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Abstract
The focus of this paper is the study of the inverse point-source scattering prob-
lem, specifically in relation to a certain class of electric potentials. Our research
provides a novel uniqueness result for the inverse problem with local data,
obtained from the near field pattern. Our work improves the work of Caro and
Garcia, who investigated both the direct problem and the inverse problem with
global near field data for critically singular and δ-shell potentials. The primary
contribution of our research is the introduction of a Runge approximation result
for the near field data on the scattering problem which, in combination with an
interior regularity argument, enables us to establish a uniqueness result for the
inverse problem with local data. Additionaly, we manage to consider a slightly
wider class of potentials.

Keywords: local data, scattering, low regularity, uniqueness

1. Introduction

Along the paper, we will consider real potentials in dimension d> 3 that can be written as

V= V0 + γs+αdσ, (1)

where V0 ∈ Ld/2(Rd;R), dσ denotes the surface measure of a compact hypersurface Γ which
is locally described by the graph of Lipschitz functions, α ∈ L∞(Γ;R) and γs is of the form

γs = χ2Dsg,

for some 1/2< s< 1, g ∈ L∞(Rd;R), and χ ∈ C∞(Rd; [0,1]) is a cut-off function. Here Ds

denotes the Riesz derivative, defined as D̂sf(ξ) = |ξ|ŝf(ξ). The supports of V0 and χ will be
assumed to be compact. In essence, this means that the whole potential V is compactly suppor-
ted. Note that the novel potentials that we introduce in this work are just those of the class of
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γs, while V0 and αdσ are those introduced by Caro and Garcia in [4], which they call critically
singular and δ-shell potentials, respectively.

The direct problem consists in finding the wave scattered by the potential, when an incident
wave is emitted at fixed energy by a point source away from its support. Mathematically, this
translates to finding usc solving{

(∆+λ−V)usc (� ,y) = Vuin (� ,y) in Rd,

usc (� ,y) satisfying SRC.
(S)

Here, SRC stands for Sommerfeld Radiation Condition. A function u is said to satisfy SRC if

lim
|x|→∞

|x|
d−1
2

(
x
|x|

·∇u(x)− iλ1/2u(x)

)
= 0 (2)

uniformly in every direction, and uin(x,y) = Φλ(x− y) denotes the incident wave emitted from
the point y ∈ Rd \ suppV, where Φλ represents the fundamental solution for the Helmholtz
equation with SRC, which solves the distributional problem:{

(∆+λ)Φλ = δ0 in Rd,

Φλ satisfying SRC.
(F)

The SRC is classically introduced so that the solution to the Helmholtz equation is unique and
physically corresponds to a radiating wave [28].

In section 2, we will arrive to the following theorem:

Theorem 1. Suppose V is of the form (1). Then, there exists λ0 = λ0(V,d) such that, for every
λ> λ0, there is an unique solution usc(� ,y) ∈ X∗

λ to the problem (S) for every y ∈ Rd \ suppV.
Moreover, the mapping Vuin(� ,y) 7→ usc(� ,y) is bounded from Xλ to X∗

λ.

The spacesXλ andX∗
λ are introduced in [4] and their definitionwill be given at the beginning

of section 2. The elements in the space X∗
λ can be thought of as functions with one derivative

in L2 that exhibit a certain degree of integrability in frequencies |ξ| ∼ λ1/2, and Xλ will be the
pre-dual of X∗

λ. To prove the theorem, we will follow the argument in [4] and make use of many
of their results. In Caro and Garcia’s work, the first step was to deal with the critically singular
part of the potential by obtaining an inverse for the operator∆+λ−V0 via a Neumann-series
approach.

If we denote the inverse above by (∆+λ+ i0−V0)−1, it can be applied to both sides of (S)
to turn the problem into finding the inverse of the operator

I−
(
∆+λ+ i0−V0

)−1 ◦ (αdσ+ γs) .

The appropriate framework to study this operator is the Fredholm theory, due to the fact that the
operator defined as multiplication by (αdσ+ γs) is compact from X∗

λ to Xλ. Fredholm altern-
ative assures the existence of such an inverse as long as the operator I− (∆+λ+ i0−V0)−1 ◦
(αdσ+ γs) is injective. Proving this injectivity will be equivalent to obtaining uniqueness for
the problem {

(∆+λ−V)u= 0 in Rd,

u satisfying SRC.
(H)

The fundamental ingredient here is an unique continuation argument for the operator
∆+λ−V. In our case, it will be based on a Carleman estimate proved by Caro and Rogers
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in [5] for a modified family of Bourgain-type spaces. They were themselves based on those
introduced by Haberman and Tataru in [14] to study the Calderón problem. As we will note
below, this Carleman estimate will prove to be crucial for the solution of the inverse problem.

Caro and Garcia applied this framework to invert the operator when α is in L∞(Γ). We
noticed that there was a possibility to consider a wider range of potentials here. The idea is that
αdσ acts as multiplication operator from Hs(Ω) to H−s

0 (Ω) with s< 1, where Ω is any domain
containing the support of V. Then, the fact that X∗

λ is related to H1, along with αdσ being
compactly supported, and the factH1(Ω) is compactly embedded inHs(Ω), give the necessary
ideas to prove compactness of the multiplication operator. In principle, one could hope to
consider α ∈ Lr(Γ), with r> d− 1, since αdσ would still behave as a compact multiplication
operator formH1(Ω) toH−1

0 (Ω). Nonetheless, the Carleman estimate does not seem to work in
that case, and therefore we did not manage to relax this condition in the solution of the inverse
problem.

On the other hand, we attempted to consider distributions of the form Dsg, with s< 1 and
g ∈ Lp(Rd), hoping to find a class of such distributions that generalized those of the form αdσ.
However, in principle, the set of indexes (s, p) that made the Carleman estimate work for these
distributions did not allow them to see the hypersurface Γ. Therefore, we opted to consider
potentials that could be decomposed as a sum of those of both classes.

The arguments to find the scattering solution via Fredholm theory can be found in section 2.
Here, the structure is akin to that in [4], but some proofs have to be redone in order for them
to work for our wider class of potentials.

Afterwards, in sections 3 and 4, we will devote ourselves to proving the following theorem
concerning uniqueness with partial data for the inverse problem.

Theorem 2. Consider d> 3. LetΣ1,Σ2 be two relatively open sets of dimension d− 1, separ-
ated from suppV, and that can be expressed as the graph of C2 functions, and let V1 and V2 be
two potentials of the form described in (1). Let also usc,1 and usc2 be the scattering solutions
to the problem (S) with respective potentials V1 and V2. Then, there exists λ0 = λ0(V,d) such
that, for all λ> λ0 except for at most a countable set, it holds that

usc,1|Σ1×Σ2
= usc,2|Σ1×Σ2

=⇒ V1 = V2.

From a physics perspective, we are stating that the identifiability of the potential is possible
by placing sources and detectors only in small pieces of hypersurfaces away from the support
of V. These sources will be emitting monochromatic waves with a fixed energy λ. Note that
Σ1 and Σ2 could well be the same set, or be completely separate and non-intersecting.

We will prove this theorem via an orthogonality relation in the spirit of Alessandrini’s iden-
tity for the Calderón problem [2] and the construction of CGO solutions as in [5, 16, 30]. This
orthogonality relation will be proven in section 3. The main ingredient will be a Runge approx-
imation result, indexed as proposition 3.4, given in section 3.1. We will take a bounded open
domain Ω, of class C2, whose boundary contains both Σ1 and Σ2, and the Runge approxima-
tion will allow us to approximate solutions in Ω by single layer potentials with densities that
are supported in any subset Σ⊂ ∂Ω:

Sf(x) =
ˆ
∂Ω

f(y) uto (x,y) dy,

where f ∈ C(∂Ω), supp f⊂ Σ. Here the total wave is defined as uto := uin+ usc. The result will
give an approximation in the L2 norm of a smaller open domain Ω ′ strictly contained in Ω and
containing the support of V. The proof of this lemma was inspired by that of Isakov for the
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Calderón problem for C2 conductivities [20] and that of Harrach et al for the recovery of an
L∞ scattering coefficient function in the Helmholtz equation [15]. Nonetheless, the argument
is slightly different, since we consider approximating solutions of a different kind. Also, there
are some technicalities concerning the singularities of the fundamental solutions, which have
to be treated with a little bit of care. This argument will allow us to extend an orthogonality
relation of the type

〈(V1 −V2)v1,v2〉= 0, (3)

with v1,v2 being solutions that only see Σj, to an orthogonality relation of this type for all
solutions to the equation.

However, the approximation in L2 will not be enough, due to the low integrability of our
potentials.Wewill in fact need to approximate our solutions in anH1 norm so that the solutions
can be integrated against the potential. Therefore, wewill provide in lemma 3.5 with an interior
regularity result. In particular, for any u solution of (S), we will obtain

‖u‖H1(Ω) . ‖u‖L2(Ω ′),

as long as Ω is a domain strictly contained in Ω ′ and also containing the support of V. We
will prove this inequality following an argument by Chen that appears in [6], who proved H2

regularity for second order elliptic equations with a degree of regularity that in our case would
ask for V ∈ L∞. We adapt the argument to work for our kind of potentials, which can be done
thanks to the fact that αdσ+ γs acts as a bilinear form overHs, which is an interpolation space
between L2 and H1.

Then, the obtention of the final orthogonality relation will be given in section 3.2.

