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Abstract

In this work, we present the �rst spectroscopic measurements of conversion

electrons originating from the decay of metastable gaseous 83mKrwith the Karl-

sruhe Tritium Neutrino (KATRIN) experiment. The obtained results represent

one of the major commissioning milestones for the subsequent direct neutrino

mass measurement with KATRIN. The successful campaign demonstrates the

functionalities of the KATRIN beamline. Precise measurement of the narrowK-

32, L3-32, and N2,3-32 conversion electron lines allowed to verify the eV-scale

energy resolution of the KATRIN main spectrometer necessary for competitive

measurement of the absolute neutrino mass scale.

Keywords: neutrino mass, electrostatic spectrometer, calibration, conversion

electrons

(Some �gures may appear in colour only in the online journal)

1. Introduction

The results obtained in neutrino oscillation experiments have shown conclusively that neutri-

nos are massive particles [1–3]. As oscillations provide only information on the differences

of the mass eigenvalues squared (∆m2), the absolute neutrino mass scale has to be addressed

by other means. Complementary results related to the absolute neutrino mass scale are pro-

vided by cosmological observations [4, 5], neutrinoless double β-decay searches [6–8], and

direct measurements that utilize β-decays [9–12]. The direct measurements do not require any

assumptions of the neutrino nature or mass model, and rely solely on kinematic considera-

tions. As pointed out by Fermi in 1934 [13], a non-zero neutrino mass manifests itself as a

distortion near the endpoint region of the β-electron energy spectrum. While the experimental

energy resolution is not good enough to resolve individual neutrino mass states, the observ-

able extracted from the β-spectrum is the effective electron (anti)-neutrino mass squared. It

is an incoherent superposition of the mass eigenvalues, m2
β =

∑

i|Uei|2m2
i , where Uei are the

Pontecorvo–Maki–Nakagawa–Sakata mixing matrix elements [14].

A particularly suitable isotope for direct neutrino mass measurement is tritium due to

its low endpoint energy of about 18.6 keV and favorable decay properties (super-allowed

1/2+ → 1/2+ transition). As of today, only upper limits on mβ have been obtained; up

to recently the most stringent limits came from the tritium experiments in Mainz with

mβ < 2.3 eV/c2 (95% C.L.) [15] and Troitsk with mβ < 2.05 eV/c2 (95% C.L.) [16], respec-

tively. The KATRIN (KArlsruhe TRItium Neutrino) experiment is a next-generation tritium

β-decay experiment designed to search for mβ with a sensitivity of 0.2 eV/c2 (90% C.L.)

and a 5σ discovery potential of mβ = 0.35 eV/c2 [9]. It utilizes a highly luminous win-

dowless gaseous tritium source and an electrostatic spectrometer with high resolution and

large angular acceptance. The results reported in the present paper were used to ensure

the readiness of the �rst physics results of KATRIN that yielded a new upper limit of

mβ < 1.1 eV/c2 (90% C.L.) [17].

The metastable isotope 83mKr, with monoenergetic conversion electrons close to the tri-

tium β-endpoint energy and additional electrons up to 32 keV [18, 19], has served in the

past as a vital calibration and commissioning source for tritium-based direct neutrino-mass

measurements [20–22]. The isotope has a short half-life of 1.83 h and, as a noble gas with

no long-lived daughters, can be allowed to diffuse through the experimental apparatus with-

out the risk of long-term radioactive contamination. These characteristics give 83mKr broad
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utility as a calibration source in gaseous and liquid detectors. For example, 83mKr electrons

have been used for more than 25 years to calibrate time projection chambers and calorime-

ters in high-energy particle physics, operating in a variety of gas mixtures: Xe/CO2 [23, 24],

Ar/CH4 [25], Ar/CH4/CO2 and Ne/CO2 [26].
83mKr is also a widely used calibration source for

direct dark-matter searches using noble-gas detectors, which require excellent characterization

at low energies [27–31] and a robust understanding of the gas system [32].

