imaginary the relevant amplitude grows exponentially, signi-
fying a dynamical instability. In the case of the three-dimen-
sional homogeneous dipolar BEC considered in this section, 
with E pB( ) provided by equation  (21), such an instability 
arises for small p, i.e. long wavelengths, and this is known 
as the phonon instability, familiar from non-dipolar attractive 
(g  <  0) condensates [108]. Examining the parameter space 
over which equation  (21) is real-valued indicates that the 
three-dimensional homogeneous system is stable against the 
phonon instability in the range 0.5 1dd⩽ ⩽ε−  for g  >  0, and 
ε ε− >0.5, 1dd dd⩽  for g  <  0.

4.2. Trapped dipolar condensates

A full theoretical treatment of a trapped BEC involves solv-
ing the dipolar GPE, given in equation  (5) [108, 109]. The 
non-local nature of the mean-field potential describing dipolar 
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interactions means that this task is more challenging than for 
purely s-wave BECs. Moreover, the stability of the conden-
sate becomes non-trivial, becoming dependent on the geom-
etry of the trap and the number of atoms (in addition to the 
dipole strength). Additionally, a dipolar condensate can suffer 
from a density-wave instability associated with a novel type 
of excitation called a roton in analogy with a similar type of 
excitation in superfluid helium [111–113]. To characterise the 
stability of a dipolar condensate we first derive and examine 
the Thomas–Fermi ground state solutions for a dipolar BEC.

4.2.1. Thomas–Fermi solutions. The problem of finding 
the ground state solution (as well as low-energy dynamics) 
is greatly simplified by making use of the Thomas–Fermi 
approximation, whereby density gradients in the GPE (or, 
equivalently, the hydrodynamic equations) are ignored, allow-
ing analytic solutions [106]. For a non-dipolar condensate, 
with repulsive van der Waals interactions, this is valid for 
Na 1s/�̄ � , where x y z

1 3¯ ( ) /=� � � �  is the geometric mean of the 
harmonic oscillator lengths [108, 109]. This regime is relevant 
to many experiments.

In the dipolar case, the Thomas–Fermi approximation is 
valid when the net interactions are repulsive and the num-
ber of atoms is large; rigorous criteria have been established 
for certain geometries in [114]. Although the governing 
equations  for a dipolar BEC contain the non-local potential 
r( )Φ , exact solutions known from the pure s-wave case hold, 

in modified form, in the dipolar case too [91, 92], and we 
make extensive use of them throughout this review.

Consider a dipolar condensate polarized in the z-direction, 
with repulsive van der Waals interactions (as  >  0), and con-
fined by a cylindrically-symmetric trap of the form of equa-
tion (11). We limit the analysis to the regime of 0.5 1dd⩽ ⩽ε− , 
where the Thomas–Fermi approach predicts that stationary 
solutions are stable [91]. Outside of this regime the con-
densate becomes prone to collapse [115, 116]. Under the 
Thomas–Fermi approximation the time-independent GPE 
(13) reduces to,

m z gnr r
1

2
.2 2 2 2( ) ( ) ( )ω ρ γ µ+ + Φ + =⊥ (23)

Making use of the electrostatic formulation given in equa-
tions  (7) and (8), exact solutions of equation  (23) can be 
obtained for any general parabolic trap, as proven in appendix 
A of [92]. In particular, the solutions for the density profile 
take the form,

n n
R

z

R
nr r1 for 0,

z
cd

2

2

2

2
( ) ( ) ⩾

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ρ
= − −

⊥
 (24)

where n N R R15 8 zcd
2/( )π= ⊥

6 is the central density, and Rz and 
R⊥ are the Thomas–Fermi radii of the condensate in the axial 
and transverse directions.

Remarkably, the inverted parabolic density profile, equa-
tion  (24), is of the same form as that found in non-dipolar 

BECs [108, 109]. However, whereas non-dipolar BECs have 
the same aspect ratio, R Rz/κ = ⊥ , as the trap, for dipolar BECs 
κ γ≠  (in general) and must be evaluated using the following 
transcendental equation [91, 92],

( )

( )( )

κ ε
γ κ

κ

ε κ γ

= +
−

−

+ − −

⎡

⎣
⎢
⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥f

0 3
2

1
1

1

1 ,

2
dd

2

2

dd
2 2

 (25)

where,

f
1 2

1

3 arctanh 1

1
,

2

2

2 2

2 3 2
( )

( ) /κ
κ
κ

κ κ
κ

=
+
−

−
−

−
 (26)

which takes the value f  =  1 at 0κ = , and monotonically 
decreases towards f  =  −2 as →κ ∞, passing through zero 
at 1κ = . This is a robust feature: the same transcendental 
equation  is recovered using a variational approach based on 
a gaussian ansatz for the condensate wave function [79, 80]. 
For a non-dipolar ( 0ddε = ) condensate one finds the expected 
result that κ γ= . However, the presence of dipolar interactions 
leads to magnetostriction of the condensate, such that κ γ<  
for 0ddε >  and κ γ>  for 0ddε < . This behaviour is shown in 
figure 3 (top) [117]. Note that, within the range 0.5 1dd⩽ ⩽ε−  
these are global solutions; elsewhere the solutions are either 
metastable (light grey shading) or unstable (dark grey shad-
ing). For conventional dipoles (C 0dd> , 0ddε > ), the conden-
sate is least stable in prolate ( 1γ< ) traps; here the dipoles 
lie predominantly in the attractive head-to-tail configuration 
and undergo collapse when ddε  becomes too large. By con-
trast, in oblate ( 1γ> ) traps stability is enhanced since the 
dipoles lie predominantly in the repulsive side-by-side con-
figuration. Meanwhile the opposite is true for anti-dipoles 
(C 0dd< , 0ddε < ). Away from the instabilities, these solutions 
agree well with numerical solutions of the full dipolar GPE 
in the Thomas–Fermi regime [115]. Close to the instabili-
ties, zero-point kinetic energy (neglected within the Thomas–
Fermi approach) can enhance the stability of the solutions.

Once the BEC aspect ratio κ is found from the transcen-
dental equation, the Thomas–Fermi radii are determined by 
the expressions,

R
Ng

m

f15

4
1

3

2 1
1 ,

2 dd

2

2

1 5
( )

/⎡

⎣
⎢
⎢

⎧
⎨
⎩

⎛
⎝
⎜

⎞
⎠
⎟
⎫
⎬
⎭

⎤

⎦
⎥
⎥

κ
π ω

ε
κ κ
κ

= +
−

−⊥
⊥

 (27)

R
R

,z
κ

= ⊥
 (28)

and the total energy is given by,

ω
γ
κ

π
ε κ

= +

+ −

⎛
⎝
⎜

⎞
⎠
⎟E

N
m R

N g

R R
f

14
2

15

28
1 .

x x

x z

TF
2 2

2

2

2

2 dd[ ( )]
 (29)

The first term corresponds to the trapping energy and the sec-
ond to the s-wave and dipolar interaction energies. Finally, 
the dipolar potential inside the condensate can be explicitly 
obtained as [92],

6 Usually the central density of the Thomas–Fermi profile is denoted n0. 
However to avoid confusion, later in the review, we have used ncd to define 
the central density of the Thomas–Fermi profile.
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(30)

This is generally a saddle-shaped function that reflects the 
anisotropic nature of the dipolar interactions and drives 
the elongation of the BEC along the polarization direc-
tion. A more general version of rTF( )Φ  for the case of a 
dipolar BEC without cylindrical symmetry is given later in 
equation (71).

4.2.2. Outside the Thomas–Fermi regime: rotons and den-
sity oscillations. According to the Thomas–Fermi approach, 
a trap which is sufficiently oblate ( 5.2�γ ) is stable to col-
lapse even in the limit dd →ε ∞. However, numerical solutions 
reveal a different fate, whereby the condensate undergoes 
instability even for →γ ∞ [112]. This is associated with the 
development of a roton minimum in the dispersion relation 
[111, 112, 132], reminiscent of rotons in superfluid helium 
[118]. For certain parameters, this minimum can approach 
zero energy, triggering an instability at finite k known as 
the roton instability. The Thomas–Fermi approach, which is 
limited to the class of inverted parabolic solutions, is unable 
to account for this phenomenon. The roton is a strict conse-
quence of the non-local interactions, and does not arise for 
conventional condensates.

The effect of this in trapped, purely dipolar condensates 
was revealed by Ronen et al, with the stability diagram shown 
in figure  3 (bottom) [119]. When the dipolar interaction 
parameter D NmC l4dd

2ħ/( )π= ⊥
7 exceeds a critical value, for 

any trap ratio, the system is unstable to collapse. The con-
densate becomes unstable to modes with increasingly large 
number of radial and angular modes as the trap aspect ratio 
increases, signifying that collapse proceeds on a local, rather 
than global, scale [120]. Of particular interest is the appear-
ance, close to the instability boundary and under oblate traps, 
of ground state solutions with a biconcave, red blood cell-like, 
shape (see figure 3 (bottom)) [119, 121]. Subsequent works 
confirmed these density oscillations as being due to the roton, 
which, for certain parameters, mixes with the ground state of 
the system [122]. More generally, when van der Waals inter-
actions are included [123, 124], both biconcave and dumbbell 
shapes can arise [125]. Under box-like potentials, which have 
been realized in recent years [126, 127], density oscillations 
associated with the roton can arise at the condensate edge [79].

An intuitive interpretation of the roton in an oblate trap 
was put forward by Bohn et al [128]. As the dipole strength 
is increased, it is energetically favourable for the dipoles to 
locally move out of the plane and align head-to-tail perpend-
icular to the plane, thereby taking advantage of this attrac-
tive configuration. This leads to a periodic density in the 
plane, with a wavenumber corresponding to that of the roton 
minimum. In this geometry it is also interesting to note that 
quant um depletion of the condensate is predicted to diverge at 
the roton instability [132].

4.3. Quasi-two-dimensional dipolar Bose–Einstein  
condensate

For a condensate strongly confined in one dimension it is pos-
sible to reduce the effective dimensionality of the system to 
form a quasi-two-dimensional condensate. This offers a sim-
plified platform to study vortices and vortex lattices in dipolar 
condensates, while still retaining the key physics.

Figure 3. Top: the aspect ratio, κ, (solid curves) of harmonically 
trapped, cylindrically-symmetric, dipolar condensates in the 
Thomas–Fermi regime. Each line corresponds to an equally 
spaced (on a logarithmic scale) trap aspect ratio, γ ( [ ]γ = 0.1, 10 ). 
White, light grey and dark grey shading correspond to regimes of 
global, metastable and unstable solutions respectively. Reprinted 
figure with permission from [117]. Copyright 2010 by the American 
Physical Society. Bottom: stability diagram of the purely dipolar 
harmonically-trapped condensate (ground state), as a function of the 
trap aspect ratio /λ γ ω ω≡ = ⊥z  and the dipolar interaction parameter 
is ħ/( )π= ⊥D NmC l4dd

2 . The shaded region denotes stability against 
collapse. The dark shaded regions indicate biconcave condensates. 
Reprinted figure with permission from [119]. Copyright 2007 by the 
American Physical Society.

7 In the original work by Ronen et al [119] D was defined as 
D N mC l1 4dd

2ħ( ) /( )π= − ⊥ . However, the derivation of the dipolar GPE 
requires N 1� . Hence, in this review, we have defined D NmC l4dd

2ħ/( )π= ⊥ .

J. Phys.: Condens. Matter 29 (2017) 103004



Topical Review

8

Consider the dipoles to be polarized at an angle α to the 
z-axis, lying in the x  −  z plane, and strong harmonic con-

finement V z m zz
1

2
2 2( ) ω=  in the z-direction which satisfies 

zħω µ� , i.e. the trapping energy dominates over the conden-
sate energy scale. This set-up is illustrated in figure 4 [129]. 
In this regime, one can approximate the wavefunction by the 
ansatz,

z t t z, , , .z( ) ( ) ( )ρ ρ ψΨ = Ψ⊥ (31)

Axially, the condensate is taken to be frozen into the axial 

ground harmonic oscillator state z ez z
z2 1 4 2 z

2 2
( ) ( ) / /ψ π= − −� � . 

The dynamics then become planar, parametrised by the two-
dimensional time-dependent wavefunction, t,( )ρΨ⊥ . Note that 

Ψ⊥ is normalized to the number of atoms, i.e. N d2∫ ρ= |Ψ |⊥ . 
Inserting this ansatz into the dipolar GPE, equation (5), and 
integrating out the axial direction then leads to the effective 
two-dimensional dipolar GPE [130],

ρ
π

∂Ψ
∂
= − ∇ + + |Ψ | +Φ Ψ⊥

⊥ ⊥ ⊥ ⊥

⎡

⎣
⎢

⎤

⎦
⎥

t m
V

g

l
i

2 2
.

z

2
2 2ħ ħ ( ) (32)

The g l2 z/ π  coefficient characterises the effective van der 
Waals interactions in the plane, and Φ⊥ is the effective planar 
dipolar potential,

t U n t, , d ,dd( ) ( )  ( )∫ρ ρ ρ ρ ρΦ = − ′ ′ ′⊥
⊥

⊥ (33)

where n 2=|Ψ |⊥ ⊥  is the two-dimensional density. The real-
space form of the effective two-dimensional dipolar inter-
action potential Udd

⊥  is given elsewhere [131], while in this 
review its Fourier transform is used [130, 132],

U
C

l
F Fq q q

4

9 2
sin cos ,

z
dd

dd 2 2˜ ˜ ˜˜ ( ) [ ( ) ( ) ]∥
π
π

α α= +⊥
⊥ (34)

where ˜( ) ( ˜)∥
˜
˜

˜π= − +F qq 1 3 e erfc
q

q
qx

2 2 , ˜( ) ˜ ( ˜)˜π= −⊥F q qq 2 3 e erfcq2   

and lq q 2z˜ /=  with q being the projection of k onto the 
x  −  y plane, i.e. the reciprocal space analogue of ρ8. From 
this momentum space representation Φ⊥ can then be evaluated 

using the convolution theorem as in equation (9). An impor-
tant parameter is the ratio lz /σ ξ= , where ξ is the healing 
length. The two-dimensional approx imation requires 1σ< .

Under a cylindrically-symmetric harmonic trap and for 
dipoles polarized along z, the above ‘two-dimensional mean-
field regime’ is formally entered when Na l l1 2 1s zdd

3 4( ) /ε+ ⊥� . 
In the opposing regime, when Na l l1 2 1s zdd

3 4( ) /ε+ ⊥� , the sys-
tem enters the three-dimensional Thomas–Fermi regime [114]. 
A more general analysis of flattened condensates in [133] has 
established the validity of the two-dimensional mean-field 
regime for arbitrary polarization direction.

In the absence of any planar trapping potential V 0[ ( ) ]ρ = , 
the stationary solution of the quasi-two-dimensional dipolar 
condensate is the homogeneous state [130],

n
n

l
g

C
,

2 3
3 cos 1 ,

z
0

0 dd 2( )
⎡
⎣⎢

⎤
⎦⎥ψ µ

π
α= = + −⊥ (35)

where n0 is the uniform two-dimensional density. This sys-
tem undergoes the phonon instability when the net local 
interactions become attractive in the plane, i.e. when 
g C 3 cos 1 3 0dd

2[ ]/α+ − < . The phonon unstable regions in 
the ddε α−  plane are shown in figure 5. These can be under-
stood by considering the trade-off between the van der Waals 
and the dipolar interactions [129, 134]. Note the divergent 
behaviour at the magic angle mα , across which the planar 
dipolar interactions switch between repulsive and attractive.

The roton instability also arises in this quasi-two-dimen-
sional BEC [112], as indicated in figures  5(a) and (b) (blue 
shaded regions). For g  >  0 the roton instability is induced by 
the attractive part of the dipolar interaction and is only possible 
for 0α≠ ; for 0α =  the condensate cannot probe the attractive 
part of Udd

⊥  [132] (this is true only in the strict quasi-two-dimen-
sional limit). For g  <  0 the roton exists for all α [135] (exclud-
ing the magic angle). For small α it is induced by the attractive 
van der Waals interactions, while for larger α it is driven by the 
attractive axial component of the dipolar interactions.

The extent of the dipolar BEC in the z-direction (σ) effects 
the stability of the roton. Specifically, as the condensate 
becomes narrower (σ decreases) the out-of-plane component 
of Udd

⊥  decreases [129] and the regimes of roton instability 
(blue regions in figure 5) shrink.

Figure 4. Schematic of the quasi-two-dimensional dipolar 
condensate, with strong harmonic trapping along z. The dipoles 
are taken to be polarized at angle α to the z-axis in the x  −  z plane. 
The condensate is assumed to follow the static ground harmonic 
oscillator state along z. Reproduced from [129]. CC BY 3.0.

Figure 5. The stability diagram in ε α−dd  space, for (a) g  >  0 
and (b) g  <  0, of a homogeneous dipolar BEC in the quasi-two-
dimensional regime (σ = 0.5). Shown are the regions of stability 
(white), phonon instability (pink) and roton instability (blue). The 
vertical dashed line indicates the magic angle αm. For /α π> 2 the 
results are the mirror image of the presented region. Reproduced 
from [129]. CC BY 3.0.

8 Throughout this review k is the reciprocal lattice vector in three spatial di-
mensions r and q is the reciprocal lattice vector in two spatial dimensions ρ.
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5. Single vortices

Quantized vortices are a consequence of the condensate’s 
phase coherence. To preserve the single-valuedness of the 
condensate wavefunction, the total change in phase around 
some closed path C must be q2 vπ , with = ± ±q 0, 1, 2, ...v . If 
q 0v≠  then there exists one or more phase singularities within 
C. These singularities are the quantized vortices, and qv is the 
vortex charge.

Consider an isolated vortex at the origin in a uniform system, 
which is straight along z. The condensate phase about the vor-
tex follows the azimuthal angle, S z y x, , arctan( ) ( / )ρ θ θ= = . 
From equation (16) this gives rise to a circulating azimuthal 
flow with speed,

v
q

m
.vħ
ρ

= (36)

Within the fluid the flow is irrotational with zero vorticity, i.e. 
v 0∇× = . This can also be seen directly from the definition 

of the fluid velocity, which is curl-free v 0∇× =  and thus 
very different to the classical solid-body rotation, for which 
v ρ∝ . At the point of the singularity, however, the vorticity 
takes the finite value q h mv / . Also, at this point the density 
is zero, preventing the unphysical scenario of infinite mass 
cur rent. The cylindrically-symmetric flow associated with the 
velocity field given in equation  (36) carries a total angular 
momentum L N qz vħ= .

5.1. Energetics of vortex formation

Even single vortices are giant excitations involving a consid-
erable fraction of the entire BEC. The energy associated with 
the formation of a vortex E E Ev 0≡ − , where E0 is the energy 
of the non-rotating (vortex-free) state, is generically much 
larger than the energy of elementary excitations described by 
the Bogoliubov spectrum given in equation (21). In a frame 
rotating at angular frequency Ω, the total energy of the system 
is shifted to E LΩ− ⋅ , where L is the angular momentum in 
the laboratory frame, and hence it only becomes energetically 
favourable to form a vortex if the angular momentum is such 
that EL vΩ| ⋅ | >  leading to a critical rotation frequency,

E

N q
.v

v

vħ
Ω = (37)

Ev can be computed analytically in certain situations as we 
discuss below. Before we do so, it is important to point out that 
equation (37) considers the energetics but not the kinetics of 
vortex formation. Both theory and experiment reveal that the 
true value of vΩ  is often considerably higher than predicted by 
equation (37). This is because the vortex-free state can remain 
a local energy minimum separated by an energy barrier from 
the global minimum corresponding to the vortex state. The 
kinetics of vortex formation are examined in section 7.

In the simplest case of an infinite system with a vortex the 
condensate wavefunction can be written,

z f, , e .qi v( ) ( )ψ ρ θ ρ= θ (38)

Substituting into the dipolar GPE (5) an equation  for the 
amplitude f about the vortex is obtained,

µ
ρ ρ

ρ
ρ ρ

= −
∂
∂

∂
∂
+ + + Φ

⎛
⎝
⎜

⎞
⎠
⎟f

m

f q

m
f g f f

2

1

2
,

2 2
v
2

2
3ħ ħ

 (39)

where the Laplacian has been expressed in its cylindrically 
symmetric form,

z

1 1
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2

2

2

2
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⎛
⎝
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⎞
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⎟

ρ ρ
ρ
ρ ρ θ
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∂

∂
∂
+

∂
∂
+
∂
∂

 (40)

The second term on the right-hand side of equation (39) is the 
only difference from the non-vortex case, and is associated 
with the kinetic energy of the circulating flow, giving rise to a 
centrifugal barrier. Note that q 1v| | >  vortices are energetically 
unstable compared to multiple singly-charged vortices, and 
rarely arise unless engineered; for this reason we will consider 
only | | =q 1v .

In any system uniform along the polarization direc-
tion (z) the dipolar potential reduces to a local potential 

g nr rdd( ) → ( )εΦ − . This can be seen from equation  (7), 
which gives the relationship between the fictitious electro-
static potential r( )φ  and the dipolar potential r( )Φ , and not-
ing that z2 2/φ∂ ∂  must equal zero9. Thus, the last two terms 
in equation (39) can be combined into a single contact term 
g f1 dd

3( )ε− . Results that hold for the usual s-wave case in 
this context therefore also hold for the dipolar case provided 
one replaces g by g 1 dd( )ε− . For example, analysis of equa-
tion  (39) for the s-wave case reveals that the centrifugal 
barrier term dictates that the density relaxes as 1 2/ρ  to the 
asymptotic background value n0  as →ρ ∞, and for 0→ρ  
the density tends to zero as q2 vρ | | [108]. Furthermore, although 
equation (39) can not be solved in terms of known functions, 
it can be solved numerically, and with appropriate scaling the 
result for f ( )ρ  is universal. This solution for f ( )ρ  can then be 
used in the energy functional given in equation (14) and the 
extra energy per unit length due to the introduction of a vortex 
evaluated. In the pure s-wave case one obtains [108],

n
m

b
log 1.464 .v 0

2ħ ⎛
⎝
⎜

⎞
⎠
⎟π
ξ

=ε (41)

This result was originally obtained for superfluid 4He by 
Ginzburg and Pitaevskii in 1958 [136]. In this expression the 
healing length ξ, which gives the size of the vortex core, forms 
a lower cutoff and the length b, which could be the system 
radius, is the upper cutoff. Although b ξ� , their finite val-
ues avoid a logarithmic singularity that originates from the 
centrifugal barrier term. The only place that interactions enter 
this expression for vε  is through the healing length mħ/ξ µ=  
which can immediately be adapted to the dipolar case using 

n g 10 dd( )µ ε= − . The critical rotation frequency for this case 
can now be evaluated by replacing Ev by vε  and N by N/L 
(number of atoms per unit length) in equation (37).

9 If the density profile n r( ) is uniform along z the electrostatic potential r( )φ  
it generates, as given by equation (8), must also be uniform along z and 
hence z2 2/φ∂ ∂  vanishes.
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5.2. General features of a vortex in a quantum ferrofluid

In order to obtain analytic results for the untrapped system 
it can sometimes be useful to use the following approximate 
solution for f ( )ρ  which incorporates the correct behaviour for 

0→ρ  and →ρ ∞,

f n z n,
1

,2
0

2

2
( ) ( ) ′

′
ρ ρ

ρ
ρ

= =
+

 (42)

where /ρ ρ ξ=′  and n0 is the density at infinity. It will be con-
venient later to write this in the form of a homogeneous back-
ground density n0 and a negative vortex density nv,

n z n n, ,0 v( )ρ = + (43)

where n n 1v 0
2/( )′ρ= − + .

A schematic of a straight singly-charged vortex line 
through a non-dipolar harmonically-trapped condensate is 
shown in figure 6. The vortex has a well defined core, with 
zero density and a phase singularity at its centre, relaxing to 
the background condensate density over a distance given by 
the conventional healing length mħ/ξ µ= . This is typically 
of the order of 0.1 1µ− m but can be tuned by means of a 
Feshbach resonance.