Remark. It might be interesting to note that, in our case, the only sets that are given by the
problem and that have a clear physical meaning are the supports of the potentials and the
measuring sets Σ1 and Σ2. We will construct ad hoc the domains in which we obtain the
orthogonality relation (3). To make the arguments work, we need the frequency λ not to be a
Neumann eigenvalue for these domains. Since the set of Neumann eigenvalues in each domain
is countable, we can already assert that the proofs go through for all λ> λ0 except for at most
a countable set, as in the statement of theorem 2. In [29], Stefanov used the monotonicity
of Dirichlet eigenvalues with respect to domain inclusion to prove that, for any value of λ,
it is possible to construct a domain such that λ is not a Dirichlet eigenvalue. However, this
monotonicity does not seem to hold for Neumann eigenvalues for the Laplacian [11], and we
have no reason to think that it holds for −∆+V. Because of this, we have not been able to
prove the existence of an appropriate domain for every value of λ. Nonetheless, given the
amount of freedom that one has when choosing the domain, it would be reasonable to expect
that such a domain exists. The analysis of this question is left for a future work.

Finally, to end the proof of theorem 2, wewill test the aforementioned identity with a special
type of solutions, the so-called complex geometric optics (CGO) solutions. This is a classical
method that goes back to Sylvester and Uhlmann’s work [30] in the Calderón problem. In our
case, these special solutions are of the form

vj (x) = eζj·x (1+wj (x)) ,

where ζj ∈ Cd are chosen such that ζj · ζj =−λ and ζ1 + ζ2 =−iκ for an arbitrary κ ∈ Rd and
the correction term wj vanishes in a certain sense when |ζj| grows. Note that this choice of ζ j
can only be done in d> 3. In fact, the classical literature in elliptic inverse problems usually
separates the case d= 2, see for instance [19, 25] for references on the planar case.
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To prove the existence of these solutions, we will follow the construction of both Caro and
Garcia in [4] and Caro and Rogers in [5]. The key ingredient again will be the aforementioned
Carleman estimate. In particular, applying the operator (∆+λ−Vj) to vj yields

(∆+ 2ζj ·∇−V)wj = Vj.

Therefore, to construct the CGO solutions it is enough to prove injectivity of the adjoint oper-
ator (∆− 2ζj ·∇−V), which can be done via a priori estimates. We will define a family of
Bourgain spaces Xsζ via the norm

‖u‖Xsζ = ‖
(
M|<(ζ) |2 +M−1|pζ |2

)s/2
û‖L2

with M> 1, where < denotes the real part and

pζ (ξ) =−|ξ|2 + 2iζ · ξ+ ζ · ζ.

The index s= 1/2 will play an important role. Realizing that the dual of Xsζ is X
−s
−ζ , if we want

to prove the existence of solutions in X1/2
ζ with potentials V ∈ X−1/2

ζ , we will need to prove

the injectivity of the operator from X−1/2
−ζ to X1/2

−ζ . Therefore, the a priori estimate that we will
seek will be of the form

‖u‖
X1/2
−ζ

. ‖(∆− 2ζ ·∇−V) u‖
X−1/2
−ζ

.

This will be done in section 4.

2. Direct scattering

In this section, we follow the strategy by Caro and Garcia to solve the direct problem for
the point-source scattering. As the name of the problem suggests, we consider an incident
wave emitted by a point source at fixed energy λ> 0. This means that the spatial part of the
incident wave emitted at a point y ∈ Rd and measured at another point x ∈ Rd will be given
by uin(x,y) = Φλ(x− y), where Φλ is the radiating fundamental equation to the Helmholtz
equation, i.e. Φλ is the solution to the problem{

(∆+λ)Φλ = δ0 in Rd,

Φλ satisfying SRC.
(4)

We denote by (∆+λ+ i0)−1 the solution operator for the Helmholtz equation with SRC (2).
Under this notation, we canwriteΦλ = (∆+λ+ i0)−1

δ0, which for instance can be expressed
in terms of the Fourier symbol for the operator∆+λ. If we denote the modulus of this symbol
by mλ(ξ) = |λ− |ξ|2|, it can be checked that the fundamental solution Φλ is given, in the
distributional sense, as

〈Φλ, f〉=
1

(2π)d/2

[
lim
ε→0

ˆ
mλ>ε

f̂(ξ)
λ− |ξ|2

dξ− i
π

2λ1/2

ˆ
Sλ

f̂(ξ) dSλ (ξ)

]
, (5)

for f ∈ S (Rd). Here, Sλ = {ξ ∈ Rd : |ξ|= λ1/2} is the critical hypersurface of the symbolmλ,
and dSλ denotes its volume form.

5
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2.1. The free resolvent and Neumann series

As mentioned in the introduction, the scattering solution is constructed in certain spaces X∗
λ

that were considered by Caro and Garcia in [4]. In those spaces, refinements of estimates by
Agmon and Hörmander [1], by Kenig et al [23] and by Ruiz and Vega [27] give us a good
estimate for the free resolvent (∆+λ+ i0)−1. We are going to recall the definition of these
spaces. For this, we need to construct a partition of unity. Indeed, choose a functionφ ∈ S (Rd)
supported in {ξ ∈ Rd : |ξ|6 2} such that φ(ξ) = 1 whenever |ξ|6 1 and define, for k ∈ Z,
ψk(ξ) := φ(2−kξ)−φ(2−k+1ξ). Note that ψk is supported in {ξ ∈ Rd : 2k−1 6 |ξ|6 2k+1}
and

∑
k∈Zψk(ξ) = 1 for ξ 6= 0. We define the Littlewood-Paley projectors as

P̂k f(ξ) := ψk (ξ) f̂(ξ) ,

P̂6kf(ξ) :=
∑
j6k

P̂jf(ξ) = φ
(
2−kξ

)
f̂(ξ) . (6)

Now, for λ> 0, let kλ ∈ Z be such that 2kλ−1 < λ1/2 6 2kλ . Then, the set of indices in the
projectors above that see the critical frequencies is

I= {kλ − 2,kλ − 1,kλ,kλ + 1} .

For simplicity, we will call P<I := P6kλ−3. Define now the space B and its dual B∗, as in [1],
via the norms

‖ f‖B =
∑
j∈N0

(
2j/2‖ f‖L2(Dj)

)
, ‖u‖B∗ = sup

j∈N0

(
2−j/2‖u‖L2(Dj)

)
,

with Dj = {x ∈ Rd : 2j−1 < |x|6 2j} for j ∈ N and D0 = {x ∈ Rd : |x|6 1}. From now on,
denote by qd the end-point index for the Stein–Tomas trace theorem, 2/qd = (d− 1)/(d+ 1),
by pd the end-point index for the Ḣ1-Hardy–Littlewood–Sobolev embedding theorem, 1/pd =
1/2− 1/d for d> 3, and by q ′

d and p
′
d their respective Hölder conjugates. The space Xλ can

be defined as the sum of two spaces, Yλ and Zλ, which are defined as elements in f ∈ S ′(Rd)
with norms

‖ f‖2Yλ := ‖m−1/2
λ P̂<If‖2L2 +

∑
k∈I

λ−1/2‖Pk f‖2B+
∑

k>kλ+1

‖m−1/2
λ P̂k f‖2L2 ,

and

‖ f‖2Zλ := ‖m−1/2
λ P̂<If‖2L2 +

∑
k∈I

λ
d

(
1
q ′d

− 1
p ′d

)
‖Pk f‖2

Lq
′
d
+
∑

k>kλ+1

‖m−1/2
λ P̂k f‖2L2 .

The norm in Xλ will be the usual for the sum of normed spaces:

‖ f‖Xλ
= inf

g+h=f
{‖g‖Yλ + ‖h‖Zλ} .

The spaces above have respective dual spaces Y∗λ and Z∗λ defined by the norms

‖u‖2Y∗λ := ‖m1/2
λ P̂<If‖2L2 +

∑
k∈I

λ1/2‖Pk f‖2B∗ +
∑

k>kλ+1

‖m1/2
λ P̂k f‖2L2 ,

6
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and

‖u‖2Z∗λ := ‖m1/2
λ P̂<If‖2L2 +

∑
k∈I

λ
d
(

1
qd
− 1

pd

)
‖Pk f‖2Lqd +

∑
k>kλ+1

‖m1/2
λ P̂k f‖2L2 .

Then, the space X∗
λ can be defined as the dual space of Xλ, which will be isomorphic to the

intersection of Y∗λ and Z∗λ, with norm

‖u‖2X∗
λ
= ‖m1/2

λ P̂<If‖2L2 +
∑
k∈I

(
λ1/2‖Pk f‖2B∗ +λ

d
(

1
qd
− 1

pd

)
‖Pk f‖2Lqd

)
+
∑

k>kλ+1

‖m1/2
λ P̂k f‖2L2 ∼ ‖u‖2Y∗λ + ‖u‖2Z∗λ .

It will be interesting to note that the Schwartz class is dense in all the above spaces with respect
to their corresponding norms [4]. We will now obtain an estimate for the solution operator Xλ

and X∗
λ. However, let us first prove the following lemma.

Lemma 2.1. Let 16 p6∞ and s ∈ R. Define Ds as the Fourier multiplier with symbol |ξ|s.
Then, it holds that

‖DsPkf‖Lp ∼ 2ks‖Pkf‖Lp .

Proof. Fix s ∈ R. We have, by definition,

D̂sPk f(ξ) = |ξ|sψk (ξ) f̂(ξ) = 2ks
(
|ξ|
2k

)s

ψ

(
ξ

2k

)
f̂(ξ) .

If we take χ to be a smooth cut-off function such that 06 χ6 1, χ= 0 around the origin and
χ= 1 on suppψ, then

D̂sPk f(ξ) = 2ks
(
|ξ|
2k

)s

χ

(
ξ

2k

)
ψ

(
ξ

2k

)
f̂(ξ) .

Note that the function ρ(ξ) := |ξ|sχ(ξ) is compactly supported away from 0 and therefore
ρ ∈ C∞

c (Rd) for any value of s. Now,

D̂sPk f(ξ) = 2ksρ

(
ξ

2k

)
P̂k f(ξ) ,

and thus

DsPkf ∼ 2ks
[
(Pkf) ∗ 2kdρ̌

(
2k�
)]
.

