Modeling and simulation of the current quenching behavior of a line lightning protection device

To cite this article: Mario Mürmann et al 2017 J. Phys. D: Appl. Phys. 50 105203

View the article online for updates and enhancements.

Related content

- Experimental and theoretical study of internal fault arc in a closed container
 Yi Wu, Mei Li, Mingzhe Rong et al.

- Evaporating metal droplets in arcs
 Torbjörn Nielsen, Ahmed Kaddani and Said Zahrai

- Industrial applications of high-, medium- and low-voltage arc modelling
 P Chévrier, M Barrault, C Fievet et al.
Modeling and simulation of the current quenching behavior of a line lightning protection device

Mario Mürmann¹, Alexander Chusov², Roman Fuchs¹, Alexander Nefedov² and Henrik Nordborg¹

¹ Institute for Energy Technology, HSR University of Applied Sciences, Rapperswil, Switzerland
² Streamer Electric, St Petersburg, Russia

E-mail: henrik.nordborg@hsr.ch

Received 15 September 2016, revised 5 December 2016
Accepted for publication 29 December 2016
Published 9 February 2017

Abstract
We develop a consistent model for a line lightning protection device (LLPD) and demonstrate that it can explain the two modes of current quenching—impulse quenching and current zero quenching—observed in such devices. A dimensional analysis shows that impulse quenching can always be obtained if the power loss from the electric arcs is large enough as compared to \(U_0 I_f \), where \(U_0 \) is the grid voltage and \(I_f \) is the maximum follow current after a lightning strike. We further show that the two modes of quenching can be reproduced in a full 3D arc simulation coupled to the appropriate circuit model, which allows us to analyze the power loss from the arc in greater detail. Because of the high temperature, the main mechanism of power loss is radiation which has to be correctly modeled in order to obtain physically meaningful results. The results will allow us to use numerical simulations to optimize the quenching ability to LLPDs in the future.

Keywords: lightning protection, arc simulation, current quenching

(Some figures may appear in colour only in the online journal)
breakers is much smaller than the grid voltage and the current will continue to flow unimpeded through the arc until the next current zero, corresponding to ZQ. In the case of low voltage breakers, typically equipped with splitter plates, the total arc voltage is higher than the grid voltage and the arc current is limited, corresponding to IQ. There is one very important difference between LLPDs and circuit breakers, however. In the case of a circuit breaker, the grid current has to be interrupted. The LLPD, on the other hand, only has to transmit the current from the lightning pulse. Any follow current due to the grid voltage is detrimental to the device and should be quenched as quickly as possible.

The purpose of this paper is to provide a physical explanation of the two modes of current quenching and to develop a simulation model suitable for virtual product development. We begin by looking at a simple circuit with the arc gap represented by the Cassie–Mayr arc model. A dimensional analysis of this model leads to a simple criterion for IQ in terms of the grid voltage, the maximum follow current, and the power loss of the arc. In a second step, we develop a complete 3D arc simulation based on the assumption of a thermal plasma and use it to simulate both ZQ and IQ. This model allows us to examine the shape of the arc in the real arcing chamber geometry and to study the interaction of the arc with the circuit.

2. A test circuit with a simple arc model

The difference between impulse quenching and current zero quenching can be illustrated easily in the laboratory using the setup depicted in figure 2. The left part of the circuit represents the oscillating grid voltage and the right part represents the arcing device \(R_a(I) \) in series with the footing resistance \(R_p \) of the tower and the ground. The differential equations describing this system are

\[
\frac{dI_1}{dt} + I_1 = -I_2 \tag{1}
\]

and

\[
(R_p + R_a) \frac{dI_2}{dt} = -\frac{dR_a}{dt} I_2 - \frac{1}{C_0}(I_1 + I_2), \tag{2}
\]

where \(I_1 \) represents the current through the coil and \(I_2 \) the current through the two resistances.