In three dimensions the vortices may bend, e.g. into tan-
gles and rings, carry linear or helical Kelvin wave excitations 
and undergo reconnections. However, under strong axial con-
finement of the condensate, the dynamics become effectively 
two-dimensional. Being topological defects, vortices can only 
disappear via annihilation with an oppositely-charged vortex 
(the two-dimensional analog of a reconnection) or by exit-
ing the condensate at a boundary. In trapped condensates, an 
off-centre vortex precesses about the trap centre; this can be 
interpreted in terms of a Magnus force [36]. Thermal dissi-
pation causes a precessing vortex to spiral out of a trapped 
condensate [137–140]. Acceleration of a vortex (or an element 
of a three-dimensional vortex line) leads to emission of pho-
nons, analogous to the Larmor radiation from an accelerating 

charge, although under suitable confinement these phonons 
can be reabsorbed to prevent net decay of the vortex [141].

Optical absorption imaging of the vortices is typically pre-
ceded by expansion of the cloud to enlarge the cores [35, 142]. 
This method has been extended to provide real-time imaging 
of vortex dynamics [36]. While this imaging approach detects 
density only, the vortex circulation is detectable via gyro-
scopic techniques [143].

Yi and Pu [144] performed the first study of vortices in a 
dipolar BEC, obtaining numerical solutions for a quasi-two-
dimensional trapped dipolar condensate featuring a vortex. 
For dipoles polarized perpendicular to the plane they found 
the striking result that density ripples form about the vortex 
core for trap ratios 100γ∼  and attractive van der Waals inter-
actions. These ripples are not contained in the simple ansatz 
given above in equation (42) and seem to be a rather special 
feature associated with non-local interactions. Indeed, they 
had previously been seen in numerical simulations of vorti-
ces in superfluid 4He where non-local potentials are employed 
[145–148]. For purely dipolar (g  =  0), oblate condensates, 
Wilson et  al [120, 122] numerically found vortex ripples 
for moderate trap ratios 17γ∼ , see figure 7 (top) [120], and 
established the link to roton mixing into the vortex solution, 
similar to the biconcave structure that they found was induced 
in vortex-free dipolar condensates (energetic favourability of 
dipoles aligning head-to-tail). Vortex ripples have since been 
studied in other works [123, 129, 134], and similar ripples 
arise in the presence of other localized density depletions, 
such as due to localized repulsive potentials [122, 130] and 
dark solitons [149, 150]. The presence of the vortex slightly 
reduces the stable parameter space for the condensate rela-
tive to the vortex-free condensate [120, 144]. For dipoles 
tilted perpend icular to the axis of the vortex, the vortex core 
becomes elliptical, see figure  7 (bottom) [144], due to the 
aniso tropic dipolar potential in the plane.

The properties of an off-axis straight vortex line in a 
trapped dipolar condensate have been considered in [151, 
152] in the Thomas–Fermi regime, showing that the dipolar 
interaction lowers (raises) the precession speed in an oblate 
(prolate) trap. In the presence of thermal dissipation, making 
the dipolar interactions partially attractive by changing the 
polarization direction leads to a reduction in the condensate 
size and a faster decay rate of the precessing vortex [153].

For a general vortex line in three dimensions, the vortex 
elements interact with each other at long-range via the dipolar 
interactions [154], as well as the usual hydrodynamic interac-
tion [155, 156]. This modifies the Kelvin-wave (transverse) 
modes of the vortex line, and can support a roton minimum 
in their dispersion relation. For large dipolar interactions, the 
Kelvin waves can undergo a roton instability, leading to novel 
helical or snake-like configurations [157].

With C 0dd<  and tight axial trapping, stable two-dimen-
sional bright solitons have been predicted [158, 159], i.e. 
wavepackets which are self-trapped by interactions in two 
dimensions. This idea was extended by Tikhonenkov et  al 
[160] to predict stable two-dimensional vortex solitons, which 
may be considered as a two-dimensional bright soliton carry-
ing a central vortex.

Figure 6. Schematic of a three-dimensional density (red iso-surface 
plot) of a trapped non-dipolar condensate featuring a vortex line 
along the z-axis. The corresponding two-dimensional phase profile 
(grey scale plot at the base of the figure, with white corresponding 
to a condensate phase of 0 and black corresponding to a condensate 
phase of π2 ) and central one-dimensional density profile (solid 
black curve) are also depicted.
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5.3. Vortex in a trapped dipolar Bose–Einstein condensate  
in the hydrodynamic regime

In the hydrodynamic (Thomas–Fermi) regime appropriate 
for large condensates, the problem of a dipolar BEC with 
single vortex in a three-dimensional trap can be tackled semi- 
analytically [161]. In this case the energy associated with the 
curvature of the density due both to the trapping and the vortex 

core can be ignored in comparison to each of the rotational, 
interaction, and trapping energies. These remaining energies 
can be evaluated analytically by assuming a density profile 
much like the one given in equation (42), i.e. an unperturbed 
background piece plus a negative vortex ‘density’. The differ-
ence is that we now take the unperturbed background density 
to be the inverted parabola n z,TF( )ρ  given in equation  (24) 
which is an exact solution of the vortex-free Thomas–Fermi 
problem. Thus, the density profile reads,

n z n z n z, , ,TF v( ) ( ) ( )ρ ρ ρ= + (44)

where,

n z n z, , .v TF

2

2 2
( ) ( )ρ ρ

β
β ρ

= −
+

 (45)

The length scale β parameterizes the size of the vortex core 
and is one of three variational parameters R, ,{ }β κ⊥  with 
respect to which the total energy functional must be mini-
mized in order to find their stationary values. Notice that this 
ansatz does not include ripples which are beyond the Thomas–
Fermi approximation.

The energy functionals for the rotational, s-wave inter-
action, and trapping energies can all be evaluated analyti-
cally, albeit laboriously, using the above density profile. 
The results are given in [161] and will not be repeated here. 
Obtaining an analytic result for the dipolar interaction energy 

E nr r r1 2 ddd ( / ) ( ) ( )∫= Φ  is more difficult. However, in the 
hydrodynamic regime we have Rβ ⊥� , implying that the 
contrib ution to r( )Φ  from nv is negligible in comparison to that 
from nTF. Thus, to a very good approximation we can write,

E n nr r r r
1

2
ddd TF TF v( )  [ ( ) ( )]∫≈ Φ + (46)

i.e. replace the true r( )Φ  by that purely due to the unperturbed 
background rTF( )Φ  which is known analytically and is given 
in equation (30). Since rTF( )Φ  is a quadratic function of the 
coordinates this integral can be done exactly [161]. Finally, to 
find the energy Ev associated with exciting a vortex it is neces-
sary to subtract from E the energy E0 of the vortex-free state, 
but this latter energy is also known analytically and is given as 
ETF in equation (29).

In this way Ev, and hence vΩ , can be computed for the 
trapped dipolar BEC. It is found that dipolar interactions 
increase vΩ  in prolate traps and lower it in oblate traps when 
compared to the pure s-wave case [161, 162]. Intuitively, 
this makes sense because in the prolate case dipolar interac-
tions tend to reduce R⊥ but in the oblate case they increase 
it. The rotational energy density n z v1 2 , 2( / ) ( ) ( )ρ ρ  is lower at 
larger radii because v 1/ρ∝  and hence Ev is lowered if atoms 
are moved to larger radii, like in the oblate case, and vice-
versa in the prolate case. This interpretation is backed up by 
the following expression for the critical rotation frequency 
derived in the pure s-wave case in the Thomas–Fermi limit 
[163],

mR

R5

2
ln

0.67
.v 2

ħ
ξ

Ω =
⊥

⊥
 (47)

Figure 7. Top: stability diagram of the trapped purely dipolar 
condensate, with dipoles polarized along the z-axis and featuring 
an axial vortex, as a function of the trap ratio ( /λ γ ω ω≡ = ⊥z ) and 
dipolar interaction strength ħ[ /( )]π= ⊥D NmC l4dd

2 . Below the solid 
line the condensate is dynamically stable. Ripples about the vortex 
arise in the pink region. The inset shows an isosurface of the density 
for such a solution. Reprinted figures with permission from [120]. 
Copyright 2009 by the American Physical Society. Bottom: density 
((a)–(b)) and phase (c) profiles of a trapped quasi-two-dimensional 
condensate with dipoles polarized along x. Reprinted figures with 
permission from [144]. Copyright 2006 by the American Physical 
Society.
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The numerical factors 5/2 and 0.67 arise from the inverted 
parabola of the Thomas–Fermi density profile: since the 
parabolic profile is maintained in the dipolar case we expect 
a similar expression to hold there. If R⊥ in equation  (47) is 
replaced by its dipolar version as given in equation (27), the 
resulting prediction for vΩ  is in very close agreement with the 
variational calculation described above [161]. In principle,  
the healing length should also be changed to its dipolar ver-
sion but this only leads to a logarithmic correction.

5.4. Vortex in a quasi-two-dimensional dipolar Bose–Einstein 
condensate

We now review the vortex solutions in the simpler context 
of the homogeneous quasi-two-dimensional dipolar conden-
sate, following the work of [129, 134]. Figure 8 [129] plots 
these solutions, found by numerical solution of the quasi-two-
dimensional dipolar GPE, as a function of ddε .

The vortex profile has a non-trivial dependence on the 
polarization angle and ddε . For 0α = , the vortex density is 
axisymmetric. For 0ddε =  the condensate is non-dipolar and 
the vortex takes the standard form (see left inset of figure 8(a)) 
of a circularly-symmetric core of vanishing density at the cen-
tre that monotonically returns to its background value over 
a healing length mħ/ξ µ=  [108]. Since the length scaling 
applied in figure  8 is the dipolar healing length, the vortex 
core structure shown in figure  8(a) for 0ddε ≠  remains, for 
the most part, similar to that for 0ddε = , i.e. the main effect 
of dipolar interactions is to rescale the size of the vortex core, 
but not change its structure. The exceptions to this are close to 
the phonon and roton instabilities. As the phonon instability 
boundary at 0.5ddε = −  is approached from the stable side, 
the vortex core takes on a funnel-like profile (middle inset of 
figure 8(a)). This is associated with the cancellation of explicit 

s-wave van der Waals interactions in the system, i.e. the van 
der Waals interactions cancel the contact contribution from 
the dipolar interactions. The right inset of figure  8(a) also 
shows that as the roton instability is approached density rip-
ples emerge around the vortex core. Moving away from the 
vortex core these ripples decay. The maximum amplitude of 
the density ripples is  ∼20% of n0, and their wavelength is of 
order the roton wavelength 4ξ≈ .

For 0α≠ , see figures  8(b) and (c), the vortex profile 
becomes anisotropic. In particular, as the roton instability is 
approached, density ripples again form, but now aligned in the 
direction of the attractive dipolar interactions (along the polar-
ization direction for C 0dd>  and perpendicular for C 0dd< ). 
These anisotropic ripples are related to the anisotropic mixing 
of the roton into the ground state [130].

5.4.1. Dipolar mean-field potential due to a vortex: giant  
anti-dipoles. Considered as a density defect in a homogenous 
background, the vortex gives rise to its own dipolar mean-field 
potential. Furthermore, because the creation of a vortex core 
displaces a large number of atomic dipoles, the vortex can be 
treated as a single giant anti-dipole [154, 161]. Take the case 
of a vortex within an otherwise uniform background of den-
sity n0, with the density expressed using the decomposition as 
in equation (43). Then, by noting that the dipolar potential Φ 
is a linear functional of density, the total dipolar potential can 
be written as,

n n n
n n n

r r
r r r ,

0 v

0 v 0 v

[ ]( ) [ ]( )
[ ]( ) [ ]( ) [ ]( )

Φ = Φ +
= Φ + Φ = Φ + Φ (48)

i.e. a contribution 0Φ , which is just a constant, from the uni-
form background n0 and a spatially dependent contribution 

nv[ ]Φ  from the hole created by the vortex core, i.e. the giant 
anti-dipole. This decomposition, illustrated in figure 9, assists 

Figure 8. Vortex solutions in an infinite dipolar condensate, as a function of εdd, in the quasi-two-dimensional regime (σ = 0.5). Along x 
(for y  =  0) the normalised density profile (n/n0) is shown on the left-hand side of the main plots. Along the right-hand side the normalised 
density profile is plotted along y (with x  =  0). (a) Dipoles polarized along z (α = 0). (b) Dipoles polarized off-axis at /α π= 4. (c) Dipoles 
polarized off-axis at /α π= 2. In each of the main plots grey bands indicate the unstable regimes of εdd. Insets: normalised density profile 
over an area ( )ξ40 2 for indicated values of εdd. Reproduced from [129]. CC BY 3.0.
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in understanding the interaction between vortices in dipolar 
systems.

Consider a vortex in the quasi-two-dimensional dipolar 
condensate. For 0α =  and away from the roton and pho-
non instabilities, the vortex profile is well-approximated 
by the non-dipolar ansatz given by equations  (42) and (43), 
where the healing length is taken to be the dipolar healing 
length mħ/ξ µ= . The dipolar potential generated by the 
density defect can be determined via the convolution result 

t U n tq q, ,1
dd( ) [ ˜ ( ) ˜ ( )]ρΦ =⊥

− ⊥
⊥F . Due to the cylindrical sym-

metry of the 0α =  case, one can perform the Fourier trans-
forms through Hankel transforms. The Hankel transform of 
the two-dimensional equivalent of equation (43) is,

n n
q

q

K q
q

2

2
,0

0

˜ ( ) ( ) ( / )⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

δ ξ
= +⊥ (49)

where K0( )⋅  is a modified Bessel function of the second kind. 
Expanding the dipolar interaction potential U qdd

˜ ( )⊥
 given in 

equation (34) with 0α =  as a series in the condensate width 
parameter, σ, gives

U
C

l
qlq

4

9 2
2

9

2
.

z
zdd

dd 2˜ ( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟π

π
π
σ σ= − +⊥

O (50)

Then, to first order in lz /σ ξ=  and third order in 1/ /ρ ξ ρ=′  10, 
the dipolar potential due to a vortex is [129, 134],

A B
1

1 ln
,0 2 3

( )
⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥

′ ′
ρ

ρ
ρ
ρ

σΦ = Φ − +
+′

⊥ (51)

with constants π= − ≈−A 9 8 1.88/ , = − ≈B Aln 2 1 0.577( ) ,  
and 0Φ  the dipolar potential at infinity.

This result indicates that the vortex causes a reduction 
in the mean-field dipolar potential which is consistent with 
the reduced density of dipoles in the vicinity of the vortex. 
One also sees from equation  (51) that the dipolar potential 
generated by the vortex relaxes predominantly as 1 2/ ′ρ  to the 
background value 0Φ , and this is confirmed by numerical solu-
tions, as shown in figure 10(c) [129]. This dependence arises 
because the vortex density itself relaxes as 1 2/ ′ρ , and the lead-
ing contribution to vΦ  is from the local density. Indeed, the 
mean-field potential due to van der Waals interactions from 
the vortex also scales in proportion to the local density with 
a 1 2/ ′ρ  dependence [164]. The long-range contribution to vΦ  

can be interpreted as arising from effective anti-dipoles in the 
vortex core, see figure 9. This non-local contribution is repre-
sented in equation (51) by terms linear in σ. In the limit 0→σ  
the volume of the anti-dipoles in the vortex core vanishes and 
hence this long-range contribution also vanishes. Unlike the 
topological potential associated with quantised superfluid 
flow around a vortex core the dipolar potential due to the vor-
tex core is not topological, i.e. it depends on the volume of the 
vortex core. The dominant contribution to the non-local vor-
tex potential scales as ln 3/ ′ρ ρ′ , i.e. the absence of dipoles in 
the vortex core can not be considered to be point-like. This is 
unsurprising since in the vicinity of the vortex core the density 
scales as a power law [108].

For dipoles tilted away from the vertical ( 0α≠ ), the vor-
tex core and its dipolar potential become anisotropic and an 
analytic treatment is challenging. Figures 10(a) and (b) shows 
an example numerical solution of the vortex density and dipo-
lar potential for 0α≠ . The dipolar potential is indeed aniso-
tropic about the vortex. Remarkably, the modification to the 
dipolar potential induced by the vortex mimics the dipole–
dipole interaction itself, with an angular dependence which 
resembles 1 3 cos2 θ− , being reduced (attractive) along y and 
increased (repulsive) along x. Thus, at least in its angular 
dependence, the vortex shares qualitatively the characteristics 
of a mesoscopic dipole. Like the above 0α =  case, the dipolar 
potential is found to decay at long-range as 1 2/ ′ρ  to the back-
ground value, as seen in figure 10(c). At short range, 10�ρ ξ, 
the dipolar potential is dominated by the core structure.

6. Vortex pairs: interactions and dynamics

6.1. Interaction between vortices

Two vortices (or indeed two elements of the same three-
dimensional vortex line [154–156]) have a well-known hydro-
dynamic interaction due to the kinetic energy associated with 
the mutual cancellation/reinforcement of their velocity fields. 
Consider a cylindrical condensate of radius R and height L, 
featuring two straight vortices at planar positions 1ρ  and 2ρ , a 
distance d apart. The vortices have charge q1 and q2, and indi-
vidual velocity fields v1 and v2, respectively. The net velocity 
field of the two vortices is v v1 2+ . The energy of the vortices 
can be estimated by integrating the total kinetic energy across 
the system,

Figure 9. Schematic of the decomposition of a density featuring a 
vortex into a uniform density n0 and a negative vortex density nv.

Figure 10. Vortex in the quasi-two-dimensional dipolar condensate, 
with the dipoles polarized at /α π= 4 along x (ε = 5dd  and 
σ = 0.5). (a) Density profile ( )⊥n x y, , expressed in terms of the 
density at infinity n0. (b) Dipolar potential ( )Φ⊥ x y, , rescaled by the 
homogeneous value Φ0. (c) The decay of Φ⊥ along x  =  0 (dashed 
black line) and y  =  0 (solid black line) recovers the / ′ρ1 2 scaling at 
large distance (grey line). Reproduced from [129]. CC BY 3.0.

10 The first (third) order expansion in σ (1/ρ′) allows the leading long-range 

dipolar contribution to U qdd
˜ ( )⊥

 to be evaluated ( σ∝ ).
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2( ) ( ) ( )∫ ρ ρ ρ ρ= | + | (52)

For simplicity, one can ignore the vortex core density and set 
n n( )ρ = . Assuming d Rξ� �  then the (kinetic) energy of 
the pair is,
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1 2
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π
ξ ξ

= + + (53)

Note that, to avoid singularities in the velocity field the inte-
gration region excludes a disc of radius of one healing length 
about each vortex centre. The first two terms are the energies 
of the individual vortices if they were isolated, and the third 
term is the pair interaction energy. For a vortex–antivortex 
pair (q q1 2= − ) the interaction energy is negative, whilst for 
a co-rotating pair (q q1 2= ) it is positive. This is explained 
physically by the fact that for a vortex–antivortex pair the 
flow fields tend cancel out in the bulk, reducing the net kinetic 
energy in the bulk, whilst for a co-rotating pair the flow fields 
tend to reinforce, increasing the total kinetic energy.

In the presence of dipolar interactions the vortices feature 
an additional long-range interaction. This interaction can be 
pictured as the interaction between two lumps of anti-dipoles 
in empty space, as illustrated in figure 11. Before we review 
how two vortices interact in the presence of dipolar interac-
tions, we first make more precise the definition of the vortex 
energy introduced in section  5, and hence allow the identi-
fication of vortex–vortex interaction energy. In non-dipolar 
condensates, the vortex energy is conventionally defined as 
the energy difference between a system with and without a 
vortex, where both systems have the same number of particles 
[108]. Imagine first a system (quasi-two-dimensional) with a 
vortex and N particles covering an area A. If the asymptotic 
density is n0, then the number of particles in this system can 
be expressed as,

( )∫ ρψ= − − | |⊥N An n d .
A

0 0
2

 
(54)

Now consider the system without a vortex, but with the same 
number of particles. It has constant density n0  =  N/A and its 
energy is

E
N

l A
g

2 2
,

z
0

2

effπ
= (55)

where g g C 3 3 cos 1eff dd
2( / )[ ]α= + − . Inserting equa-

tion (54) into equation (55) gives,
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where a term, negligible in the limit A 2ξ� , has been omit-
ted. Defining the energy of a single vortex as E E E1 0= − , the 
interaction energy between two vortices must be [108],

E E E E, ,12 1 2 2 1 2 1 1 1 2( ) ( ) ( ) ( )ρ ρ ρ ρ ρ ρ− = − − (57)

where E ,2 1 2( )ρ ρ  is the energy of the 2-vortex system. This is 
plotted in figure  12 for 0α =  and for (a) vortex–antivortex 
(VA) pairs and (b) vortex–vortex (VV) pairs, as a function of 
their separation d, based on numerical dipolar GPE two-vor-
tex solutions [134].

In the absence of dipoles, E12 increases with d for the VA 
pair and decreases for the VV pair. For d ξ� , E12 closely fol-
lows the logarithmic scaling of the hydrodynamic prediction, 
while for d� ξ the overlap of the cores causes a breakdown 
of the logarithmic behaviour. With dipoles, E12 is significantly 
modified at short and intermediate length scales up to d 5ξ≈ , 
but at larger scales the effects of the dipoles are small in com-
parison to the hydrodynamic effects. The modification due to 
the dipoles arises from a non-trivial combination of the modi-
fied density profile and non-local interactions.

When the dipoles are tilted in the plane, E12 becomes 
dependent on the in-plane angle of the pair relative to the 
polarization direction, η. This is illustrated for VA and VV 
pairs by the examples in figure 13 [134]. For small separations, 
the angular dependence is dominated by local effects arising 
from the density profile of the pairs, particularly by any den-
sity ripples. However, for d ξ� , E E E 012 12 12( ) ( )η η∆ = − =′  
approaches a sinusoidal dependence on η, analogous to the 
dipolar interaction itself.

6.2. Dynamics of vortex pairs

In a two-dimensional system, a vortex co-moves with the local 
fluid velocity. Thus, for a vortex pair, each vortex is carried 
along by the flow field of the other vortex. For a VA pair this 
means that the vortices move in the same direction, perpend-
icular to the inter-vortex axis. This solitary wave has speed 
v mdħ/=  for well-separated vortices.

When the VA separation is small, d ξ∼ , the vortex and anti-
vortex are susceptible to annihilation, an event which results 

Figure 11. The dipolar interaction between two vortices may 
be interpreted as the interaction between two collections of anti-
dipoles.

Figure 12. Vortex interaction energy E12 versus separation d for 
(a) vortex–antivortex and (b) vortex–vortex pairs in the quasi-two-
dimensional dipolar condensate, with dipoles polarized along z 
(α = 0), shown for various values of εdd: ε = 0dd  (dashed black 
line), ε = −1.4dd  (dotted blue line), ε = −0.45dd  (dot-dashed red 
line) and ε = 5dd  (solid magenta line). Insets show deviation from 
the non-dipolar value. Figure adapted with permission from [134]. 
Copyright 2013 by the American Physical Society.
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in a burst of density waves. Numerical simulations [134] show 
that dipoles modify this separation threshold (figure 14(a)). 
Moreover, since for 0α≠  the speed of sound varies with angle 
[130], one can expect the pair speed to be anisotropic in space.

For a VV pair, the flow which carries each vortex now acts 
in opposite directions (again, perpendicular to the line separat-
ing the vortices and with the above speed), resulting in the co-
rotation of the vortices about their mid-point. Viewed another 
way, the vortices follow a path of constant energy; since the 
interaction energy in the absence of dipoles depends only 
on d, this path is circular. The same is true for axisymmetric 
dipoles, 0α = . However, for 0α≠ , the vortices co-rotate on 
an anisotropic path, as shown in figure 14(b) [134], due to the 
anisotropic interaction energy of the pair (refer to figure 13). 
Moreover, for extreme cases where the vortex is highly ellip-
tical with significant ripples, co-rotation can be prevented 
altogether, with the vortices being localized (figure 14(b), red 
solid lines). In this limit, the vortices act as extended, highly-
elongated objects, with effective geometrical restrictions on 
their motion past each other, reminiscent of the smectic phase 
of liquid crystals.

Gautam [153] numerically considered the dynamics of a 
corotating VV pair in a dipolar BEC in the presence of dissi-
pation. For symmetric configurations in the trap, the vortices 
decay with equal decay times, while for asymmetric initial 
configurations the decay is modified with one vortex decaying 
slower at the expense of the other.

