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Abstract
We study a heavy–heavy–light three-body system confined to one space dimension in the
regime where an excited state in the heavy–light subsystems becomes weakly bound. The
associated two-body system is characterized by (i) the structure of the weakly-bound excited
heavy–light state and (ii) the presence of deeply-bound heavy–light states. The consequences
of these aspects for the behavior of the three-body system are analyzed. We find a strong
indication for universal behavior of both three-body binding energies and wave functions for
different weakly-bound excited states in the heavy–light subsystems.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Already relatively simple few-body systems, like a configu-
ration of three pairwise interacting identical bosons in three
dimensions, display rich features as the Efimov effect [1, 2].
This is the emergence of an infinite sequence of universal
three-body bound states provided there are at least two s-wave
resonant pair-interactions. Here, universality means that the
three-body states are independent of the details of the two-
body interaction [3, 4]. The Efimov effect is enhanced in a
two-component three-body system with a large mass ratio
between the two species [5–7]. The existence of these Efi-
mov states is strongly restricted to particular values of the total
angular momentum [8, 9], the dimension of space [10–12],
and the symmetry of the weakly-bound (or virtual) two-body
state [13–15], including combinations thereof. Changing any
of these system properties may prohibit the Efimov effect,
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however, there can still be universal three-body bound states
[9, 11, 14, 16].

Recently, we have proven universality [17, 18] in a
heavy–heavy–light three-body system, which is confined to
one dimension (1D). The universality requires the heavy–light
interactions to be tuned towards the ground-state threshold,
that is the binding energy of the ground state approaches
zero. Indeed, in this limit, the three-body binding energies
and wave functions for arbitrary short-range two-body interac-
tions converge to the respective ones found for the zero-range
interaction.

In this article we study the universality of the same three-
body system provided the heavy–light interactions are tuned
towards an excited-state threshold, that is the binding energy
of an excited state approaches zero. This situation occurs in
most experiments employing ultracold atoms. In comparison
to the case of the ground-state threshold, this implies (i) that
the weakly-bound heavy–light state can either be symmet-
ric or antisymmetric and (ii) the presence of deeply-bound
heavy–light states. We analyze such three-body systems by
solving the Faddeev equations numerically for different finite-
range potentials. We identify the same universal behavior
for three-body binding energies, regardless of whether the
threshold is characterized by a symmetric or antisymmetric
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weakly-bound heavy–light state. In contrast, we demonstrate
that the universal limit of the corresponding three-body wave
functions is distinct for these two different symmetries. More-
over, within the separable approximation [19–21] of the finite-
range interactions, we find that the deeply-bound heavy–light
states play a crucial role in the universal limit. The three-body
bound states presented in this article belong to the class of
so-called bound states in a continuum [22–24].

Our research supports the increasing interest in few- and
many-body systems confined to low dimensions. Already
many decades ago, the Tonks–Girardeau gas [25, 26] and the
Lieb–Liniger model [27, 28] have been considered, which
are based on the zero-range contact interaction [29]. Three-
body systems in 1D have recently [30–32] attracted increasing
attention. In particular, studies on the inclusion of three-body
interactions [33–35], on three-body systems of two different
species [17, 36], and on the accuracy of adiabatic methods
[17, 37] have been performed.

Not only theoretical studies but also experimental measure-
ments of few-body effects in low dimensions are nowadays
feasible. For this purpose, ultracold gases are confined via
anisotropic traps leading to cigar- or tube-shaped configura-
tions [38, 39]. Moreover, the strength of interactions in ultra-
cold gases can be tuned over the scope of many orders of
magnitude with the help of Feshbach resonances [40] or so-
called confinement-induced resonances [41, 42]. Experimen-
tal observations of few-body effects have been brought to an
entirely new level of detail by manipulating ultracold atoms on
the single-atom scale [43, 44], ensuring pure few-body effects.

Most theoretical studies [17, 34–37, 45, 46] of three-body
systems confined along two directions are based on 1D mod-
els. This complexity reduction offers the advantage of a simple
and intuitive description revealing the underlying three-body
properties. However, it is important to keep in mind that experi-
ments employing these confined systems are always performed
in quasi-1D. The conditions to reproduce the results predicted
by a pure 2D model in a quasi-2D experiment and accordingly
by a 1D model in a quasi-1D setup have been discussed in
references [47–49].

Our article is organized as follows. In section 2 we intro-
duce the class of three-body systems, which is the focus of
our study and precisely formulate our goals. We present in
section 3 the corresponding energies and wave functions of
three-body bound states in the system. In particular, we ana-
lyze the universal behavior of these quantities close to different
energy thresholds of the two-body system. Next, we discuss in
section 4 the influence of deeply-bound two-body states on the
universal behavior of the three-body system. Finally, we con-
clude by summarizing our results and presenting an outlook
in section 5. To keep our article self-contained, but focused on
the central ideas we collect in appendix A the methods used to
solve the three-body system.

2. The three-body system

In this section we first introduce a one-dimensional two-body
system governed by a pair interaction. Next, by adding a third

particle we arrive at the class of three-body systems, which
is the focus of this article. We then present characteristic
quantities of the three-body system, which are central to our
subsequent studies. Finally, we describe the analytical and
numerical methods employed to determine the three-body
binding energies and wave functions.

2.1. Two interacting particles

We consider a two-body system consisting of a heavy particle
of mass M and a light one of mass m, both constrained to 1D
and interacting via a potential of finite range ξ0. We define the
mass ratio α ≡ M/m of the two particles in the heavy–light
system.

After eliminating the heavy–light center-of-mass coordi-
nate, the system is governed by the stationary Schrödinger
equation [

−1
2

d2

dξ2
+ v (ξ)

]
ψ̃(2) = E (2)ψ̃(2) (1)

for the two-body wave function ψ̃(2) = ψ̃(2)(ξ) of the relative
motion presented in dimensionless units. Here, ξ denotes the
relative coordinate of the light particle with respect to the
heavy one in units of the characteristic length ξ0.

The two-body binding energy E (2) and the potential

v (ξ) = v0 f (ξ) (2)

are both given in units of h̄2/μξ2
0 with the Planck constant h̄

and the reduced mass μ ≡ M/(1 + α) of the heavy–light sys-
tem. Here, v0 denotes the magnitude and f the shape of the
interaction potential.

We assume an attractive interaction with v0 < 0 and∫
dξ f (ξ) > 0, as well as a symmetric shape f , that is f (ξ) =

f (|ξ|). Moreover, we choose v such that it describes a short-
range interaction, i.e. |ξ|2 f (|ξ|) → 0 as |ξ| →∞.

In particular, we perform the analysis in this article for dif-
ferent two-body interactions of finite-range, namely a potential
having the polynomially decaying shape

f L(ξ) ≡ 1
(1 + ξ2)3

(3)

of the cube of a Lorentzian, and one with the shape

f G(ξ) ≡ exp(−ξ2) (4)

of a Gaussian decaying exponentially.
In contrast to the zero-range interaction of shape

f δ(ξ) ≡ δ(ξ), (5)

the finite-range potentials whose shapes are determined by
equations (3) and (4) can support more than a single bound
state, depending on the magnitude v0.