The resistance due to arcing in the LLPD is modelled by a simple form of the Cassie–Mayr equation [7, 8],

\[
\frac{dR_a}{dt} = \frac{R_a}{\tau} \left(1 - \frac{R_a I_2^2}{P_a(I_2)} \right) \tag{3}
\]

This model has the advantage that it describes the arc behavior using two physically meaningful parameters: \(\tau \) is the intrinsic time scale of the arc, determining how fast it responds to a change in the current, and \(P_a(I) \) is the power loss of the arc due to convection and radiation. An often used approximation for the loss-function is to assume that the current density of the arc is constant, i.e. the radius is proportional to \(\sqrt{I} \), and that the arc only loses energy from its surface [9]. This leads to

\[
P_a(I) \propto I^\alpha \tag{4}
\]

with \(\alpha = 1/2 \). Another way of understanding the importance of the exponent \(\alpha \) is to consider the stationary arc voltage \(U_o \) from equation (3). For \(\frac{dR_a}{dt} = 0 \) we obtain

\[
U_o = R_a I_2 \propto I_2^{\alpha + 1}. \tag{5}
\]

The important point is that the arc shows negative differential resistance, meaning that the arc voltage decreases with increasing current for any \(\alpha < 1 \). For \(\alpha \lesssim 1 \), the arc voltage is approximately independent of the current. The derivation below is valid for any \(\alpha < 1 \) and we shall use \(\alpha = 0.9 \) for illustration.

Before solving the circuit equations, it makes sense to write them in dimensionless form using the circuit parameters. The charging voltage of the capacitor \(U_0 \) determines the voltage level and the time scale \(t_0 \) is defined through

\[
U_0 = R_p I_2 \propto t_0^{\alpha + 1}.
\]

Figure 2. Simple electrical circuit for illustrating the difference between impulse and current zero quenching. The left part consists of a capacitor \(C_0 \) and an inductance \(L_0 \) and is used to simulate the grid voltage. The right part consists of a footing resistance \(R_p \) in series with the arc represented by a highly non-linear resistance \(R_a(I_2) \).
The corresponding scale for the current follows from

$$\frac{1}{2} C_0 U_0^2 = \frac{1}{2} \alpha_0 I_0^2 \quad \Rightarrow \quad I_0 = \sqrt{\frac{C_0}{L_0}} U_0.$$

(7)

The unit for resistance will then be

$$R_0 = \frac{U_0}{I_0} = \sqrt{\frac{L_0}{C_0}} = \frac{t_0}{C_0}.$$

(8)

and the unit for power

$$P_0 = \frac{U_0 I_0}{t_0}.$$

(9)

We write all physical quantities as a product of the physical scale and a dimensionless quantity according to

$$\tilde{I}(t) = I_0 \tilde{I}(\tilde{t}).$$

(10)

With these definitions, the equations for the circuit are given by

$$\frac{d^2 \tilde{I}}{dt^2} + \tilde{I} = -I_2,$$

(11)

$$\frac{d\tilde{I}_2}{dt} = -\frac{1}{R_p + R_a} \frac{d\tilde{R}_a}{dt} \tilde{I}_2 - \frac{1}{R_p + R_a} (\tilde{I}_1 + \tilde{I}_2),$$

(12)

and

$$\frac{d\tilde{R}_a}{dt} = \frac{\tilde{R}_a}{\tau} \left(1 - \frac{\tilde{R}_a \gamma^{2-\alpha}}{\gamma} \right).$$

(13)

where γ is a dimensionless constant determining power loss of the arc, i.e. the loss-function is written as

$$P_a(I) = \gamma U_0 I_0 (I/I_0)^\alpha.$$

(14)

Inserting this expression into the expression for the voltage, we obtain the critical voltage

$$I_f = U_0/R_p \rightarrow \tilde{I}_f = 1/\tilde{R}_p.$$

(15)

The stationary arc resistance can be obtained from equation (13) according to

$$\frac{d\tilde{R}_a}{dt} = 0 \Rightarrow \tilde{R}_a = \gamma I_2^{\alpha-2}.$$

(16)

The total voltage over the arc and the grounding resistance is then

$$\tilde{U}_q = \tilde{R}_p \tilde{I}_2 + \tilde{R}_a \tilde{I}_2.$$

(17)

Inserting the expression for the arc resistance and optimizing with respect to \tilde{I}_2 leads to the critical current

$$\tilde{I}_{2,c} = \left[\frac{\gamma(1 - \alpha)}{\tilde{R}_p} \right]^{(2-\alpha)}. $$