7. Generation of vortices

7.1. Summary of vortex generation methods

In conventional condensates, vortices have been generated 
through several mechanisms. Below we list the main ones, as 
well as relevant considerations in the presence of dipoles.

 • The most common and intuitive approach to generate vor-
tices is via mechanical rotation of the system [35, 40, 41], 
analogous to the ‘rotating bucket’ experiments in Helium 
II [118]. Both the thermodynamic threshold for vortices 
to be favoured, as well as the process by which vortices 

nucleate [165–167] into the condensate, are sensitive to 
dipolar interactions; this will be analysed in detail below.

 • Motion of a localized obstacle or potential (as generated 
by a tightly-focussed blue-detuned laser beam) through 
a condensate (or, equivalently, motion of the condensate 
relative to a static obstacle) leads to the nucleation of vor-
tices above a critical relative speed [37, 38, 142], forming 
a quantum wake downstream of the obstacle. The critical 
speed is related to the Landau criterion which predicts 
the formation of elementary excitations in the fluid for 
relative speeds exceeding v kkminc [ ( )/ ]ω=  [108, 109]. 
Ticknor et al [130] examined this process in a quasi-two-
dimensional dipolar condensate. For dipoles tilted into 
the plane ( 0α> ), the critical speed becomes anisotropic, 
a consequence of Landau’s criterion and the anisotropic 
dispersion relation in the plane. The critical velocity for 
vortex nucleation can also be derived by considering the 
energetics of a vortex–antivortex pair [107], implying 
that the aniostropic critical velocity is directly related to 
the anisotropic vortex interaction energy.

 • The phase of the condensate can be directly engineered via 
optical imprinting to produce vortex phase singularities, 
as employed to generate both singly- and multiply-
charged vortices [168]. This mechanism is independent 
of the dipoles themselves.

 • Following a rapid quench through the transition temper-
ature for the onset of Bose–Einstein condensation, the 
growth of local phase-coherent domains leads to the 
entrapment of phase singularities and hence vortices (i.e. 
the Kibble–Zurek mechanism [169, 170]) [36, 46, 171]. 
A relevant consideration is the effect of the dipoles on the 
critical temperature. This shift is sensitive to the shape of 
the trap, relative to the polarization direction, but is only 
up to a few percent for 52Cr [172]. However, this shift 
may be more significant in 168Er and 164Dy condensates.

 • Dark solitons are dimensionally unstable to decay 
into vortex pairs or vortex rings [39, 173, 174] via the 
so-called snake instability, previously established in 
nonlinear optics [175]. As shown by Nath et al [176] the 

Figure 13. Angular dependence of the vortex interaction energy 
( ) ( ) ( )η η η∆ = − =′E E E 012 12 12 , for (a) VA and (b) VV pairs, for 

various separations d. Parameters: /α π= 4, σ = 0.5 and ε = 5dd . 
Example (c) VA and (d) VV pair density profiles for ξ=d 5  over an 
area ( )ξ20 2. Reprinted figure with permission from [134]. Copyright 
2013 by the American Physical Society.
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Figure 14. (a) For a given initial separation, a non-dipolar VA 
pair (dashed black lines) annihilates while dipolar interactions 
(ε = −0.4dd , α = 0, solid red lines) support stable pair propagation 
(red lines). (b) A non-dipolar VV pair co-rotates in a circular path 
(dashed black line). Off-axis ( /α π= 4) dipolar interactions lead to 
anisotropic paths (dot-dashed blue line: ε = −1.5dd ; dotted magenta 
line: ε = 5dd ) and suppression of co-rotation altogether (solid red 
lines: ε = 10dd ). Reprinted figure with permission from [134]. 
Copyright 2013 by the American Physical Society.
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nonlocal character of dipolar interactions can stabilize the 
dark soliton against this instability.

 • Instead of rotating the system it is possible to introduce 
a time-reversal symmetry breaking synthetic magnetic 
field [177]. Since the atoms in an atomic BEC are charge-
neutral it may at first seem counter-intuitive to consider 
the effects of a synthetic magnetic field in these systems. 
However, time-reversal symmetry-breaking in charge-
neutral systems can be overcome through mechanical 
rotation and exploiting the equivalence of the Coriolis 
force and the Lorentz force to create a synthetic vector 
potential which gives rise to a synthetic magnetic field. 
This case of mechanical rotation is analysed in detail 
below. It is also possible to realise an optically synthesised 
vector potential field for BECs using spatially dependent 
optical coupling between internal states of the atoms 
in the condensate. This spatially dependent coupling 
can yield Berry phases [178] sufficient to create large 
synthetic magnetic fields. As in the case of mechanical 
rotation, vortex nucleation is dependent on the proper-
ties of the stationary solutions and can be analyzed in 
the Thomas–Fermi approximation [179]. Numerical 
investigations of the dipolar GPE, carried out by Zhao 
and Gu [180], find that the nucleation of vortices depends 
on the dipole strength, the strength of the synthetic magn-
etic field, the potential geometry, and the orientation of 
the dipoles, with anisotropic interactions significantly 
altering vortex nucleation.

7.2. Stationary solutions of rotating dipolar condensates in 
elliptical traps

The most common approach for generating vortices and vortex 
lattices in trapped condensates is via rotation. Since a cylindri-
cally-symmetric trap set into rotation applies no torque to the 
condensate, the trap is made anisotropic in the plane of rota-
tion. In the simplest case, this leads to a trap which is weakly 
elliptical in the plane of rotation [35, 40], with a potential of 
the form,

V m x y zr
1

2
1 1 ,2 2 2 2 2( ) [( ) ( ) ]ω γ= − + + +⊥ ε ε (58)

where rotation is performed about the z-axis.
For typical parameters in the absence of dipolar interac-

tions, vortices become energetically favourable in harmoni-
cally-trapped condensates for rotation frequencies 0.3ωΩ∼ ⊥. 
Surprisingly, in non-dipolar BEC experiments the observed 
nucleation of vortices occurs at considerably larger rotation 
frequencies 0.7ωΩ∼ ⊥. Theoretical analysis based on the 
hydrodynamic equations reveals the important role of collec-
tive modes. Specifically, for 0.7� ωΩ ⊥ low-lying collective 
modes are excited via elliptical deformation. The seeding of 
vortices, at higher rotation frequencies, arises when one or 
more of these modes becomes unstable [181, 182]. Evidence 
for this comes from comparison between experiments [40, 
183] and full numerical simulations of the GPE [184–187].

The hydrodynamic description of condensates in rotating 
elliptical traps can be extended to include dipolar interactions. 
For rotation about the z-axis, described by the rotation vector 
Ω where ΩΩ =| | is the rotation frequency, the Hamiltonian in 
the rotating frame is given by,

H H L,eff 0 ˆΩ= − ⋅ (59)

where the Hamiltonian in the absence of rotation is H0 and 
the quantum mechanical angular momentum operator is 
L riħˆ ( )∇= − × . Applying this result for 0, 0,( )Ω = Ω , the 
dipolar GPE in the rotating frame is [188, 189],
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 (60)

where in the rotating frame the trapping potential V, given 
by equation (58), is stationary. The spatial coordinates r are 
those of the rotating frame, with the momentum coordinates 
expressed in the laboratory frame [188–190].

Using the Madelung transform, as per section  3.3, leads 
to the following dipolar hydrodynamical equations  in the 
rotating-frame

n

t
n v r ,[ ( )]∇ Ω∂

∂
= − ⋅ − × (61)

m
t

mv V gn m
v

v r
1

2
,2 [ ]⎜ ⎟

⎛
⎝

⎞
⎠∇ Ω∂

∂
= − + + + Φ− ⋅ × (62)

where the quantum pressure is assumed to be small and is 
neglected, i.e. the Thomas–Fermi limit.

Stationary solutions of equations (61) and (62) satisfy the 
equilibrium conditions,

n

t t

v
0 and 0.     ∂

∂
=

∂
∂
=

 
(63)

Assuming the irrotational ( v 0∇× = ) velocity field ansatz 
[181]

xyv v ( )α= ∇ (64)

permits us to examine the rotating solutions in terms of the 
velocity field amplitude vα . A physical interpretation of veloc-
ity field amplitude, vα , can be gained from the continuity 
equation (61). Specifically, it can be written as [109]

,vα = − ΩD (65)

where D is the deformation of the BEC in the x  −  y plane,

y x

y x
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2 2

2 2
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κ κ

κ κ
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+
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+
D (66)

where ⟨ ⟩…  denotes the expectation value in the stationary 
state and R Rx x z/κ =  and R Ry y z/κ =  represent the aspect ratios 
of the BEC along x and y with respect to z.

Combining equations (62) and (64) gives,
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m
x y z gn r r

2
,x y z

2 2 2 2 2 2( ˜ ˜ ) ( ) ( )µ ω ω ω= + + + + Φ (67)

where the effective trap frequencies xω̃  and yω̃  are given by,

1 2 ,x
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v
2

v˜ ( )ω ω α α= − + − Ω⊥ ε (68)

1 2 .y
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v˜ ( )ω ω α α= + + + Ω⊥ ε (69)

The breaking of cylindrical symmetry means that the BEC has 
an ellipsoidal shape and in the Thomas–Fermi approximation 
it adopts an inverted parabolic density profile of the form,

n n
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where n N R R R15 8 x y zcd /( )π= . This is an exact solution of the 
stationary dipolar hydrodynamic equations  given in equa-
tions (61) and (62) with velocity field (64), and it only remains 
to find the radii R R R, ,x y z{ } and velocity amplitude vα . The 
exact dipolar potential due to a parabolic density distribution 
of general ellipsoidal symmetry, with dipoles aligned in the 
z-direction, i.e. the generalized version of that given in equa-
tion (30), is derived in the Appendices of [92] and [117], and 
is given by,
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where the coefficients ijkβ  are,
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for integer-valued i, j and k. Thus, equation  (67) can be 
rearranged to obtain an expression for the density profile 
[165–167],

n
x y z

g

g x y z R

g

1

3 3

1
.

m
x y z

n

R z

2
2 2 2 2 2 2

dd

dd
2

2
101

2
011

2
002

2
001

dd

x y

z

cd

2

( ˜ ˜ )

( )
[ ]

( )

µ ω ω ω

ε

ε β β β β

ε

=
− + +

−

+
+ + −

−

κ κ 

(73)

By equating the x2, y2 and z2 terms in equations (70) and (73) 
three self-consistency conditions are found. These conditions 
define the size and shape of the condensate,
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. Furthermore, by inserting 

equation (73) into equation (61), the stationary solutions are 
seen to satisfy the condition [165–167],
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(77)

Equation (77) gives the velocity field amplitude vα  for a given 
ddε , Ω and trap geometry. For 0ddε = , vα  is independent of 

the s-wave interaction strength g and the trap ratio γ. Dipolar 
interactions qualitatively alter this scenario with vα  becoming 
dependent on ddε  and γ. The solutions to equation (77), as a 
function of Ω, have significantly different properties depend-
ing on whether the traps are circular ( 0=ε ) or elliptical ( 0>ε ) 
in the x  −  y plane. We restrict our analysis to ωΩ< ⊥, since the 
static solutions are known to disappear for ωΩ∼ ⊥ due to cen-
tre of mass instabilities [181]. Below, the circular ( 0=ε ) and 
elliptical ( 0>ε ) cases are considered.

7.2.1. Circular trapping in the x  −  y plane: = 0ε . In fig-
ure 15(a) [167] the solutions of equation (77) are plotted as a 
function of rotation frequency Ω for a spherically-symmetric 
trap, 1γ =  and 0=ε , for various values of ddε . For a given 
value of ddε  the solutions have the same qualitative structure. 
Specifically, only one solution exists ( 0vα = ) up to some crit-
ical frequency. Two additional solutions ( 0vα >  and 0vα < ) 
bifurcate from this single solution at the critical rotation fre-
quency, denoted as the bifurcation frequency bΩ .

As expected, when 0ddε =  the results of [181, 182] are 

reproduced with 2b /ωΩ = ⊥  and α ω=± Ω − ⊥2v
2 2  for the 

two additional solutions when bΩ>Ω . The critical frequency 
bΩ  is associated with the spontaneous excitation of quadrupole 

modes. Specifically, in the Thomas–Fermi regime, the surface 
excitation dispersion is given by (see p 183 of [109])

q m V q R2 ,l l R l R
2 2 2( / ) ( / ) ( )ω ω= ∇ = ∇⊥ (78)

where R is the radius of the BEC. For a surface excitation 
with angular momentum l q Rlħ ħ= , in the absence of rota-
tion, equation (78) reduces to llω ω= ⊥. Rotation shifts the 
mode frequency by l− Ω, see equation (59). Hence for a rotat-
ing BEC the quadrupole surface excitation (l  =  2) frequency 
is 2 22( )ω ωΩ = − Ω⊥  [109]. The bifurcation frequency, 

2b /ωΩ = ⊥ , occurs at the same rotation frequency at which 
the energy of the quadrupole mode is zero. Within the context 
of the Thomas–Fermi approximation, this critical frequency 
is independent of the strength of the contact interactions (g) 
and for 2⩾ /ωΩ ⊥  the two additional solutions arise from the 
excitation of the quadrupole mode.

Referring back to equation (78), the inclusion of non-local 
dipolar interactions implies that the force V−∇  no longer has 
a simple dependance on R [91]. Hence, there is no reason to 
suspect that the condition to excite the quadrupole mode will 
be independent of ddε . Indeed, the dependence on ddε  can be 
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seen in figure 15(a) where the introduction of dipolar interac-
tions leads to a shift in bΩ . Specifically, for 0ddε >  ( 0ddε < ) 
the bifurcation frequency is increased (decreased). It is pos-
sible to evaluate bΩ  analytically by realising that x yκ κ κ= = , 
for 0vα = . In this limit the aspect ratio κ is determined by 
the transcendental equation (25) [91, 92]. As 0v →α +, the first 
order corrections to xκ  and yκ  with respect to κ from equa-
tions (74) and (75) can be calculated and inserted into equa-
tion (77). Solving for Ω (noting that b→Ω Ω  as 0v →α +) gives,
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2
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κ β β

ε κ β

Ω
= +

−

− −⊥
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which is plotted in figure 15(b) as a function of γ for vari-
ous values of ddε . When 0ddε =  then 2xb /ωΩ = , which is 
independent of z x/γ ω ω=  [181, 182]. However, for 0ddε ≠  
the value of γ for which bΩ  reaches a minimum changes. 

Specifically, as ddε  is increased from  −0.5 the minimum value 
of bΩ  changes from occurring at values of γ where the trap 
shape is oblate ( 1γ> ) to ones where it is prolate ( 1γ< ). 
Fixing γ and increasing ddε  leads to a monotonic decrease 
in bΩ . Increasing ddε  can lead to a significant reduction in 
the bifurcation frequency, i.e. for 0.99ddε = , bΩ  is reduced 
by 20% compared to its non-dipolar value to 0.55ω≈ ⊥. It is 
tempting to consider the case where 1ddε >  to induce shifts in 

bΩ  to even lower values, however, in these regimes the prem-
ise of the calculation, i.e. the Thomas–Fermi approximation, 
may not be valid.

7.2.2. Elliptical trapping in the x  −  y plane: >ε 0. Rotating 
elliptical traps have been created experimentally with lasers 
and magnetic fields [35, 40]. Following the experiment by 
Madison et  al [35], below we consider a trap with a weak 
ellipticity of 0.025=ε . Figure  16(a) [167] shows the solu-
tions to equation (77) for various values of ddε  for 1γ = . As in 
the non-dipolar case [181, 182], the solutions become heavily 
modified for 0>ε . There is an upper branch solution ( 0vα > ) 
which extends over the range 0 ⩽ ⩽ ωΩ ⊥ and a lower solu-
tion ( 0vα < ) which is doubled valued and exists above some 
critical rotation frequency. The critical rotation frequency for 
the lower brach solution is denoted as the back-bending fre-
quency bΩ , which in the limit 0=ε  can be regarded as the lim-
iting case of the bifurcation frequency and hence we use the 
same notation for both. Unlike the circular trap, considered in 
section 7.2.1, there are no 0vα =  solutions for 0Ω> . In the 
absence of dipolar interactions increasing the trap ellipticity 
results in an increase of the back-bending frequency bΩ . As 
shown in figure 16(b) dipolar interactions, as in the case of 

0=ε , reduce ( increase) bΩ  for 0ddε >  ( 0ddε < ).
Due to the anisotropy of the dipolar interactions increas-

ing ddε  decreases both xκ  and yκ , i.e. the BEC becomes more 
prolate. Under rotation dipolar interactions also increase the 
deformation of the BEC in the x  −  y plane, as can be deduced 
from figure 16(a). Specifically, as ddε  is increased, for 0Ω> , 

vα  increases and hence, see equation (65), the deformation (D) 
of the dipolar BEC increases.

7.3. Dynamical stability of stationary solutions

The static solutions derived above are stationary but not nec-
essarily stable. In this section  the dynamical stability of the 
stationary solutions is analyzed. This is done by considering 
small perturbations in the BEC density and phase of the form 
n n neq δ= +  and S S Seq δ= + . By linearizing the dipolar 
hydrodynamic equations (61) and (62), the dynamics of such 
perturbations can be described as [165–167],
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where v v rc Ω= − ×  and the integral operator K is defined as
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Figure 15. (a) Irrotational velocity field amplitude αv of the rotating 
frame stationary solutions as a function of the rotation frequency 
of the trap, Ω, with γ = 1 and =ε 0 and ε = −0.49dd , 0, 0.5 and 
0.99. Insets illustrate the deformation of the condensate in the x  −  y 
plane, for α > 0v  and α < 0v . (b) The bifurcation frequency, Ωb, 
calculated from equation (79) as a function of the trap aspect ratio, 
γ. Results are plotted for ε = −0.49dd , −0.4, −0.2, 0, 0.2, 0.4, 0.6, 
0.8, 0.9 and 0.99. In both (a) and (b) εdd increases as indicated by 
the arrow. Reprinted figure with permission from [167]. Copyright 
2009 by the American Physical Society.
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To investigate the stability of the BEC the eigenfunctions and 
eigenvalues of the operator in equation (80) can be examined. 
Dynamical instability arises when one or more eigenvalues λ 
possess a positive real part. While the imaginary parts of the 
eigenvalues characterise the frequencies of collective modes 
of the BEC [191], the magnitudes of any real parts control 
the rate of growth of unstable modes. If the density and phase 
fluctuations are expressed as polynomials of degree N, the 
operators in equation (80), including K [93, 94, 96], result in 
polynomials which are of degree N or less. This enables equa-
tion (80) to be recast as a scalar matrix operator which acts 
on vectors of polynomial coefficients. Finding the eigenval-
ues (determining stability) and eigenvectors (characterising 
modes) is then a simple computational task [165–167, 182].

Below, the stability of the rotating solutions are consid-
ered for 0>ε  (figure 16(a)). For 0vα <  there are two static 
solutions for bΩ>Ω . The solution nearest the 0vα =  axis is 
always dynamically stable except when → ωΩ ⊥, where the 

BEC is susceptible to a centre-of-mass instability [192]. The 
other solution, in the 0vα <  half-plane, is always dynamically 
unstable and hence experimentally irrelevant. The dynami-
cal stability of solutions in the upper half-plane ( 0vα > ) is 
more interesting. In figure 17 [167] the maximum positive real 
eigenvalues of the upper-branch solution is plotted as a func-
tion of Ω for a fixed trap geometry and various values of ddε . 
To obtain these results a maximum polynomial perturbation of 
n x y zp q rδ =  with p q r N3⩽+ + =  was considered.

In figure 17(inset) an example of the unstable region (for 
the upper-branch solution) is shown, in the −Ωε  plane, for 

0ddε =  and 1γ = . The shaded crescents [182] denote the 
regimes of dynamical instability (Re 0( )λ > ). Each crescent 
corresponds to a single value of N, the total degree of the 
poly nomial perturbation. Each higher value of N adds another 
crescent from above. The crescents merge for large rotation 
frequencies, with the eigenvalues being comparatively large. 
At lower rotation frequencies the crescents become vanish-
ingly thin with comparatively small eignevalues [187] (at 
least an order of magnitude smaller than the main instabil-
ity region). The relative smallness of the eigenvalues in this 
region indicates that instabilities grow over a much longer 
time-scale as compared to the main region of instability. For 
non-dipolar BECs this was numerically investigated by solv-
ing the GPE [187]. These numerical results showed that the 
narrow instability regions have negligible effect when ramp-
ing Ω at rates greater than td d 2 10 4 2/ ωΩ = × −

⊥. Hence these 
narrow regions of instability have minimal consequence over 
the time-scales typically considered in an experiment and can 
be ignored, with the main region of instability denoted by the 
dashed line in figure 17(inset). Experimental trap ellipticities 
are usually 0.1⩽ε  and the unstable regime can be quantified 
with N  =  3 for the perturbations. Denoting the lower bound 
for the dynamical instability as iΩ , figure 17 indicates that as 

ddε  is increased the lower bound for iΩ  decreases.

Figure 16. (a) Irrotational velocity field amplitude αv of the rotating 
frame stationary solutions as a function of the rotation frequency of 
the trap, Ω, with γ = 1 and =ε 0.025 and ε = −0.49dd , 0, 0.5 and 
0.99, with increasing εdd denoted by the arrow. Insets illustrate the 
deformation of the condensate in the x  −  y plane, for α > 0v  and 
α < 0v . (b) Back-bending frequency Ωb versus εdd for =ε 0.025 and 
γ = 0.5 (solid curve), 1.0 (long dashed curve) and 2.0 (short dashed 
curve). Reprinted figure with permission from [167]. Copyright 
2009 by the American Physical Society.

Figure 17. The maximum positive real eigenvalues of equation (80) 
(solid curves) for the upper-branch solutions of αv as a function of 
Ω, for =ε 0.025, γ = 1, N  =  3, ε = −0.49dd , 0, 0.5 and 0.99, with 
εdd increasing in the direction of the arrow. The inset shows the 
region of dynamical instability in the −Ωε  plane for ε = 0dd . The 
narrow regions, around /ωΩ <⊥ 0.6 with <ε 0.1 and /ωΩ <⊥ 0.56 
with <ε 0.25, have negligible effect and so only the main instability 
region is considered (bounded by the dashed line). Reprinted 
figure with permission from [167]. Copyright 2009 by the American 
Physical Society.
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As the size of the scalar matrix operator (80) is increased 
to N 4, 5,= …, the higher lying modes develop real eigenval-
ues as Ω is increased. These higher lying modes fall within 
the region of instability already shown in figure 17 for N  =  3 
and so do not alter the range of parameters where instability 
occurs. As we shall now explain, this result implies that the 
Thomas–Fermi spectrum does not contain a roton minimum as 
a function of angular momentum L. Ultimately, this is because 
a roton minimum means, somewhat counter- intuitively,  
that higher lying modes can have lower energy than lower 
lying modes. This has important consequences in the pres-
ence of fluid flow. For example, Pitaevskii [193] considered 
the case of superfluid 4He flowing through a pipe with rough 
walls. If the excitation spectrum of the superfluid at rest is 
E( p ), when it flows at speed v the spectrum is Galilean-shifted 
E p E p pv( ) → ( )− . There is, therefore, a critical velocity 
v E p pminc   ( )/= , where min means the minimum with respect 
to p, at which excitations have zero energy and can be freely 
produced, depleting the superfluid. However, because super-
fluid 4He has a roton minimum in its spectrum, the excitations 
created at vc have a specific momentum p pr≈ , where pr is 

the roton minimum, triggering an instability to the formation 

of a density wave with wavelength pr
1∝ − . For a rotating sys-

tem similar arguments can be made with the Galilean-shifted 
energy taking the form E E L→ − Ω with angular roton modes 
[119] becoming unstable at some critical rotation frequency. 
Crucially, in the dynamical instability analysis presented 
above it was found that the modes become unstable in order 
as Ω is increased. This implies that for the regimes consid-
ered, an angular-roton minimum at finite angular momentum 
does not exist. Within the context of the analysis presented 
( 0.5 1dd⩽ ⩽ε− ) this is not surprising since roton minima 
in dipolar BECs do not occur for 0.5 1dd⩽ ⩽ε− . To access 
regimes where a roton minimum occurs requires a treatment 
beyond the Thomas–Fermi approximation since the zero-
point energy plays a crucial role in determining the properties 
of a BEC in the presence of strong dipolar interactions.