We label the two-body wave function ψ(2)
r and the binding

energy E (2)
r as solutions of equation (1) by the index r, where

r = 0, 1, 2, . . . denotes the number of nodes of ψ̃(2)
r . Even val-

ues of r indicate symmetric two-body wave functions, whereas
odd values indicate antisymmetric ones, that is

ψ̃(2)
r (−ξ) = (−1)rψ̃(2)

r (ξ). (6)
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Figure 1. Jacobi-coordinates x1 and y23 for the three-body system
consisting of one light particle of mass m (blue) and two heavy
ones of mass M (red), all confined to 1D. Here, C denotes the center
of mass of the two heavy particles.

2.2. Three interacting particles

We now add a third particle to the two-body system, also con-
strained to 1D and identical to the other heavy particle of mass
M. We assume the same interaction between each heavy and
the light particle as introduced in section 2.1, but no interaction
between the two heavy ones. The resulting three-body system
is depicted in figure 1. Here, y23 denotes the relative coordinate
between the two heavy particles (called here particles 2 and 3)
and x1 the relative coordinate of the light particle (particle 1)
with respect to the center of mass C of the two heavy ones,
both in units of the characteristic length ξ0.

By eliminating the center-of-mass motion of this
heavy–heavy–light system, we arrive at the Schrödinger
equation

[
−αx

2
∂2

∂x2
1

− αy

2
∂2

∂y2
23

+ v
(

x1 +
y23

2

)
+v

(
x1 −

y23

2

)]
ψ̃ = Eψ̃

(7)
for the three-body wave function ψ̃ = ψ̃(y23, x1) of the two
relative motions in coordinate representation. The coefficients
αx ≡ (1 + 2α)/[2(1 + α)] and αy ≡ 2/(1 + α) depend only
on the mass ratio α, and E is the dimensionless three-body
energy in units of h̄2/μξ2

0.

2.3. Formulation of the problem

In this article, we determine the energies and wave func-
tions of bound states in the three-body system, provided the
heavy–light subsystems support a weakly-bound excited state,
that is E (2)

r → 0− for r = 1, 2, 3. We are mainly interested in the
question of whether or not there exist three-body quantities that
show universal behavior in these cases. Universality denotes
the property of physical quantities to show a behavior that
is independent of the short-range details of the interparticle
interactions.

In reference [17], we have studied the situation when the
heavy–light system is tuned to the ground-state threshold
(r = 0). We have found universality in terms of both ener-
gies and corresponding wave functions of three-body bound
states for E (2)

0 → 0−. In this limit, we have proven that for
arbitrary attractive short-range heavy–light interactions obey-
ing the conditions in section 2.1, the three-body energies and
wave functions converge to the respective ones induced by a
heavy–light contact interaction of shape fδ, equation (5).

The differences between the ground- and an excited-state
threshold are as follows. Tuning the heavy–light subsys-
tems to an excited-state energy threshold immediately implies
(i) a different number r of nodes and therefore a possi-
bly different symmetry of the corresponding weakly-bound
two-body bound state, and (ii) the existence of deeply-bound
two-body states, whose binding energy does not approach
zero. Depending on the symmetry of the weakly-bound two-
body wave function, equation (6), we speak of even-numbered
(r = 0, 2, . . .) and odd-numbered (r = 1, 3, . . .) thresholds.

We analyze the effect of both features on the universal
behavior of energies and wave functions of three-body bound
states close to an excited-state threshold in the heavy–light
subsystems. We emphasize that there are two kinds of three-
body bound states, namely (i) excited three-body bound states
associated with the respective threshold, and (ii) deeply-
lying three-body bound states. (i) The excited three-body
bound states are embedded in a continuum that originates
from deeply-bound heavy–light states in combination with an
unbound heavy particle. For these states we expect a universal
behavior. (ii) The deeply-bound three-body states keep a finite
size when the excited-state threshold is approached, hence we
expect them to be sensitive to the details of the interaction. For
this reason, they do not show universal behavior and we refrain
from analyzing them in this article.

The excited three-body states are so-called bound states in
the continuum [24]. These states have a real-valued energy,
but are positioned in the continuum of scattering states, that
is E > E (2)

0 . Bound states in the continuum have been pre-
dicted [22, 23, 50] and realized [51–54] in a variety of physical
systems. There are several mechanisms that can protect these
states against decay into the continuum states, e.g. modulation
of the interaction potential [22, 23], interference of resonances
[50] and symmetry protection [51, 52]. For example the latter
might be of relevance in our three-body system, as depending
on the threshold r, the three-body bound states display a dif-
ferent symmetry than the continuum in which it is embedded.
Nevertheless, we want to emphasize that in the current article
the focus lies on obtaining such bound states in the continuum,
and most importantly in analyzing their universality. We there-
fore refrain here from a deeper investigation of the underlying
mechanism that allows their existence.

Apart from bound states, we want to mention that there
can further exist three-body resonances [55–57] that are
also located above the lowest two-body energy threshold,
Re E > E (2)

0 . These resonances are however characterized by
a non-vanishing imaginary part Im E �= 0 of the three-body
energy and are not studied in the present article.

Similar to the results [17] found near the ground-state
threshold (E (2)

0 → 0−), we expect a set of universal three-
body bound states associated with each heavy–light thresh-
old (E (2)

r → 0−) characterized by the index r. To distinguish
between these sets, we introduce the notation Er,n for the
energy of the nth three-body bound state |ψr,n〉 within the rth
set. As shown in the following, we indicate with even and odd
values of n the case of the two heavy particles being bosons or
fermions, respectively.

3
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In order to reveal the dependency of three-body universal-
ity on (i) the symmetry of the weakly-bound state and (ii) the
existence of deeply-bound states in the heavy–light subsys-
tems, we compare the energies and wave functions of three-
body bound states for r > 0 with the corresponding ones for
r = 0. Due to the reported [17] universality for r = 0, we can
use the scale-invariant three-body binding energies and wave
functions for the heavy–light contact interaction as represen-
tatives for this set of states. We therefore base our analysis on
the following two quantities:

(a) The relative deviation

Δεr,n ≡
∣∣∣∣ εr,n − ε�n

ε�n

∣∣∣∣ (8)

between the energy ratios εr,n and ε�n. Here,

εr,n ≡ Er,n∣∣∣E (2)
r

∣∣∣ (9)

denotes the ratio of the nth three-body bound state energy
Er,n within the rth set to the energy E (2)

r of the weakly-bound
heavy–light bound state. Moreover, we define the ratio

ε�n ≡ E0,n∣∣∣E (2)
0

∣∣∣ (10)

between the corresponding three- and two-body energies
found for the special case of a contact heavy–light interaction
of shape fδ , equation (5).