(18)
\[\dot{U}_\varepsilon = \frac{2 - \alpha}{1 - \alpha} \left(1 - \alpha \right)^{1/2-\alpha} R_p^{(1-\alpha)/(2-\alpha)} \varepsilon (2-\alpha). \]

(19)

As the maximum charging voltage is unity in our dimensionless units, we can now write down an expression for the necessary (or critical) cooling power of the arc

\[\gamma_e = \frac{1}{1 - \alpha} \left(1 - \alpha \right)^{2 - \alpha} R_p^{\alpha - 1}. \]

(20)

For example, with \(\alpha = 9/10 \) we obtain

\[\gamma_e = \frac{10}{121} \frac{10^{9/10}}{R_p^{1/10}} \approx 0.71527. \]

(21)

Switching back to dimensional units we find for the required cooling power of the arc that

\[P(I) \propto \frac{U_0^2 C_0}{I_0} \left(\frac{I_0}{R_p C_0} \right)^{1-\alpha} = \frac{U_0^2}{R_p} \left(\frac{I}{I_0} \right)^{\alpha}. \]

(22)

or, in the case of \(\alpha = 9/10 \)

\[P(I) = 0.71527 \times U_0 I_0 \left(\frac{I}{I_0} \right)^{9/10} \approx 0.71527 \times \frac{U_0^2}{R_p} \left(\frac{I}{I_0} \right)^{9/10}. \]

(23)

This remarkably simple result shows that impulse quenching can be achieved at any voltage level, provided that the power loss of the arc is higher than \(U_0 I_0 \), according to equations (22) or (23). Unfortunately, the footing resistance has to be small in order to ensure the lightning current can pass through the LLPD without damaging the insulation. The challenge is therefore to increase the power loss of the arc through optimization of the arcing chambers. This cannot be done using the simple Cassie–Mayr model and we shall therefore turn to 3D simulations of the electrical arc in the next section.

The analysis above has only considered one arc whereas a real LLPD consists of a number of arcing chambers in series. Fortunately, this does not invalidate the analysis, as the same current will flow through all the devices. An increase in the arc voltage of one arc will reduce the current flowing through the other arcs, causing the arc resistance to increase everywhere. An arc is essentially a resistive element and a number of resistors in series can always be replaced by one large resistor.

3. Detailed simulation of the electrical arc

The Cassie–Mayr equation is a simple integral model for an electrical arc which cannot be used for optimization of the arcing chamber. To understand the influence of the geometry on the arcing chamber performance, it is necessary to perform a full 3D simulation of the electric arc, as is typically done in the design of circuit breakers [10] and plasma torches [11]. The simplest possible model consists of coupling the compressible Navier–Stokes equations to the Maxwell equations through the electric conductivity of the plasma, which is often referred to as the magnetohydrodynamic (MHD) model.

\[\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0, \]

(24)

\[\partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = -\nabla p + \nabla \cdot \tau + \mathbf{j} \times \mathbf{B}, \]

(25)

\[\partial_t (\rho h) + \nabla \cdot (\rho h \mathbf{u}) = \partial_t p + \nabla \cdot (\tau \mathbf{u}) + \mathbf{j} \cdot \mathbf{E} - \nabla \cdot (\mathbf{q} + \mathbf{q}^{\text{rad}}), \]

(26)

Here, \(\rho \) represents the mass density of the plasma, \(\mathbf{u} \) is the gas flow velocity, \(p \) is the static pressure, \(\tau \) is the viscous part of the stress tensor, and \(h \) is the specific enthalpy. The last term of equation (26) represents the heat flux, which has been split into a heat conduction \(\mathbf{q} \) and radiative heat flux \(\mathbf{q}^{\text{rad}} \). The latter will be discussed in more detail below. The effect of turbulence is taken into account through a turbulence model and is included in the effective viscosity and heat conductivity of the gas. We have used the \(k - \varepsilon \) turbulence model for all simulations (see e.g. [12]).

In order to solve the above set of equations, we need to add the thermal and caloric equations of state,

\[\rho = \rho(T, p) \quad \text{and} \quad h = h(T, p). \]

(27)

Furthermore, data for the viscosity, heat conductivity, and the electric conductivity of the plasma is required. As the gas molecules dissociate and become ionized at high temperatures, the computation of these properties is quite complicated, as will be discussed below.