7.4. Routes to instability and vortex lattice formation

For a non-dipolar BEC in the Thomas–Fermi limit, only the 
rotation frequency and trap ellipticity determine the stability 
of the rotating frame solutions. As such adiabatic changes in 
ε and Ω can be utilised to trigger dynamical instability. For 
non-dipolar BECs this has been realised both experimentally 
[40, 183] and numerically [184–186], with excellent agree-
ment with the hydrodynamic predictions.

For dipolar BECs the static solutions and their instability 
depend on the rotation frequency Ω, the trap ellipticity ε, the 
trap ratio γ and the interaction parameter ddε , see sections 7.2 
and 7.3. In principle all of these parameters can be adiabati-
cally tuned in time. This provides many routes through param-
eter space to induce instability in the system.

Figure 18 [167] shows examples of these routes. 
Specifically, figure 18 shows the static solutions vα  of equa-
tion  (77) as a function of Ω (figure 18(a)) (with 0.025=ε , 

1γ =  and 0.99ddε = ), ε (figure 18(b)) (with 1γ = , 0.7ωΩ = ⊥ 

and =ε 0.99dd ), εdd (figure 18(c)) (with 0.025=ε , 1γ =  and 
0.7ωΩ = ⊥) and γ (figure 18(d)) (with 0.025=ε , 0.7ωΩ = ⊥ 

and =ε 0.99dd ). In each figure the routes towards instability, 
due to an adiabatic change in the free parameters Ω, ε, εdd or 
γ, are denoted by grey arrows, with the onset of instability 
highlighted by asterisks. Two types of instability can arise: 
(i) a dynamical instability (dashed grey arrows), or (ii) back-
bending of the stationary solution such that it ceases to exist 
(solid grey arrows). For 0vα > , the instability always arises 
from dynamical instabilities in the rotating frame stationary 
solution. For 0vα <  the instability always arises from the 
rotating frame stationary solution ceasing to exist.

7.4.1. Does the final state of the system contain vortices? In 
section 7.4 we considered the routes to instability in a rotating 
dipolar BEC. This section addresses the question of whether 
such instabilities lead to the seeding of a vortex or vortex lat-
tice in the BEC. We need to consider both the hydrodynami-
cal surface instability of the rotating BEC and the energetic 
favourability for a vortex to be supported in the BEC.

For a non-dipolar BEC the admittance of a vortex into 
the BEC becomes energetically favourable when the rotation 
frequency exceeds the critical frequency vΩ  defined in equa-
tion (37), where in the Thomas–Fermi limit (assuming cylin-
drical symmetry) vΩ  is given by equation  (47). For typical 
condensate parameters 0.3v ωΩ ∼ ⊥. This result is inconsistent 

Figure 18. Stationary states in the rotating trap characterised by 
the velocity field amplitude αv, determined from equation (77). Red 
circles denote dynamically unstable solutions. Adiabatic pathways to 
instability are denoted by dashed and solid arrows, with the point of 
instability, for a particular pathway, denoted by an asterisk. Pathways 
towards a dynamical instability are denoted by a dashed arrow and 
pathways towards an instability due to the disappearance of the 
stationary state are denoted by solid arrows. In each of the figures the 
trap rotation frequency Ω (a), trap ellipticity ε (b), dipolar interaction 
strength εdd (c) and axial trapping strength γ (d) are varied adiabatically, 
whilst the remaining parameters remain fixed at ωΩ = ⊥0.7 , =ε 0.025, 
ε = 0.99dd , and γ = 1. Reprinted figure with permission from [167]. 
Copyright 2009 by the American Physical Society.
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with experimental observations of a much higher threshold for 
vortex lattice formation, 0.7ωΩ∼ ⊥. This discrepancy can be 
understood by considering the mechanism for vortices to be 
seeded into the BEC. For example, consider the case where Ω 
is increased adiabatically from zero (figure 18(a)). Then the 
pertinent stationary solution is in the 0vα >  half-plane, which 
becomes dynamically unstable when 0.7ωΩ≈ ⊥. This instabil-
ity provides a mechanism for vortices to be seeded into the 
BEC and ultimately relax into a vortex lattice. Alternatively, 
for vΩ>Ω  the global energy minimum of the BEC is one 
which contains a vortex or vortex lattice, with the vortex-free 
solution being a local energy minimum. However, as Ω is adi-
abatically increased from zero, for vΩ<Ω  the global energy 
minimum is defined by the rotating frame stationary solutions. 
As such as Ω passes through vΩ  there is no adiabatic path from 
the rotating frame stationary solution to the vortex solution, 
i.e. to move from the local energy minimum of the rotating 
frame stationary solution to the global energy minimum of the 
vortex state requires overcoming a significant energy barrier, 
due to the change in topology of the BEC between the two 
states. The dynamical instabilities discussed in section  7.4 
provide a mechanism to overcome this topological barrier 
and hence seed the formation of vortices and vortex lattices at 
rotation frequencies 0.7ωΩ≈ ⊥.

Of course, the details of how a vortex or a vortex lat-
tice forms once a hydrodynamical instability occurs is non-
trivial, however the instability is the first step in the process  
[184–186]. For example, consider a BEC undergoing an adi-
abatic introduction of Ω (from zero), see dashed grey arrow in  
figure 18(a). At a critical rotation frequency, iΩ , the BEC becomes 
dynamically unstable. This leads to the exponential growth of 
surface ripples in the BEC [35, 183, 186]. Alternatively, consider 
a BEC undergoing an adiabatic introduction of ε (from zero), 
see solid grey arrow in figure 18(b). Above some critical trap 
ellipticity the stationary solutions no longer exist and the BEC 
undergoes large shape oscillations. In each case, and also for the 
adiabatic introduction of ddε  (figure 18(c)) or γ (figure 18(d)), 
these instabilities provide a mechanism for vortices to nucleate 
into the condensate. From this a turbulent vortex state emerges 
which then relaxes to a vortex lattice [186, 194].

The rotation frequency at which it becomes energetically 
favourable for a vortex to be admitted into a dipolar conden-
sate depends crucially on the trap geometry γ and the strength 
of the dipolar interactions ddε  as discussed in section 5.3 based 
upon the results in [161]. There it was assumed that the system 
was cylindrically-symmetric, however, if we assume a very 
weak ellipticity 0.025=ε , it is expected that the correction to 
the critical frequency will be correspondingly small.

Below we consider two regimes for admittance of a vortex 
or vortex lattice into a dipolar BEC, as a function of rotation 
frequency and ddε . Initially an oblate trap is considered with 

10γ = , see figure 19(a) which plots the instability frequen-
cies iΩ  (short dashed curve) and bΩ  (long dashed red curve) 
as a function of the dipolar interactions ddε . For adiabatic 
changes in Ω (vertical path) or ddε  (horizontal path), the sys-
tem becomes unstable when it reaches one of the instability 
lines. The key feature to note is that the instability frequencies 
decrease weakly as the dipolar interactions are increased and 

have the approximate value 0.75i b ωΩ ≈Ω ≈ ⊥. Also shown in 
figure 19(a) is the rotation frequency vΩ  (solid curve) at which 
it becomes energetically favourable for a single vortex to 
reside in the dipolar BEC. Dipolar interactions, in this oblate 
system, lead to a weak decrease in vΩ , with 0.1v ωΩ ≈ ⊥ for the 
parameters considered [161]. These results show us that when 
the condensate becomes dynamically unstable a vortex state 
is already energetically favoured, i.e. the rotation frequency 
at which it is energetically preferable to have a vortex in the 
BEC is much lower than the rotation frequency required to 
induce an instability. As such, it is expected that in an oblate 
dipolar BEC a vortex lattice will ultimately form when these 
instabilities are reached.

For a prolate trap with 0.1γ = , figure 19(b) plots the insta-
bility frequencies iΩ  (short dashed curve) and bΩ  (long dashed 
red curve) and vΩ  (solid curve). The instability frequen-
cies follow a similar trend to the oblate case. However, vΩ  is 
drastically different, increasing significantly with ddε  [161]. 
Depending on the strength of the dipolar interactions, two 
regimes are predicted. For 0.8dd ⩽ε  both iΩ  and bΩ  are larger 
than vΩ , and hence it is expected that an instability will lead 

Figure 19. The relation between the instability frequencies, Ωb 
(long dashed red curve) and Ωi (short dashed curve), and the 
critical rotation frequency for vorticity Ωv (solid curve) for (a) an 
oblate trap γ = 10 and (b) a prolate trap γ = 0.1. The instability 
frequencies are based on a trap with ellipticity =ε 0.025 while Ωv 
is obtained from equation (47) under the assumption of a 52Cr BEC 
with 150 000 atoms and scattering length as  =  5.1 nm in a circularly 
symmetric trap with ω π= ×⊥ 2 200 Hz  =200 rad s−1. Reprinted 
figure with permission from [167]. Copyright 2009 by the American 
Physical Society.
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to the admission of vortices into the condensate (and subse-
quently a vortex lattice). However, for 0.8dd ⩾ε , both iΩ  and bΩ  
are lower than vΩ , implying that although an instability in the 
vortex free solution occurs, a vortex state is not energetically 
favourable. In this scenario the final state is not clear due to 
the net attractive dipolar interactions in this prolate configura-
tion, and similar behaviour to non-dipolar BECs with attractive 
contact interactions (g  <  0) may arise. For non-dipolar BECs 
with attractive interactions the formation of vortices is also 
unfavourable with the possible final states including centre-
of-mass motion, quadrupole oscillations and higher angular 
momentum-carrying shape excitations [195–197]. However, 
the true nature of the final state warrants further investigation.

Numerical results of the dipolar GPE in the quasi-two-
dimensional regime [198, 199] show that, for an adiabatic 
introduction of the rotation frequency, the strength of the 
dipolar interaction influences the rotation frequency at which 
vortices are admitted into the condensate. In agreement with 
analysis presented above, it is also found that as the dipolar 
interaction is increased the rotation frequency required to 
nucleate vortices is reduced.

7.5. Generalisation of Thomas–Fermi analysis

In principle the analysis presented in sections 7.2–7.4 can be 
modified to consider vortex generation through the applica-
tion of a synthetic magnetic field and extended to investigate 
how off-axis alignment of the dipoles affects the stationary 
solutions and their dynamical stability.

7.5.1. Synthetic magnetic fields. In a remarkable experiment 
in non-dipolar BECs, synthetic magnetic fields have been 
used to nucleate vortices [177]. The nucleation of vortices in 
such systems can be analysed via the general methods pre-
sented sections 7.2 and 7.3 [179], with favourable agreement 
being found with experimental results. Although the extension 
of this calculation to the dipolar case has not yet been pursued 
in the literature, the analysis presented in sections 7.2–7.4 for 
dipolar BECs can be modified to include synthetic magnetic 
fields. Let us outline the calculation: The starting point is,

n

t
n ,[ ]ν∇∂

∂
= − ⋅ (82)

m
t

m V gn
v 1

2
,2⎜ ⎟

⎛
⎝

⎞
⎠ν∇∂

∂
= − + + + Φ (83)

where the generalized velocity is q mv A /ν = − ∗∗ , with A∗ 
being the synthetic vector potential associated with the synth-
etic magn etic field. From this it is possible to derive an equiva-
lent set of stationary solutions and determine their stability via,
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Such an analysis would provide the basis to quantify under 
what regimes it is favourable for a vortex to be seeded into 
a dipolar BEC in the presence of a synthetic magnetic field.

7.5.2. Off-axis dipole orientation. In sections  7.2–7.4 the 
analysis was restricted to the case where the dipoles were 
aligned perpendicular to the plane of rotation. In the absence 
of rotation it is possible to find Thomas–Fermi solutions when 
the dipoles are not aligned along one trap axis [200]. Although 
non-trivial, it is in principle possible to generalise the work 
of Sapina et al [200] to include rotation, thereby providing a 
framework to quantify under what regimes it is favourable for 
a vortex to be seeded into a dipolar BEC when the dipoles are 
not perpendicular to the axis of rotation11.

8. Vortex lattices

To date there have been several examinations of the properties 
of vortex lattices in quasi-two-dimensional rotating dipolar 
BECs [144, 201–206]. Work by Cooper et al [201, 203, 204] 
found, by numerical minimization of the interaction energy 
with the wavefunction constrained to states in the Lowest 
Landau Level (LLL), that the dipolar interaction could modify 
the symmetry of the vortex lattice. Specifically, they found 
new phases could emerge with square, stripe (rectangular) and 
bubble phases, in contrast to the conventional triangular lat-
tice structure of non-dipolar BECs. These new phases emerge 
in the regime a C m0.13s dd

2ħ/�− . This result coincided with 
the work of Zhang and Zhai [202] who also found that the 
triangular phase is not favoured when the contact interactions 
are attractive (as  <  0), with stronger dipolar interactions lead-
ing to a square then rectangular lattice. Additionally, recent 
work by Kishor Kumar et al [206], using numerical solutions 
of the three-dimensional purely (as  =  0) dipolar GPE, found 
both triangular and square vortex lattice configurations, with 
both the strength of the dipolar interactions and the rotation 
frequency determining the symmetry of the final state. Each 
of these investigations assumed that the axis of rotation of the 
BEC was the same as the alignment direction of the dipoles. 
Numerical simulations of the dipolar GPE, carried out by Yi 
and Pu [144] did not find any evidence of this change of lat-
tice structure for such a configuration. However, for dipoles 
aligned off axis, they did find evidence of a change in the 
symmetry of the vortex lattice. This work also found evidence 
for ripply vortex lattices, where density modulations arise in 
the vicinity of a vortex. This can be understood in the context 
of the analysis presented in section 5 where we deduced that 
as the BEC approaches the roton instability density ripples 
appear around a single vortex. This is consistent with numer-
ical work presented by Jona-Lasinio et al [124].

Below we present new results for the structure of a vortex 
lattice in a dipolar BEC in the quasi-two-dimensional regime. 
We consider both the case where the dipole alignment is 
perpend icular to the condensate plane (in reference to figure 4 

0α = ), and generalise this to include configurations where 
the alignment has a component into the plane (in reference to 
figure 4 0α> ). The treatment considered draws on the works 
of Cooper et al [201, 204], Zhang and Zhai [202] and [207, 

11 To be able to carry out such a calculation, along the lines presented in 
sections 7.2–7.4, one must consider the case where the dipole alignment is 
stationary in the rotating frame, i.e. rotating with the trap.
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208]. For clarity, we shall begin our analysis by considering 
vortex lattices for the case of a non-dipolar BEC. Although 
this case has been covered rather extensively in the literature, 
it will be useful for the reader to provide a comprehensive, 
self-contained review here. We shall then build on the meth-
odology presented to consider dipolar BECs.

8.1. Vortex lattice in a non-dipolar BEC

Assuming that a condensate is confined in a cylindrically-
symmetric harmonic trap, the energy functional in the rotating 
frame is given by,
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There are two distinct contributions to the total energy: a 
single-particle energy contribution, E0 (the first term in equa-
tion (85)) and an interaction energy contribution, which in the 
absence of dipolar interactions is EvdW (the second term in 
equation (85)).

To study the properties of vortex lattices it is appropriate 
to consider the quasi-two-dimensional regime. Physically, 
this corresponds to a situation where the condensate is rapidly 
rotating so that centrifugal spreading is significant, and where 
the longitudinal trapping is strong ( gn 0zħ ( )ω � ). In such cir-
cumstances it is appropriate to assume that the longitudinal 
motion is described by the ground state of the z-confinement, 
so that the condensate wavefunction can be factorized accord-
ing to equation (31). The resulting form for the energy func-
tional, in the absence of dipolar interactions is,
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where,
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Consider the fast-rotating limit where → ωΩ ⊥. This is 
the point at which the centrifugal spreading due to rotation 
almost overwhelms the confinement due to the radial trap. In 
this limit, the single-particle Hamiltonian in quasi-two dimen-
sions tends to m mzi 22ħ ˆ( ) /ρ− ∇ +Ω ×⊥ , up to a constant. The 
eigenfunctions of this Hamiltonian are well known: they are 
the Landau level orbitals u x y,m n, ( )′ ′  with corresponding eigen-
energies n 1 2n ħ ( / )= Ω +′′ε . The n quantum number labels 

the Landau level, and may take on any non-negative integer 
value. Each Landau level is infinitely degenerate since n′ε  does 
not depend on m′ (which also takes on non-negative integer 
values).

Although the Landau level orbitals do not necessarily 
form a complete basis for the full quasi-two-dimensional 
Hamiltonian, in the limit of weak interactions they are a good 
approximate basis choice [195]. In searching for the ground 
state of the condensate it is assumed that it is adequately 
described by a superposition of n 0=′  Landau level orbitals, 
i.e. the lowest Landau level (LLL) approximation. Using an 
unrestricted minimization this assumption implies that [52],
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In this limit the two-dimensional ground state wavefunction of 
the condensate can be written as,
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where the right-hand side follows from the explicit form of 
u x y,m ,0( )′ . The length scale l mħ/= Ω⊥  characterises the 
radial extent of the condensate and is effectively equal to the 
transverse trap length since → ωΩ ⊥.

At this point it turns out to be convenient to convert to a 
complex number representation, rather than working with 
the components of a two-dimensional vector. To this end 

x yx yˆ ˆρ = +  is mapped onto the complex number w x yi= + . 
Then the ground state wavefunction of equation (90) may be 
written as,
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where h is an analytic function of w. With this definition, the 
coefficients of the superposition cm′ have been absorbed into 
h. It is possible to fully specify h in terms of its roots since it 
is an analytic function, where each root specifies the location 
of a vortex core at the corresponding x and y coordinates in the 
condensate [208].

A vortex lattice ground state corresponds to a situation 
where the roots of h lie on a lattice. The next step is to con-
struct an analytic function with roots that satisfy this property. 
Fortunately, there is a well-studied function in complex analy-
sis which will be useful here: the Jacobi theta function z,1( )θ ζ . 
The roots of z,1( )θ ζ  are able to describe any regular lattice up 
to a rotation by making an appropriate choice for the param-
eter ζ. This means that h may be expressed in terms of 1θ  to 
obtain a vortex lattice ground state wavefunction. However, 
in order to make this connection we must introduce a way to 
describe a regular lattice mathematically.

A two-dimensional lattice may be fully specified by a 
pair of basis vectors: b1 and b2. The points of the lattice are 
obtained from these basis vectors by constructing all possible 
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linear combinations of the form m mb b1 21 2+  where m1 and 
m2 are integers, i.e. a two-dimensional Bravais lattice. In gen-
eral, four real parameters are required to fully specify a lat-
tice: two real components for each of the two basis vectors. 
However, one of these parameters may be fixed since there 
is no need to distinguish between lattices which are equiva-
lent up to a rotation. This is justified because the Hamiltonian 
which describes the condensate is cylindrically symmetric. In 
order to fix one of the parameters the first basis vector b1 is 
chosen to be orientated along the x-axis.

The three remaining parameters which describe the lattice 
are depicted in figure 20, along with the lattice basis vectors. 
The first basis vector b1 is specified solely in terms of its mag-
nitude, which is denoted by the parameter b1, since its direc-
tion is fixed along x̂. The second basis vector b2 is defined 
with reference to the first basis vector through a rotation and 
rescaling. This requires two additional parameters: a rotation 
angle η and a scaling factor τ. Writing out the basis vectors 
explicitly in terms of the parameters b1, τ and η, results in 

bb x1 1ˆ=  and bb x ycos sin2 1 ˆ ˆ( )τ η η= + .
The other parameter that appears in figure 20 is the area of 

the unit cell, given by v b sinc 1
2τ η= . This parameter is redun-

dant in specifying the lattice because it depends on the other 
parameters: b1, τ and η. However, it is useful to mention it 
because it appears in a number of places in the subsequent 
analysis.

Another useful concept regarding our mathematical 
description of the vortex lattice is the reciprocal lattice. It is 
needed to represent a function which is defined on a lattice 
as a Fourier series. The reciprocal lattice is obtained from the 
original lattice by a transformation of the lattice basis vectors. 
Denoting the basis vectors of the reciprocal lattice as q1 and 
q2, we have v b vq b z x y2 2 sin cosc c1 2 1ˆ ˆ ˆ/ ( )/π π τ η η= × = −  
and v b vq z b y2 2c c2 1 1ˆ ˆ/ /π π= × = . As for the case of the origi-
nal lattice, the reciprocal lattice is constructed from its basis 
vectors by considering all linear combinations of the form 
m mq q1 21 2+  where m1 and m2 are integers. Each one of these 
linear combinations is a reciprocal lattice vector, which is 
denoted in general by q.

From this, it is possible to describe the two-dimensional 
density as,
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with m mq q q1 21 2= + . In other words, the two-dimen-
sional condensate density is the product of a Gaussian 
envelope and a function g g iqexpq q( ) ˜ ( )ρ ρ= ∑ ⋅  which 
is periodic on the vortex lattice. The Fourier coefficients of 
g( )ρ  are rescaled compared to those in equation (93) so that 

g g g ivexp 4q q v v
2 2˜ / ˜ ( / )χ= ∑ − . The radial extent of the conden-

sate cloud is quantified by the length-scale l vc
2 1 1 2( ) /χ π= −⊥
− − −  

which is related to the number of vortices in the system.
From this ansatz for the vortex lattice ground state, it is pos-

sible to calculate the energy of the condensate as a function of 
the lattice parameters. Using the fact that ( )ρψ⊥  is in the LLL, 
the single-particle energy contribution, in the limit of large 
vortex number, is independent of the vortex lattice parameters. 
The interaction energy contribution may be rewritten in the 
following form,
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Here n N n d2 2 2 2[ ] / ( )∫ ρ ρπ χ= ⊥I  is a dimensionless analogue 
of the interaction energy contribution. Substituting the ansatz 
for the vortex lattice ground state from equation (92) gives,
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This quantity depends on τ and η implicitly through its 
depend ence on the reciprocal lattice vectors. Considering the 
limit of large vortex number where q 12 2χ � , it is possible to 
simplify this expression significantly. In fact, one may assume 

that the exponential e
q v2 2

8− χ | + |  is so sharply peaked at q v= −  
that it may be approximated by a Kronecker delta, q v,δ − . This 
collapses the double sum to a single sum over q, which is 
much simpler to evaluate,
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In order to minimise ,( )τ ηI  as defined in equation  (96) 
a numerical treatment is required, which means cutting off 
the sums over m1 and m2 at some upper and lower bounds. 
Defining the upper and lower bounds to be at M and  −M 
respectively, with M set to 15 ensures that ,( )τ ηI  is accurate 
to double precision for values of τ and η greater than about 
0.05. To explore regions in which τ or η is less than 0.05, M 
needs to be increased above 15 to include higher frequency 
terms in the Fourier series. Fortunately, it is reasonable to 
exclude these regions, in the absence of dipolar interactions, 
because they correspond to an unphysical situation where the 
vortex lattice begins to collapse onto a line.

Figure 20. Illustration of the Bravais lattice basis vectors and the 
lattice parameters.
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It is illustrative to perform the minimisation of ,( )τ ηI  
graphically, by generating a contour plot of ,( )τ ηI  as a func-
tion of τ and η. The result is shown in figure 21. In this plot, 
the dark purple shading corresponds to regions where ,( )τ ηI  
approaches its minimum value. The white areas correspond to 
regions where ,( )τ ηI  is greater than the cut-off value, which 
is in this case set to 0.6. In figure  21 each local minimum 
has the same value of I  equal to 0.5797. However, a careful 
consideration shows that each of these solutions in fact corre-
sponds to the same type of lattice; just at a different scale and 
orientation. The solution labelled ‘1’ in figure 21 is the stand-
ard parametrisation of the triangular lattice. It is illustrated 
in figure 22, along with the standard parametrisations of the 
three other types of lattice: square, rectangular and parallelo-
grammic. In general, the standard parametrisation is defined 
to be the one for which τ is closest to 1. The alternative para-
metrisations of the same lattice have smaller values of τ com-
pared to the standard one. For example, the second solution, 
denoted as ‘2’ in figure 21 is an equally valid parametrisation 
of the triangular lattice.