(b) The fidelity

Fr,n ≡ |〈ψr,n|ψ�
n〉|

2 (11)

defined as the overlap between a three-body bound-state |ψr,n〉
for a finite-range heavy–light potential, and the corresponding
state |ψ�

n〉 for the contact interaction in arbitrary representation.

2.4. Methods

We solve equation (7) within the framework of the Fad-
deev equations [20, 58]. There we can easily incorporate the
necessary boundary condition

ψ̃(y23, x1) → 0, as |x1| →∞ and |y23| →∞, (12)

to obtain three-body bound states embedded in a continuum.
For this reason, we consider the homogeneous form of the Fad-
deev equations. In order to select other types of states, e.g.
resonance or scattering states, a different form of the boundary
condition and therefore of the Faddeev equations is required.
However, in this article, we restrict ourselves to bound states
in the continuum which obey equation (12).

We show in appendix A that the wave functionψ(k23, p1) ≡
〈k23, p1|ψ〉 of a three-body bound state in momentum represen-
tation is given by the superposition

ψ(k23, p1) = φ(2)

(
−αy

2
k23 − αx p1, k23 −

1
2

p1

)

± φ(2)

(
αy

2
k23 − αx p1,−k23 −

1
2

p1

)
(13)

of the Faddeev component φ(2) evaluated at different argu-
ments. Here, k23 denotes the relative momentum between par-
ticles 2 and 3, whereas p1 is the momentum of particle 1
relative to the center of mass of particles 2 and 3.

Moreover, the plus and minus signs in equation (13) dis-
tinguish the case of the two heavy particles being bosons or
fermions. This is evident from considering the exchange of
the two heavy particles being described by k23 →−k23 which
leads to the exchange symmetry

ψ(−k23, p1) = ±ψ(k23, p1) (14)

for the total three-body wave function. As k23 is the momen-
tum corresponding to the relative distance y23 between the two
heavy particles, the symmetry (antisymmetry) of ψ(k23, p1)
with respect to the line k23 = 0 directly relates via the Fourier
transform to the symmetry (antisymmetry) of the wave func-
tion ψ(y23, x1) with respect to the line y23 = 0 in coordinate
space.

The separable expansion [19–21] simplifies the Faddeev
equations (see appendix A.3) and allows to analyze the influ-
ence of deeply-bound two-body states on three-body univer-
sality. We therefore expand the Faddeev component

φ(2)(k, p) ≡ ± 1
Ep − 1

2 k2

∞∑
ν=0

gν(k, Ep)τν (Ep)ϕν(p, E) (15)

in terms of products of functions depending on only one
momentum variable. Here, Ep ≡ E − αxαy p2/2 and the func-
tions gν and τν ≡ −ην/(1 − ην ) are determined by the eigen-
value equation

∫
dk′

2π
V(k, k′)

1
Ep − 1

2 k′2
gν(k′, Ep) = ην(Ep)gν(k, Ep), (16)

where

V(k, k′) = v0

∫
dξ f (ξ)e−i(k−k′)ξ (17)

is the momentum representation of the heavy–light potential
v(ξ), equation (2).

For a given r > 0 and ν � r the functions gν can be related
to the wave functions ψ(2)

ν of the two-body bound states, how-
ever with variable energy argument Eq. Indeed, for a given v0,
they are connected to each other only when Eq = E (2)

ν [19, 20].
The term with ν = r describes the one close to the thresh-
old and the terms with ν < r correspond to the deeply-bound
heavy–light states. We can reveal the influence of the latter for
the prediction of the correct three-body universality by exclud-
ing single terms with ν < r in the expansion, equation (15),

4
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and comparing the subsequent results to the ones without
excluding them. This is performed in section 4.

For the functions ϕν we derive in appendix A.3 the system
of coupled integral equations

ϕλ(p, E) = ±
∞∑
ν=0

∫
dq
2π

τν (Eq)ϕν(q, E) (18)

×
gλ

(
q + α

1+α
p, Ep

)
gν

(
p+ α

1+α
q, Eq

)
E − 1

2 q2 − 1
2 p2 − α

1+α
pq

which yields the same energy solutions Er,n as the Schrödinger
equation (7).

As mentioned above, we consider in this article three-body
bound states with the boundary conditions, equation (12),
embedded in a continuum associated with deeply-bound
heavy–light states together with an unbound heavy par-
ticle. They therefore correspond to real energy solutions
Er,n. The three-body bound state energy E enters the ker-
nels in equation (18) as a parameter, hence the solu-
tions Er,n are obtained by varying over a suitable region
Er,n < E (2)

r and requiring eigenvalue unity (minus unity) for
bosons (fermions). The functions ϕν are obtained as the cor-
responding eigenvectors.

Equation (18) is a system of coupled homogeneous Fred-
holm integral equations of the second kind. We solve it numer-
ically by truncating the infinite number of expansion terms in
equations (15) and (18) to a finite value νmax, and approxi-
mating the continuous interval for p and q by a discrete grid.
This reduces equation (18) to a finite system of coupled matrix
eigenvalue problems. In our analysis νmax = 10 has yielded
sufficient convergence.

3. Results

In this section we present the energies and wave functions of
three-body bound states associated with the two-body thresh-
old E (2)

r → 0− for r = 1,r = 2 and r = 3. For this purpose,
we have solved equation (18) numerically for two finite-
range interaction potentials of shape fL, equation (3), and fG,
equation (4). By varying the magnitude v0 of the potential, we
can tune the heavy–light subsystems to a particular threshold.

The mass ratio between heavy and light particles directly
influences the number of three-body bound states [17, 36]. In
the following we choose a mass ratio of α = M/m = 20 for
which there is a total of six three-body bound states associ-
ated to the ground-state heavy–light threshold, three each for
the case of bosonic and fermionic heavy particles. In the next
subsections we show that the number of respective three-body
bound states in one set remains the same near an excited-state
heavy–light threshold.

The ratios ε�n, equation (10), obtained for a contact
heavy–light interaction and the mass ratio M/m = 20 are
listed in table 1. Due to the scale-invariant nature of the delta-
potential, they are independent of the heavy–light binding
energy. Since all three-body binding energies associated with
a weakly-bound heavy–light state lie below the corresponding
two-body threshold, all ratios are smaller than −1.