Coupling to the electromagnetic field is realized by the Lorentz force \(\mathbf{j} \times \mathbf{B} \) and the ohmic heating \(\mathbf{j} \cdot \mathbf{E} \), where \(\mathbf{j} \) is the electric current density, \(\mathbf{E} \) is the electric field, and \(\mathbf{B} \) is the magnetic induction. The current density in a conducting fluid is given by

\[\mathbf{j} = \sigma (\mathbf{E} + \mathbf{u} \times \mathbf{B}), \]

(28)

where \(\sigma \) is the conductivity of the plasma. Thus, the electric conductivity acts as a coupling constant between the flow and the electromagnetic fields. For \(\sigma \to 0 \), the flow and the electromagnetic fields do not interact.

It is typically not necessary to solve the full Maxwell equations to compute the electric and magnetic fields. We have used the magnetostatic approximation in this study, i.e.

\[\nabla \cdot \mathbf{j} = 0 \]

(29)

and

\[\nabla \times \mathbf{B} = \mu_0 \mathbf{j}. \]

(30)

This approximation is based on two assumptions: the plasma can be considered charge neutral so that there is no relevant buildup of electric charge, and that the conductivity of the plasma is not too high. More precisely, we assume that the displacement current can be neglected from the Maxwell equations, which is true if the characteristic time scale of the system \(t_d \) is large enough,

\[t_d \gg \varepsilon_0 / \sigma, \]

(31)

where \(\varepsilon_0 \) is the vacuum permittivity. Furthermore, we can use the magnetostatic approximation for the magnetic field if
\[l_c \gg \mu_0 \sigma L^2, \]
(32)

where \(\mu_0 \) is the permeability of vacuum and \(L \) is the characteristic size of the plasma. As the electric conductivity of an atmospheric air plasma typically reaches values of \(\sigma \sim 10^2 \, \Omega^{-1} \cdot \text{m}^{-1} \), these two conditions are easily satisfied for the arc.

The above equations describe a thermal charge-neutral plasma and are commonly used to simulate circuit breakers [13]. They cannot be used to describe the initial dielectric breakdown of the gas or other situations where the electron temperature is much higher than the gas temperature. In the present study, we only use the 3D arc model to describe how an existing arc is cooled off by the radiation and convection. The relevant time scales are therefore the time scale defined by the circuit \((\sqrt{L_0/C_0})\) and the cooling time of arc (the parameter \(\tau \) in the Cassie–Mayr model). The ignition of the arc itself is not considered here but will be subject of future work.

3.1. Material properties

As has already been pointed out above, the thermodynamic properties of plasmas are difficult to compute due to the ionization and dissociation processes at high temperatures. Fortunately, these processes are very fast, allowing us to use the approximation of local thermal equilibrium (LTE), where the properties of the plasma only depend on the local temperature and pressure. This allows to pre-compute all required thermodynamic properties and transport coefficients and store them in the form of lookup tables. Details on how to compute these properties can be found in the literature [14, 15]. The data used in this study was provided by Petr Kloc from the Brno University of Technology [16].

The lookup tables were implemented using cubic splines for the temperature dependence. The pressure dependence was only included for the density \(\rho(p,T) \) and the electric conductivity \(\sigma(p,T) \) of the plasma. The specific heat capacity is only weakly pressure dependent, as it represents the energy per molecule, and has implemented as a function of temperature only. The viscosity and heat conductivity are not very important, as a turbulence model is used, and we have therefore decided to use a simple two-band model in the simulations. The first frequency band has a wavelength starting from zero up to \(\lambda = 200 \, \text{nm} \) and an absorption coefficient of \(\kappa = 2000 \, \text{m}^{-1} \), the second band starts from \(\lambda = 120 \, \text{nm} \) up to \(\lambda = 1 \, \text{mm} \) with an absorption coefficient of \(\kappa = 50 \, \text{m}^{-1} \). These values were determined by averaging of absorption coefficient data provided by Petr Kloc from the Brno University of Technology [15, 16].

4. Simulations with a 3D arc model

The LLPD as depicted in figure 1 consists of a number of arcing chambers in series. As these arcing chambers combine to quench the current, it is sufficient to consider one single arcing chamber and to rescale the voltage accordingly.