Therefore, by Young’s inequality,

‖DsPk f‖Lp . 2ks‖Pk f‖Lp‖2kdρ̌
(
2k�
)
‖L1 = 2ks‖Pk f‖Lp‖ρ̌‖L1 . 2ks‖Pk f‖Lp .

Now, to get the reverse inequality, observe that

P̂kf(ξ) = |ξ|−s|ξ|sP̂k f(ξ) = F
[
D−sDsPkf

]
(ξ) ,

7
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where F denotes the Fourier transform. Therefore,

‖Pkf‖Lp ∼ ‖D−sDsPkf‖Lp . 2−ks‖DsPkf‖Lp ,

and thus

2ks‖Pkf‖Lp . ‖DsPkf‖Lp .

We are ready now for the desired estimate.

Theorem 2.2. There exists a constant C> 0 depending only on d such that

‖(∆+λ+ i0)−1 f‖X∗
λ
6 C‖ f‖Xλ

for every f ∈ S (Rd).

Proof. In [4], Caro and Garcia proved the inequalities

‖(∆+λ+ i0)−1 f‖Y∗λ .d ‖ f‖Yλ ,

and

‖(∆+λ+ i0)−1 f‖Z∗λ .d ‖ f‖Zλ .

Now, for the diagonal inequalities, note that Pk(∆+λ+ i0)−1f = (∆+λ+ i0)−1Pk f and
therefore it follows that, for any k /∈ I,

〈Pk (∆+λ+ i0)−1 f,g〉= 1

(2π)d/2

ˆ
Rd

P̂k f(ξ) ĝ(ξ)
λ− |ξ|2

dξ,

since the frequencies of Pkf are separated from Sλ. This implies, by Plancherel’s identity, that

‖m1/2
λ F

[
Pk (∆+λ+ i0)−1 f

]
‖L2 = ‖m−1/2

λ P̂k f‖L2 . (7)

On the other hand, theorem 3.1 in [27] states that, for u ∈ S (Rd) a solution of (∆+λ)u= f,

‖D1/2u‖B∗ .d λ
d
2

(
1
qd
− 1

pd

)
‖ f‖

Lq
′
d
,

where D1/2 is the Fourier multiplier with symbol |ξ|1/2. By duality, we have that

‖D1/2u‖Lqd .d λ
d
2

(
1
qd
− 1

pd

)
‖ f‖B.

Note again that, if u solves (∆+λ)u= f, then (∆+λ)Pku= Pk f, for any k ∈ Z. Thus, for
k ∈ I, we have that, since 2k ∼ λ1/2,

λ1/4‖Pku‖Lqd ∼d ‖D1/2Pku‖Lqd .d λ
d
2

(
1
qd
− 1

pd

)
‖ f‖B,

8
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where we have used lemma 2.1. This, along with (7) gives us the estimate

‖(∆+λ+ i0)−1 f‖Z∗λ .d ‖ f‖Yλ ,

and, by duality,

‖(∆+λ+ i0)−1 f‖Y∗λ .d ‖ f‖Zλ .

Applying the definition of the spaces Xλ and X∗
λ gives us the desired result.

Next, the compact support of the potential V0 lets us split it into an L∞ component and a
Ld/2 component whose norm can be as small as needed, which allows for an estimate of the
type

‖V0‖L(X∗
λ,Xλ) 6 C

(
λ1/4 + ‖1FV0‖Ld/2

)
,

where F= {x ∈ Rd : |V0(x)|> λ1/4}. With this estimate, one can construct the solution oper-
ator (∆+λ+ i0−V0)−1 via Neumann series and prove its boundedness from Xλ to X∗

λ. All
this was done by Caro and Garcia in [4], and can be summarized in the following proposition.
Note that their work was done on a ball, but their argument would be identical for any Lipschitz
domain. Therefore, for the rest of the section, we will consider a bounded domain Ω such that
suppV⊂ Ω.

Proposition 2.3 ([4]). Let Ω be a bounded Lipschitz domain. The operator defined by

(
∆+λ+ i0−V0

)−1
f =

∑
n∈N

[(
(∆+λ+ i0)−1 ◦V0

)]n−1 (
(∆+λ+ i0)−1 f

)

for any f ∈ Xλ is bounded from Xλ to X∗
λ. Moreover, u= (∆+λ+ i0−V0)−1f solves the

equation (
∆+λ−V0

)
u= fin Rd

and, if f is compactly supported in Ω, then u satisfies SRC (2).

2.2. The Fredholm alternative

Now we will construct the scattering solution usc(� ,y) as the solution of the equation[
I−
(
∆+λ+ i0−V0

)−1 ◦ (γs+αdσ)
]
usc (� ,y) = f(� ,y) in Rd (8)

with f(� ,y) = (∆+λ+ i0−V0)−1 (Vuin(� ,y)). Note that applying the operator (∆+λ−V0)
to both sides of (8) and making use of proposition 2.3, we can see that if usc(� ,y) solves (8),
then it solves the equation

(∆+λ−V) usc (� ,y) = Vuin (� ,y) in Rd.

Moreover, since

usc (� ,y) =
(
∆+λ+ i0−V0

)−1
[(γs+αdσ) usc (� ,y)+Vuin (� ,y)]

9
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and (γs+αdσ)usc(� ,y)+Vuin(� ,y) ∈ Xλ is supported in Ω, by proposition 2.3, we can con-
clude that usc(� ,y) satisfies SRC (2).

Now, we will make use of the Fredholm theory to solve the equation (8). The Fredholm
alternative theorem states that if T a compact operator on a Banach space B, then (I−T) is
invertible in B if and only if (I−T) is injective. We will justify the use of this technique in the
following propositions by proving that, in essence, multiplication by VF := γs+αdσ defines
a compact operator from X∗

λ to Xλ. Start by proving the following:

Proposition 2.4. For any bounded open domain Ω⊂ Rd, the restriction map

rΩ : X∗
λ −→ H1 (Ω)

u 7−→ u|Ω

is a bounded operator.

Proof. Let u ∈ X∗
λ and denote

uI =
∑
k∈I

Pk u, uZ\I = u− uI.

Note that rΩu= rΩuI+ rΩuZ\I, and therefore

‖rΩu‖H1(Ω) 6 ‖rΩuI‖H1(Ω) + ‖rΩuZ\I‖H1(Ω).

On the one hand, let α be a multiindex such that |α|6 1. Then, by triangle, Hölder’s and
Bernstein’s inequalities,

‖∂αuI‖L2(Ω) 6
∑
k∈I

‖∂αPk u‖L2(Ω) .
∑
k∈I

‖∂αPk u‖Lqd .
∑
k∈I

2|α|k‖Pk u‖Lqd

. λ
1
2−

d
2

(
1
qd
− 1

pd

)(∑
k∈I

λ
d
2

(
1
qd
− 1

pd

)
‖Pk u‖2Lqd

)1/2

.λ ‖u‖X∗
λ
,

while

‖uI‖L2(Ω) 6
∑
k∈I

‖Pku‖L2(Ω) 6
∑
k∈I

‖Pku‖Lqd .λ ‖u‖X∗
λ
,

so that

‖rΩuI‖H1(Ω) .λ ‖u‖X∗
λ
.

On the other hand, by Plancherel’s identity and the triangle inequality,

‖uZ\I‖2H1(Rd) 6 ‖(I−∆)
1/2 uZ\I‖2L2 = ‖

(
1+ | � |2

)1/2
ûZ\I‖2L2

6 ‖
(
1+ | � |2

)1/2
P̂<I u‖2L2 +

∑
k>kλ+1

‖
(
1+ | � |2

)1/2
P̂k u‖2L2

.λ ‖m1/2
λ P̂<I u‖2L2 +

∑
k>kλ+1

‖m1/2
λ P̂k u‖2L2 6 ‖u‖2X∗

λ
,

10



Inverse Problems 40 (2024) 065004 M Cañizares

where we have used the fact that, since

supp
(
P̂<I u

)
⊂
{
ξ ∈ Rd : |ξ|6 λ

}
and, for k> kλ + 1,

supp
(
P̂k u

)
⊂
{
ξ ∈ Rd : 2k−1 6 |ξ|6 2k+1

}
,

it follows that(
1+ |ξ|2

)1/2
P̂<I u∼ m1/2

λ (ξ) P̂<I u and
(
1+ |ξ|2

)1/2
P̂k u∼ m1/2

λ (ξ) P̂k u.

Clearly,

‖rΩuI\Z‖H1(Ω) 6 ‖uI\Z‖H1(Rd),

which proves the proposition.

Corollary 2.5. Every u ∈ X∗
λ belongs to H

1
loc(Rd).

Recall now that, if for any s> 0 we define Hs(Ω) as the space of restrictions of functions
in Hs(Rd) to Ω, we can then define H−s

0 (Ω) as the dual space of Hs(Ω).

Proposition 2.6. For any bounded open domain Ω⊂ Rd, the embedding

H−1
0 (Ω)

i
↪→ Xλ

is continuous.

Proof. We prove it by duality, using Hahn–Banach’s Theorem. Indeed, let φ ∈ C∞
0 (Ω), then

there exists u ∈ X∗
λ such that [3]

‖φ‖Xλ
=

〈u,φ〉
‖u‖X∗

λ

.λ
〈u,φ〉

‖rΩ u‖H1(Ω)

=
〈rΩ u,φ〉

‖rΩ u‖H1(Ω)

6
‖rΩ u‖H1(Ω)‖φ‖H−1

0 (Ω)

‖rΩ u‖H1(Ω)

= ‖φ‖H−1
0 (Ω),

where we have used proposition 2.4. Now,C∞
0 (Ω) is dense inH−1

0 (Ω) (proposition 2.9 in [21])
and Xλ is a Banach space [4], so the proof follows by a standard density argument.