The above calculation verifies that a triangular vortex 
lattice geometry is always favoured in non-dipolar BECs. 
Of course, this was to be expected based on the results of 
numerous experiments and previous theoretical studies. It is 
interesting to note that the triangular lattice geometry is not 
significantly favoured over other possible lattice geometries. 
In particular, the energy corresponding to the square lattice 
geometry at 1τ =  and 2/η π=  (the saddle point in figure 21) 
is only 1.8% larger than that of the triangular lattice geometry. 
It is therefore conceivable that the energy minimum may shift 
to a non-triangular lattice geometry if the functional form of 
the interaction energy contribution is altered. With this motiv-
ation the above calculation is generalized below to include 
dipolar interactions.

8.2. Vortex lattice in a quantum ferrofluid: dipoles  
perpendicular to the plane of rotation

For the case of dipolar BECs the dipolar interaction poten-
tial, U rdd( ), needs to be included. This is the only modification 
to the theory that is required to account for the effect of the 
dipoles. Assuming that the dipoles are aligned perpendicular 
to the plane of rotation, i.e. along the z-axis, implies that the 
cylindrical symmetry of the Hamiltonian is maintained. In this 
limit the criterion for being in the LLL becomes
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where l Rz /σ = ⊥. The above has been obtained by considering 

the expansion of the U qdd
˜ ( )⊥

 in terms of the width of the BEC to 
first order, i.e. equation (50), and then calculating the dipolar 
potential to second order in R/ρ ⊥.

The additional contribution to the energy functional arises 
due to the dipolar interactions,

E n U nr r r r r r
1

2
d d .1 1 2 2 1 2dd dd( ) ( ) ( )∫= − (98)

Adding this to the single-particle and contact interaction 
energy contributions gives the total energy in the rotating 
frame for a dipolar BEC,

Figure 21. Contour plot of ( )τ ηI , , a dimensionless analogue of 
the interaction energy. The white areas are regions where ( )τ ηI ,  is 
greater than the cut-off value of 0.6. The purple areas correspond 
to regions where ( )τ ηI ,  approaches its minimum value. Multiple 
local minima are visible, although they become difficult to see in 
the lower left-hand region of the plot. The three minima labelled by 
white numbers are mentioned in the text.

Figure 22. The Bravais lattice may be classified as one of 
five types according to the geometry of the unit cell. The three 
pertinent Bravais lattice structures considered are triangular, 
square and rectangular lattices which are all special cases of the 
parallelogrammic lattice. For the triangular, square and rectangular 
lattice, we have given the corresponding (τ, η) values in the so-
called standard parametrisation.
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E E E E .0 vdW dd= + + (99)

The results obtained in section  8.1 for the single-particle 
(E0) and contact interaction (EvdW) energy contributions are 
unchanged for the dipolar case. All that remains then, is to 
perform the calculation for Edd.

Rewriting the dipolar interaction energy contribution in 
reciprocal space by applying the Fourier convolution theorem 
leads to,

E n n Uk k k k
1

2

1

2
d .dd 3 dd( )

˜( ) ˜( ) ˜ ( )∫π
= − (100)

To evaluate this in quasi-two dimensions, we substitute the 
Fourier transform of the quasi-two-dimensional condensate 
density, n nk qe k l 4z z

2 2
˜( ) ˜ ( )/= −

⊥ , such that

E n n Uq q q q
1

2

1

2
d ,dd 2 dd( )

˜ ( ) ˜ ( ) ˜ ( )∫π
= −⊥ ⊥

⊥
 (101)

where U qdd
˜ ( )⊥

 is given by equation (34), with 0α = .
Now that an expression for the dipolar interaction energy in 

quasi-two dimensions has been derived, it is possible to evalu-
ate the energy assuming that the condensate is in the vortex 
lattice ground state. Performing the Fourier transform on the 
vortex lattice condensate density specified in equation  (92) 
results in,

n N gq e .
q

q
q q 42 2˜( ) ˜ /∑= χ− | − |

′
′

′
 (102)

This enters into the expression for the dipolar interaction 
energy, leading to,
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where,
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and I0( )⋅  is the modified Bessel function of the first kind. 
At this point, the integral may be separated into two terms 
A Aq q1 2( ) ( )+ . The first term has a simple solution,
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Returning to the expression for the dipolar interaction 
energy given in equation (103), and substituting the simplified 
result for A q1( ) gives
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where ,( )τ ηI  is as defined in equation (95) and,
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4
2
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This expression shows that the dipolar energy has been sepa-
rated into two distinct contributions: a local contribution 
which is proportional to ,( )τ ηI  and a non-local contribution 
which is proportional to ,( )τ ηW . In principle, it is now pos-
sible to calculate the dipolar interaction energy as a function 
of the lattice parameters, however the function for the non-
local contribution, ,( )τ ηW  is not analytically tractable and it 
must be evaluated numerically. In order to resolve this the dif-
ficult integral is expanded in a series of simpler integrals, each 
of which can be performed analytically. This can be done by 
expressing the complementary error function, which appears 
in the integrand, as a power series,

∑π= −
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n n
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and bringing the sum outside of the integral. Additionally, as 
in the case of the contact interactions it is possible to reduce 
the double sum, in equation (107) to a single sum in the limit 
of large vortex number, resulting in,
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and,
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where lz/β χ=  and Ln( )⋅  is the nth Laguerre polynomial.
With the results of section 8.1 it is now feasible, from a 

computational perspective, to numerically minimise the con-
densate energy, E E E, ,0 int( ) ( )τ η τ η= + , with respect to τ 
and η to determine the optimal vortex lattice geometry. In 
minimising the condensate energy, as in section 8.1, only the 
interaction energy contribution needs to be considered,
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since the single-particle contribution does not depend on τ 
and η. Assuming C 0dd>  so that the factor outside the square 
brackets is positive the vortex lattice configuration is deter-
mined by the the minimization of

l
2

1
, , ,z

dd

2

( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟
⎛
⎝
⎜

⎞
⎠
⎟

ε χ
τ η τ η+ +I W (113)

with respect to τ and η. The results of this minimization 
are shown in figure 23 for particular choices of length scale 
parameters which are given in the figure caption. In both fig-
ures, the optimal values of τ and η are plotted against dd

1ε− . The 
optimal value of τ is represented by a solid line with reference 
to the scale on the left vertical axis, while the optimal value of 
η is represented by a dotted line with reference to the scale on 
the right vertical axis. Taken together, the optimal values of τ 
and η describe the optimal vortex lattice geometry.

By comparing the optimal values of τ and η to the standard 
lattice parameterisations given in figure 22, it is possible to 
classify the geometry of the vortex lattice. For example, at the 
point 1.82dd

1ε = −−  in figure 23(a), a square lattice is favour-
able since the optimal values of τ and η at that point are 1 and 

2/π  respectively. Continuing in this way, three types of lattice 
emerge depending on the value of dd

1ε− : triangular, square or 
rectangular. Each of these lattice geometries occurs in a dis-
tinct region of the phase space, indicated by distinct shading in 
figure 23. The fact that the transition to different lattice geom-
etries occurs when 2dd

1ε ≈−−  indicates that the transition arises 
in the regime where the long-range contribution to the inter-
actions ,[ ( )]τ ηW  dominates, see equation  (113). Comparing 
figures  23(a), with l l 40z/ =⊥ , and (b), with l l 80z/ =⊥ , the 
relative size of each region is comparable for both conden-
sate aspect ratios. There is however an overall translation and 
scaling difference between the two cases: the regions in fig-
ure 23(b), where the condensate is more oblate, are contracted 
and shifted to the left compared to those in figure 23(a), where 
the condensate is less oblate. A more accurate description of 
the phase regions is given in table 1 in terms of inequalities.

In addition to the three pattern-shaded regions, there is 
also a solid grey-shaded region for which the condensate is in 
the so-called collapse phase. In the collapse phase, the opti-
mal value of τ tends to zero and the vortex lattice analysis 
begins to break down. Physically, this phase corresponds to 
a situation where the vortices are arranged in densely-packed 
lines, with the spacing between the lines being larger than the 
extent of the condensate in the x  −  y plane. Since the unit cell 
of the lattice extends beyond the boundaries of the conden-
sate in this situation, the vortex lattice can be considered to 
have collapsed. When the system enters the collapse phase, 
there are also signs that the analysis becomes invalid. Since 
τ approaches zero in this phase, the expression for interac-
tion energy becomes inaccurate because only enough terms in 
the Fourier decomposition to consider values of τ greater than 
about 0.05 are included (as in section 8.1 M  =  15).

Apart from the stability of the vortex lattice, we may also 
assess the stability of the condensate itself by looking at the 
sign of the interaction energy. If the interaction energy is 

negative, then it can approximately be regarded that the con-
densate as being prone to collapse. The region of phase space 
for which interaction energy is negative is the area to the left 
of the red line in figures 23(a) and (b). Interestingly, the inter-
action energy becomes negative at roughly the value of dd

1ε−  
where the optimal value of τ approaches zero. This suggests 
that there may be a link between the collapse of the conden-
sate and the collapse of the vortex lattice.

In this section the vortex lattice geometry in dipolar BECs 
for the special case of on-axis polarisation has been analysed. 
The results show that three lattice geometries are possible, 
depending on the value of dd

1ε−  and the values of the length 
scales l⊥, lz and χ. In general, a triangular lattice geometry is 
favoured in regions where the local interaction contribution 
dominates, as was seen in the non-dipolar case. However, in 
regions where the non-local interaction contribution becomes 
significant, the favoured lattice geometry changes from trian-
gular to square or rectangular. Below a certain value of dd

1ε−  

Figure 23. Plots showing the optimal values of τ and η in dipolar 
BECs with on-axis polarisation. Plot (a) assumes the length scales 

/( )π =⊥v l 1.0191c
2 , / =⊥l l 40z  and /χ =l 292.33z  (b) assumes the 

length scales /( )π =⊥v l 1.0191c
2 , / =⊥l l 80z  and /χ =l 584.66z . In 

each plot, the black solid (dashed) line represents the optimal value 
of τ (η) with reference to the scale on the left (right) vertical axis. 
By classifying the (τ,η) parameters, four distinct regions in phase 
space are identified: a collapse phase, rectangular lattice (stripe) 
phase, square lattice phase, and triangular lattice phase. These 
regions are indicated by distinct shading. The red line with arrows 
on the left side specifies the region for which the interaction energy 
is less than zero.
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(corresponding to reasonably strong, attractive contact inter-
actions) the vortex lattice and the condensate appear to col-
lapse concurrently.

The results obtained above qualitatively agree with previ-
ous results of Zhang and Zhai [202] and Cooper et al [201, 
203]. Zhang and Zhai also find that the lattice geometry 
undergoes a transition from triangular  →  square  →  rectangu-
lar  →  collapse as the value of dd

1ε−  decreases. Cooper et al also 
find the same transitions between lattice geometries. However, 
they do not find that the lattice collapses after passing through 
the rectangular lattice phase. Instead, they observe a bubble 
phase—a different kind of periodic vortex structure in which 
the vortices are arranged around bubbles of high particle den-
sity. Such states do not occur in the above analysis since they 
fall outside the scope of the analytic treatment used.

Yi and Pu [144] also conducted a similar study of vortex 
lattice geometry based on numerical simulations of the GPE, 
however their results are not in agreement with those obtained 
above, nor with those of Zhang and Zhai [202] and Cooper 
et al [201, 203]. They only observe triangular lattice geom-
etries in their simulations, and conclude that the square and 
rectangular lattice geometries do not exist. Possible explana-
tions for this discrepancy include that the particular parameter 
values chosen for the simulations do not fall in the square and 
rectangular lattice regions and/or the simulations were not in 
the LLL regime.

8.3. Vortex lattice in a quantum ferrofluid: dipoles not 
perpend icular to the plane of rotation

Although it is no longer appropriate to assume that the wave-
function envelope has cylindrical symmetry for the case of 
off-axis polarisation, there is still another useful symmetry 
that can be exploited: reflection symmetry. This reflection 
symmetry occurs about the x  −  z plane—the plane which 
contains both the polarisation vector and the axis of rotation. 
In order to derive a new ansatz for the vortex lattice ground 
state which assumes reflection symmetry, only minor modifi-
cations need to be made to the derivation given in section 8.2. 
Specifically, it is necessary to introduce two new variational 
parameters: λ and ζ.

The parameter λ is required to describe the deviation of the 
condensate cloud from cylindrical symmetry. It is the ratio of 
the width of the condensate cloud along the y-direction divided 
by the width along the x-direction. If the density profile of the 

cloud is expressed in the form x l y lexp x y
2 2 2 2[ / / ]− − , then the 

aspect ratio is written as l ly x/λ = . For a cylindrically symmet-
ric BEC, the width of the cloud along the x- and y-directions 
must be the same, which implies that 1λ = . For 0α>  (see 
figure 4), since dipolar BECs elongate along the direction of 
polarisation, it is expected that l lx y>  and hence 0 1λ< < .

The other new parameter, ζ, is required to allow the vortex 
lattice to adopt any orientation with respect to the polarisation 
direction. It is defined to be the angle between the first lattice 
basis vector, b1, and the projection of the dipole polarisation 
onto the plane of rotation. For a cylindrically symmetric BEC, 
the energy will be independent of ζ. However, for non-cylin-
drically symmetric dipolar BECs ( 0α> ), it is conceivable 
that the energy may depend on ζ.

By modifying the derivation of the ansatz for the vortex 
lattice ground state to incorporate the new parameters, it is 
possible to show that the condensate density must be of the 
following form,
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where R̂ represents the standard two-dimensional rotation 
operator, l l vx y c

1 1 1 2[( ) ] /χ π= −− − −  and,
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From this starting point is possible to generalize the 
approach presented in section  8.2 to the case where 0α> . 
The total energy can be broken into two components,

E E E, , , , , , .0 int( ) ( ) ( )τ η λ ζ λ τ η λ ζ= + (116)

The non-interacting component of the energy is given by,
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which in the limit → ωΩ ⊥ tends to a constant. Following the 
same procedure as in section  8.2, using equation  (92), the 
interaction energy is given by,
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where,

g, ,
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q
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2
2( ) ( ˜ )∑τ η λ

λ
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≈
+

I (119)

and,

Table 1. Definition of the four regions in phase space shown in 
figure 23.

Phase Figure 23(a) Figure 23(b)

Collapse ε <−− 1.895dd
1 ε <−− 1.946dd

1

Rectangular ε− < <−−1.895 1.825dd
1 ε− < <−−1.946 1.911dd

1

Square ε− < <−−1.825 1.815dd
1 ε− < <−−1.911 1.906dd

1

Triangular ε >−− 1.815dd
1 ε >−− 1.906dd

1
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where qx
( )ζ−  (qy

( )ζ− ) represents the x-component (y-component) 
of R qˆ ζ−  and,
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Although there are severe computational limitations sur-
rounding the minimisation of the above expression for the 
condensate energy, it is still possible to make some meaning-
ful calculations if only triangular and square lattices are con-
sidered. For example, it is possible to address the question of 
whether there is a transition between triangular and square lat-
tices. By considering the minimization at two points in param-
eter space: 0.9, 2dd

1( / )ε α π= =−  and 0.95, 2dd
1( / )ε α π= =−  

we find evidence for a transition. In the limit → ωΩ ⊥ 
(E N 2z0 ħ ħ( ) → [ / ]λ ωΩ+ ) table  2 shows E , , ,int( )τ η λ ζ  for 
the two vortex lattices at the two points in parameter space 
considered. Looking at the results, there is a phase transition 
in the vortex lattice geometry from triangular to square as a 
function of ddε . It is also found that the variational param-
eter ζ is essentially irrelevant, since the minimum value of 
E , , ,int( )τ η λ ζ  is found to be the same for any choice of ζ. This 
suggests that the orientation of the vortex lattice is unaffected 
by the broken cylindrical symmetry due to the off-axis polari-
sation. However, the optimal value of λ does deviate from the 
cylindrically symmetric value of 1. At both points considered, 
the optimal value is less than 1, which indicates, as expected, 
that the dipolar BEC is elongated along the direction of polari-
sation. Interestingly, the optimal value of λ does not depend 
on the lattice geometry.

Numerical studies [144], based on the dipolar GPE, sug-
gest that for 0α>  the vortex lattice can undergo a phase 
trans ition from triangular structure to a non-triangular struc-
ture as ddε  is increased. This is consistent with analysis pre-
sented above, however, to our knowledge there has not, to 
date, been a thorough study of vortex lattice structures for the 
regime of 0α> .

8.4. Vortex lattices in two-component dipolar Bose–Einstein 
condensates

The theoretical study of non-dipolar two-component BECs 
[208, 209] has shown how interspecies interactions g12 can 
influence the vortex lattice structure of the two components. 
The analysis presented in section 8 can be adapted to anal-
yse the vortex lattice structure of two component condensates. 
Doing this Mueller and Ho [208] were able to quantify various 
regimes through the parameter g g g12 1 2/β = , where g12 is the 
interspecies interaction parameter and g1(2) is the intraspecies 
interaction parameter for component 1 (2) of the two-comp-
onent BEC. This treatment and subsequent numerical analy-
sis [209] shows that for 0β<  the two components overlap 
and a single triangular vortex lattice arises. For 0β>  the two 
components separate to form interlaced triangular vortex lat-
tices. As 1β∼  the triangular lattice distorts to form square or 
rectangular arrays. This theoretical analysis is consistent with 
experiment [210].

It is also possible to consider two-component dipolar BEC 
systems, with both interspecies and intraspecies contact and 
dipolar interactions. Work by Shirley et al [211] showed that 
such systems (where one of the components has zero dipolar 
interactions), under rotation, exhibit a rich phase diagram, 
which includes triangular vortex lattices, square vortex lattices, 
vortex sheets (where half quantum vortices of one component 
align in a winding sheet, which is interwoven with a sheet 
in the other component [212]), half quantum vortex chains 
(where vortices, alternating between each component, line up 
along a chain) and half quantum vortex molecules (where a 
vortex in a given component pairs up with a vortex in the other 
comp onent). This analysis is consistent with further studies  
[213–215] and has been extended to consider how dipole align-
ment in the plane of rotation [215] and component-dependent 
optical lattices [216] influences the phase diagram.

9. Summary and outlook

9.1. Summary

The aim of this review was to take the reader on a journey, 
starting with the fundamental concepts and methodologies 
used to understand the properties of dipolar BECs and then 
show how these have been applied to understand the properties 

Table 2. Results of the minimisation of π=E l N C E3 2 zint
3
2

3 2
dd int˜ ( ( ) )/( )   

with respect to λ and ζ, for triangular and square lattices, at two 
values of εdd with /α π= 2. The specific parameters used are 

/( )π =v l l 1.0191c x y , / =l l l 40x y z  and /χ =l 292.33z . The optimal 
value of ζ is not included because Ẽint was found to be independent 
of ζ. The results show that the optimal value of λ is the same for 
both triangular and square lattice geometries.

ε−dd
1 Phase Optimal λ Ẽint

0.9 Square 0.93 −4979.49
0.9 Triangular 0.93 −4788.31
0.95 Square 0.78 −1377.22
0.95 Triangular 0.78 −1426.81
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of vortices and vortex lattices in these systems. Throughout, 
dipolar interactions are seen to enrich the physical proper-
ties of the system and vortices therein. The journey started 
in earnest in section 3 where we met the dipolar interactions; 
these introduce a long-range and anisotropic component to the 
interactions, making a significant departure from conventional 
s-wave interactions which appear in the theory as isotropic 
contact interactions. In section 4 we saw that the dipolar inter-
action significantly modifies the fundamental stationary solu-
tions of a dipolar condensate, including the introduction of 
collapse instabilities dependent on the shape of the boundary 
relative to the polarization direction. In section  5 we found 
that dipolar interactions can alter the energy and structure of 
a single vortex. Specifically, in quasi-two-dimensional sys-
tems when the dipole alignment is in the plane of the con-
densate, the vortex core is no longer circularly symmetric. 
Additionally, density ripples appear in the vicinity of the 
vortex core, as the roton instability is approached, due to the 
roton mixing with the ground state of the system. In section 6 
we found that the interaction between vortices can be altered 
by the absence of dipoles in the vortex core, introducing an 
additional long-range and anisotropic contribution to the 
vortex–vortex interaction. This can, for instance, lead to the 
suppression of the annihilation of vortex–antivortex pairs and 
induce the co-rotational dynamics of vortex–vortex pairs to 
become anisotropic. In section 7 we summarised the methods 
for generating vortices in condensates, and discussed the role 
of dipolar interactions in these processes. Concentrating on 
the properties and instabilities of rotating condensates, dipolar 
interactions were shown to significantly alter the regimes of 
stability and the critical rotation frequencies for vortices to 
be nucleated. This also allowed us to identifiy routes to vor-
tex formation under rotation. Finally, in section 8 we found 
that dipolar interactions lead to new and exotic vortex lattice 
phases; whereas lattices in non-dipolar condensates are well-
known to follow a triangular pattern, dipolar interactions can 
support rectangular, square and bubble phases.

Of course any journey is a compromise between taking an 
efficient route and a scenic path, i.e. in this case a compromise 
between completing the review, in a timely manner, and detail-
ing every contribution to the field. Unfortunately our path has 
been fairly efficient and as such we have omitted several other 
aspects relating to vortices and vortex lattices in quantum fer-
rofluids. Below we, all too briefly, provide a snapshot of some 
of the scenery we have missed along the way and avenues for 
further exploration.

9.2. Outlook

9.2.1. Dipolar Bose–Einstein condensates in toroidal traps.  
The experimental study of persistent superfluid flow in BECs 
confined to toroidal traps [43, 217–227] has matured signif-
icantly over the last decade. As such, ring shaped BECs in 
toroidal traps have been the subject of many experimental and 
theoretical investigations [228–233] focusing on persistent 
currents [217, 220, 234], weak links [218, 221], formation 
of matter-wave patterns by rotating potentials [235], solitary 
waves [230, 236], and the decay of the persistent current via 

phase slips [219, 237, 238]. In these studies the transference 
of angular momentum from optical fields [217, 221] or stir-
ring with an optical potential [221, 222] is used to generate 
persistent flow.

Within the context of this review we consider a persistent 
flow in a toroidal BEC as a giant vortex state. One might sup-
pose that beyond studying the density profile and stability of 
a dipolar condensate within a toroidal trap [239, 240] that 
dipolar interactions have a limited influence on the superflow 
properties in such a geometry. This assumption arises since 
to a close approximation the wavefunction can be considered 
to have the form n iqr r exp v( ) ( ) [ ]ψ θ= , where θ is the azi-
muthal angle and qv is the vortex charge (charaterising the 
persistent flow) around the toroid, and the density is independ-
ent of qv. As such, when considering the energy difference 
between qv and q 1v+  the dipolar interactions play no role.

Despite this observation work has been carried out on the 
properties of dipolar BECs in toroidal traps focusing on the 
generation of persistent flows via the He–McKellar–Wilkens 
or Aharonov–Casher effect [241] and the properties of two-
component dipolar BECs in concentrically coupled toroidal 
traps [242]. In the former case it was shown that for atomic 
dipolar BECs, where the dipolar interaction is mediated via 
a magnetic dipole moment, that although it is theoretically 
possible to induce persistent flow, via the Aharonov–Casher 
effect [243–245], the strength of electric field required is 
prohibitive. In the case of polar molecules, with significant 
electric dipole moments, the He–McKellar–Wilkens effect 
[246–248] could ultimately be used to generate a persistent 
flow in a dipolar BEC in a toroidal geometry. For the case of 
a two-component dipolar BECs [242] in concentrically cou-
pled toroidal traps, various vortex structures can arise depend-
ing on the strength of the dipolar interactions and the rotation 
frequency. The interesting vortex structures predicted include 
polygonal vortex clusters and vortex necklaces.