The natural widths of the 83mKr electron lines are of eV scale, comparable to the resolu-

tion required for competitive direct neutrino-mass measurements. The project 8 experiment,

aiming to use cyclotron radiation emission spectroscopy on tritium β-decay [33], reported on
the �rst measurements of these lines in [34]. In this paper, we report on the results of gaseous
83mKr conversion electron measurements performed with the KATRIN β-beamline during the

pre-tritium commissioning phase. The measurements allowed us to assess the performance

of the practically complete KATRIN setup (see section 2 below) over a broad energy range

using the sharp lines of the 83mKr conversion electrons, characterized by different linewidths.

We have obtained high-resolution spectra of conversion electron lines at the energies of

17.8 keV, 30.5 keV and 32.1 keV, extracting line widths and positions by means of a maxi-

mum likelihood analysis. Earlier reports on the line widths [35, 36] used a condensed source

for the measurements which may be subject to a possible broadening of the lines due to sur-

face effects. According to [35], the 83mKr atoms were deposited at different distances from the

substrate and thus experienced different mirror charges leading effectively to a broadening.

The broadening was described in a generic way by convolving the electron line shape with a

Gaussian function whose width served as an additional unconstrained free parameter in the

analysis. In [37], generic uncertainty estimates of the recommended line widths are given

for different levels and regions of the atomic number Z. For Z = 36, the atomic number of
83mKr, ranges of 5%–10% for the K shell and 10%–30% for the L3 subshell, respectively, are

suggested. In this work the systematic uncertainties are treated comprehensively and

quantitatively for the �rst time.

2. The KATRIN experiment

TheKATRIN electron spectrometer operates as an integrating electrostatic �lter with magnetic

adiabatic collimation (MAC-E �lter) [21, 38]. During neutrino mass measurements, electrons

are delivered via β-decays of molecular tritium in the windowless gaseous tritium source

(WGTS) [39]. To prevent tritium from reaching theMAC-E �lter where it would cause elevated

background, differential (DPS) and cryogenic pumping sections (CPS), together forming the

electron transport section, are installed between theWGTS and the spectrometer [40, 41]. Elec-

tronswith suf�cient kinetic energy are transmitted through the pre- andmain spectrometers and

are eventually counted by a 148-segmentedSi PIN-diode—the focal plane detector (FPD) [42].

The MAC-E �lter spectroscopy technique was successfully applied at previous direct neutrino

mass experiments in Mainz [15] and Troitsk [16]. Gaseous tritium sources were used in the

Los Alamos National Laboratory experiment [20] and in Troitsk [16]. For a detailed overview

of the technical aspects of the KATRIN apparatus, the reader is referred to [40].

In the KATRIN experiment, 83Rb/83mKr source (in the following indicated as 83mKr source)

is applied in three forms: gaseous, condensed, and implanted. Their common attribute is the

continuous generation of 83mKr from electron capture decay of its parent radionuclide 83Rb,

which has a half-life of 86.2 d. The parent half-life ensures a continuous supply of the short-

lived 83mKr necessary for spectroscopy measurements with the MAC-E �lter. In all cases,

physical, chemical, or mechanical means are deployed to ensure that the 83Rb itself does not

leave its housing. For example, in the case of gaseous 83mKr source, the 83Rb is deposited in
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zeolite (molecular sieve) [43] and stored in a dedicated generator setup [44]. To prevent spread-

ing of eventual 83Rb-loaded zeolite debris, the setup features two sintered metal �lters with a

pore size of 0.5 µm. Thus, only 83mKr is released and any electron emitted after the 83Rb decay

does not in�uence the measurements of 83mKr conversion electrons. A description of the other

sources can be found in [40].

In this paper, we focus on the analysis of the measurements obtained with the gaseous 83mKr

source (GKrS). The basic principle of the GKrS is to introduce gaseous 83mKr into the WGTS.

Similar to tritium, it behaves as a spatially distributed isotropic source of electrons, which

allows for testing of the entire KATRIN setup in the same con�guration as that during the neu-

trino mass measurement. Even more importantly, as 83mKr and tritium can share the common

volume in the source beam tube, the GKrS will allow us to study space-charge effects in the

tritium plasma contributing to the source potential. Unaccounted potential variationswithin the

source would effectively smear out the tritium β-spectrum, leading to a systematic shift of the

observedm2
β [45]. The only difference to standard tritium operation is the higher WGTS beam

tube temperature of T = 100 K, instead of the default 30 K (achieved using a dual-phase bath

with argon instead of neon [40]). This change prevents the freeze-out of 83mKr on the beam-

tube walls. The use of 83mKr in a gaseous source for space charge investigationwas reported by

the Troitsk group [46]. In this 83mKr measurement a part of the KATRIN setup, the rear section

(RS) which is equipped with an electron gun and a gold-plated rear wall, was not available.