Proposition 2.7. Let 1/2< s< 1 and define VF := γs+αdσ. There exists C> 0 such that,
for any u,v ∈ S(Rd), it holds that

|〈γsu, v〉|. ‖g‖L∞
(
‖u‖Hs(Ω)‖v‖L2(Ω) + ‖u‖L2(Ω)‖v‖Hs(Ω)

)
, (9)

where Ω is any open domain such that suppV⊂ Ω. In particular, VF acts as a bounded multi-
plication operator from Hs(Ω) to H−s

0 (Ω).

Proof. We will use the homogeneous fractional Leibniz rule [7, 24]. It is also known as Kato–
Ponce differentiation rule, since its inhomogeneous version was first given by Kato and Ponce
in [22]. Indeed, for u,v ∈ S(Rd), 1/r= 1/p1 + 1/q1 = 1/p2 + 1/q2 and s< 1 one has

‖Ds (uv)‖Lr . ‖Dsu‖Lp1‖v‖Lq1 + ‖u‖Lp2‖Dsv‖Lq2 . (10)

11
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In particular, taking r= 1, p1 = q1 = p2 = q2 = 2, one obtains

|〈γsu, v〉|= |〈χ2Dsg, uv〉|= |〈Dsg, χuχv〉|
= |〈g, Ds (χuχv)〉|6 ‖g‖L∞‖Ds (χuχv)‖L1
. ‖g‖L∞ (‖Ds (χu)‖L2‖χv‖L2 + ‖χu‖L2‖Ds (χv)‖L2) ,

where we have used Hölder’s inequality and the aforementioned Kato–Ponce rule. On the one
hand, since χ is supported in Ω,

‖χu‖L2 . ‖u‖L2(Ω) . ‖u‖Hs(Ω).

On the other hand, let any ũ ∈ S(Rd) be such that ũ|Ω = u|Ω. Using again the fractional
Leibniz rule we obtain

‖Ds (χ ũ)‖L2 .‖Dsχ‖L∞‖ũ‖L2 + ‖χ‖L∞‖Dsũ‖L2 . ‖ũ‖Hs .

Now, since χu= χ ũ, we can take infimum to obtain

‖Ds (χu)‖L2 . inf {‖ũ‖Hs : ũ|Ω = u|Ω}= ‖u‖Hs(Ω). (11)

Therefore,

|〈γsu, v〉|. ‖g‖L∞
(
‖u‖Hs(Ω)‖v‖L2(Ω) + ‖u‖L2(Ω)‖v‖Hs(Ω)

)
. (12)

Note that in particular we have that

|〈γsu, v〉|. ‖g‖L∞‖u‖Hs(Ω)‖v‖Hs(Ω),

while for the αdσ term we have that

|〈αdσu, v〉|=
∣∣∣∣ˆ

Γ

uvαdσ

∣∣∣∣6 ‖α‖L∞(Γ)‖u‖L2(Γ)‖v‖L2(Γ).

Observe that, by the trace theorem for Sobolev spaces (see, for example, [32], section 4.4.2),
for any 1/2< s< 1 it holds that

‖u‖L2(Γ) . ‖u‖Hs−1/2(Γ) . ‖u‖Hs(Ω),

so that

|〈VFu, v〉|.
(
‖g‖L∞(Rd) + ‖α‖L∞(Γ)

)
, (13)

which ends the proof of the proposition.

Proposition 2.8. The operator(
∆+λ+ i0−V0

)−1 ◦ (γs+αdσ)

is compact in X∗
λ.

Proof. By proposition 2.3, (∆+λ+ i0−V0)−1 is bounded from Xλ to X∗
λ, so we only have

to show that VF is compact form X∗
λ to Xλ. All the necessary ingredients have been laid in the

previous propositions. Just recall that the inclusion

12
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is known to be compact andH−s
0 (Ω) is continuously embedded inH−1

0 (Ω). We summarize the
argument in the following diagram:

Now, to prove existence of the scattering solution, we are only missing the injectivity of the
operator (

∆+λ+ i0−V0
)−1 ◦ (γs+αdσ) .

With the reader’s consent, wewill borrow a lemma that will be proved later in section 4, namely
lemma 4.2 concerning a Carleman estimate. This estimate works on a family of Bourgain
spaces defined by the following norm, for ζ ∈ Cd and s ∈ R,

‖u‖Xsζ = ‖
(
M|<(ζ) |2 +M−1|pζ |2

)s/2
û‖L2 , (14)

with M> 1, where < denotes the real part and

pζ (ξ) =−|ξ|2 + 2iζ · ξ+ ζ · ζ.

Lemma 4.2. Let R0 > 0 such that suppV⊂ BR0 = {x ∈ Rd : |x|< R0}. Take ϕζ(x) =

M (x·θ)2
2 + x · ζ, with ζ = τθ+ iI, θ ∈ Sd−1 and I ∈ Rd. There exists C> 0 and τ0 =

τ0(R0,V,λ) such that

‖u‖
X1/2
−ζ

6 CR0‖eφζ (∆+λ−V)
(
e−φζu

)
‖
X−1/2
−ζ

for all for u ∈ S (Rd) with suppu⊂ BR0 and τ > τ0.

Take R0 such that Ω⊂ BR0 . Now, we can check that the spaces X1/2
ζ and H1(Rd) are

equal as sets, and that, for every u ∈ H1(Rd) such that suppu⊂ Ω, we have that eφζ (∆+

λ−V)(e−φζu) is in X−1/2
−ζ . Therefore, by density, (48) also holds for every u ∈ H1(Rd) such

that suppu⊂ Ω.

Lemma 2.9. Consider d> 3. If u ∈ H1
loc(Rd) is a solution of

(∆+λ−V) u= 0 in Rd

that satisfies the SRC (2), then u has to be identically zero.

Proof. Let R> 0 and call B= {x ∈ Rd : |x|< R}. On the one hand, the restriction of u to
Rd \ suppV solves (∆+λ)u= 0. By theorem 11.1.1 in [17] this restriction is smooth, and we
have that ˆ

∂B
|∂νu− iλ1/2u|2 dS=

ˆ
∂B

|∂νu|2 +λ|u|2 + iλ1/2
(
∂νuu− ∂νuu

)
dS, (15)

13
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where I denotes the imaginary part and ∂ν = ν ·∇ the normal derivative with respect to the
vector ν = x/|x|. Using Green’s identity in B \Ω we obtain that

ˆ
∂B
∂νuu− ∂νuudS=−

ˆ
∂Ω

∂νuu− ∂νuudS.

Now, by the SRC (2), identity (15) yields

lim
R→∞

ˆ
∂B

|∂νu|2 +λ|u|2 = iλ1/2
ˆ
∂Ω

∂νuu− ∂νuudS.

Since the potential V is real-valued, Green’s identity in Ω gives us that

i
ˆ
∂Ω

∂νuu− ∂νuudS= 0,

which implies that

lim
R→∞

ˆ
∂B
λ|u|2 = 0,

and, consequently, by Rellich’s lemma, suppu⊂ Ω and u ∈ H1(Rd). Then, we can apply
inequality (48) to v= eφζu, which belongs to H1(Rd) and is supported in Ω:

‖eφζu‖
X1/2
−ζ

6 CR0‖eφζ (∆+λ−V) u‖
X−1/2
−ζ

,

where R0 is such that Ω⊂ BR0 . Finally, since (∆+λ−V)u= 0, we can conclude that u= 0.

With this last lemma, the Fredholm theory argument is completed. Therefore, we have
effectively proved the following theorem:

Theorem 1. Suppose d> 3 and V is of the form (1). Then, there exists λ0 = λ0(V,d) such
that, for every λ> λ0, there is an unique solution usc(� ,y) ∈ X∗

λ to the problem (S) for every
y ∈ Rd \ suppV.
Moreover, the mapping Vuin(� ,y) 7→ usc(� ,y) is bounded from Xλ to X∗

λ.

3. Runge approximation and Alessandrini identity

In this section, we aim to prove the following orthogonality relation, which is crucial to prove
the inverse uniqueness with local data result:

Proposition 3.1. Consider d> 3. Let V1 and V2 be two potentials of the form (1), and let
Σ1,Σ2 be two relatively open sets of dimension d− 1, separated from suppV, and that can be
expressed as the graph of C2 functions. Choose a bounded open domain Ω of class C2 such
that Σ1,Σ2 ⊂ ∂Ω, suppVj ⊂ Ω, j = 1,2.
Then, there exists λ0 = λ0(V,d) such that, for every λ> λ0 except for at most a countable

set, it holds that

usc,1|Σ1×Σ2
= usc,2|Σ1×Σ2

=⇒ 〈(V1 −V2)v1,v2〉= 0,

for all v1,v2 ∈ H1 (Ω) such that (∆+λ−Vj)vj = 0 in Ω.

14
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Wewill divide the proof of this proposition in two parts.Wewill prove that the orthogonality
relation is fulfilled for solutions that can be represented as single layer potentials with densities
supported inΣ1 andΣ2 respectively, to then extend it to every solution by approximating them
by these single layer potentials. We will start by providing with a Runge approximation result,
that allows us to do this approximation in a L2 norm. The ideas for the proof take inspiration
from [15, 20]. However, due to the low-regularity of the potential V, we need an approximation
in a space of higher regularity. Lemma 3.5 below will provide us with an estimate to make
the approximation in a H1 norm. In this section, we will constantly refer to appendix. There,
we remember some classical results regarding layer potentials and their use in solving the
Neumann problem for the Helmholtz equation, which is a key ingredient in our proof or the
Runge approximation.

3.1. Runge approximation

We will start the section by providing with two technical lemmas that make the proof of the
Runge approximation more readable. The notation Ω ′ ⊂⊂ Ω will mean here and throughout
the paper that Ω

′ ⊂ Ω. Also, note that, given the nature of γs, the integration has to be under-
stood at times as a duality pairing.

