CORRIGENDUM

Corrigendum: Semianalytical wavefunctions and Kohn–Sham exchange–correlation potentials for two-electron atomic systems in two-dimensions (2020 *J. Phys. B: At. Mol. Opt. Phys.* <u>53</u> 035001)

To cite this article: Rabeet Singh et al 2021 J. Phys. B: At. Mol. Opt. Phys. 54 049501

View the article online for updates and enhancements.

You may also like

- <u>Semianalytical wavefunctions and</u> <u>Kohn–Sham exchange-correlation</u> <u>potentials for two-electron atomic systems</u> in two-dimensions Rabeet Singh, Ashish Kumar, Manoj K Harbola et al.
- The Pluvinage method for alkali dimers. III. Potential energy curves for the excited states of Na₂ up to the (3p+3p) dissociation limit A Henriet and F Masnou-Seeuws
- A simple method to calculate potential curves of two-electron molecules at intermediate nuclear distances
 L D A Siebbeles and C Le Sech

This content was downloaded from IP address 3.14.253.221 on 07/05/2024 at 15:51

J. Phys. B: At. Mol. Opt. Phys. 54 (2021) 049501 (2pp)

Corrigendum

Corrigendum: Semianalytical wavefunctions and Kohn–Sham exchange–correlation potentials for two-electron atomic systems in two-dimensions (2020 *J. Phys. B: At. Mol. Opt. Phys.* 53 035001)

Rabeet Singh^{1,*}, Ashish Kumar², Manoj K Harbola² and Prasanjit Samal³

¹ Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India

² Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208016, India

³ School of Physical Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Bhubaneswar 752050, India

E-mail: rabeet@bhu.ac.in, ashishkr@iitk.ac.in, mkh@iitk.ac.in and psamal@niser.ac.in

Received 8 December 2020 Accepted for publication 22 December 2020 Published 24 February 2021

Keywords: Kohn–Sham potential, exchange–correlation potential, two-electron atomic systems, equation for the density, Le Sech wavefunction

Recently, we proposed accurate forms of the wavefunction for two-electron atomic systems in two-dimensions and calculated the exchange–correlation potentials for these systems using the Levy–Perdew–Sahni (LPS) equation. As a part of this work, we reported the results for the chemical potentials (μ) calculated by solving the LPS equation

$$\left[-\frac{1}{2}\nabla^2 + v_{\text{ext}}(\vec{r}) + v_{\text{eff}}^{\text{LPS}}(\vec{r})\right]\rho^{1/2}(\vec{r}) = \mu\rho^{1/2}(\vec{r}),$$

directly. For this, we construct the effective potential $v_{\text{eff}}^{\text{LPS}}(\vec{r})$ for Le Sech and modified Le Sech wavefunction, and then solve the LPS equation to get the chemical potential and density (ρ). The values so obtained for μ for the modified Le Sech wavefunctions given in table 7 of this paper are not correct. In this erratum, we correct these and give table 7 of the paper mentioned above with updated values of μ for the modified Le Sech wavefunctions

ORCID iDs

Rabeet Singh b https://orcid.org/0000-0001-5657-057X Ashish Kumar b https://orcid.org/0000-0001-5169-2754

^{*} Author to whom any correspondence should be addressed.

Table 7. Chemical potential μ calculated using equation (13) of the above mentioned paper, the difference $E_2 - E_1$ with $E_1 = -2Z^2$, and the highest occupied orbital eigenvalues in Kohn–Sham equation using AMGB and PRM correlation functionals with LDA exchange functional for Coulomb external potential.

	Le Sech		Modified Le Sech			
Ζ	μ	$E_2 - E_1$	μ	$E_{2} - E_{1}$	PRM	AMGB
1	-0.2371	-0.2338	-0.2377	-0.2359	-0.0370	-0.0525
2	-3.9091	-3.8880	-3.9104	-3.8924	-3.1641	-3.2038
3	-11.5698	-11.5350	-11.5709	-11.5399	-10.2891	-10.3382
4	-23.2264	-23.1784	-23.2267	-23.1836	-21.4130	-21.4674
5	-38.8809	-38.8198	-38.8803	-38.8253	-36.5365	-36.5943
6	-58.5338	-58.4598	-58.5323	-58.4655	-55.6597	-55.7199
7	-82.1858	-82.0985	-82.1831	-82.1044	-78.7826	-78.8446
8	-109.8368	-109.7361	-109.8326	-109.7423	-105.9053	-105.9687
9	-141.4869	-141.3727	-141.4812	-141.3792	-137.0277	-137.0923
10	-177.1362	-177.0081	-177.1288	-177.0151	-172.1500	-172.2155