9.2.2. Fractional quantum Hall physics in dipolar Bose–
Einstein condensates. In section 8 we considered the LLL 
regime to investigate vortex lattice structures in dipolar BECs. 
Ultimately, in the limit → ωΩ ⊥, a rotating BEC is predicted to 
make a quantum phase transition to a highly correlated, non-
superfluid, fractional quantum Hall groundstate. This state 
emerges when the LLL meanfield vortex lattice melts, i.e. 
when the number of vortices (Nv) in the BEC is the same as 
or greater than the number of atoms (N). This regime occurs 
approximately when 0.999/ωΩ ∼⊥ . In the absence of dipo-
lar interactions theoretical evidence for such a transition has 
come from exact two-dimensional groundstate calculations 
for a small number of bosons with a large angular momentum 
[195, 249, 250]. For a review of quantum Hall physics in rotat-
ing BECs see [251].

The natural question which arises is: do dipolar interactions 
influence this phase transition and the properties of the highly 
correlated state? Work by Rezayi et al [252] showed that at 
a filling factor of N N 3 2v/ /= , with N  =  18, dipolar interac-
tions support an incompressible fluid ground state which pos-
sesses non-Abelian statistics for the quasiparticle excitations. 
Additionally, dipolar interactions in lattice systems have been 
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shown to increase the gap between the ground state and the 
first excited state [253], for N N 1 2v/ /= . It is expected that this 
increase in the gap will be maintained in the thermodynamic 
limit and hence relevant for experiments. Numerical simula-
tions by Chung and Jolicoeur [254] showed that at N N 1v/ =  
the ground state is a Moore-Read paired state, as is the case for 
bosons with purely contact interactions. This state is destabi-
lized when the contact interactions are small enough, i.e. dipo-
lar interactions alone can not support this state. For N N 1 3v/ /=  
a composite fermion sea emerges, where each boson is bound 
with three vortices. The robustness of fractional quantum Hall 
states in artificial gauge fields, in the presence of dipolar inter-
actions, has been investigated by Graß et al [255].

9.2.3. Dipolar fermions. There is considerable interest in the 
properties of dipolar Fermi gas systems. The partially attractive 
nature of the dipolar interaction in single-component dipolar 
Fermi gases opens up the possibility of BCS pairing resulting 
in superfluid states in three dimensions [22–24, 28, 31] and 
two dimensions [25, 26, 29] at sufficiently low temperatures. In 
these systems, the anisotropy of the superfluid order parameter 
causes a major change in properties as compared to the case of 
a two-component BCS superfluid, dominated by van der Waals 
interactions, where the superfluid order parameter is isotropic 
(s-wave). It is expected that the anisotropic gap will lead to 
significant differences in the properties of single and multiple 
vortex states in these systems. For example, Levinson et al [29] 
have proposed a scheme to construct a topological p pix y+  
superfluid phase in a quasi-two-dimensional single component 
dipolar Fermi gas which can support vortices which carry zero 
energy Majorana modes on their cores [256–258]. However, to 
date, there has been very little research into the properties of 
vortices and vortex lattices of such states. Assuming that such 
a state can be experimentally achieved there is a significant 
opportunity to revisit much of what has been discussed in this 
review within the context of vortices and vortex lattices in the 
BCS state of a dipolar Fermi gas.

There have been extensive studies of the properties of 
rotating single-component fermionic quantum ferrofluids 
[259–264] away from the BCS superfluid transition. These 
studies have primarily focused on the emergence of frac-
tional quant um Hall states in the → ωΩ ⊥ regime. Specifically, 
it has been shown [259, 260] that for a filling fraction of 

l n2 1 32
0 /ν π= =⊥  the many-body state is well described by 

the Laughlin wave function with a significant gap between 
the ground and the excited states. Further studies [260, 261, 
263] have shown that as the filling fraction is reduced fur-
ther ( 1 7/ν< ) Wigner crystal [265] states may emerge. To 
our knowledge, these studies have all been carried out in the 
regime where the plane of rotation is perpendicular to the ori-
entation of the dipoles. As such an interesting question to ask 
may be how do such states change when the dipole orientation 
has a component in the plane of rotation.

9.2.4. Berezinskii–Kosterlitz–Thouless transition. In a strictly 
homogeneous two-dimensional system at finite temper-
ature, long range phase coherence cannot be established and 

condensation will not occur. Superfluidity can still occur at 
very low temperatures where quasi-long-range order exists 
[266, 267], but even this is destroyed when the temperature is 
raised through the Berezinskii–Kosterlitz–Thouless trans ition 
[268, 269] at which point spatial correlations change from 
power law to exponential decay. Physically, this transition 
can be thought of as occurring when virtual vortex–antivor-
tex pairs unbind and there is a proliferation of free vortices. 
The Berezinskii–Kosterlitz–Thouless and BEC transition 
have been studied in trapped ultracold gases via observa-
tions of phase defects [270], vortices [271] and changes in 
the density profile due to the onset of superfluidity [272]. The 
Berezinskii–Kosterlitz–Thouless transition in the presence 
of dipolar interactions has been studied using, for a homo-
geneous system, Monte Carlo methods [273], the mean-field  
Hartree–Fock–Bogoliubov–Popov model [274], the dipolar 
XY-model [275] and most recently renormalized Hartree–Fock 
theory [77]. A simple picture underpinning our understanding 
of the Berezinskii–Kosterlitz–Thouless transition comes from 
asking the question: what is the energy required to separate a 
vortex–antivortex pair? For vortex–antivortex pairs in a uni-
form two-dimensional non-dipolar BEC (of two-dimensional 
background density n0), the energy of a pair, separated by a 
distance d and calculated from hydrodynamical arguments, is 
approximately given by V d n d m2 ln2

0ħ( ) ( / )/π ξ= . The criti-
cal temperature associated with the transition is given by the 
relation n mk T2 42

0 Bħ /( )π = . This is calculated by determin-
ing the average distance between the pairs,

d
d d

d d

e d

e d

2
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,

V d

V d
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( )

∫

∫
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Γ−
Γ−

ξ
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ξ
β

∞ −

∞ −
 (122)

where we have used the short-hand notation 
n mk T2 2

0 Bħ /( )πΓ = . This result diverges at 4Γ = , signifying 
the Berezinskii–Kosterlitz–Thouless transition.

In this simple model the inclusion of dipolar interactions 
adds three complications. The first complication is that as 
dipolar interactions are introduced ξ will change. The second 
complication is, as seen in section 6, the interaction between a 
vortex and an antivortex is modified in the presence of dipolar 
interactions due to the absence of dipoles in the vortex cores. 
As such the energy scaling of the pair with separation, i.e. 
V(d), is changed. The third complication arises if the dipole 
alignment has some component in the two-dimensional plane 
of the gas. In this case the interaction between the vortex–
antivortex pair is no longer just a function of the distance 
between them, it also depends on the in-plane angle of the 
pair relative to the polarization direction, i.e. V d V d,( ) → ( )η  
(see figure 13(b)). The above generalisations can be incorpo-
rated into equation (122) by considering the following analy-
sis [276]. To quantify if dipolar interactions have a significant 
effect on the Berezinskii–Kosterlitz–Thouless transition 
temperature we consider a simple model for the interaction 
between a vortex–antivortex pair. Specifically, the vortices 
carry a dipole moment 0, sin , cos( )α α∝ . If the separation 
between the vortices is dd cos , sin , 0( )η η=  then the interac-
tion between the vortex and the anti-vortex can be written as
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For simplicity, we have assumed that the interaction between 
vortices arising from the absence of dipoles in their cores is 

d1 3/∝ . Given the results in section  5.4.1, which finds that 
due to the absence of dipoles in a vortex core ddΦ  has a term 

d dln 3( )/∝ , this represents something of a simplification. 
From this
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When 0λ =  the result obtained from equation  (122) is 
regained, i.e. d 2 42 2⟨ ⟩ ( )/( )ξ= Γ− Γ− , with the Berezinskii–
Kosterlitz–Thouless transition arising from the divergence at 

4Γ = . However, the inclusion of the additional power law 
interaction between the vortex and antivortex, arising from 
the absence of dipoles in the region of the cores, does not fun-
damentally change this result. Specifically, the mean-square 
separation, given by equation  (125), diverges first at 4Γ = , 
i.e. this simple analysis implies that although the dipolar inter-
action can change the interaction between vortex–antivortex 
pairs the long-range hydrodynamic interaction always wins, 
suggesting that the Berezinskii–Kosterlitz–Thouless transition 
is unaffected by dipolar interactions. This is consistent with 
more detailed analysis presented in [273, 275] which found, 
at best, a weak dependence of the Berezinskii–Kosterlitz–
Thouless transition on the strength of the dipolar interac-
tions. For example, working within the XY-model Vasiliev 
et al [275] concluded that polarization of the system (i.e. the 
generation of additional vortex–antivortex pairs between any 
two points) screens out the long-range interactions. However, 
in our opinion there is still room for more work in this area 
such as considering finite-size effects and the true form of the 
dipolar interaction between a vortex–antivortex pair in order 
to firmly establish the role of dipolar interactions on this phase 
transition in physical systems.

9.2.5. Vortex lattices in the supersolid phase. A supersolid 
phase is characterised by the spontaneous formation of a peri-
odic structure in a system which also supports superfluidity, 
i.e. both on- and off-diagonal long-range order in the single 
particle density matrix. For more than half a century consider-
able effort has been expended theorizing about the possibility 
of supersolidity in condensed matter systems [277–281]. In 
particular, the investigation of a supersolid phase in 4He [282–
284] has been the primary focus of the more recent work. 

However, the most credible claim for the experimental obser-
vation of a supersolid phase in 4He [285] has now been with-
drawn [286]. The relatively recent realization of dipolar cold 
atoms and molecules now provides an alternative venue for 
investigating supersolid phases. Apart from the strongly corre-
lated dipolar systems [70, 72–76] cited in section 2, extended 
Bose–Hubbard lattice models are also thought to support 
supersolidity [287–297]. The common ingredient in both sets 
of investigations is the presence of long-range interactions. 
There have also been various works focusing on how an arti-
ficial gauge field in a dipolar BEC influences the boundaries 
between Mott-insulator and supersolid regimes [298, 299], 
and how staggered fluxes lead to supersolid phases with stag-
gered vortex phases [300]. However, there does not appear to 
have been much investigation into the structural properties of 
vortices [301] and vortex lattices in the supersolid state.

9.2.6. The Onsager vortex phase transition. By studying 
a two-dimensional point vortex model Onsager predicted 
that negative temperature states may be relevant for two-
dimensional fluids [302]. While intended as a model of two-
dimensional fluids in general, Onsager noted that the model 
was potentially particularly relevant for two-dimensional 
superfluids, whose vortices have quantized circulation and 
uniform size. Simulations of the two-dimensional GPE have 
shown how it is possible to dynamically evolve to the negative 
temperature Onsager vortex state [303, 304]. Starting with a 
random configuration of vortices and antivortices one might 
expect the vortices and antivortices to evaporate from the BEC 
via pairwise annihilation and re-thermalization of the emitted 
sound, simply resulting in a BEC with an increased temper-
ature. However, Simula et  al [303] showed that only some 
vortices annihilate, and the remaining vortices self-organise 
into two ordered clusters of like-sign circulation, which repre-
sent the Onsager vortices. This outcome was found to be the 
result of the evaporative heating of quantized vortices via vor-
tex–antivortex pair annihilation, leaving the remaining vorti-
ces to re-thermalize to a state with higher energy per vortex. 
This process drives the vortex component of the superfluid 
to ever higher energies, leading to the Onsager vortex phase 
transition. The final Onsager vortex state emerges as a cluster-
ing of vortices and antivortices. The dynamical process which 
leads to this final state is non-trivial, but is underpinned by the 
interaction between the constituent vortices and antivortices 
in the system. Introducing dipolar interactions, as shown in 
section 6, can significantly modify this interaction and as such 
may result in significant changes to the Onsager vortex phase 
transition. As such we suspect that dipolar interactions may 
offer the opportunity to significantly modify the Onsager vor-
tex phase transition.

Acknowledgments

AMM acknowledges support from the Australian Research 
Council (Grant No. DP150101704), DOD acknowledges sup-
port from the Natural Sciences and Engineering Research 
Council (Canada), and NGP acknowledges support from the 

J. Phys.: Condens. Matter 29 (2017) 103004



Topical Review

33

Engineering and Physical Sciences Research Council (Grant 
No. EP/M005127/1). We thank Professor A L Fetter for pro-
viding extensive feedback regarding this review.

References

 [1] Rosenswieg R E 1997 Ferrohydrodynamics (New York: 
Dover)

 [2] Hakim S S and Higham J B 1962 Proc. Phys. Soc. Lond. 
80 190

 [3] Cowley M D and Rosenswieg R E 1962 J. Fluid Mech. 30 671
 [4] Papell S S and Faber O C 1966 Report NASA TN-D-3288
 [5] Alexiou Ch, Schmid R, Jurgons R, Bergemann Ch and 

Parak F G 2002 Targeted tumor therapy with ‘magnetic 
drug targeting’: therapeutic efficacy of ferrofluid bound 
mitoxantrone Ferrofluids ed S Odenbach (Berlin: Springer)

 [6] Griesmaier A et al 2005 Phys. Rev. Lett. 94 160401
 [7] Beaufils Q et al 2008 Phys. Rev. A 77 061601
 [8] Pasquiou B et al 2011 Phys. Rev. Lett. 106 015301
 [9] Lu M, Burdick N Q, Youn S H and Lev B L 2011 Phys. Rev. 

Lett. 107 190401
 [10] Kadau H et al 2016 Nature 530 194
 [11] Aikawa K et al 2012 Phys. Rev. Lett. 108 210401
 [12] Lahaye T et al 2007 Nature 448 672
 [13] Lahaye T et al 2008 Phys. Rev. Lett. 101 080401
 [14] Koch T et al 2008 Nat. Phys. 4 218
 [15] Ferrier-Barbut I et al 2016 Phys. Rev. Lett. 116 215301
 [16] Chomaz L, Baier S, Petter D, Mark M J, Wächtler F, Santos L 

and Ferlaino F 2016 Phys. Rev. X 6 041039
 [17] Schmitt M, Wenzel M, Böttcher F, Ferrier-Barbut I and Pfau T 

2016 Nature 539 259
 [18] Ni K-K et al 2008 Science 322 231
 [19] Lu M et al 2012 Phys. Rev. Lett. 108 215301
 [20] Aikawa K et al 2014 Phys. Rev. Lett. 112 010404
 [21] You L and Marinescu M 2000 Phys. Rev. A 60 2324
 [22] Baranov M A et al 2002 Phys. Rev. A 66 013606
 [23] Baranov M A, Dobrek Ł and Lewenstein M 2004 New J. Phys. 

6 198
 [24] Baranov M A, Dobrek Ł and Lewenstein M 2004 Phys. Rev. 

Lett. 92 250403
 [25] Bruun G M and Taylor E 2008 Phys. Rev. Lett. 101 245301
 [26] Cooper N R and Shlyapnikov G V 2009 Phys. Rev. Lett. 

103 155302
 [27] Fregoso B M, Sun K, Fradkin E and Lev B L 2009 New J, 

Phys. 11 103003
 [28] Zhao C et al 2010 Phys. Rev. A 81 063642
 [29] Levinson J, Cooper N R and Shlyapnikov G V 2011 Phys. Rev. 

A 84 013603
 [30] Baranov M et al 2002 Phys. Scr. T 102 74
 [31] Baranov M A 2008 Phys. Rep. 464 71
 [32] Lahaye T et al 2009 Rep. Prog. Phys. 72 126401
 [33] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 

11 055049
 [34] Baranov M A, Dalmonte M, Pupillio G and Zoller P 2012 

Chem. Rev. 112 512
 [35] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 

Phys. Rev. Lett. 84 806
 [36] Freilich D V et al 2010 Science 329 1182
 [37] Neely T W et al 2010 Phys. Rev. Lett. 104 160401
 [38] Kwon W J, Seo S W and Shin Y 2015 Phys. Rev. A 92 033613
 [39] Anderson B P et al 2001 Phys. Rev. Lett. 86 2926
 [40] Hodby E et al 2001 Phys. Rev. Lett. 88 010405
 [41] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 

Science 292 476
 [42] Henn E et al 2009 Phys. Rev. Lett. 103 045301
 [43] Neely T W et al 2013 Phys. Rev. Lett. 111 235301
 [44] Kwon W J et al 2014 Phys. Rev. A 90 063627

 [45] Becker C, Sengstock K, Schmelcher P, Kevrekidis P G and 
Carretero-González R 2013 New J. Phys. 15 113028

 [46] Donadello S, Serafini S, Tylutki M, Pitaevskii L P, Dalfovo F, 
Lamporesi G and Ferrari G 2014 Phys. Rev. Lett. 
113 065302

 [47] Fetter A and Svidzinksy A 2001 J. Phys.: Condens. Matter 
13 R135

 [48] Kevrekidis P G, Frantzeskakis D J and Carretero-González R 
(ed) 2008 Emergent Nonlinear Phenomena in Bose–
Einstein condensates (Berlin: Springer)

 [49] Cooper N R 2008 Adv. Phys. 57 539
 [50] Kasamatsu K and Tsubota M 2009 Prog. Low Temp. Phys. 

16 351
 [51] Fetter A L 2009 Rev. Mod. Phys. 81 647
 [52] Fetter A L 2010 J. Low Temp. Phys. 161 445
 [53] Bisset R N and Blakie P B 2015 Phys. Rev. A 92 061603(R)
 [54] Parker N G, Allen A J, Barenghi C F and Proukakis N P 2017 

Quantum turbulence in atomic Bose–Einstein condensates 
Universal Themes of Bose–Einstein Condensation ed 
D Snoke et al (Cambridge: Cambridge University Press)

 [55] Winslow W 1949 J. Appl. Phys. 20 1137
 [56] Gast A P and Zukoski C F 1989 Adv. Colloid Interface Sci. 

30 153
 [57] Halsey T C 1992 Science 258 761
 [58] Shulman Z P and Kordonsky V I 1982 The 

Magnetorheological Effect (Minsk: Nauka i Tekhnika)
 [59] Lemaire E, Grasselli Y and Bossis G 1992 J. Phys. II 2 359
 [60] Halsey T C and Toor W 1990 Phys. Rev. Lett.  65 2820
 [61] Halsey T C 1993 Phys. Rev. E 48 R673
 [62] Jacobs I S and Bean C P 1955 Phys. Rev. 100 1060
 [63] de Gennes P G and Pincus P 1970 Phys. Kondens. Mater. 

11 189
 [64] Clarke A S and Patey G N 1994 J. Chem. Phys. 100 2213
 [65] Camp P J, Shelley J C and Patey G N 2000 Phys. Rev. Lett. 

84 115
 [66] Teixeira P I C, Tavares J M and Telo da Gama M M 2000  

J. Phys.: Condens. Matter 12 R411
 [67] Klapp S H L 2005 J. Phys.: Condens. Matter 17 R525
 [68] Holm C and Weis J J 2005 Curr. Op. Coll. Interface Sci. 

10 133
 [69] Cartarius F, Morigi G and Minguzzi A 2014 Phys. Rev. A 

90 053601
 [70] Büchler H P, Demler E, Lukin M, Micheli A, Prokof’ev N, 

Pupillo G and Zoller P 2007 Phys. Rev. Lett. 98 060404
 [71] Henkel N, Nath R and Pohl T 2010 Phys. Rev. Lett. 

104 195302
 [72] Astrakharchik G E, Boronat J, Kurbakov I L and Lozovik Yu E 

2007 Phys. Rev. Lett. 98 060405
 [73] Cinti F, Jain P, Boninsegni M, Micheli A, Zoller P and 

Pupillo G 2010 Phys. Rev. Lett. 105 135301
 [74] Macia A, Hufnagl D, Mazzanti F, Boronat J and Zillich R E 

2012 Phys. Rev. Lett. 109 235307
 [75] Macia A, Boronat J and Mazzanti F 2014 Phys. Rev. A 

90 061601
 [76] Lu Z-K, Li Y, Petrov D S and Shlyapnikov G V 2015 Phys. 

Rev. Lett. 115 075303
 [77] Wu Z, Block J K and Bruun G M 2016 Sci. Rep. 6 19038
 [78] Santos L, Shlyapnikov G V, Zoller P and Lewenstein M 2000 

Phys. Rev. Lett. 85 1791
 [79] Yi S and You L 2001 Phys. Rev. A 63 053607
 [80] Yi S and You L 2002 Phys. Rev. A 66 013607
 [81] Góral K, Rzażewski K and Pfau T 2000 Phys. Rev. A 

61 051601(R)
 [82] Yi S and You L 2000 Phys. Rev. A 61 041604R
 [83] Marinescu M and You L 1998 Phys. Rev. Lett. 81 4596
 [84] Ospelkaus S et al 2009 Faraday Discuss. 142 351
 [85] Molony P K et al 2014 Phys. Rev. Lett. 113 255301
 [86] Feshbach H 1958 Ann. Phys. 5 357
  Feshbach H 1962 Ann. Phys. 19 287