Table 1. Energy ratios ε�n, equation (10), for the two-body contact
interaction fδ , equation (5), and the mass ratio M/m = 20. As
shown in reference [17], they represent the universal limits
obtained for attractive short-range heavy–light interactions in the
case E (2)

0 → 0−.

n Bosons Fermions

0 −2.7238 —
1 — −1.6517
2 −1.3285 —
3 — −1.1240
4 −1.0373 —
5 — −1.0004

3.1. Energy spectrum

We start by analyzing the universality in the energy spectrum
of the three-body system. In figure 2 we present the relative
deviation Δεr,n, equation (8), between the energy ratio εr,n,
equation (9), obtained in the case of a finite-range heavy–light
interaction and the energy ratio ε�n, equation (10), for a zero-
range heavy–light interaction, equation (5), as a function of the
two-body binding energy E (2)

r . Throughout the subfigures we
indicate by filled red and empty blue symbols the results for
an interaction of shape fL, equation (3), and fG, equation (4),
respectively. The top row shows Δε1,n near the first excited
heavy–light threshold, E (2)

1 → 0−, the central row Δε2,n for
E (2)

2 → 0−, and the bottom row Δε3,n for the third excited
state, E (2)

3 → 0−. The left and right columns display the case
of two heavy bosons (n = 0, 2, 4) or fermions (n = 1, 3, 5),
respectively.

For all three thresholds (r = 1, 2, 3) and all three-body
bound states (n = 0, . . . , 5), the filled red and empty blue data
sets are very close to each other. We highlight that this is true
throughout the entire range of two-body energies displayed
here. Moreover, the deviation between the red and blue data
sets is decreasing as the threshold is approached. Thus, uni-
versality is indicated by the fact that near each threshold, the
same energy ratios are achieved for the different finite-range
interactions.

Next, we compare the universal behavior near the different
heavy–light thresholds. For all considered cases r = 1, 2, 3,
the relative deviations Δεr,n are decreasing strictly monotoni-
cally towards zero as E (2)

r → 0−. Hence, the energy ratios εr,n

associated to all three excited-state two-body thresholds con-
verge towards the same limit values ε�n, table 1, as for the
ground-state threshold. This explicitly implies that the univer-
sal limits of the three-body energies are identical for symmetric
(r = 0, 2, . . .) and antisymmetric (r = 1, 3, . . .) weakly-bound
states in the heavy–light subsystems. Moreover, we observe
that for each three-body state labeled by n, the results for
the considered thresholds r = 1, 2, 3 behave almost identical
throughout the entire range of two-body binding energies.

In particular, the deviations Δεr,n appear to decrease as a
power law, as indicated by the linear dependence in the double-
logarithmic scale. The corresponding slopes, which in return
denote the exponent of the power law, are listed in table 2 and
have been obtained via linear regression and for the potential
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Figure 2. Relative deviation Δεr,n, equation (8), of the energy ratio εr,n, equation (9), from the energy ratio ε�n, equation (10), as a function of
the two-body binding energy E (2)

r . Here we present the results for the excited-state thresholds with r = 1 (top row), r = 2 (center row), and
r = 3, (bottom row). The left and right columns distinguish between the case of two heavy bosons and two heavy fermions. The results are
shown for finite-range potentials of shape fL, equation (3), (filled red symbols) and fG, equation (4), (empty blue symbols). For a mass ratio
of M/m = 20 there are six three-body bound states associated to the individual heavy–light thresholds, three each for the case of bosons or
fermions.

of Gaussian shape fG, equation (4). The slopes for r > 0 are
smaller compared to those for r = 0. This relates to a slower
convergence towards the universal three-body energies near
excited-state thresholds compared to the ground-state one. The
difference between the thresholds r = 0 and r > 0 is character-
ized by the presence of deeply-bound states in the latter cases.
Hence these deeply-bound states have a crucial influence on
how fast the universal limit is approached. Moreover, for each
respective state labeled by n, we observe that the slopes are
almost identical for all r > 0. We note that Δεr,n, equation (8),
is defined as an absolute value, hence our analysis does not
distinguish whether the limit values ε�n are approached from
above or below.

We can further analyze the universal behavior for different
excited three-body states characterized by the index n. In the
case of fermions (odd n) the relative deviation of εr,n from ε�n
is much smaller and decreases much faster than in the case

of bosons (even n) when approaching the threshold, as indi-
cated by the different range of the vertical axes. Indeed, this
is also reflected in the values of the corresponding slopes,
table 2, which are almost a factor of ten larger for fermions
compared to bosons. This striking difference in the universal
behavior is a pure three-body effect due to the fact that the
property of the two heavy particles being bosons or fermions
does not change the heavy–light two-body problem. Finally,
we observe a smaller deviation Δεr,n for states with larger
index n.

3.2. Wave functions

Having found that the universal limit of the three-body binding
energies is the same when even-numbered and odd-numbered
thresholds are approached, we now turn to the analysis in
terms of the corresponding three-body wave functions. Since
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Table 2. Exponents of the suggested power law behavior of Δεr,n,
equation (8), corresponding to the slopes of the linear dependence
in the double-logarithmic scale, figure 2. These values have been
obtained via a linear regression for the potential of Gaussian
shape fG, equation (4). The corresponding results for r = 0 are
analyzed in more detail in reference [17] and not shown explicitly
in figure 2.

r n Bosons n Fermions

0
0 0.992 1 0.986
2 1.087 3 0.991
4 1.000 5 0.989

1
0 0.046 1 0.461
2 0.065 3 0.463
4 0.057 5 0.488

2
0 0.046 1 0.475
2 0.067 3 0.475
4 0.057 5 0.468

3
0 0.046 1 0.469
2 0.067 3 0.469
4 0.056 5 0.485

the wave functions carry the full information about a quan-
tum state, we aim to obtain a deeper insight into three-body
universality from their study.

For this purpose, we compare the three-body wave
functions for the two finite-range potentials of shape fL,
equation (3), and fG, equation (4), tuned near the excited-
state thresholds r = 1, 2, 3, to the ones resulting from a con-
tact heavy–light interaction with fδ , equation (5), by means
of the fidelity Fr,n defined by equation (11). As previously
mentioned we use the results for the contact interaction as
scale-invariant representatives for the case r = 0. Moreover,
in order to compare the universal behavior for weakly-bound
excited heavy–light states of the same symmetry, we consider
the overlap |〈ψ3,n|ψ1,n〉|2 of the three-body wave functions for
the two odd-numbered thresholds r = 1 and r = 3.

In figure 3 we present the fidelity Fr,n as a function of the
two-body binding energy E (2)

r . Throughout the subfigures we
indicate by filled red and empty blue symbols the fidelities for
a heavy–light interaction of shape fL, equation (3), and fG,
equation (4), respectively. Analogous to figure 2, the top three
rows show the results for three different heavy–light thresh-
olds E (2)

1 → 0−, E (2)
2 → 0− and E (2)

3 → 0−, respectively. In the
last row we separately display the overlap |〈ψ3,n|ψ1,n〉|2. The
left and right columns distinguish the case of two heavy bosons
(n = 0, 2, 4) or fermions (n = 1, 3, 5), respectively.

A comparison of the fidelities between the two different
finite-range heavy–light interactions shows a similar behavior
as for the three-body energies. In all subfigures the correspond-
ing red and blue data sets are very close to each other and thus
suggest the universality of the wave functions of three-body
bound states.