Lemma 3.2. Let V be as in (1). Let Ω ′ ⊂⊂ Ω be two open bounded domains of class C2 such
that suppV⊂ Ω ′, and let v ∈ L2(Ω) be also supported in Ω ′. Suppose that ϕ ∈ H1(Ω) is a
solution to {

(∆+λ−V) ϕ = v in Ω,

∂νϕ = 0 on ∂Ω.

Then, for every y ∈ ∂Ω, it holds thatˆ
∂Ω

ϕ(x) ∂νxuin (x,y) dS(x) =−
ˆ
Ω ′

(ϕ(x) V(x)+ v(x))uin (x,y) dx. (16)

Proof. This lemma boils down to a careful integration by parts, analyzing the singularity of
uin(x,y) when x= y. Let By,ε be the ball of radius ε> 0 centered in y ∈ ∂Ω. In appendix we
give the following expression:

∂νxuin (x,y) = G(y,x) |x− y|2−d, (17)

with G a bounded function on ∂Ω× ∂Ω. This means that |∂νxuin| is a weakly singular kernel
of order d− 2, which in turn ensures the absolute integrability of ϕ(�)∂νxuin(� ,y) in ∂Ω (see
lemma A.2 in appendix). Therefore, by the Dominated Convergence Theorem and Green’s
formula, we have

ˆ
∂Ω

ϕ(x) ∂νxuin (x,y) dS(x) = lim
ε→0

ˆ
∂Ω

(
1−1By,ε (x)

)
ϕ(x) ∂νxuin (x,y) dS(x)

= lim
ε→0

(ˆ
∂(Ω\By,ε)

ϕ(x) ∂νxuin (x,y) dS(x)

−
ˆ
(∂By,ε)∩Ω

ϕ(x) ∂νxuin (x,y) dS(x)

)
.

15
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First, we will see that the second term is negligible. Indeed, we can use again the limiting
expression for ∂νxuin in (17), that is |∂νxuin(x,y)|. |x− y|2−d when x approaches y. Changing
to polar coordinates centered in y we obtain, for ε sufficiently small,∣∣∣∣∣

ˆ
(∂By,ε)∩Ω

ϕ(x) ∂νxuin (x,y) dS(x)

∣∣∣∣∣6ε
ˆ
Sd−1
∩

|ϕ(ε,θ) |dS(θ)

.ε sup
x∈Ω\Ω ′

|ϕ(x) | ε→0−−−→ 0,

(18)

where we have denoted by Sd−1
∩ the relevant half sphere in the change of variables, and we

have used the fact that, since ϕ solves (∆+λ)ϕ = 0 in Ω \Ω ′, its restriction to that domain
is smooth by theorem 11.1.1 in [17], and therefore bounded. Next, we can use integration by
parts in Ω \By,ε to obtain
ˆ
∂(Ω\By,ε)

ϕ(x) ∂νxuin (x,y) dS(x) =
ˆ
Ω\By,ε

ϕ(x)(∆x+λ−V(x))uin (x,y) dx

−
ˆ
Ω\By,ε

(∆+λ−V(x))ϕ(x) uin (x,y) dx

+

ˆ
∂(Ω\By,ε)

∂νϕ(x) uin (x,y) dS(x) .

On the one hand, since ∂νϕ = 0 on ∂Ω, we have that
ˆ
∂(Ω\By,ε)

∂νϕ(x) uin (x,y) dS(x) =
ˆ
(∂By,ε)∩Ω

∂νϕ(x) uin (x,y) dS(x) .

Now, observing that the limiting expression for uin is

uin (x,y) = F(y,x) |x− y|2−d,

with F a bounded function on ∂Ω× ∂Ω (again refer to appendix), we can do an identical
argument as in (18) to obtain that∣∣∣∣∣

ˆ
(∂By,ε)∩Ω

∂νϕ(x) uin (x,y) dS(x) .

∣∣∣∣∣ ε→0−−−→ 0.

On the other hand, we have that (∆x+λ)uin(x,y) = 0 for x 6= y, while (∆+λ−V(x))ϕ(x)
= v(x). Therefore, since both V and v are supported in Ω ′,

ˆ
∂Ω

ϕ(x) ∂νxuin (x,y) dS(x) = lim
ε→0

ˆ
Ω ′

(−ϕ(x) V(x)− v(x))uin (x,y) dx.

However, the integral in the limit does not depend on ε in any way, and the lemma is proved.

Remember now that total wave is uto = uin+ usc, and consider the single layer potential
with density f ∈ C(∂Ω) as defined by (see appendix for details)

(Sf)(x) =
ˆ
∂Ω

f(y) uto (x,y) dS(y) , x ∈ Rd, (19)
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and the normal derivative operator as

(N f)(x) =
ˆ
∂Ω

f(y) ∂νxuto (x,y) dS(y) , x ∈ ∂Ω. (20)

Lemma 3.3. Let V be as in (1). Let Ω ′ ⊂⊂ Ω be two open bounded domains of class C2 such
that suppV⊂ Ω ′, and let v ∈ L2(Ω) also supported in Ω ′. Suppose ϕ ∈ H1(Ω) is a solution to

{
(∆+λ−V) ϕ = v in Ω,

∂νϕ = 0 on ∂Ω.

Then, it holds that

ˆ
∂Ω

(N f)(x) ϕ(x) dS(x) =−
ˆ
Ω ′

(Sf)(x) v(x) dx.

Proof. First note that scattering part usc solves (∆+λ)usc(� ,y) = 0 in Rd \ suppV as long
as y ∈ Rd \ suppV, so it is smooth away from the potential, by theorem 11.1.1 in [17], and
in particular it is smooth on ∂Ω. On the other hand, expression (17) means that |∂νxuin|
is a weakly singular kernel of order d− 2, which in turn ensures the absolute integrability
of ϕ(�)f(◦)∂νxuin(� ,◦), and allows to use Fubini’s Theorem (see lemma A.2 in appendix).
Therefore,

ˆ
∂Ω

(N f)(x) ϕ(x) dS(x) =
ˆ
∂Ω

ϕ(x)

(ˆ
∂Ω

f(y) ∂νxuto (x,y) dS(y)

)
dS(x)

=

ˆ
∂Ω

f(y)

(ˆ
∂Ω

ϕ(x) ∂νxuto (x,y) dS(x)

)
dS(y) . (21)

Now, for any y ∈ ∂Ω we obtain, by integrating by parts in Ω with respect to x,

ˆ
∂Ω

ϕ(x)∂νxusc (x,y) dS(x) =
ˆ
Ω

ϕ(x)(∆x+λ−V(x))usc (x,y) dx

−
ˆ
Ω

(∆+λ−V) ϕ(x) usc (x,y) dx

+

ˆ
∂Ω

∂νϕ(x) usc (x,y) dS(x)

=

ˆ
Ω ′

(ϕ(x) V(x) uin (x,y)− v(x) usc (x,y)) dx.

(22)

In the last identity we have used that (∆x+λ−V(x))usc(� ,y) = Vuin(� ,y) in Rd, and also that
(∆+λ−V)ϕ = v inΩ and ∂νϕ = 0 on ∂Ω, as well as the fact that both V and v are supported
in Ω ′. Joining (22) above with (16) in lemma 3.2 yields

ˆ
∂Ω

ϕ(x) ∂νxuto (x,y) dS(x) =−
ˆ
Ω ′
v(x) uto (x,y) dx.

17
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Applying this identity in (21) and using Fubini’s Theorem again yields

ˆ
∂Ω

(N f)(x) ϕ (x) dS(x) =−
ˆ
Ω ′
v(x)

(ˆ
∂Ω

f(y) uto (x,y) dS(y)

)
dx

=−
ˆ
Ω ′
v(x)(Sf)(x) dx.

Note that the single-layer potential Sf as defined in (19) belongs to H1(Ω) by lemma A.3
in appendix. Therefore, if we take two open bounded domains Ω ′ ⊂⊂ Ω of class C2, and a
relatively open subset Σ⊂ ∂Ω, we can define the following spaces:

X=
{
u ∈ H1 (Ω) : (∆+λ−V)u= 0 in Ω

}
XΣ =

{
u= Sf ∈ H1 (Ω) : f ∈ C (∂Ω) , supp f⊂ Σ

}
XΩ ′ = {u|Ω ′ : u ∈ X} ⊂ H1 (Ω ′)

XΣ
Ω ′ =

{
u|Ω ′ : u ∈ XΣ

}
⊂ H1 (Ω ′) .

Proposition 3.4 (Runge approximation). Let V a potential of the form (1). Let Σ be a rel-
atively open set of dimension d− 1, separated from suppV, and that can be expressed as the
graph of C2 functions.
Choose a bounded open domain Ω of class C2 such that Σ⊂ ∂Ω and suppV⊂ Ω, and let

Ω ′ ⊂⊂ Ω be a smooth domain such that suppV⊂ Ω ′, and such that Ω \Ω ′ is connected.
Then, there exists λ0 = λ0(V,d) such that, for every λ> λ0 except for at most a countable

set, XΣ
Ω ′ is dense in XΩ ′ under the L2(Ω ′) norm, this is, any function in XΩ ′ can be approxim-

ated by functions in XΣ
Ω ′ in this norm.