Furthermore, the arcing chambers have a symmetry plane, allowing us to cut the geometry in half. The actual arcing chamber and the geometry used in simulation are shown in figure 5. The chamber consists of two hollow electrodes encased in silicon rubber. The arc burns in the arcing chamber between the two electrodes and the heated air escapes through a slit at the top of the chamber.

4.1. Numerical model including electric circuit

As has already been shown, IQ results from an interaction of the arc with the circuit. In particular, the power loss of the arc has to be large enough as compared to the power provided by the circuit. In order to be able to reproduce the experimental results as closely as possible, the circuit shown in figure 6 was used for the simulation corresponding to an experimental setup. The left part is an oscillating circuit consisting of inductor \(L_0 \) and capacitor \(C_0 \). It represents the grid voltage with a frequency of 50 Hz. The inductor \(L_1 \) disconnects
the capacitor C_0 from the arc chamber at the instant of arc quenching. The lightning strike is emulated by an artificial heat source which is activated during one microsecond in order to create a conducting channel. After this initialization of the plasma, the grid voltage is applied to the capacitor C_0. The evolution of arc voltage and current is determined by the cooling or power loss of the arc due to radiation and convection as was already discussed with regard to the Cassie–Mayr model above.

4.2. Simulation codes and coupling

ANSYS FLUENT was used to simulate the fluid flow of the plasma, whereas ANSYS EMAG was used for the electrodynamic simulation. Both codes are coupled by the software package MpCCI. Note that ANSYS FLUENT uses the finite-volume-method whereas ANSYS EMAG uses the finite-element-method (FEM). Thus, both simulations are carried out on different meshes.
The boundary conditions for the CFD-simulation are represented in figure 7: the arcing chamber is surrounded by an air box with pressure outlet condition, the ends of the hollow electrodes are modeled as walls since the electrodes of the arcing chambers in series are connected in reality. Note that symmetry conditions are applied to the top surface. Effects due to contact erosion and enclosure material ablation are not included in the simulations.

Figure 5. Exemplary demonstration of one arcing chamber as part of a whole line lightning protection device (LLPD) (a) and the numerical model of the chamber which was used to simulate fluid flow as part of a coupled simulation (b). The chamber consists of two hollow electrodes encased in silicon rubber. The symmetry of the chamber allows us to reduce the size of the model and the computational effort by one half.

Figure 6. Electric circuit used in the numerical simulations. It closely resembles the experimental test circuit with the exception that the experiments used 8 arcing chambers in series. The arc model in this schematic represents the coupled simulation consisting of CFD and electromagnetic simulation. From an electric point of view the arc represents a highly nonlinear ohmic resistance.

Figure 7. Representation of the CFD simulation model including boundary conditions. The arcing chamber is surrounded by an air box with pressure outlet condition, the ends of the hollow electrodes are modeled as walls since the electrodes of the arcing chambers in series are connected in reality. Note that symmetry conditions are applied to the top surface. Effects due to contact erosion and enclosure material ablation are not included in the simulations.

Figure 8. Representation of the electromagnetic simulation model including boundary conditions. Since the arcing chamber is integrated in an electric circuit, voltage boundary conditions are applied to the electrodes. The applied voltage level is then transiently determined by the interaction of the arcing chamber with the electric circuit. Additionally a parallel magnetic vector potential condition is applied to the outer surface. Note that symmetry conditions are applied to the top surface. Arc root models are not included in the simulations.

The boundary conditions for the CFD-simulation are represented in figure 7: the arcing chamber is surrounded by an air box with pressure outlet condition, the ends of the hollow electrodes are modeled as walls since the electrodes of the arcing chambers in series are connected in reality. Note that symmetry conditions are applied to the top surface. In addition the boundary conditions for the electromagnetic simulation are represented in figure 8: since the arcing chamber is integrated in an electric circuit in simulations as well as in experiments, voltage boundary conditions are applied to the electrodes. The applied voltage level is then transiently...
determined by the interaction of the arcing chamber with the electric circuit. Additionally a parallel magnetic flux condition is applied to the outer surface and symmetry conditions are applied to the top surface.