Next, we analyze the universal behavior of the fidelities
for different weakly-bound states in the heavy–light subsys-
tems. In contrast to the results for the energies, which show
the same universal limit for all values of r, we observe that

the fidelities near the three excited-state thresholds display a
fundamentally different behavior. A fidelity of unity indicates
that the two wave functions overlap perfectly and are there-
fore identical. On the other hand a vanishing fidelity indicates
that the two wave functionsψr,n and ψ�

n are orthogonal. For the
even-numbered threshold (r = 2) the fidelities F2,n are increas-
ing and approaching unity as the threshold is approached, as
demonstrated in figures 3(c) and (d). Contrarily, for the odd-
numbered thresholds (r = 1 and r = 3) the fidelities F1,n and
F3,n are far below unity, as evident from figures 3(a), (b),
(e) and (f). However, the overlap |〈ψ3,n|ψ1,n〉|2 between the
three-body wave functions near the odd-numbered thresholds
approaches again unity as E (2)

r → 0−, see figures 3(g) and (h).
To conclude, these results for the fidelities indicate that

the three-body wave functions approach two distinct universal
limits, one for symmetric, and another one for antisymmetric
weakly-bound heavy–light states. The universal limits for the
symmetric case are those for the zero-range contact interac-
tion. On the other hand, the universal limits for the antisym-
metric case might correspond to those obtained for an odd-
wave pseudopotential [29]. We recall that such a dependence
on the symmetry of the weakly-bound heavy–light state has
not become apparent in the universal limit of the respective
three-body energies.

Finally, we analyze the universal behavior for different
excited three-body states characterized by the index n. Near
the even-numbered threshold (r = 2), the fidelities F2,n are
larger for fermionic heavy particles (odd n) than for bosonic
ones (even n) and the limit value for E (2)

2 → 0− is reached
faster. This is in accordance with the results for the energies
shown in figure 2. In contrast, near the odd-numbered thresh-
olds (r = 1 and r = 3) the overlap |〈ψ3,n|ψ1,n〉|2 shows no sig-
nificant difference between bosons and fermions. The fidelities
F1,n and F3,n are far below unity and therefore we refrain from
analyzing them in more detail.

In order to reinforce our results, we display contour plots
of the wave functions in figure 4. We restrict ourselves here to
the potential shape fG, equation (4), of the heavy–light interac-
tion and to the most deeply-bound states for the case of bosons
(n = 0) and fermions (n = 1). The wave functions are dis-
played in momentum space

P1 ≡
p1√

2
∣∣∣E (2)

r

∣∣∣
, K23 ≡

k23√
2
∣∣∣E (2)

r

∣∣∣
(19)

scaled by the two-body energy E (2)
r of the corresponding

weakly-bound heavy–light state.
The four rows distinguish the two-body thresholds r = 0

(top), r = 1 (center-top), r = 2 (center-bottom) and r = 3
(bottom). The diagrams are split into two halves, the left
one (a) corresponds to bosons (n = 0) whereas the right one
(b) corresponds to fermions (n = 1). Each half is split again
into two columns, the left column in each half displays the
wave functions for the two-body binding energy

∣∣E (2)
r

∣∣ = 10−3,
and the right column for

∣∣E (2)
r

∣∣ = 10−7. The contours of zero
value for the wave functions are highlighted by black dashed
lines.
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Figure 3. Fidelity Fr,n, equation (11), as a function of the two-body binding energy E (2)
r . We focus here on the excited-state thresholds r = 1

(top row), r = 2 (center-top row) and r = 3 (center-bottom row). Moreover, we display the overlap |〈ψ3,n|ψ1,n〉|2 (bottom row) between
the three-body wave functions associated with the odd-numbered thresholds r = 1 and r = 3. The left and right columns distinguish between
the case of two heavy bosons and two heavy fermions. The fidelities are presented for finite-range potentials of shape fL, equation (3) (filled
red symbols) and fG, equation (4) (empty blue symbols). For a mass ratio of M/m = 20 there are six three-body bound states associated
to the individual heavy–light thresholds, three each for the case of bosons or fermions.
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Figure 4. Contour plots of the normalized three-body wave functions ψr,n(K23, P1) in the space spanned by the scaled momenta,
equation (19), as obtained for the heavy–light interaction of shape fG, equation (4). The rows distinguish between the different two-body
thresholds, r = 0 (top), r = 1 (center-top), r = 2 (center-bottom) and r = 3 (bottom). The diagrams are split into two halves, corresponding
to (a) bosons (n = 0) and (b) fermions (n = 1). Each half is split again into two columns, the left column in each half shows the case of∣∣E (2)

r

∣∣ = 10−3, and the right column the case of
∣∣E (2)

r

∣∣ = 10−7. The contours where the wave functions vanish are highlighted by dashed
black lines.

First we discuss the even-numbered thresholds. The three-
body wave functions near the ground state threshold r = 0
(top) and the excited-state threshold r = 2 (center-bottom)
look already very similar for the respective state n. This sim-
ilarity is further enhanced when the two-body threshold is
approached. This behavior is in line with the fidelities increas-
ing towards unity as presented in figures 3(c) and (d). Hence,
from this we deduce that the three-body wave functions for
the even-numbered heavy–light thresholds approach the same
universal limit.

Next, we consider the odd-numbered thresholds. As
presented in figure 4, the three-body wave functions for
r = 1 (center-top) and r = 3 (bottom) are very similar, but
look fundamentally different from those obtained near the
even-numbered thresholds r = 0 (top) and r = 2 (center-
bottom). This is in agreement with the high overlap shown

in figures 3(g) and (h) and the low values of the correspond-
ing fidelities (figures 3(a), (b), (e) and (f)). As a result, this
expresses that the same universal limit of the three-body wave
functions is approached near all odd-numbered heavy–light
thresholds. However, this limit is distinct from the limit near
even-numbered thresholds.

Subsequently, we analyze the three-body wave functions
depending on the index n in order to highlight differences and
similarities between the cases of two heavy bosons (n = 0) and
fermions (n = 1). This property of the two heavy particles can
be identified for all values of r from the symmetry with respect
to the line K23 = 0, as evident from figure 4 and summarized
by equation (14). As pointed out already in section 2.4, this
statement translates in coordinate space to the same symme-
try with respect to the exchange y23 →−y23. As an example,
the three-body wave functions in coordinate representation are

9
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displayed in reference [17] for the contact interaction (r = 0).
However, already from figure 4 it is apparent that the bosonic
wave functions have parity +1, whereas the fermionic ones
have parity −1, which is summarized by equation (14).

For these two different kinds of heavy particles, we now dis-
cuss the speed of convergence towards a scale-invariant three-
body bound state when a particular two-body threshold is
approached. With scale-invariance we mean here that the wave
functions expressed in the scaled momenta, equation (19),
behave like a constant as a function of E (2)

r . Near the ground-
state threshold (r = 0) both bosonic (figure 4(a)) and fermionic
(figure 4(b)) wave functions look identical for the presented
two-body binding energies |E (2)

r | = 10−3 and |E (2)
r | = 10−7.