Proof. We will show that XΩ ′ ⊂ (XΣ
Ω ′)⊥

⊥
= XΣ

Ω ′ , where the orthogonal complement and
closure are taken with respect to the L2(Ω ′) inner product. Indeed, let v ∈ L2(Ω ′), and let
ϕ ∈ H1(Ω ′) such that{

(∆+λ−V) ϕ = E0v in Ω,

∂νϕ = 0 on ∂Ω,
(23)

where E0v denotes the extension by 0 of v to Ω. This ϕ will be guaranteed to exist as long as
λ is not a Neumann eigenvalue for the operator −∆+V in Ω. The set of these eigenvalues is
a countable set. For a proof of these claims, see appendix. Now, we have that

v ∈
(
XΣ
Ω ′

)⊥ ⇐⇒ 0= 〈rΩ ′u,v〉Ω ′ = 〈u,E0v〉Ω = 〈u,(∆+λ−V) ϕ〉Ω, ∀u ∈ XΣ,

Applying Green’s identity, and the fact that (∆+λ−V)u= 0 in Ω if u ∈ XΣ,

v ∈
(
XΣ
Ω ′

)⊥ ⇐⇒ 0= 〈u,(∆+λ−V) ϕ〉Ω
= 〈(∆+λ−V) u,ϕ〉Ω + 〈u,∂νϕ〉∂Ω −〈∂νu,ϕ〉∂Ω, ∀u ∈ XΣ.

⇐⇒ 0= 〈∂νu,ϕ〉∂Ω, ∀u ∈ XΣ.
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Now, since u= Sf, we have that (see lemma A.3), for x ∈ ∂Ω,

∂νu(x) =
1
2
f (x)+ (N f)(x) ,

with the operator N as defined in (20). Therefore,

v ∈
(
XΣ
Ω ′

)⊥ ⇐⇒ 0=
1
2
〈f,ϕ〉∂Ω + 〈N f,ϕ〉∂Ω, ∀f ∈ C (∂Ω) s.th. supp f⊂ Σ.

Now, by lemma 3.3, we have that, for f ∈ C(∂Ω) supported on Σ,

〈N f,ϕ〉∂Ω =−〈Sf,v〉Ω ′ = 0,

since v ∈ (XΣ
Ω ′)⊥ by assumption and Sf |Ω ′ ∈ XΣ

Ω ′ by definition. This yields

v ∈
(
XΣ
Ω ′

)⊥ ⇐⇒ 0= 〈f,ϕ〉∂Ω, ∀f ∈ C (∂Ω) s.th. supp f⊂ Σ.

Consequently,

v ∈
(
XΣ
Ω ′

)⊥ ⇐⇒ ϕ = 0 on Σ. (24)

Then, ϕ solves{
(∆+λ) ϕ = 0 in Ω \Ω ′,

∂νϕ = ϕ = 0 on Σ,

which, by the Unique Continuation property for the operator (∆−λ) [18], implies that ϕ= 0
in Ω \Ω ′. Also, since ϕ solves (∆+λ)ϕ = v in Ω \ suppV, its restriction to this set belongs
to H2(Ω \ suppV) which means that ϕ = ∂νϕ = 0 on ∂Ω ′ ⊂ Ω \ suppV.

Finally, let w ∈ XΩ ′ . We want to show that w ∈
(
(XΣ

Ω ′)⊥
)⊥

. Indeed, let v ∈ (XΣ
Ω ′)⊥ and ϕ

as in (23). Then, using Green’s Identity again,

〈w,v〉Ω ′ = 〈w,(∆+λ−V) ϕ〉Ω ′

= 〈(∆+λ−V) w,ϕ〉Ω ′ + 〈w,∂νϕ〉∂Ω ′ −〈∂νw,ϕ〉∂Ω ′

= 〈w,∂νϕ〉∂Ω ′ −〈∂νw,ϕ〉∂Ω ′ = 0,

where we have used that (∆+λ−V)w= 0 in Ω ′. This proves that XΩ ′ ⊂ XΣ
Ω ′ , which ends

the proof.

As we commented above, we need to make the approximation of proposition 3.4 in a
stronger norm than L2. This will be clear later in the proof of proposition 3.1, but the main
reason is that the potential V does not act as a bilinear operator over L2, but over H1. The next
lemma is an interior regularity result, also called Caccioppoli inequality in the literature [12].
It will allow us to getH1 convergence in a smaller set than the one in which we have proven the
L2 approximation. Both the statement and the proof of the lemma are inspired by [6]. However,
due to the nature of our potential V, we will obtain less regularity, and we will need to use both
Sobolev embeddings and interpolation of Sobolev spaces to complete the proof. Note that the
condition d> 3 will be crucial here, as for the case d= 2, the space H1 is not embedded in the
Lebesgue space with critical index p2 =∞.
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Lemma 3.5 (interior regularity). Consider d> 3. Let V be a potential of the form (1). Let
Ω ′ ⊂⊂ Ω be two Lipschitz open domains such that suppV⊂ Ω ′. Then, if u ∈ H1(Ω) solves

(∆+λ−V) u= 0 in Ω, (25)

then it holds that

‖u‖H1(Ω ′) . ‖u‖L2(Ω).

Proof. We will assume that u is a real function. For a complex u, both its real and imaginary
parts are real functions that satisfy (25), since V is real, thus the result will follow.

The weak formulation of equation (25) is
ˆ
Ω

∇u∇φ =

ˆ
Ω

(V−λ) uϕ, ∀ϕ ∈ H1
0 (Ω) . (26)

Consider now a real cut-off function η between Ω ′ and ∂Ω, namely, η ∈ C∞
0 (Ω;R) such that

η ≡ 1 in Ω ′ and 06 η 6 1 in Ω \Ω ′. Consider then the test function ϕ = η2u ∈ H1
0(Ω). With

this test function, equation (26) becomes

ˆ
Ω

|∇u|2 η2 +
ˆ
Ω

∇u2η∇ηu=
ˆ
Ω

(V−λ) u2η2.

Therefore, since suppV⊂ Ω ′,
ˆ
Ω

|∇u|2 η2 6
∣∣∣∣ˆ

Ω

∇u2ηu∇η
∣∣∣∣+ ∣∣∣∣ˆ

Ω

λu2η2
∣∣∣∣+ ∣∣∣∣ˆ

Ω

Vu2
∣∣∣∣ . (27)

Now, let us analyze these three summands separately. For the second one we have, since 06
η 6 1, ∣∣∣∣ˆ

Ω

λu2η2
∣∣∣∣6 λ

ˆ
Ω

u2 = λ‖u‖2L2(Ω). (28)

For the first one, set any 0< ε < 1. By Young’s inequality for products, we have that 2ab6
εa2 + ε−1b2 for any two a,b> 0. This, along with Cauchy-Schwartz inequality gives∣∣∣∣ˆ

Ω

∇u2ηu∇η
∣∣∣∣6εˆ

Ω

|∇u|2 η2 + ε−1
ˆ
Ω

|∇η|2 u2

6ε
ˆ
Ω

|∇u|2 η2 + ε−1‖∇η‖2L∞(Ω)‖u‖
2
L2(Ω).

(29)

Finally, in the last summand of (27) we will analyze V0 and VF = αdσ+ γs separately:∣∣∣∣ˆ
Ω ′
Vu2

∣∣∣∣6 ∣∣∣∣ˆ
Ω ′
V0u2

∣∣∣∣+ ∣∣∣∣ˆ
Ω ′
VFu2

∣∣∣∣ .
To estimate the second term, use (13) in the proof of proposition 2.7. Indeed, there existsK> 0
such that ∣∣∣∣ˆ

Ω ′
VFu2

∣∣∣∣6 K
(
‖g‖L∞(Rd) + ‖α‖L∞(Γ)

)
‖u‖2Hs(Ω ′).
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Now, note that in a domain with smooth boundary, the fractional order Sobolev space Hs(Ω ′)
is equivalent to the interpolation space between L2(Ω ′) and H1(Ω ′) with interpolation index s
(see, for example, [31]), that is

‖u‖2Hs(Ω ′) 6 ‖u‖2(1−s)
L2(Ω ′)

‖u‖2sH1(Ω ′).

Also, if we take δ > 0, using again Young’s inequality for products, we have that ab6 δ−p ap

p +

δp
′ bp

′

p ′ , for any a,b> 0 and 1
p +

1
p ′ = 1. Choosing p= 1

1−s , p
′ = 1

s gives

‖u‖2Hs(Ω ′) 6 (1− s)δ−
1

1−s ‖u‖2L2(Ω ′) + sδ1/s‖u‖2H1(Ω ′).

Therefore, since ‖u‖L2(Ω ′) 6 ‖u‖L2(Ω), we have that∣∣∣∣ˆ
Ω ′
VFu2

∣∣∣∣6 K
(
‖g‖L∞(Rd) + ‖α‖L∞(Γ)

)[
(1− s)δ−

1
1−s ‖u‖2L2(Ω) + sδ1/s‖u‖2H1(Ω ′)

]
. (30)

Now, to estimate the V0 term, let N> 0 and consider the set

F=
{
x ∈ Rd : |V0 (x) |> N

}
,

and define E= Rd \F. Then, V0 = 1EV0 +1FV0, with ‖1EV0‖L∞ = N. Then, using Hölder
inequality and the Sobolev embedding H1(Ω ′)⊂ Lpd(Ω ′),∣∣∣∣ˆ

Ω ′
V0u2

∣∣∣∣6 ∣∣∣∣ˆ
Ω ′
V01Eu

2

∣∣∣∣+ ∣∣∣∣ˆ
Ω ′
V01Fu

2

∣∣∣∣
6 N‖u‖2L2(Ω ′) + ‖V01F‖Ld/2(Ω ′)‖u‖2Lpd (Ω ′)

6 N‖u‖2L2(Ω ′) +C‖V01F‖Ld/2(Ω ′)‖u‖2H1(Ω ′), (31)

where C is the Sobolev embedding constant. Putting (28)–(31) in inequality (27) yields

(1− ε)

ˆ
Ω

|∇u|2 η2 6 C1‖u‖2L2(Ω) +C2‖u‖2H1(Ω ′),

where

C1 = λ+N+ ε−1‖∇η‖2L∞(Ω) +
(
‖g‖L∞(Rd) + ‖α‖L∞(Γ)

)
(1− s)δ−

1
1−s ,

C2 = K
(
‖g‖L∞(Rd) + ‖α‖L∞(Γ)

)
sδ1/s+C‖V01F‖Ld/2(Ω ′).