Instead, a stainless steel �ange terminated the beamline at the end of theWGTS. The measure-

ment was performed without an additional carrier gas inside the source section resulting in a

negligible column density compared to tritium operation. In contrast with the KATRIN �nal

design of the circulating 83mKr gas, the gas was left to propagate freely in the vacuum from the

generator into the beam tube and was pumped only by the cold inner surface of the CPS.

3. Measurements

The energy of the conversion electron—emitted from a particular subshell of the 83mKr atom

inside the WGTS—with respect to the beam tube vacuum level is [19]

E = Eγ + Eγ, rec − Ee, rec − Ee, bin, (1)

whereEγ is the energy of the corresponding gamma ray,Eγ,rec is the recoil energy after gamma-

ray emission, Ee,rec is the recoil energy after electron emission, and Ee,bin is the electron atomic

binding energy. To analyze the electron energy, the spectrometer is biased with respect to the

grounded source tube by a negative retarding voltage U thus creating an electrostatic barrier.

The electron passes the barrier when its energyE is equal to or larger than the spectrometer vac-

uum level. Denoting the source and spectrometerwork functions asΦsrc andΦspec, respectively,

the transmission condition is

E > qU − (Φsrc − Φspec), (2)

where q < 0 is the electron charge and qU is the retarding energy. Thus, the MAC-E �lter

measures an effective electron energy qU that appears to be shifted from the expected kinetic

energy E by the work-function difference Φsrc − Φspec.

TheMAC-E �lter has a �nite energy resolution∆E, which is de�ned for adiabatic transport

of electrons by

∆E =
Bmin

Bmax

γ + 1

2
E, (3)

5
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where Bmin is the minimal magnetic �eld at the center (the analyzing plane), Bmax is the max-

imal magnetic �eld at the exit of the spectrometer, and γ is the relativistic gamma-factor. The

magnetic �eld con�guration of Bmin = 2.7× 10−4 T and Bmax = 4.2 T was set up such that an

energy resolution of∆E = 1.17 eV atE = 17.8 keVwas obtained.With a sourcemagnetic �eld

of BS = 2.52 T, the maximum electron acceptance angle was θmax = arcsin
√

BS/Bmax ≈ 51◦

and the accepted forward solid angle fraction was∆Ω/2π ≈ 37%.

We havemeasured the zero-energy-losspeak of theK, L3, and the doubletN2, N3 conversion

electrons of the 32 keV transition, denoted as K-32, L3-32, and N2,3-32. The K-32 line has an

energy of 17.82 keV, which is about 750 eV below the tritium β-spectrum endpoint and can be

used for calibrating the spectrometers in tritium β-decay measurements. Its line width is about

2.7 eV [19]. The L3-32 line with an energy of 30.47 keV has a line width of about 1.2 eV and

a ∼ 1.5 times higher intensity. In the KATRIN experiment this line is foreseen to be used for

space charge investigations in theWGTS. The close doublet N2,3-32 has a lower intensity but a

natural width that is much smaller than the spectrometer resolution. There are no other strong

lines above its energy of 32.14 keV. This is an important feature for an integrating spectrometer

since the N2,3-32 doublet is superimposed on the intrinsic spectrometer background only. The

doublet is essential in studying the MAC-E �lter transmission function.