This is because they have already reached the scale-invariant
limit [17]. However, for the excited-state thresholds (r > 0),
the structure of the bosonic wave functions (figure 4(a))
still changes quite significantly when decreasing the two-
body binding energy. On the other hand, the fermionic wave
functions (figure 4(b)) are already much closer to the scale-
invariant regime. This behavior of the wave functions also
enables a better understanding of the results presented in
figure 3. Indeed, the fidelities for r = 2 are lower for bosons,
figure 3(c), than for fermions, figure 3(d). Consequently, we
observe a major difference between bosons and fermions in
their speed of convergence towards the scale-invariant regime.
This is in line with the results for the energy spectrum, dis-
cussed in subsection 3.1. In conclusion, we note that the dif-
ference in the wave functions having an extremum (bosons,
figure 4(a)) or zero (fermions, figure 4(b)) at the line K23 = 0
might explain this faster convergence of the energies and wave
functions for the fermionic case in comparison to the bosonic
one.

Finally, we address another aspect of the universal behav-
ior of the three-body bound states. Indeed, in each column
of figure 4, that is for fixed two-body binding energies E (2)

r ,
the wave functions for both bosons and fermions associated
with the odd-numbered thresholds (r = 1 and r = 3) look very
similar. We point out that this is true although the bosonic
ones have not yet reached the scale-invariant regime. This also
explains why the overlap |〈ψ3,n|ψ1,n〉|2 between the three-body
wave functions near odd-numbered thresholds does not display
a significant difference as shown in figure 3(g) for the bosonic,
and in figure 3(h) for the fermionic case. We expect the same
behavior when comparing the results for any two excited-state
thresholds for which the associated weakly-bound states have
the same symmetry, i.e. r = 2 and r = 4.

4. Influence of deeply-bound two-body states on
the three-body universality

In the preceding section we have found universality in the
three-body system, when the heavy–light subsystems are
tuned towards an excited-state threshold. In particular, the uni-
versality of the three-body wave functions depends on the sym-
metry of the weakly-bound state in the heavy–light subsys-
tems. A natural question therefore arises whether the universal
behavior is solely determined by this weakly-bound state.

Figure 5. Ratio ε̃2,1 of three-body binding energy to E (2)
2 for r = 2,

n = 1 and different numbers of separable terms in equations (15)
and (18) as a function of E (2)

2 . We manually include or exclude
different expansion terms as indicated in the legend. Filled symbols
display the results for the two-body interaction of shape fL,
equation (3), and empty symbols for the shape fG, equation (4),
accordingly. The exact result for the energy ratio ε2,1 in the limit
E (2)

2 → 0− is indicated by a black line.

In order to answer this question we analyze in this section
the influence of deeply-boundheavy–light states on the univer-
sal limit in the three-body system. These deeply-bound states
have a nonzero binding energy and are naturally implied when
the heavy–light subsystems are tuned close to an excited-state
threshold. We focus our attention here on the energy ratios εr,n,
equation (9).

The separable expansion [19, 20], outlined in appendix A.3,
is well suited for this analysis. Indeed, near a particular thresh-
old E (2)

r → 0−, each term in equation (15) with ν � r is related
to a deeply-bound state in the heavy–light subsystem, pro-
vided the energy arguments Eq coincide with the energy E (2)

ν

of the respective two-body state. Similarly, for Eq = E (2)
r , the

term ν = r describes the weakly-bound two-body bound state.
Thus, the influence of the deeply-bound two-body states on the
universality of three-body bound states associated to a partic-
ular threshold (r > 0) can be tested by manually including and
excluding different terms with ν < r.

Here we consider as an example the case r = 2 where
there are two (ν = 0 and ν = 1) deeply-bound states in the
heavy–light system in addition to the weakly-bound state
with ν = 2. Moreover, the fermionic case (n = 1) is chosen
because of its faster convergence in the limit of vanishing
two-body binding energy E (2)

r compared to the bosonic case.
In figure 5 we illustrate the influence of the deeply-bound
states on the energy ratio ε̃r,n. This ratio converges towards εr,n,
equation (9), provided that all expansion terms are included in
equations (15) and (18). To explore the influence of particular
expansion terms on the three-body energy, we consider differ-
ent combinations in the expansion as indicated by the legend.
Filled symbols mark the results for an interaction potential
of shape fL, equation (3), and empty ones for the shape fG,
equation (4). We consider four different combinations:
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(a) (ν = 0, 1, 2; red dots) if both deeply-bound two-body
states and the weakly-bound one are included, the ratio
ε̃2,1 converges to the limit value ε�1 for the contact interac-
tion (black line).

(b) (ν = 0, 2; yellow squares) excluding the first excited
heavy–light bound state (ν = 1) from the analysis has no
observable impact on the limit value of the energy ratio.

(c) (ν = 1, 2; purple diamonds) when excluding instead the
heavy–light ground state, described by the term ν = 0,
the energy ratio converges to a limit value that is different
from ε�1 of the contact interaction.

(d) (ν = 2; green triangles) the exclusion of both deeply-
bound states with ν = 0 and ν = 1 leads to the same
(incorrect) limit value as for (c).

As evident from figure 5 we observe that for all combi-
nations (a)–(d) the limit values for the two finite-rage poten-
tials of shape fL and fG coincide. This interaction-independent
behavior is not visibly influenced by the presence or absence
of the deeply-bound two-body states. Hence, it is the origin for
the universality of the energy ratios εr,n, equation (9), presented
in section 3.

On the other hand, the separable approximation, that is tak-
ing into account only the term ν = r = 2 corresponding to
the weakly-bound state of the heavy–light subsystem, yields
a value of ε̃r,n that does not coincide with ε2,1. Therefore, the
weakly-bound state alone is not sufficient to achieve an agree-
ment with the universal limit for the ground-state two-body
threshold. Hence, the result presented in section 3, that the
three-body energies approach the same universal limit for all
values of r, crucially relies on the presence of the deeply-bound
two-body states and cannot be explained by the weakly-bound
state ν = r = 2 alone. However, it seems that not all deeply-
bound states are equally relevant. For the example presented
here, it is the term ν = 0 that is important, whereas the term
ν = 1 has a negligible effect on ε̃2,1 in the limit E (2)

2 → 0−.
As a result, this analysis indicates that the separable approx-

imation fails in predicting the correct limiting three-body
energy ratios, whenever the heavy–light subsystems support
deeply-bound two-body states (r > 0). However, in this arti-
cle we have shown that the correct three-body energy ratios
converge to the ones for the contact interaction. Indeed, the
universal three-body energies for the finite-range potentials
can be obtained when taking into account all deeply-bound
states. A similar study on the separable approximation has
been performed in reference [21] for three identical bosons in
3D.