Therefore we have, again since 06 η 6 1,

(1− ε)‖u‖2H1(Ω ′) 6 C1‖u‖2L2(Ω) +C2‖u‖2H1(Ω ′),

so that

(1− ε−C2)‖u‖2H1(Ω ′) 6 C1‖u‖2L2(Ω).

Finally, since we can take ε and δ as small as we want, and we can take N as big as needed to
make ‖V01F‖Ld/2 sufficiently small so that

C2 + ε < 1.
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Therefore, we can conclude that

‖u‖H1(Ω ′) . ‖u‖L2(Ω),

and the lemma is proved.

3.2. Proof of proposition 3.1

To prove proposition 3.1 we will further need the following lemmas, whose proof can be again
be found in [4]. It might be of interest to note that, although we introduce a wider class of
potentials, the proof is based on working away from its support, and therefore it goes through
identically.

Lemma 3.6 ([4]). LetΩ be a bounded open domain of class C2. The scattering solution of (25)
satisfies the following reciprocity relation

usc (x,y) = usc (y,x) , ∀x,y ∈ Rd \ suppV.

In particular, the single layer potential S is symmetric, that is,
ˆ
∂Ω

Sfg dS=
ˆ
∂Ω

fSg dS, ∀f,g ∈ C (∂Ω) .

The following lemma is also proved in the appendix, lemma A.3. From now on, when
necessary, we will denote by u+ the trace on ∂Ω of u|Rd\Ω, and by u− the trace on ∂Ω of u|Ω.
As well, we will denote by ∂νu+ and ∂νu− the normal derivative of those, always with respect
to the outward-pointing normal vector of ∂Ω (as seen from inside Ω).

Lemma 3.7 ([4]). Consider d> 3, and let Ω be a bounded open domain of class C2. Let f ∈
C(∂Ω). Then, u= Sf is the unique solution in H1

loc(Rd) to the problem
(∆+λ−V) u= 0 in Rd \ ∂Ω,
∂νu− − ∂νu+ = f on ∂Ω,

u satisfying SRC.

After these considerations, we will proceed by first proving that the orthogonality relation
is fulfilled by solutions represented as single layer potentials with densities supported in Σ1

and Σ2. The proof is similar to that of proposition 3.3 in [4].

Lemma 3.8. Consider d> 3. Let V1 and V2 be two potentials of the form (1), and letΣ1,Σ2 be
two relatively open sets of dimension d− 1, separated from suppV, and that can be expressed
as the graph of C2 functions. Choose a bounded open domainΩ of class C2 such thatΣ1,Σ2 ⊂
∂Ω and suppVj ⊂ Ω, j = 1,2,.
Then, there exists λ0 = λ0(V,d) such that, for every λ> λ0, it holds that

usc,1|Σ1×Σ2
= usc,2|Σ1×Σ2

=⇒ 〈(V1 −V2)v1,v2〉= 0,

for all v1,v2 ∈ H1 (Ω) such that vj = Sjfj, for some fj ∈ C (∂Ω) supported in Σj.

Proof. Integrating in Ω and using Green’s identity gives

〈(V1 −V2)v1,v2〉=
ˆ
∂Ω

(v2∂νv1− − v1∂νv2−) dS, (32)
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while doing so in B \Ω, where B := {x ∈ Rd : |x|< R} gives

0=
ˆ
B\Ω

(∆+λ)v1v2

=

ˆ
∂B

(v2∂νv1 − v1∂νv2) dS−
ˆ
∂Ω

(v2∂νv1+ − v1∂νv2+) dS,

since v1 and v2 are solutions to (∆+λ)u= 0 in Rd \Ω by lemma 3.7. Here, making R→∞
and applying SRC (2) yieldsˆ

∂Ω

(v2∂νv1+ − v1∂νv2+) dS= 0. (33)

Then, inserting (33) in (32),

〈(V1 −V2)v1,v2〉=
ˆ
∂Ω

[v2 (∂νv1− − ∂νv1+)− v1 (∂νv2− − ∂νv2+)] dS. (34)

Now, since vj = Sj fj, applying lemma 3.7,

〈(V1 −V2)v1,v2〉=
ˆ
∂Ω

(S2f2 f1 −S1f1 f2) dS,

and, by lemma 3.6,

〈(V1 −V2)v1,v2〉=
ˆ
∂Ω

[S2 −S1] f1 f2 dS.

Finally, since usc,1 = usc,2 in Σ1 ×Σ2 by assumption, the kernel of S2 −S1 is supported in
(∂Ω× ∂Ω) \ (Σ1 ×Σ2), but supp( f1 ⊗ f2)⊂ Σ1 ×Σ2, so we conclude that

〈(V1 −V2)v1,v2〉= 0,

and the lemma is proved.

Now, we are set for the proof of the orthogonality relation. We restate the proposition again:

Proposition 3.1. Consider d> 3. Let V1 and V2 be two potentials of the form (1), and let
Σ1,Σ2 be two relatively open sets of dimension d− 1, separated from suppV, and that can be
expressed as the graph of C2 functions. Choose a bounded open domain Ω of class C2 such
that Σ1,Σ2 ⊂ ∂Ω, suppVj ⊂ Ω, j = 1,2.
Then, there exists λ0 = λ0(V,d) such that, for every λ> λ0 except for at most a countable

set, it holds that

usc,1|Σ1×Σ2
= usc,2|Σ1×Σ2

=⇒ 〈(V1 −V2)v1,v2〉= 0,

for all v1,v2 ∈ H1 (Ω) such that (∆+λ−Vj)vj = 0 in Ω.

Proof. Now let v1,v2 ∈ H1(Ω) be such that to (∆+λ−Vj)vj = 0 in Ω. LetΩ ′ ′ andΩ ′ be two
open domains such that

suppVj ⊂ Ω ′ ′ ⊂⊂ Ω ′ ⊂⊂ Ω, j = 1,2,

23



Inverse Problems 40 (2024) 065004 M Cañizares

and let (v(m)j )m∈N ⊂ XΣj , j = 1,2, be two sequences such that v(m)j
L2(Ω ′)−−−−→ vj, which exist in

virtue of proposition 3.4, meaning that v(m)j = Sjf(m)j for some f(m)j supported in Σj. Then,

〈(V1 −V2)v1,v2〉= 〈(V1 −V2)
(
v1 − v(m)1

)
,v2〉+ 〈(V1 −V2)v

(m)
1 ,v2 − v(m)2 〉

+ 〈(V1 −V2)v
(m)
1 ,v(m)2 〉. (35)

By lemma 3.8, we have that

〈(V1 −V2)v
(m)
1 ,v(m)2 〉= 0, ∀m ∈ N. (36)

We will now show that the two first summands converge to zero as m→∞. Note first that, for
φ,ϕ ∈ H1(Ω ′ ′), it holds that

〈V0
j φ,ϕ〉6 ‖V0

j ‖Ld/2 ‖φ‖Lpd (Ω ′ ′) ‖ϕ‖Lpd (Ω ′ ′) . ‖φ‖H1(Ω ′ ′)‖ϕ‖H1(Ω ′ ′),

and

〈VFφ,ϕ〉.
(
‖g‖L∞(Rd) + ‖α‖L∞(Γ)

)
‖φ‖Hs(Ω ′ ′) ‖ϕ‖Hs(Ω ′ ′) . ‖φ‖H1(Ω ′ ′)‖ϕ‖H1(Ω ′ ′).

We have used in the estimates above the Hardy–Littlewood–Sobolev inequality and inequal-
ity (13) in proposition 2.7. Therefore, lemma 3.5 yields

〈(V1 −V2)
(
v1 − v(m)1

)
,v2〉. ‖v1 − v(m)1 ‖H1(Ω ′ ′) ‖v2‖H1(Ω ′ ′) . ‖v1 − v(m)1 ‖L2(Ω ′). (37)

In the second summand we proceed as in the first one. Note that, since v(m)1 are also solutions
in H1(Ω) of (∆+λ−V)u= 0, by lemma 3.5,

‖v(m)1 ‖H1(Ω ′ ′) 6 ‖v(m)1 ‖L2(Ω ′), ∀m ∈ N,

and, since (v(m)1 )m∈N is a convergent sequence, it must also be bounded. This is, ∃C> 0 such
that

‖v(m)1 ‖L2(Ω ′) 6 C, ∀m ∈ N.

Thus, we obtain

|〈(V1 −V2)v
(m)
1 ,v2 − v(m)2 〉|. ‖v2 − v(m)2 ‖L2(Ω ′). (38)

By putting (36)–(38) in (35) we obtain

|〈(V1 −V2)v1,v2〉|. ‖v1 − v(m)1 ‖L2(Ω ′) + ‖v2 − v(m)2 ‖L2(Ω ′)
m→∞−−−−→ 0,

which proves our statement.
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4. CGO solutions and proof of theorem 2

Now that we have proved the Alessandrini-type identity in proposition 3.1, we can test it with
the CGO solutions. These will be solutions of the form

vj (x) = eζj·x (1+wj (x)) , (39)

for some ζj ∈ Cd. We will follow once again the arguments in [4, 5] for this section. In partic-
ular, applying the operator (∆+λ−V) in (39) yields

(∆+ 2ζj ·∇+ ζj · ζj+λ−V)wj = V−λ− ζj · ζj.

Now if ζ j are chosen such that ζj · ζj =−λ, we obtain

(∆+ 2ζj ·∇−V)wj = V.

Therefore, to prove the existence of these solutions, it is enough to prove injectivity of the
formal adjoint (∆− 2ζj ·∇−V). This can be done via a priori estimates. This estimate will
be proved in section 4.1 in the relevant spaces, based on a Carleman estimate for the Laplacian
by Caro and Rogers [5], that can be perturbed to include the potentials V. The inequalities will
be analogous to those in [4, 5] but, besides adding the potential γs, we will follow a slightly
different order in rotating the inequalities and adding the potentials.