The 83mKr conversion electron integral energy spectra were obtained by changing theMAC-

E �lter retarding energy equidistantly in a region around the centroid of each line. The range

was about 27 eV for K-32 and 15 eV for L3-32 and N2,3-32. The step size setpoints of

0.5 eV, 0.25 eV and 0.2 eV, respectively, were chosen to re�ect the line width and the step

size reproducibility of 1 ppm standard deviation relative to the high-voltage value. The acqui-

sition time at each voltage point was uniform for a given line with the values of 60 s for K-32

and L3-32 and 150 s for N2,3-32. Thus, the scanning time of a single spectrum was negligi-

ble with respect to the decay constant of the parent 83Rb. For a given high-voltage setting, the

count rate was determined for each FPD pixel by summing all detected events in the region

−3 keV to 2 keV around the expected electron energy [40], the asymmetry of which accounts

for electron energy losses in the FPD dead layer. Integral spectra are obtained by plotting

the count rate against the retarding energy. A ∼50 Hz high-voltage ripple was present during

the measurements27. It is a near-sinusoidal signal with amplitudes of 187 mV at −18 kV and

208 mV at−30 kV [47]. The integrated rate of the measured lines over 137 operating detector

pixels that have observed the 83mKr electrons28 amounted to about 4.1 kcps (K-32), 6.7 kcps

(L3-32), and 0.16 kcps (N2,3-32), respectively. Detector dead time is negligible at these low

count rates [40]. The total amount of electrons recorded over the whole operating part of the

FPD amounted to about 2× 107, 1× 107, and 1× 106, respectively.

4. Analysis

4.1. Electron line shape

A Lorentzian function is used to describe the shape of the conversion electron differential

energy distribution:

L(E;A,E0,Γ) =
A

π

Γ/2

(E − E0)2 + Γ
2/4

. (4)

27The active regulation system to counteract the high-voltage ripple [40] was not in operation, but is foreseen to be

used in future measurements.
28Due to a small misalignment of the setup, some FPD pixels were shadowed and could not observe 83mKr electrons

[40].
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The parameters are the normalization factor A, the effective line position (centroid) E0, and the

line width (full width at half maximum) Γ. To account for thermal Doppler broadening at the

temperature T = 100 K, the Lorentzian is convolved with a Gaussian function (normalized to

one), yielding a Voigt function V. The Gaussian part is considered to have a centroid of zero

and a �xed width of σ =
√

EkT(γ + 1)me/mKr, where k is the Boltzmann constant, me the

electron mass, and mKr the atomic 83mKr mass. The width σ thus reads 46 meV, 60 meV and

62 meV for K-32, L3-32, and N2,3-32, respectively.

To describe theMAC-E �lter response to electrons, we consider the relativistic transmission

function

T(E, qU) =































0, E − qU < 0,

1−
√

1− E−qU
E

2
γ+1

BS
Bmin

1−
√

1− BS
Bmax

, 0 6 E − qU 6 ∆E,

1, E − qU > ∆E.

(5)

In the presence of the high-voltage (HV) ripple described above, each electron experiences a

different retarding potential according to the actual phase of the ripple signal. The variation

of the potential within the electron transport time is negligible. The observed events include

all possible phase values, leading effectively to a broadening of the transmission function.

This broadening is taken into account by convolving the transmission function with a digi-

tized oscilloscope waveform of the ripple taken during the measurements. Consequently, the

onset of the electron transmission is effectively shifted from qU to a lower value qUmin < qU.

Furthermore, the energy resolution is affected by synchrotron energy loss of the electrons on

their way towards the spectrometer. Using the particle-tracking simulation package Kassiopeia

[48], it was determined that the energy loss would lead to a degradation in energy resolution

of about 30 meV at 18 keV up to 40 meV at 30 keV. Altogether we obtain a more accurate

description of the transmission functionT′(E, qU) after making the aforementionedcorrections.

The conversion electron integral line shape is calculated as

I(qU;A,E0,Γ) =

∫

+∞

qUmin

V(E;A,E0,Γ) T
′(E, qU) dE. (6)

Each detector pixel observes a different minimal magnetic �eld Bmin,i and retarding potential

offset∆qUi in the analyzing plane due to residual �eld inhomogeneities there. These quantities

were obtained with Kassiopeia [48].