5. Conclusion and outlook

In this article we have investigated the universality of a quan-
tum mechanical heavy–heavy–light system constrained to 1D,
provided the heavy–light subsystem is tuned to the energy
threshold associated with a weakly-bound excited state. In
comparison to the case of the ground-state threshold [17], the
situation here differs in two main points: (i) the wave func-
tion of the weakly-bound heavy–light state has at least one

node and its symmetry can change from symmetric to anti-
symmetric, and (ii) the heavy–light subsystems now contain
additional deeply-bound states. We have analyzed the influ-
ence of both aspects on the three-body system by solving
the Faddeev equations numerically for different finite-range
potentials. Moreover, we have compared the resulting ener-
gies and wave functions to the corresponding results near the
ground-state heavy–light threshold, as represented by those
for the contact interaction.

Universality describes the property that a three-body quan-
tity becomes independent of the short-range details of the two-
body interaction potential. Since two finite-range potentials
with different long-range decay have yielded the same three-
body binding energies and wave functions, we have found an
indication of universality for these two quantities. In particu-
lar, we have demonstrated this behavior near the thresholds
corresponding to the first three excited bound states in the
heavy–light subsystem. For the ground-state threshold, univer-
sality has already been demonstrated and proven in reference
[17].

We have further compared the universality of the three-body
system for the four heavy–light thresholds characterized by
r = 0, 1, 2, 3. For the three-body binding energies, we have
observed the same universal limit across all four thresholds. In
particular, this suggests that the universal limits of the three-
body binding energies do not depend on the symmetry of the
weakly-bound heavy–light state. No fundamentally different
result is expected near thresholds of higher excited (r > 3)
heavy–light states. However, we have found that for r > 0
the speed of convergence towards the universal limit values
is slower compared to r = 0. In terms of the corresponding
three-body wave functions, we have observed two distinct uni-
versal limits, one for all symmetric (r = 0, 2, . . .), and a dif-
ferent one for all antisymmetric (r = 1, 3, . . .) weakly-bound
heavy–light states.

In addition, the universal behavior depends strongly on the
property of the two heavy particles being bosons or fermions.
In particular, close to an excited-state threshold the three-
body energy spectrum and corresponding wave functions in
the fermionic case display a scale-invariant behavior at much
larger two-body binding energies than in the bosonic one. This
is in contrast to the ground-state threshold, where no such dif-
ference between bosonic and fermionic heavy particles was
observed [17]. We want to highlight here that the characteris-
tics of the two heavy particles being bosons or fermions does
not affect the properties of the heavy–light subsystems. Any
observed difference in the three-body quantities between the
two cases is therefore a pure three-body effect.

Furthermore, we have demonstrated that for finite-range
heavy–light interactions tuned close to an excited-state thresh-
old, the separable approximation of the corresponding inter-
actions does not provide the correct universal limits of the
three-body energies. As a consequence, the universal limit
of the three-body binding energies cannot be explained with
the weakly-bound state in the heavy–light subsystems alone.
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Moreover, we note that an interaction-independent behav-
ior has been observed for all tested combinations of deeply-
bound states in the expansion. It appears that not all deeply-
bound two-body states are equally important for the universal
behavior of the three-body system.

Based on the analysis presented in this article we are con-
vinced that the three-body bound states associated with an
excited-state two-body threshold display universality. We want
to emphasize that these universal three-body states belong to
the class of so-called bound states in the continuum. There
are several possible mechanisms that can protect these partic-
ular states against decaying into continuum states, e.g. sym-
metry protection or interference of resonances. Identifying the
relevant mechanisms for the investigated three-body system
remains however a task for the future.

In order to gain a better understanding of the uni-
versal behavior, additional insight into the mechanism of
deeply-bound two-body states would be desirable. Another
approach would be to apply an adiabatic method as e.g.
the Born–Oppenheimer approximation and test whether
the three-body universality can be related to a universal
Born–Oppenheimer potential. Moreover, it would be interest-
ing to analyze whether an odd-wave pseudopotential [29, 59]
can provide the universal limit for the three-body wave func-
tions that we have observed for the odd-numbered thresholds.
Such a pseudo-potential could further help in understanding
the independence of the universal three-body energies on the
symmetry of the weakly-bound heavy–light states. Then, it
might be possible to establish a mapping between the results
for even and odd-numbered thresholds. Additionally, the strik-
ing difference in the convergence speed towards the universal
limit between heavy bosons and fermions needs further anal-
ysis. Finally, the study of three-body resonances in this one-
dimensional system poses an interesting and experimentally
relevant task.

Acknowledgments

We are very grateful to P M A Mestrom and W P Schle-
ich for fruitful discussions. LH and MAE thank the Cen-
ter for Integrated Quantum Science and Technology (IQST)
for financial support. The research of the IQST is financially
supported by the Ministry of Science, Research and Arts
Baden-Württemberg. The authors acknowledge support by the
state of Baden-Württemberg through bwHPC and the Ger-
man Research Foundation (DFG) through Grant No. INST
40/467-1 FUGG (JUSTUS cluster) and INST 40/575-1 FUGG
(JUSTUS 2 cluster).

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

Appendix A. Methods

In this appendix we derive the integral equation, equation (18),
corresponding to the three-body Schrödinger equation,

equation (7) within the Faddeev approach [20, 58] and the
separable expansion [19–21]. We consider the three-body
system as introduced in section 2.2, where the light particle
of mass m is called particle 1, and particle 2 and 3 are the two
identical heavy ones of mass M.

A.1. The Faddeev equations

We start by considering the three-body Schrödinger
equation (7) in representation-free form

(H0 + V31 + V12) |ψ〉 = E|ψ〉. (A1)

Here, H0 is the kinetic energy operator without the center-
of-mass motion, whereas V31 and V12 describe the pair-
interactions between particles 3 and 1, and particles 1 and 2,
respectively.

According to the Faddeev approach [20, 58], the solution
of the Schrödinger equation (A1) is given by the superposition

|ψ〉 ≡ |φ(2)〉+ |φ(3)〉 (A2)

of |φ(2)〉 and |φ(3)〉, related to the so-called Faddeev compo-
nents

|Φ(2)〉 ≡ G−1
0 |φ(2)〉 (A3a)

|Φ(3)〉 ≡ G−1
0 |φ(3)〉. (A3b)

Here, G0 = (E − H0)−1 is the three-body Green function cor-
responding to H0. The Faddeev components obey the Faddeev
equations

|Φ(2)〉 = T31G0 |Φ(3)〉 (A4a)

|Φ(3)〉 = T12G0 |Φ(2)〉, (A4b)

that is a system of two coupled integral equations.
The matrices T31, T12 are the T-matrices of the three-body

system if only the pair-interaction V31 between particle 3 and
1, or V12 between particle 1 and 2 respectively, is present.
Hence, T31 and T12 fulfill the Lippmann–Schwinger equation
[20]

T31 = V31 + V31G0T31 (A5a)

T12 = V12 + V12G0T12. (A5b)

A.2. Momentum representation

Three-body systems can be described in three different
arrangements of relative motions, corresponding to three sets
of so-called Jacobi momenta [20]. For {i, j, l} = {1, 2, 3} and
the two cyclic permutations thereof we denote by

ki j ≡
m jki − mik j

mi + m j
(A6)

the relative momentum between the particles i and j, whereas

pl ≡
(mi + m j)kl − ml(ki + k j)

mi + m j + ml
(A7)
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is the momentum of particle l relative to the center-of-mass
of the pair of particles i, j. The momentum and mass of each
particle are denoted by ki and mi respectively, with i = 1, 2, 3.