The pressure and temperature are computed by ANSYS FLUENT, which uses this information to compute the electric conductivity. This conductivity is then passed to ANSYS EMAG, which computes the electromagnetic fields, the Lorentz force and the ohmic losses. The latter two quantities are then passed on as sources to ANSYS Fluent. Data mapping and interpolation is automatically done by MpCCI.

The electrodynamic simulation is transient since the capacitors and inductors are included in the electric circuit. As the arc is a purely resistive element, it can be regarded as static. The integration of the arc chamber into the electric circuit determines the boundary conditions as voltage boundary conditions.

In addition to the described simulation approach the same evolution of voltage and current of an arc was investigated through experiments performed by Streamer International. In contrast to numerical simulations a series of eight arc chambers were connected to the electric circuit that can be seen in figure 6. Since a complete device consists of more than one chamber the experiments were carried out this way using a grid voltage of 25 kV. An illustration of the whole device can be seen in figure 1. To start the experiments an electric arc is initialized with a high-voltage lightning impulse generator (not shown in figure 6).

5. Simulation results

Two simulations with different grid voltages were carried out. In contrast to the Cassie–Mayr model, we cannot modify the cooling power of the arc, since this is given by the geometry of the arcing chamber and other details of the physical model, such as the materials. Thus, in order to obtain the difference between the ZQ and IQ, we need to vary the grid voltage, which is done by changing the charging voltage of the capacitor. In the first simulation the applied grid voltage at the capacitor \(C_0 \) was set to 3 kV, leading to zero quenching behavior of the arc chamber. In the second simulation it was set to 1 kV, leading to impulse quenching. The reduced grid voltage leads to less heating power and therefore to high quenching ability for this particular type of arc chamber, which in fact determines the main cooling mechanisms. The result agrees with the theoretical analysis of section 2: the cooling power of the arc is sufficient to limit the current at \(U_c = 1 \) kV but insufficient at \(U_c = 3 \) kV. The evolution of the arc voltage and current determined by the interaction of the arcing chamber with the electric circuit. Additionally a parallel magnetic flux condition is applied to the outer surface and symmetry conditions are applied to the top surface.

The pressure and temperature are computed by ANSYS FLUENT, which uses this information to compute the electric conductivity. This conductivity is then passed to ANSYS EMAG, which computes the electromagnetic fields, the Lorentz force and the ohmic losses. The latter two quantities are then passed on as sources to ANSYS Fluent. Data mapping and interpolation is automatically done by MpCCI.

The electrodynamic simulation is transient since the capacitors and inductors are included in the electric circuit. As the arc is a purely resistive element, it can be regarded as static. The integration of the arc chamber into the electric circuit determines the boundary conditions as voltage boundary conditions.

In addition to the described simulation approach the same evolution of voltage and current of an arc was investigated through experiments performed by Streamer International. In contrast to numerical simulations a series of eight arc chambers were connected to the electric circuit that can be seen in figure 6. Since a complete device consists of more than one chamber the experiments were carried out this way using a grid voltage of 25 kV. An illustration of the whole device can be seen in figure 1. To start the experiments an electric arc is initialized with a high-voltage lightning impulse generator (not shown in figure 6).

5. Simulation results

Two simulations with different grid voltages were carried out. In contrast to the Cassie–Mayr model, we cannot modify the cooling power of the arc, since this is given by the geometry of the arcing chamber and other details of the physical model, such as the materials. Thus, in order to obtain the difference between the ZQ and IQ, we need to vary the grid voltage, which is done by changing the charging voltage of the capacitor. In the first simulation the applied grid voltage at the capacitor \(C_0 \) was set to 3 kV, leading to zero quenching behavior of the arc chamber. In the second simulation it was set to 1 kV, leading to impulse quenching. The reduced grid voltage leads to less heating power and therefore to high quenching ability for this particular type of arc chamber, which in fact determines the main cooling mechanisms. The result agrees with the theoretical analysis of section 2: the cooling power of the arc is sufficient to limit the current at \(U_c = 1 \) kV but insufficient at \(U_c = 3 \) kV. The evolution of the arc voltage and current

![Figure 9. Comparison of experimental (a) and numerical (b) determined evolution of arc voltage and arc current for zero quenching. The results show fairly good qualitative agreement. Note that different setups were used in the experiment and the simulation (details are written in the text).](image-url)
as well as the resulting arc resistance can be seen in figure 9 and in figure 10 for zero quenching and impulse quenching, respectively. It is interesting to see that the arc voltage is fairly constant as long as the arc is burning and then drops rapidly. In other words, its behavior is reasonably well predicted by a Cassie–Mayr model with a short time scale τ and an exponent $\alpha \lesssim 1$. The additional voltage oscillations in figure 9 result from the additional capacitors and coils in the circuit model used.

