This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
ACCEPTED MANUSCRIPT The following article is Open access

Rare and exclusive few-body decays of the Higgs, Z, W bosons, and the top quark

and

Accepted Manuscript online 9 April 2024 © 2024 The Author(s). Published by IOP Publishing Ltd

What is an Accepted Manuscript?

DOI 10.1088/1361-6471/ad3c59

10.1088/1361-6471/ad3c59

Abstract

We perform an extensive survey of rare and exclusive few-body decays ---defined as those with branching fractions $\mathcal{B} \lesssim 10^{-5}$ and two or three final particles--- of the Higgs, Z, W bosons, and the top quark. Such rare decays can probe physics beyond the Standard Model (BSM), constitute a background for exotic decays into new BSM particles, and provide precise information on quantum chromodynamics factorization with small nonperturbative corrections. We tabulate the theoretical $\mathcal{B}$ values for almost 200 rare decay channels of the four heaviest elementary particles, indicating the current experimental limits in their observation. Among those, we have computed for the first time ultrarare Higgs boson decays into photons and/or neutrinos, H and Z radiative decays into leptonium states, radiative H and Z quark-flavour-changing decays, and semiexclusive top-quark decays into a quark plus a meson, while updating predictions for a few other rare H, Z, and top quark partial widths. The feasibility of measuring each of these unobserved decays is estimated for p-p collisions at the high-luminosity Large Hadron Collider (HL-LHC), and for $e^+e^-$ and p-p collisions at the future circular collider (FCC).

Export citation and abstract BibTeX RIS

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by/4.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

10.1088/1361-6471/ad3c59