The relations between the Jacobi momenta read

k12(k23, p1) = −αy

2
k23 + αx p1 (A8a)

p3(k23, p1) = −k23 −
1
2

p1 (A8b)

k31(k23, p1) = −αy

2
k23 − αx p1 (A9a)

p2(k23, p1) = k23 −
1
2

p1 (A9b)

k12(k31, p2) = − α

1 + α
k31 − αxαy p2 (A10a)

p3(k31, p2) = k31 −
α

1 + α
p2, (A10b)

with the mass ratio α = M/m and the coefficients

αx ≡
1 + 2α

2(1 + α)
and αy ≡

2
1 + α

. (A11)

The system of Faddeev equations (A4a) and (A4b) can
be reduced to a single equation using the exchange symme-
try between the two identical heavy particles in the three-
body system. The exchange of particles 2 and 3 is most eas-
ily described in the set of Jacobi momenta k23 and p1 by the
transformation k23 →−k23. From equations (A8a)–(A9b) we
deduce

k31(−k23, p1) = −k12(k23, p1) (A12a)

p2(−k23, p1) = p3(k23, p1). (A12b)

We distinguish two cases: the identical particles 2 and 3
are either bosons or fermions. Depending on this property, the
total three-body wave function ψ(−k23, p1) = ±ψ(k23, p1) has
to preserve (bosons) or flip (fermions) its sign under exchange
of the two particles. This fact can be expressed in terms of the
Faddeev components via equation (A2) which yields

Φ(2)(−k12, p3) +Φ(3)(−k31, p2) = ±
[
Φ(2)(k31, p2)

+Φ(3)(k12, p3)
]

(A13)

after the application of G−1
0 .

As a result, we can relate the two Faddeev components to
each other

Φ(3)(k12, p3) = ±Φ(2)(−k12, p3) (A14a)

Φ(3)(k31, p2) = ±Φ(2)(−k31, p2). (A14b)

With help of equations (A8a)–(A9b) this allows us to cast the
total wave function in the form

ψ(k23, p1) = φ(2)

(
−αy

2
k23 − αx p1, k23 −

1
2

p1

)

± φ(2)

(
αy

2
k23 − αx p1,−k23 −

1
2

p1

)
.

(A15)

Since Φ(3) can be obtained from Φ(2) via equation (A14), it
is sufficient to only obtain the Faddeev component Φ(2) from
its Faddeev equation (A4a). In momentum representation this
equation reads

Φ(2)(k31, p2) = ±
∫∫∫∫

dk′31dp′2dk′′31dp′′2
(2π)4

× 〈k31, p2|T31(E)|k′31, p′2〉 〈k′31, p′2|G0(E)|k′′31, p′′2〉

× Φ(2)
[
−k12(k′′31, p′′2), p3(k′′31, p′′2)

]
. (A16)

Using the momentum representation of the free-particle
three-body Green function [20, 60]

〈k′, p′|G0(E)|k′′, p′′〉 = (2π)2 δ(k′ − k′′) δ(p′ − p′′)
E − 1

2 k′2 − 1
2αxαy p′2

(A17)

as well as the relation of the three-body T-matrix to the off-
shell two-body t-matrix [20, 60]

〈k, p|T31(E)|k′, p′〉 = 2π δ(p− p′) t

(
k, k′, E − 1

2
αxαy p2

)
,

(A18)
allows us to perform the integrations over p′2, k′′31 and p′′2 in
equation (A16). Expressing further via equations (A10a) and
(A10b) the momenta−k12 and p3 in terms of k31 and p2 for the
arguments of Φ(2)(−k12, p3), we arrive at the integral equation

Φ(2)(k, p) = ±
∫

dk′

2π
t
(
k, k′, E − 1

2αxαy p2
)

E − 1
2 k′2 − 1

2αxαy p2

× Φ(2)

(
α

1 + α
k′ + αxαy p, k′ − α

1 + α
p

)
.

(A19)

Here we have omitted the indices of the momenta k31 and p2.
By introducing the change of variables, k′ ≡ q + α

1+α p, we
cast equation (A19) into the form

Φ(2)(k, p) = ±
∫

dq
2π

t
(

k, q + α
1+α

p, E − 1
2αxαy p2

)
E − 1

2 q2 − 1
2 p2 − α

1+α
pq

× Φ(2)

(
p+

α

1 + α
q, q

)
(A20)

eliminating the dependence on p in the second argument of
Φ(2) inside the integral.

A.3. Separable expansion

We now transform equation (A20) into the form of a Fredholm
integral equation of the second kind. For most potentials, the
off-shell t-matrix t(k, k′, E) appearing in equation (A20) cannot
be written as a product of functions of k or k′ only. However,
it is possible to expand the t-matrix into a sum of separable
products [19–21]

t(k, k′, E) ≡
∞∑
ν=0

τν (E)gν(k, E)gν(k′, E). (A21)

13
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Here, the functions gν and τ ν ≡ −ην/(1 − ην) are determined
by the integral equation∫

dk′

2π
V(k, k′)

1
E − 1

2 k′2
gν(k′, E) = ην(E)gν(k, E) (A22)

with the momentum representation

V(k, k′) = v0

∫
dξ f (ξ)e−i(k−k′)ξ (A23)

of the heavy–light potential v(ξ) = v0 f (ξ). The functions gν

are orthonormal with respect to the relation∫
dk
2π

gν(k, E) gν′(k, E)
E − 1

2 k2
= −δν,ν′ , (A24)

where δν,ν′ denotes the Kronecker symbol.
By inserting equation (A21) into (A20), we arrive at the

expansion

Φ(2)(k, p) ≡ ±
∞∑
ν=0

gν(k, Ep)τν(Ep)ϕν(p, E) (A25)

for Φ(2) with Ep ≡ E − αxαy p2/2 and

ϕν(p, E) ≡
∫

dq
gν

(
q + α

1+α
p, Ep

)
Φ(2)

(
p+ α

1+α
q, q

)
E − 1

2 q2 − 1
2 p2 − α

1+α pq
.

(A26)
Finally, by substituting equation (A25) into (A26), we

derive a system of coupled integral equations

ϕλ(p, E) = ±
∞∑
ν=0

∫
dq
2π

τν (Eq)ϕν(q, E) (A27)

×
gλ

(
q + α

1+α p, Ep

)
gν

(
p+ α

1+αq, Eq

)
E − 1

2 q2 − 1
2 p2 − α

1+α
pq

in only a single variable for the functions ϕν (p, E).
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