4.2. K-32 and L3-32 lines

In the maximum likelihood analysis, we have assumed for the K-32 and L3-32 lines that the

count rate r = N/t follows the normal distribution and estimated its statistical uncertainty as√
N/t, where N is the measured number of counts per voltage step and t is the acquisition

time. To account for the contributions of the higher-energy 83mKr lines and the intrinsic spec-

trometer background, a constant offset C was added to the integral shape in equation (6) such

that the �t model was M = I(qU;A,E0,Γ)+ C. For each pixel, we performed χ2(A,E0,Γ,C)

function minimization with the four variables as �t parameters. Examples of the integral spec-

trum from an operating inner pixel and the �t results for the K-32 and L3-32 lines are shown

in �gure 1. The constant C does not re�ect the combined full intensities of the higher-energy

lines as can be seen from the K-32 spectrum. The reason is that the higher-energy electrons

have high surplus energies with respect to the retarding energy of the spectrometer and are

7
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Figure 1. The integral spectra of an operating inner pixel and �t results of the (a) K-32
and (b) L3-32 lines. A negative shift corresponding to the potential offset in the analyzing
plane∆qUwas added to the retarding energy qU. The solid curve represents the integral
spectrummodel in equation (6) with the line shape parameters as obtained from themax-
imum likelihood analysis. The dashed curve is the corresponding differential Lorentzian
shape of the electron line, see equation (4). The lower plots show the residuals of the �t
normalized to the statistical uncertainty.

Table 1. The best-�t parameters of the conversion electron lines averaged over individual
pixels. The N2,3-32 spectrum was �tted using a doublet of δ-functions the positions of
which were constrained by the penalty term as described in the text. In this case, no line
width is given. The average correlation coef�cient of the N2,3-32 centroids amounts to
0.98.

Line Effective position E0 (eV) Width Γ (eV)

K-32 17824.576 ± 0.005stat ± 0.018syst 2.774 ± 0.011stat ± 0.005syst
L3-32 30472.604 ± 0.003stat ± 0.025syst 1.152 ± 0.007stat ± 0.013syst
N2-32 32137.098 ± 0.016stat ± 0.048syst —

N3-32 32137.758 ± 0.015stat ± 0.048syst —

transported through the spectrometer non-adiabatically. The non-adiabaticity leads to a loss of

count rate of the higher-energy lines and thus to a smaller value of the constant C compared

to a value that would be expected from the combined intensities. The �t model M describes

the observed spectrum without any residual structure. The minimum chi-square per degree of

freedom (dof)wasχ2
min/ dof =

47.28
50

= 0.95 andχ2
min/ dof =

52.15
57

= 0.92with the p-values of
0.58 and 0.66, respectively. The mean effective line position and line width from the results

of all pixels, weighted by the reciprocal of squared statistical uncertainties obtained from the

�t, are listed in table 1. The observed line positions are compared to the expected ones in

section 4.5.

4.3. N2,3-32 doublet lines

Since the 83mKr gas is very dilute, the vacancy left after electron emission from the outermost N

shell is expected to be long-lived.Therefore, the natural linewidth is expected to be very narrow

and can be approximated by a δ-function which is obtained in the limit Γ→ 0. Consequently,
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Figure 2. (a) The integral spectrum of an operating pixel and the �t results of the N2,3-32
doublet. The differential shape of both lines, for which zero natural width was assumed,
is expressed by a δ-function which is depicted here by an arrow. The arrow height corre-
sponds to the normalization factor obtained from the �t. (b) A comparison of the effective
and the expected line positions for the K-32, L3-32, and N3-32 lines and a straight line �t
to the data points assuming a �xed slope of one. The uncertainties shown in the residual
plot take into account contributions from both the expected and the effective line posi-
tions. The common offset due to the gamma-ray energy uncertainty and the difference
of work functions was left as a free parameter.

the observed line shape is dominated by the spectrometer resolution of ∆E = 2.13 eV at

32.1 keV, see equation (3), and the presence of the HV ripple. Thus, in this case, the �t model

was based on a doublet of δ-functions with M = I(qU;AII,EII
0 )+ I(qU;AIII,EIII

0 )+ C, where

the upper indices II and III refer to N2-32 and N3-32, respectively.

Due to the small number of counts at energies above the effective line position, namely

about 4.3 counts on average per pixel in all points in the background-only region com-

bined, we have assumed that the observed number of counts follows a Poisson distribution.

To break the degeneracy of the doublet parameters, a Gaussian penalty term was intro-

duced into the likelihood function to restrict the difference of the effective line positions

∆E0 = EIII
0 − EII

0 . This difference is well known from optical spectroscopy measurements

of electron binding energies to be ∆Ebest
0 ± σ(∆E0) = 0.670(14) eV [19]. The negative

log-likelihood function is

− ln L(AII,EII
0 ,A

III,EIII
0 ,C)+

1

2

(

∆E0 −∆Ebest
0

σ(∆E0)

)2

, (7)

where L is the likelihood of the parameters in the argument given the observed counts.