As only one chamber was used in the simulations whereas the experiment used eight, a direct and quantitative comparison of experimental and numerical results is not possible. Instead we divided the experimental measured arc voltage by
Figure 12. Illustration of the electric arc by an isosurface of the electric conductivity of 5000 S m$^{-1}$. The surface is coloured by the electric potential qualitatively.

Figure 13. Transient development of the density to illustrate the shockwave that is blown out of the nozzle.
the number of chambers that were used to compare it qualitatively to the arc current and voltage from the simulation. This approach requires identical arcing chambers with synchronized arcs and seems to be reasonable since all chambers are manufactured in the same way.

The grid voltage is the only parameter that is changed in the experimental situation to switch between zero quenching and impulse quenching, corresponding to the numerical simulation. The experimental and numerical results in case of zero quenching and impulse quenching, respectively, are presented in figure 9 and in figure 10. Apparently, our simple arc model is capable of capturing the qualitative behavior of ZQ and IQ very well. However, in case of impulse quenching the current from the simulation is lower than in the experiment. This difference is likely due to the initialization of the arc, which was done using a high-current pulse in the experiment and using a pre-heated plasma channel in the simulation. Nevertheless, the simulations and the experiments show the same qualitative behavior with rapid quenching on a time scale less than 1 ms.

In case of zero quenching the experimental and numerical evolution of the arc resistance in the first 5 ms is shown in figure 11. One can see that the resistance in the experiment is significantly lower compared to the simulation. This is not very surprising, as we have made a number of crude approximations setting up the arc model: contact erosion and wall ablation are ignored, we only use air as a gas, radiation is modeled with a simple two-band model, no arc root model has been implemented. Improving the quantitative agreement between our arc model and reality is the topic of ongoing work. However, these improvements will only change the resistance of the arc but will not change the qualitative picture.

In figure 12 the arc between the hollow electrodes is exemplary represented by an isosurface of the electric conductivity of 5000 S m$^{-1}$. The surface is coloured by the electric potential qualitatively. In figure 13 the air density is shown at ascending times. From this figure one can see how the air is flowing into the nozzle as well as into the hollow electrodes, where it is reflected at the closed electrode walls. Arc quenching is supported by convective cooling effects in the arc region due to air flow.

6. Conclusions and outlook

We have analyzed the two modes of current quenching appearing in LLPDs and provided a theoretical explanation for the phenomena. A dimensional analysis shows that if the cooling power of the arc is proportional to the product of the grid voltage and the maximum follow current (UdI_f), we can guarantee impulse quenching with a very short follow current, leading to considerably less erosion of the device. This has important consequences for applications. Furthermore, we have demonstrated that quenching power of the arc can be simulated very well using fully resolved 3D simulations based on the magnetohydrodynamic equations for a thermal plasma. As expected, radiation is the main mechanism by which the arc loses energy. This means that the current–voltage characteristics of the arc are sensitive to the absorption spectrum of the plasma.

More effort will have to go into the definition and computation of effective absorption coefficients for the plasma and this will be subject of an upcoming publication. In addition, more detailed modeling will also have to include the effects of contact erosion and ablation of wall material, changing both the pressure in the arcing chamber and the composition of the plasma.

We believe that it will be possible to increase the arcing voltage significantly using a clever design of the arcing chamber and appropriate materials. The 3D simulations of the arcing phenomenon will make it possible to design future LLPDs on the computer, taking all the relevant physical effects into account.

Acknowledgment

The author gratefully acknowledge funding from the Swiss Commission for Technology and Innovation CTI under grant 16272.1 PFEN-IW. Part of the work has also been funded by the HSR University of Applied Sciences in Rapperswil.

References

[16] Aubrecht V and Kloc P 2016 private communication