J. Phys.: Condens. Matter 29 (2017) 103004

https://doi.org/10.1088/0370-1328/80/1/322
https://doi.org/10.1088/0370-1328/80/1/322
https://doi.org/10.1017/S0022112067001697
https://doi.org/10.1017/S0022112067001697
https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/10.1103/PhysRevA.77.061601
https://doi.org/10.1103/PhysRevA.77.061601
https://doi.org/10.1103/PhysRevLett.106.015301
https://doi.org/10.1103/PhysRevLett.106.015301
https://doi.org/10.1103/PhysRevLett.107.190401
https://doi.org/10.1103/PhysRevLett.107.190401
https://doi.org/10.1038/nature16485
https://doi.org/10.1038/nature16485
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1038/nature06036
https://doi.org/10.1038/nature06036
https://doi.org/10.1103/PhysRevLett.101.080401
https://doi.org/10.1103/PhysRevLett.101.080401
https://doi.org/10.1038/nphys887
https://doi.org/10.1038/nphys887
https://doi.org/10.1103/physrevlett.116.215301
https://doi.org/10.1103/physrevlett.116.215301
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1103/PhysRevX.6.041039
https://doi.org/10.1038/nature20126
https://doi.org/10.1038/nature20126
https://doi.org/10.1126/science.1163861
https://doi.org/10.1126/science.1163861
https://doi.org/10.1103/PhysRevLett.108.215301
https://doi.org/10.1103/PhysRevLett.108.215301
https://doi.org/10.1103/PhysRevLett.112.010404
https://doi.org/10.1103/PhysRevLett.112.010404
https://doi.org/10.1103/PhysRevA.60.2324
https://doi.org/10.1103/PhysRevA.60.2324
https://doi.org/10.1103/PhysRevA.66.013606
https://doi.org/10.1103/PhysRevA.66.013606
https://doi.org/10.1088/1367-2630/6/1/198
https://doi.org/10.1088/1367-2630/6/1/198
https://doi.org/10.1103/PhysRevLett.92.250403
https://doi.org/10.1103/PhysRevLett.92.250403
https://doi.org/10.1103/PhysRevLett.101.245301
https://doi.org/10.1103/PhysRevLett.101.245301
https://doi.org/10.1103/PhysRevLett.103.155302
https://doi.org/10.1103/PhysRevLett.103.155302
https://doi.org/10.1088/1367-2630/11/10/103003
https://doi.org/10.1088/1367-2630/11/10/103003
https://doi.org/10.1103/PhysRevA.81.063642
https://doi.org/10.1103/PhysRevA.81.063642
https://doi.org/10.1103/PhysRevA.84.013603
https://doi.org/10.1103/PhysRevA.84.013603
https://doi.org/10.1238/Physica.Topical.102a00074
https://doi.org/10.1238/Physica.Topical.102a00074
https://doi.org/10.1016/j.physrep.2008.04.007
https://doi.org/10.1016/j.physrep.2008.04.007
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1088/0034-4885/72/12/126401
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1088/1367-2630/11/5/055049
https://doi.org/10.1021/cr2003568
https://doi.org/10.1021/cr2003568
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1103/PhysRevLett.84.806
https://doi.org/10.1126/science.1191224
https://doi.org/10.1126/science.1191224
https://doi.org/10.1103/PhysRevLett.104.160401
https://doi.org/10.1103/PhysRevLett.104.160401
https://doi.org/10.1103/PhysRevA.92.033613
https://doi.org/10.1103/PhysRevA.92.033613
https://doi.org/10.1103/PhysRevLett.86.2926
https://doi.org/10.1103/PhysRevLett.86.2926
https://doi.org/10.1103/PhysRevLett.88.010405
https://doi.org/10.1103/PhysRevLett.88.010405
https://doi.org/10.1126/science.1060182
https://doi.org/10.1126/science.1060182
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevLett.103.045301
https://doi.org/10.1103/PhysRevLett.111.235301
https://doi.org/10.1103/PhysRevLett.111.235301
https://doi.org/10.1103/PhysRevA.90.063627
https://doi.org/10.1103/PhysRevA.90.063627
https://doi.org/10.1088/1367-2630/15/11/113028
https://doi.org/10.1088/1367-2630/15/11/113028
https://doi.org/10.1103/PhysRevLett.113.065302
https://doi.org/10.1103/PhysRevLett.113.065302
https://doi.org/10.1088/0953-8984/13/12/201
https://doi.org/10.1088/0953-8984/13/12/201
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1103/RevModPhys.81.647
https://doi.org/10.1007/s10909-010-0202-7
https://doi.org/10.1007/s10909-010-0202-7
https://doi.org/10.1103/PhysRevA.92.061603
https://doi.org/10.1103/PhysRevA.92.061603
https://doi.org/10.1063/1.1698285
https://doi.org/10.1063/1.1698285
https://doi.org/10.1016/0001-8686(89)80006-5
https://doi.org/10.1016/0001-8686(89)80006-5
https://doi.org/10.1126/science.258.5083.761
https://doi.org/10.1126/science.258.5083.761
https://doi.org/10.1051/jp2:1992139
https://doi.org/10.1051/jp2:1992139
https://doi.org/10.1103/PhysRevLett.65.2820
https://doi.org/10.1103/PhysRevLett.65.2820
https://doi.org/10.1103/PhysRevE.48.R673
https://doi.org/10.1103/PhysRevE.48.R673
https://doi.org/10.1103/PhysRev.100.1060
https://doi.org/10.1103/PhysRev.100.1060
https://doi.org/10.1063/1.466518
https://doi.org/10.1063/1.466518
https://doi.org/10.1103/PhysRevLett.84.115
https://doi.org/10.1103/PhysRevLett.84.115
https://doi.org/10.1088/0953-8984/12/33/201
https://doi.org/10.1088/0953-8984/12/33/201
https://doi.org/10.1088/0953-8984/17/15/R02
https://doi.org/10.1088/0953-8984/17/15/R02
https://doi.org/10.1016/j.cocis.2005.07.005
https://doi.org/10.1016/j.cocis.2005.07.005
https://doi.org/10.1103/PhysRevA.90.053601
https://doi.org/10.1103/PhysRevA.90.053601
https://doi.org/10.1103/PhysRevLett.98.060404
https://doi.org/10.1103/PhysRevLett.98.060404
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1103/PhysRevLett.104.195302
https://doi.org/10.1103/PhysRevLett.98.060405
https://doi.org/10.1103/PhysRevLett.98.060405
https://doi.org/10.1103/PhysRevLett.105.135301
https://doi.org/10.1103/PhysRevLett.105.135301
https://doi.org/10.1103/PhysRevLett.109.235307
https://doi.org/10.1103/PhysRevLett.109.235307
https://doi.org/10.1103/PhysRevA.90.061601
https://doi.org/10.1103/PhysRevA.90.061601
https://doi.org/10.1103/PhysRevLett.115.075303
https://doi.org/10.1103/PhysRevLett.115.075303
https://doi.org/10.1038/srep19038
https://doi.org/10.1038/srep19038
https://doi.org/10.1103/PhysRevLett.85.1791
https://doi.org/10.1103/PhysRevLett.85.1791
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1103/PhysRevA.66.013607
https://doi.org/10.1103/PhysRevA.66.013607
https://doi.org/10.1103/PhysRevA.61.051601
https://doi.org/10.1103/PhysRevA.61.051601
https://doi.org/10.1103/PhysRevA.61.041604
https://doi.org/10.1103/PhysRevA.61.041604
https://doi.org/10.1103/PhysRevLett.81.4596
https://doi.org/10.1103/PhysRevLett.81.4596
https://doi.org/10.1039/b821298h
https://doi.org/10.1039/b821298h
https://doi.org/10.1103/PhysRevLett.113.255301
https://doi.org/10.1103/PhysRevLett.113.255301
https://doi.org/10.1016/0003-4916(58)90007-1
https://doi.org/10.1016/0003-4916(58)90007-1
https://doi.org/10.1016/0003-4916(62)90221-X
https://doi.org/10.1016/0003-4916(62)90221-X


Topical Review

34

 [87] Werner J et al 2005 Phys. Rev. Lett. 94 183201
 [88] Griesmaier A et al 2006 Phys. Rev. Lett. 97 250402
 [89] Tang Y et al 2015 Phys. Rev. A 92 022703
 [90] Giovanazzi S, Gorlitz A and Pfau T 2002 Phys. Rev. Lett. 

89 130401
 [91] O’Dell D H J, Giovanazzi S and Eberlein C 2004 Phys. Rev. 

Lett. 92 250401
 [92] Eberlein C, Giovanazzi S and O’Dell D H J 2005 Phys. Rev. 

A 71 033618
 [93] Ferrers N M 1877 Quart. J. Pure Appl. Math 14 1
 [94] Dyson F W 1891 Quart. J. Pure Appl. Math 25 259
 [95] Routh E J 1892 A Treatise in Analytical Statics vol II 

(Cambridge: Cambridge University Press)
 [96] Levin M L and Muratov R Z 1971 Astrophys. J. 166 441
 [97] Bao W, Cai Y and Wang H 2010 J. Comput. Phys. 229 7874
 [98] Jiang S, Greengard L and Bao W 2014 SIAM J. Sci. Comput. 

36 B777
 [99] Kishor Kumar R et al 2015 Comput. Phys. Commun. 195 117
 [100] Bao W, Tang Q and Zhang Y 2016 Commun. Comput. Phys. 

19 1141
 [101] Lončar V et al 2016 Comp. Phys. Commun. 200 406
 [102] Ronen S and Bohn J L 2007 Phys. Rev. A 76 043607
 [103] Blakie P B et al 2009 Phys. Rev. E 80 016703
 [104] Bisset R N, Baillie D and Blakie P B 2012 Phys. Rev. A 

86 033609
 [105] Lima A R P and Pelster A 2012 Phys. Rev. A 86 063609
 [106] Stringari S 1996 Phys. Rev. Lett. 77 2360
 [107] Nozieres P and Pines D 1999 Theory Of Quantum Liquids 

(New York: Westview)
 [108] Pethick C J and Smith H 2002 Bose–Einstein Condensation 

in Dilute Gases (Cambridge: Cambridge University Press)
 [109] Pitaevskii L and Stringari S 2003 Bose–Einstein 

Condensation (Oxford: Oxford University Press)
 [110] Barenghi C F and Parker N G 2016 A Primer on Quantum 

Fluids (Berlin: Springer)
 [111] O’Dell D H J, Giovanazzi S and Kurizki G 2003 Phys. Rev. 

Lett. 90 110402
 [112] Santos L, Shlyapnikov G V and Lewenstein M 2003 Phys. 

Rev. Lett. 90 250403
 [113] Giovanazzi S and O’Dell D H J 2004 Eur. Phys. J. D 31 439
 [114] Parker N G and O’Dell D H J 2008 Phys. Rev. A 78 041601R
 [115] Parker N G, Ticknor C, Martin A M and O’Dell D H J 2009 

Phys. Rev. A 79 013617
 [116] Ticknor C et al 2008 Phys. Rev. A 78 061607R
 [117] van Bijnen R M W et al 2010 Phys. Rev. A 82 033612
 [118] Donnelly R J 1991 Quantized Vortices in Helium II 

(Cambridge: Cambridge University Press)
 [119] Ronen S, Bortolotti D C E and Bohn J L 2007 Phys. Rev. 

Lett. 98 030406
 [120] Wilson R M, Ronen S and Bohn J L 2009 Phys. Rev. A 

79 013621
 [121] Dutta O and Meystre P 2007 Phys. Rev. A 75 053604
 [122] Wilson R M, Ronen S, Bohn J L and Pu H 2008 Phys. Rev. 

Lett. 100 245302
 [123] Abad M, Guilleumas M, Mayol R, Pi M and Jezek D M 2009 

Phys. Rev. A 79 063622
 [124] Jona-Lasinio M, Lakomy K and Santos L 2013 Phys. Rev. A 

88 013619
 [125] Lu H-Y et al 2010 Phys. Rev. A 82 023622
 [126] Gaunt A L et al 2013 Phys. Rev. Lett. 110 200406
 [127] Chomaz L et al 2015 Nat. Commun. 6 6162
 [128] Bohn J L, Wilson R M and Ronen S 2009 Laser Phys. 19 547
 [129] Mulkerin B C, O’Dell D H J, Martin A M and Parker N G 

2014 J. Phys.: Conf. Ser. 497 012025
 [130] Ticknor C, Wilson R M and Bohn J L 2011 Phys. Rev. Lett. 

106 065301
 [131] Cai Y, Rosenkranz M, Lei Z and Bao W 2010 Phys. Rev. A 

82 043623
 [132] Fischer U R 2006 Phys. Rev. A 73 031602

 [133] Baillie D and Blakie P B 2015 New J. Phys. 17 033028
 [134] Mulkerin B C, van Bijnen R M W, Martin A M and 

Parker N G 2013 Phys. Rev. Lett. 111 170402
 [135] Klawunn M and Santos L 2009 Phys. Rev. A 80 013611
 [136] Ginzburg V L and Pitaevskii L P 1958 Zh. Eksp. Teor. Fiz. 

34 1240
  Ginzburg V L and Pitaevskii L P 1958 Sov. Phys.—JETP 

7 858
 [137] Jackson B, Proukakis N P, Barenghi C F and Zaremba E 

2009 Phys. Rev. A 79 053615
 [138] Rooney S J, Bradley A S and Blakie P B 2010 Phys. Rev. A 

81 023630
 [139] Allen A J, Zaremba E, Barenghi C F and Proukakis N P 2013 

Phys. Rev. A 87 013630
 [140] Gautam S, Roy A and Mukerjee S 2014 Phys. Rev. A 

89 013612
 [141] Parker N G, Proukakis N P, Barenghi C F and Adams C S 

2004 Phys. Rev. Lett. 92 160403
 [142] Raman C, Abo-Shaeer J R, Vogels J M, Xu K and Ketterle W 

2001 Phys. Rev. Lett. 87 210402
 [143] Powis A T, Sammut S J and Simula T P 2014 Phys. Rev. Lett. 

113 165303
 [144] Yi S and Pu H 2006 Phys. Rev. A 73 061602(R)
 [145] Dalfovo F 1992 Phys. Rev. B 46 5482
 [146] Ortiz G and Ceperley D M 1995 Phys. Rev. Lett. 75 4642
 [147] Sadd M, Chester G V and Reatto L 1997 Phys. Rev. Lett. 

79 2490
 [148] Berloff N G and Roberts P H 1999 J. Phys. A: Math. Gen. 

32 5611
 [149] Bland T et al 2015 Phys. Rev. A 92 063601
 [150] Edmonds M J, Bland T, O’Dell D H J and Parker N G 2016 

Phys. Rev. A 93 063617
 [151] Yuce C and Oztas Z 2010 J. Phys. B: At. Mol. Opt. Phys. 

43 135301
 [152] Yuce C 2011 Eur. Phys. J. D 61 695
 [153] Gautum S 2014 J. Phys. B 47 165301
 [154] Klawunn M, Nath R, Pedri P and Santos L 2008 Phys. Rev. 

Lett. 100 240403
 [155] Svidzinsky A A and Fetter A L 2000 Phys. Rev. A 62 063617
 [156] Koens L and Martin A M 2012 Phys. Rev. A 86 013605
 [157] Klawunn M and Santos L 2009 New J. Phys. 11 055012
 [158] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404
 [159] Nath R, Pedri P and Santos L 2007 Phys. Rev. A 76 013606
 [160] Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev. A 

78 043614
 [161] O’Dell D H J and Eberlein C 2007 Phys. Rev. A 75 013604
 [162] Abad M et al 2010 Laser Phys. 20 1190
 [163] Lundh E, Pethick C J and Smith H 1997 Phys. Rev. A 

55 2126
 [164] Wu H and Sprung D W L 1994 Phys. Rev. A 49 4305
 [165] van Bijnen R M W, O’Dell D H J, Parker N G and 

Martin A M 2007 Phys. Rev. Lett. 98 150401
 [166] Martin A M et al 2008 Las. Phys. 18 322
 [167] van Bijnen R M W et al 2009 Phys. Rev. A 80 033617
 [168] Leanhardt A E et al 2002 Phys. Rev. Lett. 89 190403
 [169] Kibble T W B 1976 J. Phys. A: Math. Gen. 9 1387
 [170] Zurek W H 1993 Nature 317 505
 [171] Weiler C N et al 2008 Nature 455 948
 [172] Glaum K, Pelster A, Kleinert H and Pfau T 2007 Phys. Rev. 

Lett. 98 080407
 [173] Scott R G et al 2003 Phys. Rev. Lett. 90 110404
 [174] Scott R G et al 2004 Phys. Rev. A 69 033605
 [175] Proukakis N P, Parker N G, Frantzeskakis D J and Adams C S 

2004 J. Opt. B: Quantum Semiclass. Opt. 6 S380
 [176] Nath R, Pedri P and Santos L 2008 Phys. Rev. Lett. 

101 210402
 [177] Lin Y-J et al 2009 Nature 462 628
 [178] Berry M V 1984 Proc. R. Soc. Lond. A 392 45
 [179] Taylor L B et al 2011 Phys. Rev. A 84 021604(R)

J. Phys.: Condens. Matter 29 (2017) 103004

https://doi.org/10.1103/PhysRevLett.94.183201
https://doi.org/10.1103/PhysRevLett.94.183201
https://doi.org/10.1103/PhysRevLett.97.250402
https://doi.org/10.1103/PhysRevLett.97.250402
https://doi.org/10.1103/PhysRevA.92.022703
https://doi.org/10.1103/PhysRevA.92.022703
https://doi.org/10.1103/PhysRevLett.89.130401
https://doi.org/10.1103/PhysRevLett.89.130401
https://doi.org/10.1103/PhysRevLett.92.250401
https://doi.org/10.1103/PhysRevLett.92.250401
https://doi.org/10.1103/PhysRevA.71.033618
https://doi.org/10.1103/PhysRevA.71.033618
https://doi.org/10.1086/150972
https://doi.org/10.1086/150972
https://doi.org/10.1016/j.jcp.2010.07.001
https://doi.org/10.1016/j.jcp.2010.07.001
https://doi.org/10.1137/130945582
https://doi.org/10.1137/130945582
https://doi.org/10.1016/j.cpc.2015.03.024
https://doi.org/10.1016/j.cpc.2015.03.024
https://doi.org/10.4208/cicp.scpde14.37s
https://doi.org/10.4208/cicp.scpde14.37s
https://doi.org/10.1016/j.cpc.2015.11.014
https://doi.org/10.1016/j.cpc.2015.11.014
https://doi.org/10.1103/PhysRevA.76.043607
https://doi.org/10.1103/PhysRevA.76.043607
https://doi.org/10.1103/PhysRevE.80.016703
https://doi.org/10.1103/PhysRevE.80.016703
https://doi.org/10.1103/PhysRevA.86.033609
https://doi.org/10.1103/PhysRevA.86.033609
https://doi.org/10.1103/PhysRevA.86.063609
https://doi.org/10.1103/PhysRevA.86.063609
https://doi.org/10.1103/PhysRevLett.77.2360
https://doi.org/10.1103/PhysRevLett.77.2360
https://doi.org/10.1103/PhysRevLett.90.110402
https://doi.org/10.1103/PhysRevLett.90.110402
https://doi.org/10.1103/PhysRevLett.90.250403
https://doi.org/10.1103/PhysRevLett.90.250403
https://doi.org/10.1140/epjd/e2004-00146-7
https://doi.org/10.1140/epjd/e2004-00146-7
https://doi.org/10.1103/PhysRevA.78.041601
https://doi.org/10.1103/PhysRevA.78.041601
https://doi.org/10.1103/PhysRevA.79.013617
https://doi.org/10.1103/PhysRevA.79.013617
https://doi.org/10.1103/PhysRevA.78.061607
https://doi.org/10.1103/PhysRevA.78.061607
https://doi.org/10.1103/PhysRevA.82.033612
https://doi.org/10.1103/PhysRevA.82.033612
https://doi.org/10.1103/PhysRevLett.98.030406
https://doi.org/10.1103/PhysRevLett.98.030406
https://doi.org/10.1103/PhysRevA.79.013621
https://doi.org/10.1103/PhysRevA.79.013621
https://doi.org/10.1103/PhysRevA.75.053604
https://doi.org/10.1103/PhysRevA.75.053604
https://doi.org/10.1103/PhysRevLett.100.245302
https://doi.org/10.1103/PhysRevLett.100.245302
https://doi.org/10.1103/PhysRevA.79.063622
https://doi.org/10.1103/PhysRevA.79.063622
https://doi.org/10.1103/PhysRevA.88.013619
https://doi.org/10.1103/PhysRevA.88.013619
https://doi.org/10.1103/PhysRevA.82.023622
https://doi.org/10.1103/PhysRevA.82.023622
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1103/PhysRevLett.110.200406
https://doi.org/10.1038/ncomms7162
https://doi.org/10.1038/ncomms7162
https://doi.org/10.1134/S1054660X09040021
https://doi.org/10.1134/S1054660X09040021
https://doi.org/10.1088/1742-6596/497/1/012025
https://doi.org/10.1088/1742-6596/497/1/012025
https://doi.org/10.1103/PhysRevLett.106.065301
https://doi.org/10.1103/PhysRevLett.106.065301
https://doi.org/10.1103/PhysRevA.82.043623
https://doi.org/10.1103/PhysRevA.82.043623
https://doi.org/10.1103/PhysRevA.73.031602
https://doi.org/10.1103/PhysRevA.73.031602
https://doi.org/10.1088/1367-2630/17/3/033028
https://doi.org/10.1088/1367-2630/17/3/033028
https://doi.org/10.1103/PhysRevLett.111.170402
https://doi.org/10.1103/PhysRevLett.111.170402
https://doi.org/10.1103/PhysRevA.80.013611
https://doi.org/10.1103/PhysRevA.80.013611
https://doi.org/10.1103/PhysRevA.79.053615
https://doi.org/10.1103/PhysRevA.79.053615
https://doi.org/10.1103/PhysRevA.81.023630
https://doi.org/10.1103/PhysRevA.81.023630
https://doi.org/10.1103/PhysRevA.87.013630
https://doi.org/10.1103/PhysRevA.87.013630
https://doi.org/10.1103/PhysRevA.89.013612
https://doi.org/10.1103/PhysRevA.89.013612
https://doi.org/10.1103/PhysRevLett.92.160403
https://doi.org/10.1103/PhysRevLett.92.160403
https://doi.org/10.1103/PhysRevLett.87.210402
https://doi.org/10.1103/PhysRevLett.87.210402
https://doi.org/10.1103/PhysRevLett.113.165303
https://doi.org/10.1103/PhysRevLett.113.165303
https://doi.org/10.1103/PhysRevA.73.061602
https://doi.org/10.1103/PhysRevA.73.061602
https://doi.org/10.1103/PhysRevB.46.5482
https://doi.org/10.1103/PhysRevB.46.5482
https://doi.org/10.1103/PhysRevLett.75.4642
https://doi.org/10.1103/PhysRevLett.75.4642
https://doi.org/10.1103/PhysRevLett.79.2490
https://doi.org/10.1103/PhysRevLett.79.2490
https://doi.org/10.1088/0305-4470/32/30/308
https://doi.org/10.1088/0305-4470/32/30/308
https://doi.org/10.1103/PhysRevA.92.063601
https://doi.org/10.1103/PhysRevA.92.063601
https://doi.org/10.1103/PhysRevA.93.063617
https://doi.org/10.1103/PhysRevA.93.063617
https://doi.org/10.1088/0953-4075/43/13/135301
https://doi.org/10.1088/0953-4075/43/13/135301
https://doi.org/10.1140/epjd/e2010-10593-0
https://doi.org/10.1140/epjd/e2010-10593-0
https://doi.org/10.1088/0953-4075/47/16/165301
https://doi.org/10.1088/0953-4075/47/16/165301
https://doi.org/10.1103/PhysRevLett.100.240403
https://doi.org/10.1103/PhysRevLett.100.240403
https://doi.org/10.1103/PhysRevA.62.063617
https://doi.org/10.1103/PhysRevA.62.063617
https://doi.org/10.1103/PhysRevA.86.013605
https://doi.org/10.1103/PhysRevA.86.013605
https://doi.org/10.1088/1367-2630/11/5/055012
https://doi.org/10.1088/1367-2630/11/5/055012
https://doi.org/10.1103/PhysRevLett.95.200404
https://doi.org/10.1103/PhysRevLett.95.200404
https://doi.org/10.1103/PhysRevA.76.013606
https://doi.org/10.1103/PhysRevA.76.013606
https://doi.org/10.1103/PhysRevA.78.043614
https://doi.org/10.1103/PhysRevA.78.043614
https://doi.org/10.1103/PhysRevA.75.013604
https://doi.org/10.1103/PhysRevA.75.013604
https://doi.org/10.1134/S1054660X1009001X
https://doi.org/10.1134/S1054660X1009001X
https://doi.org/10.1103/PhysRevA.55.2126
https://doi.org/10.1103/PhysRevA.55.2126
https://doi.org/10.1103/PhysRevA.49.4305
https://doi.org/10.1103/PhysRevA.49.4305
https://doi.org/10.1103/PhysRevLett.98.150401
https://doi.org/10.1103/PhysRevLett.98.150401
https://doi.org/10.1134/S1054660X08030225
https://doi.org/10.1134/S1054660X08030225
https://doi.org/10.1103/PhysRevA.80.033617
https://doi.org/10.1103/PhysRevA.80.033617
https://doi.org/10.1103/PhysRevLett.89.190403
https://doi.org/10.1103/PhysRevLett.89.190403
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1038/317505a0
https://doi.org/10.1038/317505a0
https://doi.org/10.1038/nature07334
https://doi.org/10.1038/nature07334
https://doi.org/10.1103/PhysRevLett.98.080407
https://doi.org/10.1103/PhysRevLett.98.080407
https://doi.org/10.1103/PhysRevLett.90.110404
https://doi.org/10.1103/PhysRevLett.90.110404
https://doi.org/10.1103/PhysRevA.69.033605
https://doi.org/10.1103/PhysRevA.69.033605
https://doi.org/10.1088/1464-4266/6/5/028
https://doi.org/10.1088/1464-4266/6/5/028
https://doi.org/10.1103/PhysRevLett.101.210402
https://doi.org/10.1103/PhysRevLett.101.210402
https://doi.org/10.1038/nature08609
https://doi.org/10.1038/nature08609
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevA.84.021604
https://doi.org/10.1103/PhysRevA.84.021604


Topical Review

35

 [180] Zhao Q and Gu Q 2015 Chin. Phys. B 25 016702
 [181] Recati A, Zambelli F and Stringari S 2001 Phys. Rev. Lett. 

86 377
 [182] Sinha S and Castin Y 2001 Phys. Rev. Lett. 87 190402
 [183] Madison K W, Chevy F, Bretin V and Dalibard J 2001 Phys. 

Rev. Lett 86 4443
 [184] Lundh E, Martikainen J P and Suominen K A 2003 Phys. 

Rev. A 67 063604
 [185] Lobo C, Sinatra A and Castin Y 2004 Phys. Rev. Lett. 

92 020403
 [186] Parker N G, van Bijnen R M W and Martin A M 2006 Phys. 

Rev. A 73 061603R
 [187] Corro I, Parker N G and Martin A M 2007 J. Phys. B: At. 

