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The slime mold Physarum polycephalum has long been used as a model system
for the study of motility, cell cycle, differentiation, and other cell biological
topics. However, due to progress in animal cell culture and molecular techniques,
research on P. polycephalum suffered from a dry spell in the  1990s. Driven by the
variety and scope of the slime mold’s complex behavior, it has regained
momentum in recent years. One of the first experiments featuring seemingly
‘intelligent’ behavior was performed by Toshiyuki Nakagaki and coworkers,
showing that P. polycephalum is able to find the shortest route through a maze
(Nakagaki 2000). A plethora of further studies have revealed that P. polycephalum
optimizes transport networks, makes decisions, anticipates periodic events, and
even exhibits habituation.

These traits can be subsumed into the notion of cellular intelligence and,
increasingly, cognition (Levin 2019). Capacities traditionally considered
exclusive to animals with nervous systems have been identified and are now being
actively studied in non-neural organisms, including plants, ciliates and bacteria.
The emerging field of basal cognition (soon to be the focus of a special issue) is
based on the hypothesis that functional analogues to many of the capacities
instantiated by nervous systems exist in all organisms, albeit not at the same level
of sophistication, which depends on the requirements for survival (Lyon 2019). In
addition, the non-metaphorical deployment of cognitive terminology—the
‘cognitive lens’—has recently been proposed for analysing information
processing in multicellular development and regeneration precisely because of the
presence of such capacities in single cells (Manicka and Levin 2019). In view of
these developments, P. polycephalum continues to contribute to sciences outside
of its traditional scope.

The papers presented in the present special issue give an account of the state of
the art in research on the numerous phenomena associated with cell motility and
signaling, network dynamics and oscillation, thereby laying the foundations for
the investigation of basal cognition in Physarum. Formulating sensorimotor
coupling within the framework of basal cognition connects the phenomena
studied conceptually to human level cognition. It has even been proposed that
cells already possess a (primitive) form of consciousness (Baluska and Reber
2019).

Several recent papers on Physarum, see Oettmeier (2017) for a historical
review, have triggered a surge of activity in numerous fields including physics,
cell biology, genetics, behavioral ecology, computer science, natural computation,
and cognition among others, as well as philosophy of science, and finally
philosophy of mind. In some areas, like molecular biology, research still needs to
catch up in order to begin to tackle the underlying mechanisms of the observed
complex behavior. For example, receptors on the organism’s surface, which are of
great relevance for the study of chemotaxis, still need to be identified.
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Figure 1. World map locating those Physarum research hot spots where contributing authors work.

Research on P. polycephalum is a prime example for a recent transition in
science:  a transformation is underway from the traditional distributed,
hierarchical scientific work methods to a new approach, which overcomes
boundaries between disciplines. In particular, physics has become increasingly
inter- and transdisciplinary. We have, for example, seen biological physics thrive
by identifying genuinely new physics of living matter in biology. Stochastic
thermodynamics is well on its way to provide a quantitative characterization of
learning based on a thermodynamically consistent description of neural networks
(Goldt 2017). More generally, complex systems and network theory have been
applied to identify and analyze common elements and patterns that can be
observed across diverse natural, technological and social complex systems.

This special issue is written by scientists from different disciplines working
together to arrive at new insights, to tackle problems from different sides, and to
apply the virtues of multiple disciplines to successfully enhance our knowledge of
the fascinating complex system that is P. polycephalum. Most of the fields listed
above, including physics, have so far described and analyzed P. polycephalum in a
coarse grained and abstract fashion. However, in order to gain a complete picture
and to unravel not only the detailed mechanisms of information processing and
cognition, but also behavior and network dynamics, contributions in this issue
discuss tasks achieved across all levels. The following section is meant as a
signpost to help navigate the multitude of articles, and to introduce five diverse
research categories: (i)  growth,  foraging and  decisions, (ii)  locomotion, (iii)
 oscillation and  mechanics, (iv)  methodology and (v)  genetics. See the world map
(figure 1) for the locations of all authors who contributed to this special issue.