An example of the spectrum from an operating inner pixel and the �t result of the

doublet are shown in �gure 2(a). The �t residuals shown in the plot are de�ned as

res = sgn(N −Mt)
√

2 [N ln(N/Mt)− (N −Mt)] with the model number of counts Mt = Mt.

We have estimated the p-value of the �t by means of a Monte Carlo study: toy measurements

were generated from the best-�t model assuming Poisson distribution and corresponding neg-

ative log-likelihood function was minimized. From the results of 105 trials, the p-value was

determined to be 0.44. The excellent �t of the doublet supports the eV-scale resolution of the

main spectrometer. The effective line positions of the N2,3-32 doublet lines averaged over all

pixels are listed in table 1.
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4.4. Systematic effects

A signi�cant systematic effect to be considered is the readout uncertainty of the HV system at

the order of 0.7 ppm to 0.9 ppm in dependence on the line position [47]. Another contribution

comes from the uncertainty of the transmission function width that we have estimated to be

1% [49]. It is dominated by the uncertainties of the electric and magnetic �eld values in the

analyzing plane and, to a lesser degree, by the variations in the path length of the electrons

on their way through the source section, leading to different synchrotron energy losses. We

have also considered a conservative 20% uncertainty of the HV ripple [47] experienced by the

electrons at the analyzing plane. The WGTS temperature and magnetic �eld stability were

both one order of magnitude better than the design requirements [40] and are negligible. The

combined systematic uncertainty of the effective line position and width from the considered

contributions is listed in table 1. The differences between the measured line positions can

be used for a detailed cross-check of the high-voltage system calibration. The results of this

investigation are discussed in a separate paper [47].

4.5. Expected and observed line position

In order to relate the effective line position from table 1 to the one expected from equation (1),

the difference of the source and spectrometer work functions, which was not determined

beforehand, would have to be taken into account, see equation (2). In addition, the expected

line position is subject to a large systematic uncertainty of the 32-keV gamma-ray energy of

0.5 eV [19]. The work-function difference and inaccuracy due to the gamma-ray energy uncer-

tainty can contribute to a small constant shift between the expected and the effective line

position. Following the equations (1) and (2), this shift is the same for all lines of the 32 keV

transition when taking into account the line-dependent electron binding energies Ee,bin and

recoil energies Ee,rec. Therefore, the expected and observed line positions can be compared

while leaving the common offset free.

The expected line position is compared to the observed one in �gure 2(b). The statistical and

systematic uncertainties of the observed line positions from table 1 were added in quadrature.

The uncertainties of the expected line positions come from the uncertainties of the electron

binding energies which are at the order of a few tens of meV [19]. Assuming a linear function

with a �xed slope of one, the combined uncertainties showed in the residual plot of �gure 2(b)

were obtained by adding the observed and expected line position uncertainties in quadrature.

The plot demonstrates the linearity of the KATRIN energy scale and the consistency of the

N3-32 effective line position from the doublet analysis of the N2,3-32 region. The uncertainty

introduced due the common offset has no impact on the systematic uncertainty of the observed

line width.

5. Conclusion

In summary, we have obtained high-resolution integral spectra of the 83mKr conversion elec-

tron lines with the KATRIN main spectrometer. The spectra were analyzed by means of

maximum likelihood analysis taking into account the relevant systematic effects, such as

Doppler broadening, high-voltage ripple, synchrotron energy loss, and uncertainties of the

electric and magnetic �elds in the analyzing plane. The results demonstrate the integrity of the

KATRIN beamline, an as-designed large angular acceptance and high energy resolution of the

KATRIN main spectrometer, good energy linearity over a range of 14 keV and understanding

of the observed spectra and hence the KATRIN apparatus. In a futuremeasurement, a complete

KATRIN setup including also the gold-plated rear wall, 83mKr circulating in the WGTS and
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active regulation of the high-voltage system will be applied. The active regulation of the HV

system will further improve the KATRIN energy resolution.
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