Mol. Opt. Phys. 40 3615
 [188] Leggett A J 2006 Quantum Liquids: Bose-Condensation and 

Cooper Pairing in Condensed Matter Systems (Oxford: 
Oxford University Press)

 [189] Leggett A J 2001 Proc. of the 13th Physics Summer School: 
Bose–Einstein Condensation: from Atomic Physics to 
Quantum Fluids ed C M Savage and M P Das (Singapore: 
World Scientific)

 [190] Landau L D and Lifshitz E M 1982 Course of 
Theoretical Physics: Mechanics 3rd edn (Oxford: 
Butterworth-Heinemann)

 [191] Castin Y 2001 Coherent Matter Waves (Lecture Notes of 
Les Houches Summer School) ed R Kaiser et al (Berlin: 
Springer)

 [192] Rosenbusch P et al 2002 Phys. Rev. Lett. 88 250403
 [193] Pitaevskii L P 1984 Zh. Eksp. Teor. Fiz. 39 423
 [194] Parker N G and Adams C S 2005 Phys. Rev. Lett. 95 145301
 [195] Wilken N K, Gunn J M F and Smith R A 1998 Phys. Rev. 

Lett. 80 2265
 [196] Mottelson B 1999 Phys. Rev. Lett. 83 2695
 [197] Pethick C J and Pitaevskii L P 2000 Phys. Rev. A 62 033609
 [198] Kishor Kumar R and Muruganandam P 2012 J. Phys. B: At. 

Mol. Opt. Phys. 45 215301
 [199] Kishor Kumar R and Muruganandam P 2014 Eur. Phys. J. D 

68 289
 [200] Sapina I, Dahm T and Schopohl N 2010 Phys. Rev. A 

82 053620
 [201] Cooper N R, Rezayi E H and Simon S H 2005 Phys. Rev. 

Lett. 95 200402
 [202] Zhang J and Zhai H 2005 Phys. Rev. Lett. 95 200403
 [203] Cooper N R, Rezayi E H and Simon S H 2006 Solid State 

Commun. 140 61
 [204] Komineas S and Cooper N R 2007 Phys. Rev. A 75 023623
 [205] Malet F, Kristensen T, Reimann S M and Kavoulakis G M 

2011 Phys. Rev. A 83 033628
 [206] Kishor Kumar R et al 2016 J. Phys. B: At. Mol. Opt. Phys. 

49 155301
 [207] Butts D A and Rokhsar D S 1999 Nature 397 327
 [208] Mueller E J and Ho T-L 2002 Phys. Rev. Lett. 88 180403
 [209] Kasamatsu K, Tsubota M and Ueda M 2003 Phys. Rev. Lett. 

91 150406
 [210] Schweikhard V et al 2004 Phys. Rev. Lett. 92 040404
 [211] Shirley W E, Anderson B A, Clark C W and Wilson R M 

2014 Phys. Rev. Lett. 113 165301
 [212] Kasamatsu K and Tsubota M 2009 Phys. Rev. A 79 023606
 [213] Zhao Y, An J and Gong C D 2013 Phys. Rev. A 87 013605
 [214] Ghazanfari N, Keleş A, Oktel M Ö 2014 Phys. Rev. A 

89 025601
 [215] Zhang X-F et al 2016 Sci. Rep. 6 19380
 [216] Wang L-X et al 2016 Phys. Lett. A 380 435
 [217] Ryu C et al 2007 Phys. Rev. Lett. 99 260401
 [218] Ramanathan A et al 2011 Phys. Rev. Lett. 106 130401
 [219] Moulder S et al 2012 Phys. Rev. A 86 013629
 [220] Beattie S, Moulder S, Fletcher R J and Hadzibabic Z 2013 

Phys. Rev. Lett. 110 025301
 [221] Wright K C et al 2013 Phys. Rev. Lett. 110 025302

 [222] Wright K C et al 2013 Phys. Rev. A 88 063633
 [223] Ryu C, Blackburn P W, Blinova A A and Boshier M G 2013 

Phys. Rev. Lett. 111 205301
 [224] Jendrzejewski F et al 2014 Phys. Rev. Lett. 113 045305
 [225] Corman L et al 2014 Phys. Rev. Lett. 113 135302
 [226] Ryu C, Henderson K C and Boshier M G 2014 New J. Phys. 

16 013046
 [227] Eckel S et al 2014 Nature 506 200
 [228] Kasamatsu K, Tsubota M and Ueda M 2002 Phys. Rev. A 

66 053606
 [229] Benakli M et al 1999 Europhy. Lett. 46 275
 [230] Brand J and Reinhardt W P 2001 J. Phys. B: At. Mol. Opt. 

Phys. 34 L113
 [231] Das A, Sabbatini J and Zurek W H 2012 Sci. Rep. 2 352
 [232] Martikainen J-P et al 2001 Phys. Rev. A 64 063602
 [233] Modugno M, Tozzo C and Dalfovo F 2006 Phys. Rev. A 

74 061601
 [234] Yakimenko A I, Isaieva K O, Vilchinskii S I and Weyrauch M 

2013 Phys. Rev. A 88 051602
 [235] Li Y, Pang W and Malomed B A 2012 Phys. Rev. A 

86 023832
 [236] Mason P and Berloff N G 2009 Phys. Rev. A 79 043620
 [237] Piazza F, Collins L A and Smerzi A 2009 Phys. Rev. A 

80 021601
 [238] Piazza F, Collins L A and Smerzi A 2013 J. Phys. B: At. Mol. 

Opt. Phys. 46 095302
 [239] Abad M et al 2010 Phys. Rev. A 81 043619
 [240] Adhikari S K 2012 Phys. Rev. A 85 053631
 [241] Wood A A, McKellar B H J and Martin A M 2016 Phys. Rev. 

Lett. 116 250403
 [242] Zhang X-F et al 2015 Sci. Rep. 5 8684
 [243] Aharonov Y and Casher A 1984 Phys. Rev. Lett. 53 319
 [244] Anandan J 1982 Phys. Rev. Lett. 48 1660
 [245] Cimmino A et al 1989 Phys. Rev. Lett. 63 380
 [246] He X G and McKellar B H J 1993 Phys. Rev. A 47 3424
 [247] Wilkens M 1994 Phys. Rev. Lett. 72 5
 [248] Lepoutre S et al 2012 Phys. Rev. Lett. 109 120404
 [249] Wilken N K and Gunn J M F 2000 Phys. Rev. Lett. 84 6
 [250] Cooper N R, Wilken N K and Gunn J M F 2001 Phys. Rev. 

Lett. 87 120405
 [251] Viefers S 2008 J. Phys.: Condens. Matter 20 123202
 [252] Rezayi E H, Read N and Cooper N R 2005 Phys. Rev. Lett. 

95 160404
 [253] Hafezi M et al 2007 Phys. Rev. A 76 023613
 [254] Chung B and Jolicoeur Th 2008 Phys. Rev. A 77 043608
 [255] Graß T, Baranov M A and Lewenstein M 2011 Phys. Rev. A 

84 043605
 [256] Gurarie V and Radzihovsky L 2007 Ann. Phys. 222 2
 [257] Read N and Green D 2000 Phys. Rev. B 61 10267
 [258] Stern A 2008 Ann. Phys. 323 204
 [259] Baranov M A, Osterloh K and Lewenstein M 2005 Phys. Rev. 

Lett. 94 070404
 [260] Osterloh K, Barberán N and Lewenstein M 2007 Phys. Rev. 

Lett. 99 160403
 [261] Baranov M A, Fehrmann N and Lewenstein M 2008 Phys. 

Rev. Lett. 100 200402
 [262] Eriksson G, Cremon J C, Manninen M and Reimann S M 

2012 Phys. Rev. A 86 043607
 [263] Jheng S-D, Jiang T F and Cheng S-C 2013 Phys. Rev. A 

88 051601R
 [264] Ancilotto F 2015 Phys. Rev. A 92 061602R
 [265] Wigner E 1934 Phys. Rev. 46 1002
 [266] Hadzibabic H and Dalibard J 2011 Riv. Nuovo Cimento 

34 389
 [267] Bagnato V and Kleppner D 1991 Phys. Rev. A 44 7439
 [268] Berezinskii V L 1972 Sov. Phys.—JETP 34 610
 [269] Kosterlitz L M and Thouless D J 1973 J. Phys. C: Solid State 

Phys. 6 1181
 [270] Hadzibabic Z et al 2006 Nature 441 1118

J. Phys.: Condens. Matter 29 (2017) 103004

https://doi.org/10.1088/1674-1056/25/1/016702
https://doi.org/10.1088/1674-1056/25/1/016702
https://doi.org/10.1103/PhysRevLett.86.377
https://doi.org/10.1103/PhysRevLett.86.377
https://doi.org/10.1103/PhysRevLett.87.190402
https://doi.org/10.1103/PhysRevLett.87.190402
https://doi.org/10.1103/PhysRevLett.86.4443
https://doi.org/10.1103/PhysRevLett.86.4443
https://doi.org/10.1103/PhysRevA.67.063604
https://doi.org/10.1103/PhysRevA.67.063604
https://doi.org/10.1103/PhysRevLett.92.020403
https://doi.org/10.1103/PhysRevLett.92.020403
https://doi.org/10.1103/PhysRevA.73.061603
https://doi.org/10.1103/PhysRevA.73.061603
https://doi.org/10.1088/0953-4075/40/18/004
https://doi.org/10.1088/0953-4075/40/18/004
https://doi.org/10.1103/PhysRevLett.88.250403
https://doi.org/10.1103/PhysRevLett.88.250403
https://doi.org/10.1103/PhysRevLett.95.145301
https://doi.org/10.1103/PhysRevLett.95.145301
https://doi.org/10.1103/PhysRevLett.80.2265
https://doi.org/10.1103/PhysRevLett.80.2265
https://doi.org/10.1103/PhysRevLett.83.2695
https://doi.org/10.1103/PhysRevLett.83.2695
https://doi.org/10.1103/PhysRevA.62.033609
https://doi.org/10.1103/PhysRevA.62.033609
https://doi.org/10.1088/0953-4075/45/21/215301
https://doi.org/10.1088/0953-4075/45/21/215301
https://doi.org/10.1140/epjd/e2014-40787-1
https://doi.org/10.1140/epjd/e2014-40787-1
https://doi.org/10.1103/PhysRevA.82.053620
https://doi.org/10.1103/PhysRevA.82.053620
https://doi.org/10.1103/PhysRevLett.95.200402
https://doi.org/10.1103/PhysRevLett.95.200402
https://doi.org/10.1103/PhysRevLett.95.200403
https://doi.org/10.1103/PhysRevLett.95.200403
https://doi.org/10.1016/j.ssc.2006.05.046
https://doi.org/10.1016/j.ssc.2006.05.046
https://doi.org/10.1103/PhysRevA.75.023623
https://doi.org/10.1103/PhysRevA.75.023623
https://doi.org/10.1103/PhysRevA.83.033628
https://doi.org/10.1103/PhysRevA.83.033628
https://doi.org/10.1088/0953-4075/49/15/155301
https://doi.org/10.1088/0953-4075/49/15/155301
https://doi.org/10.1038/16865
https://doi.org/10.1038/16865
https://doi.org/10.1103/PhysRevLett.88.180403
https://doi.org/10.1103/PhysRevLett.88.180403
https://doi.org/10.1103/PhysRevLett.91.150406
https://doi.org/10.1103/PhysRevLett.91.150406
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevLett.92.040404
https://doi.org/10.1103/PhysRevLett.113.165301
https://doi.org/10.1103/PhysRevLett.113.165301
https://doi.org/10.1103/PhysRevA.79.023606
https://doi.org/10.1103/PhysRevA.79.023606
https://doi.org/10.1103/PhysRevA.87.013605
https://doi.org/10.1103/PhysRevA.87.013605
https://doi.org/10.1103/PhysRevA.89.025601
https://doi.org/10.1103/PhysRevA.89.025601
https://doi.org/10.1038/srep19380
https://doi.org/10.1038/srep19380
https://doi.org/10.1016/j.physleta.2015.11.017
https://doi.org/10.1016/j.physleta.2015.11.017
https://doi.org/10.1103/PhysRevLett.99.260401
https://doi.org/10.1103/PhysRevLett.99.260401
https://doi.org/10.1103/PhysRevLett.106.130401
https://doi.org/10.1103/PhysRevLett.106.130401
https://doi.org/10.1103/PhysRevA.86.013629
https://doi.org/10.1103/PhysRevA.86.013629
https://doi.org/10.1103/PhysRevLett.110.025301
https://doi.org/10.1103/PhysRevLett.110.025301
https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1103/PhysRevA.88.063633
https://doi.org/10.1103/PhysRevA.88.063633
https://doi.org/10.1103/PhysRevLett.111.205301
https://doi.org/10.1103/PhysRevLett.111.205301
https://doi.org/10.1103/PhysRevLett.113.045305
https://doi.org/10.1103/PhysRevLett.113.045305
https://doi.org/10.1103/PhysRevLett.113.135302
https://doi.org/10.1103/PhysRevLett.113.135302
https://doi.org/10.1088/1367-2630/16/1/013046
https://doi.org/10.1088/1367-2630/16/1/013046
https://doi.org/10.1038/nature12958
https://doi.org/10.1038/nature12958
https://doi.org/10.1103/PhysRevA.66.053606
https://doi.org/10.1103/PhysRevA.66.053606
https://doi.org/10.1209/epl/i1999-00256-8
https://doi.org/10.1209/epl/i1999-00256-8
https://doi.org/10.1088/0953-4075/34/4/105
https://doi.org/10.1088/0953-4075/34/4/105
https://doi.org/10.1038/srep00352
https://doi.org/10.1038/srep00352
https://doi.org/10.1103/PhysRevA.64.063602
https://doi.org/10.1103/PhysRevA.64.063602
https://doi.org/10.1103/PhysRevA.74.061601
https://doi.org/10.1103/PhysRevA.74.061601
https://doi.org/10.1103/PhysRevA.88.051602
https://doi.org/10.1103/PhysRevA.88.051602
https://doi.org/10.1103/PhysRevA.86.023832
https://doi.org/10.1103/PhysRevA.86.023832
https://doi.org/10.1103/PhysRevA.79.043620
https://doi.org/10.1103/PhysRevA.79.043620
https://doi.org/10.1103/PhysRevA.80.021601
https://doi.org/10.1103/PhysRevA.80.021601
https://doi.org/10.1088/0953-4075/46/9/095302
https://doi.org/10.1088/0953-4075/46/9/095302
https://doi.org/10.1103/PhysRevA.81.043619
https://doi.org/10.1103/PhysRevA.81.043619
https://doi.org/10.1103/PhysRevA.85.053631
https://doi.org/10.1103/PhysRevA.85.053631
https://doi.org/10.1103/PhysRevLett.116.250403
https://doi.org/10.1103/PhysRevLett.116.250403
https://doi.org/10.1038/srep08684
https://doi.org/10.1038/srep08684
https://doi.org/10.1103/PhysRevLett.53.319
https://doi.org/10.1103/PhysRevLett.53.319
https://doi.org/10.1103/PhysRevLett.48.1660
https://doi.org/10.1103/PhysRevLett.48.1660
https://doi.org/10.1103/PhysRevLett.63.380
https://doi.org/10.1103/PhysRevLett.63.380
https://doi.org/10.1103/PhysRevA.47.3424
https://doi.org/10.1103/PhysRevA.47.3424
https://doi.org/10.1103/PhysRevLett.72.5
https://doi.org/10.1103/PhysRevLett.72.5
https://doi.org/10.1103/PhysRevLett.109.120404
https://doi.org/10.1103/PhysRevLett.109.120404
https://doi.org/10.1103/PhysRevLett.84.6
https://doi.org/10.1103/PhysRevLett.84.6
https://doi.org/10.1103/PhysRevLett.87.120405
https://doi.org/10.1103/PhysRevLett.87.120405
https://doi.org/10.1088/0953-8984/20/12/123202
https://doi.org/10.1088/0953-8984/20/12/123202
https://doi.org/10.1103/PhysRevLett.95.160404
https://doi.org/10.1103/PhysRevLett.95.160404
https://doi.org/10.1103/PhysRevA.76.023613
https://doi.org/10.1103/PhysRevA.76.023613
https://doi.org/10.1103/PhysRevA.77.043608
https://doi.org/10.1103/PhysRevA.77.043608
https://doi.org/10.1103/PhysRevA.84.043605
https://doi.org/10.1103/PhysRevA.84.043605
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1016/j.aop.2007.10.008
https://doi.org/10.1016/j.aop.2007.10.008
https://doi.org/10.1103/PhysRevLett.94.070404
https://doi.org/10.1103/PhysRevLett.94.070404
https://doi.org/10.1103/PhysRevLett.99.160403
https://doi.org/10.1103/PhysRevLett.99.160403
https://doi.org/10.1103/PhysRevLett.100.200402
https://doi.org/10.1103/PhysRevLett.100.200402
https://doi.org/10.1103/PhysRevA.86.043607
https://doi.org/10.1103/PhysRevA.86.043607
https://doi.org/10.1103/PhysRevA.88.051601
https://doi.org/10.1103/PhysRevA.88.051601
https://doi.org/10.1103/PhysRevA.92.061602
https://doi.org/10.1103/PhysRevA.92.061602
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1103/PhysRev.46.1002
https://doi.org/10.1393/ncr/i2011-10066-3
https://doi.org/10.1393/ncr/i2011-10066-3
https://doi.org/10.1103/PhysRevA.44.7439
https://doi.org/10.1103/PhysRevA.44.7439
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1038/nature04851
https://doi.org/10.1038/nature04851


Topical Review

36

 [271] Tung S et al 2010 Phys. Rev. Lett. 105 230408
 [272] Clade P et al Phys. Rev. Lett. 102 170401
 [273] Filinov A et al 2010 Phys. Rev. Lett. 105 070401
 [274] Ticknor C 2012 Phys. Rev. A 85 033629
 [275] Vasiliev A Yu et al 2014 New J. Phys. 16 053011
 [276] Camp P J Dr 2015 University of Edinburgh, UK private 

communication
 [277] Gross E P 1957 Phys. Rev. 106 161
 [278] Andreev A F and Lifshitz I M 1969 Zh. Eksp. Theor. Fiz. 

56 2057
  Andreev A F and Lifshitz I M 1969 Sov. Phys.—JETP 

29 1107
 [279] Thouless D J 1969 Ann. Phys. 52 403
 [280] Leggett A J 1970 Phys. Rev. Lett. 25 1543
 [281] Chester G V 1970 Phys. Rev. A 2 256
 [282] Balibar S, Fefferman A D, Haziot A and Rojas X 2012  

J. Low Temp. Phys. 168 221
 [283] Nozières P 2006 J. Low Temp. Phys. 142 91
 [284] Nozières P 2009 J. Low Temp. Phys. 156 9
 [285] Kim E and Chan M H W 2004 Nature 427 225
  Kim E and Chan M H W 2004 Science 305 1941
 [286] Kim D Y and Chan M H W 2012 Phys. Rev. Lett. 109 155301
 [287] Góral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 

88 170406
 [288] Kovrizhin D L, Pai G V and Sinha S 2005 Europhys. Lett. 

72 162
 [289] Sengupta P et al 2005 Phys. Rev. Lett. 94 207202

 [290] Scarola V W and Das Sarma S 2005 Phys. Rev. Lett. 
95 033003

 [291] Scarola V W, Demler E and Das Sarma S 2006 Phys. Rev. A 
73 051601

 [292] Dalla Torre E G, Berg E and Altman E 2006 Phys. Rev. Lett. 
97 260401

 [293] Schmidt K P, Dorier J, Läuchli A M and Mila F 2008 Phys. 
Rev. Lett. 100 090401

 [294] Sen A, Dutt P, Damle K and Moessner R 2008 Phys. Rev. 
Lett. 100 147204

 [295] Trefzger C, Menotti C and Lewenstein M 2009 Phys. Rev. 
Lett. 103 035304

 [296] Pollet L, Picon J D, Büchler H P and Troyer M 2010 Phys. 
Rev. Lett. 104 125302

 [297] Dutta O et al 2015 Rep. Prog. Phys. 78 066001
 [298] Sachdeva R, Jori S and Ghosh S 2010 Phys. Rev. A 

82 063617
 [299] Sachdeva R and Ghosh S 2012 Phys. Rev. A 85 013624
 [300] Tielman O, Lazarides A and Morias Smith C 2011 Phys. Rev. 

A 83 013627
 [301] Sachdeva R and Ghosh S 2014 J. At. Mol. Condensate Nano 

Phys. 1 1
 [302] Onsager L 1949 Il Nuovo Cimento 6S2 279
 [303] Simula T, Davis M J and Helmerson K 2014 Phys. Rev. Lett. 

113 165302
 [304] Billam T P, Reeves M T, Anderson B P and Bradley A S 

2014 Phys. Rev. Lett. 112 145301

J. Phys.: Condens. Matter 29 (2017) 103004

https://doi.org/10.1103/PhysRevLett.105.230408
https://doi.org/10.1103/PhysRevLett.105.230408
https://doi.org/10.1103/PhysRevLett.102.170401
https://doi.org/10.1103/PhysRevLett.102.170401
https://doi.org/10.1103/PhysRevLett.105.070401
https://doi.org/10.1103/PhysRevLett.105.070401
https://doi.org/10.1103/PhysRevA.85.033629
https://doi.org/10.1103/PhysRevA.85.033629
https://doi.org/10.1088/1367-2630/16/5/053011
https://doi.org/10.1088/1367-2630/16/5/053011
https://doi.org/10.1103/PhysRev.106.161
https://doi.org/10.1103/PhysRev.106.161
https://doi.org/10.1016/0003-4916(69)90286-3
https://doi.org/10.1016/0003-4916(69)90286-3
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1103/PhysRevA.2.256
https://doi.org/10.1103/PhysRevA.2.256
https://doi.org/10.1007/s10909-012-0622-7
https://doi.org/10.1007/s10909-012-0622-7
https://doi.org/10.1007/s10909-005-9413-8
https://doi.org/10.1007/s10909-005-9413-8
https://doi.org/10.1007/s10909-009-9889-8
https://doi.org/10.1007/s10909-009-9889-8
https://doi.org/10.1038/nature02220
https://doi.org/10.1038/nature02220
https://doi.org/10.1126/science.1101501
https://doi.org/10.1126/science.1101501
https://doi.org/10.1103/PhysRevLett.109.155301
https://doi.org/10.1103/PhysRevLett.109.155301
https://doi.org/10.1103/PhysRevLett.88.170406
https://doi.org/10.1103/PhysRevLett.88.170406
https://doi.org/10.1209/epl/i2005-10231-y
https://doi.org/10.1209/epl/i2005-10231-y
https://doi.org/10.1103/PhysRevLett.94.207202
https://doi.org/10.1103/PhysRevLett.94.207202
https://doi.org/10.1103/PhysRevLett.95.033003
https://doi.org/10.1103/PhysRevLett.95.033003
https://doi.org/10.1103/PhysRevA.73.051601
https://doi.org/10.1103/PhysRevA.73.051601
https://doi.org/10.1103/PhysRevLett.97.260401
https://doi.org/10.1103/PhysRevLett.97.260401
https://doi.org/10.1103/PhysRevLett.100.090401
https://doi.org/10.1103/PhysRevLett.100.090401
https://doi.org/10.1103/PhysRevLett.100.147204
https://doi.org/10.1103/PhysRevLett.100.147204
https://doi.org/10.1103/PhysRevLett.103.035304
https://doi.org/10.1103/PhysRevLett.103.035304
https://doi.org/10.1103/PhysRevLett.104.125302
https://doi.org/10.1103/PhysRevLett.104.125302
https://doi.org/10.1088/0034-4885/78/6/066001
https://doi.org/10.1088/0034-4885/78/6/066001
https://doi.org/10.1103/PhysRevA.82.063617
https://doi.org/10.1103/PhysRevA.82.063617
https://doi.org/10.1103/PhysRevA.85.013624
https://doi.org/10.1103/PhysRevA.85.013624
https://doi.org/10.1103/PhysRevA.83.013627
https://doi.org/10.1103/PhysRevA.83.013627
https://doi.org/10.1007/BF02780991
https://doi.org/10.1007/BF02780991
https://doi.org/10.1103/PhysRevLett.113.165302
https://doi.org/10.1103/PhysRevLett.113.165302
https://doi.org/10.1103/PhysRevLett.112.145301
https://doi.org/10.1103/PhysRevLett.112.145301