1. History and state of the art

In total, 30 papers including this editorial were collected in our special issue,
which starts off with a review introducing P. polycephalum as a model system
(Oettmeier et al 2017). The other articles in this special issue can be attributed to
the five overarching topics which we will address now in turn. Growth,  foraging
and  decisions subsumes research on the overall shape and structure of the
macroplasmodial networks. Vogel et al (2016) showed how multiple plasmodia
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interact and forage, and how the resulting networks are optimized depending on
environmental conditions and initial growth pattern (isotropic or digitated). Akita
et al (2017) examined plasmodia, which moved out of a confined area through a
narrow exit, and found that they were able to form hydrodynamically optimized
vein networks to achieve this task. Remaining with optimization, Takamatsu et al
(2017) investigated the relationship between morphology and energy efficiency,
leading to the conclusion that a low-dimensional network in terms of fractal
dimension reduced energy consumption. The manifold morphology of plasmodial
networks  was also explored by Dirnberger and Mehlhorn (2017), who analyzed a
total of 1998 graphs to establish a broad collection of motifs. Bäuerle et al (2017)
examined the reorganization of P. polycephalum’s network after severe wounding,
and Westendorf et al (2018) compared the growth, network development and
chemotaxis of P. polycephalum to two other plasmodial slime mold species,
Badhamia utricularis and Fuligo septica. The papers in this category illustrate the
diversity and complexity of the slime mold networks, which are a hot topic with
implications beyond myxomycete research. A huge part of the slime mold’s life is
devoted to the search for nourishment. Ntinas et al (2017) used a memristor-based
model (a hypothetical electrical component) to assess foraging. Schenz et al
(2017) constructed a fluid-flow model to explain their experimental results of a
slime mold exploring. Lee et al (2018) described a novel search pattern, where
the slime mold does not produce networks, but instead forms autonomous
subunits to increase its chances of finding food. Foraging requires movement, and
P. polycephalum is a highly motile amoeba. Another set of contributions deals
with emergent phenomena in the slime mold. Kunita et al (2017) investigated the
plasticity in behavior which is observed when the slime mold’s path is blocked by
a repellant. Moving or not moving across this barrier seems to depend on small
intracellular fluctuations, which the authors also model with a canard solution.
The slime mold’s ability to find its way through different mazes was studied by
Smith-Ferguson et al (2017), highlighting the importance of slime secretion as
extracellular memory. The work of Masui et al (2018) investigates
allorecognition, i.e. what happens when two different plasmodia come into
contact with each other. A different slime mold, P. rigidum, was used in this study.

The next category, Locomotion, comprises three papers which explicitly deal
with the particular way in which P. polycephalum moves. Zhang et al (2017) and
Zhang et al (2019) and take a closer look at the intracellular flow, traction stresses
generated on the substratum, and intracellular calcium. They conclude that
spatio-temporal patterns of calcium concentration and its convective transport
underlie the contractile patterns. The work of Lewis and Guy (2017) focuses on
models of peristaltic pumping, which is supposed to drive locomotion.
Oscillations and  mechanics is the next category, which, together with Growth,
 foraging and  decisions, has the most contributions. This category incorporates
research on the rhythmic oscillations, which are a characteristic trait of P.
polycephalum, and several contributions which examine the finer morphology,
focusing mostly on the cytoskeleton. Iima et al (2017) use two- and
one-dimensional coupled oscillator models to relate observed oscillations to
amoeboid movement. The subject of Teplov (2017) is also amoeboid locomotion,
but the focus lies on a rheological model to explain the mechanochemical
autowave activity of the migrating plasmodium. Avsievich et al (2017) were
looking at the underlying primary oscillator, a set of biochemical reactions
causing the contraction-relaxation pattern which has so far escaped discovery.
They showed that respiratory pathways are correlated with contractile activity.
Umedachi et al (2017) investigated how the oscillations of P. polycephalum react
to external stretching stimuli, and Alonso et al (2017) examined
mechanochemical patterns, especially wave phenomena, by using two models for
viscoelastic fluids and viscoelastic solids, respectively. Finally, self-organized
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motion is modelled by Kulawiak et al (2018) with a poroelastic two-phase model.
Fessel et al (2017) investigated the biomechanical properties of slime mold
microplasmodia, such as Young’s modulus and Poisson’s ratio. The actin
filaments are the subject of Schumann (2017), especially their role in perceiving
external stimuli, integrating them and reacting to them. Oettmeier et al (2018)
investigated the ultrastructure of different morphotypes, by using electron
microscopy and fluorescence microscopy.

Although methods are an important part of many aforementioned
contributions, the category Methodology contains two papers which focus on the
automated extraction of network structures from images (Fricker et al 2017), and
an open repository for experimental data for making experimental data freely
accessible (Dirnberger et al 2017) ; see http://smgr.mpi-inf.mpg.de. The last
category is Genetics. Since the genome of P. polycephalum has been completely
sequenced, advances have been made in this area. Stange et al (2017) provide
insight into the positioning of nuclei and the microtubule cytoskeleton of
Dictyostelium discoideum. Werthmann and Marwan (2017) introduce a Petri-net
based approach to the analysis of cellular responses. They model the
developmental switch to sporulation as a Waddington quasi-potential landscape,
emphasizing the importance of epigenetics for the multitude and plasticity of P.
polycephalum’s reactions to the environment.

2. Future challenges and opportunities

All of the five categories defined above present challenges for further research.
For example, many molecular as well as macroscopic mechanisms interact to give
rise to amoeboid locomotion and signaling. These processes need to be better
understood. As mentioned above, P. polycephalum is now also under scrutiny for
the investigation of cellular intelligence and the origins of cognition. This
challenge will be no small feat, but the groundwork is being laid by research
which is highlighted in this special issue. Apart from this project, more practical
applications are also being evaluated. Soft robots, algorithms which mimic and
emulate Physarum’s networking and maze-solving skills, are being developed.
Moreover the improvement of methods, for instance finding techniques to
genetically manipulate Physarum, present opportunities for future research. Like
Physarum itself, the network is ever expanding to all sides, finding new exciting
topics, creating new links and connecting researchers and disciplines.
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