Later, in section 4.2 we will end the proof of theorem 2. We will further choose ζ j to fulfill
ζ1 + ζ2 =−iκ for an arbitrary κ ∈ Rd -which is possible in dimension d> 3-, and the correc-
tion term wj will vanish in a certain sense when |ζj| grows. Here the approach will be based in
[4, 5, 13].

4.1. Existence of CGO solutions

Aswementioned in the introduction, we will prove the existence of CGO solutions via a priori
estimates. For s ∈ R and ζ ∈ Cd we define the inhomogeneous Bourgain space Xsζ as the space
of distributions u ∈ S ′(Rd) such that û ∈ L2loc(Rd) and

‖u‖Xsζ = ‖
(
M|<(ζ) |2 +M−1|pζ |2

)s/2
û‖L2 <∞,

endowed with the norm ‖�‖Xsζ , with M> 1, where < denotes the real part and

pζ (ξ) =−|ξ|2 + 2iζ · ξ+ ζ · ζ.

These spaces were originally considered by Haberman and Tataru in [14], then by Haberman in
[13], by Caro and Rogers in [5], and by Caro and Garcia in [4]. To prove the a priori estimate,
we draw from theorem 2 in [5]. From now on, set ζ = τθ+ iI, with τ > 0, θ ∈ Sd−1, I ∈ Rd,
and ζ · ζ 6 0, and define

ϕζ (x) =M
(x · θ)2

2
+ x · ζ.

Then, theorem 2 in [5] is roughly equivalent to the following:
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Theorem 4.1 ([5], theorem 2). Take R0 > 0. There is an absolute constant C> 0 such that, if
M> CR2

0 then,

‖u‖
X1/2
−τen

6 CR0‖eφτen∆
(
e−φτenu

)
‖
X−1/2
−τen

for u ∈ S (Rd) with suppu⊂ BR0 = {x ∈ Rd : |x|< R0} and τ > 8MR0.

We will transform the inequality to make it work for an arbitrary ζ. If for ζ = τθ+ iI as
above we take Q ∈ SO(d) to be a rotation such that Qen = θ, and denote by QT its transpose,
and by Q∗ its pullback, then it is easy to check that ϕτen = Q∗ϕτθ and p−τen = Q∗p−τθ. Thus,
if u ∈ S (Rd) with suppu⊂ BR0 and τ > 8MR0, we have

‖u‖
X1/2
−τθ

= ‖Q∗u‖X1/2
−τen

6 CR0‖eφτen∆
(
e−φτenQ∗u

)
‖
X−1/2
−τen

= CR0‖Q∗
[
eφτen∆

(
e−φτenu

)]
‖
X−1/2
−τen

= CR0‖eφτθ∆
(
e−φτθu

)
‖
X−1/2
−τθ

,

wherewe have used theorem 4.1 and the fact that rotations commute bothwith the laplacian and
the Fourier transform. On the other hand, if ζ = τθ+ iI and we denote by NI the translation
operator by I ∈ Rd, it is again easy to check that p−ζ =NIp−τθ. Therefore, keeping in mind

that N−I û(ξ) = ê−iI·u(ξ), we obtain

‖u‖
X1/2
−ζ

= ‖e−iI�u‖
X1/2
−τθ

6 CR0‖eφτθ∆
(
e−φτθe−iI�u

)
‖
X−1/2
−τθ

= CR0‖e−iI�eφζ∆
(
e−φζu

)
‖
X−1/2
−τθ

= CR0‖eφζ∆
(
e−φζu

)
‖
X−1/2
−ζ

.
(40)

Nowwe can perturb this inequality with the term λ−V in the operator. The following inequal-
ities will be of interest during the whole argument. For any ζ ∈ Cd such that ζ · ζ 6 0 and u
compactly supported, we have the following

‖u‖L2 6M−1/4|<(ζ) |−1/2‖u‖
X1/2
ζ

, (41)

‖u‖Lpd .M1/4‖u‖
X1/2
ζ

. (42)

Inequality (42) is a direct consequence of Haberman’s embedding [13]

‖u‖Lpd . ‖u‖
Ẋ1/2
ζ

, (43)

where the space Ẋsζ is defined by the norm ‖u‖Ẋsζ = ‖|pζ |s û‖L2 .We are going to quantify (λ−

V)u in X−1/2
ζ by duality. Remember that in our case |<(ζ)|= τ . Start by estimating λu with

S (Rd). Let v ∈ S (Rd), then by Cauchy–Schwartz inequality,

|〈λu,v〉|6 λ‖u‖L2‖v‖L2 6 λM−1/2τ−1‖u‖
X1/2
ζ

‖v‖
X1/2
ζ

. (44)

Next, to estimate the term V0u, we can split the potential as in the proof of lemma 3.5.
Indeed, consider the set F= {x ∈ Rd : |V0(x)|> N}, and define E= Rd \F. Then, V0 =
1EV0 +1FV0, with ‖1EV0‖L∞ = N, and therefore by Cauchy–Schwartz and Hölder inequalit-
ies, as well as (41) and (42),

|〈V0 u,v〉|6 N‖u‖L2‖v‖L2 + ‖1FV0‖Ld/2‖u‖Lpd‖v‖Lpd .

6
(
NM−1/2τ−1 +M1/2‖1FV0‖Ld/2

)
‖u‖

X1/2
ζ

‖v‖
X1/2
ζ

.
(45)

26



Inverse Problems 40 (2024) 065004 M Cañizares

For the term α dσ, we need to use the Besov space version of theorem 14.1.1 in [17], which
gives us a trace boundedness ‖u‖L2(Γ) 6 ‖u‖

Ḃ1/2
2,1
. Remember that the Besov spaces Ḃsp,q are

given by the following norms, using Littlewood-Paley projectors as defined in (6):

‖u‖Ḃsp,q =

(∑
k∈Z

2kqs‖Pku‖qLp

)1/q

.

Indeed, by Cauchy–Schwartz and Hölder inequalities,

|〈αdσu,v〉|6 ‖α‖L∞(Γ)‖u‖L2(Γ)‖v‖L2(Γ) 6 ‖α‖L∞(Γ)‖u‖Ḃ1/2
2,1
‖v‖

Ḃ1/2
2,1
.

Now, estimate separately high and low frequencies. Let kτ ∈ Z be such that 2kτ−1 < τ 6 2kτ .

Then, if k> kτ + 1, we have that 2k/2|P̂ku(ξ)| ∼ 2−k/2|pζ(ξ)|1/2|P̂ku(ξ)|, so that for the high
frequencies we have that, by Plancherel’s identity,∑

k>kτ+1

2k/2‖Pku‖L2 ∼
∑

k>kτ+1

2−k/2‖|pζ |1/2P̂ku‖L2 6 τ−1/2M1/4‖u‖
X1/2
ζ

,

while for the low frequencies∑
k6kτ+1

2k/2‖Pku‖L2 . τ 1/2‖u‖L2 6M−1/4‖u‖
X1/2
ζ

.

Therefore, combining the previous inequalities, we have that there exist a constantC ′ > 0 such
that

|〈αdσu,v〉|6 C ′‖α‖L∞(Γ)

(
M−1/2 + τ−1/2 + τ−1M1/2

)
‖u‖

X1/2
ζ

‖v‖
X1/2
ζ

. (46)

Finally, for γs, use proposition 2.7 to obtain

|〈γsu,v〉|6 C ′ ′‖g‖L∞ (‖Dsu‖L2‖v‖L2 + ‖u‖L2‖Dsv‖L2) .

Split again in high and low frequencies:

‖Dsu‖L2 6
ˆ
Rd

|ξ|2s |û(ξ) |2 dξ =

ˆ
|ξ|<τ

|ξ|2s |û(ξ) |2 dξ+
ˆ
|ξ|>τ

|ξ|2s |û(ξ) |2 dξ.

On the one hand, for the low frequencies, clearly

ˆ
|ξ|<τ

|ξ|2s |û(ξ) |2 dξ 6 τ 2s ‖u‖2L2 6 τ 2s−1M−1/2 ‖u‖2
X1/2
ζ

,

while for the high frequencies, having in mind that we assumed s< 1,

ˆ
|ξ|>τ

|ξ|2s |û(ξ) |2 dξ 6
ˆ
|ξ|>τ

|ξ|2(s−1) |pζ (ξ) | û(ξ) dξ 6 τ 2(s−1) ‖|pζ |1/2 û‖2L2

6τ 2(s−1)M1/2 ‖u‖2
X1/2
ζ

.
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Therefore, we have that

‖Dsu‖L2 6
(
τ s−1/2M−1/4 + τ s−1M1/4

)
‖u‖

X1/2
ζ

,

which yields

|〈γsu,v〉|6 C ′ ′‖g‖L∞
(
τ s−1M−1/2 + τ s−3/2

)
‖u‖

X1/2
ζ

‖v‖
X1/2
ζ

. (47)

Now, sum inequalities (44)–(47), and chooseM> CR2
0 so that CR0C ′M−1/2‖α‖L∞(Γ) 6 1/4,

then choose N such that CR0M1/2‖1FV0‖Ld/2 6 1/4, and finally choose τ > 8MR0 so that

CR0

[
(λ+N)M−1/2τ−1 +C ′‖α‖L∞(Γ)

(
τ−1/2 + τ−1M1/2

)
+C ′ ′‖g‖L∞

(
τ s−1M−1/2 + τ−3/2

)]
< 1/4.

With this previous discussion we can prove what is summarized in the following lemma:

Lemma 4.2. Let R0 > 0 such that suppV⊂ BR0 = {x ∈ Rd : |x|< R0}. Take ϕζ(x) =

M (x·θ)2
2 + x · ζ, with ζ = τθ+ iI, θ ∈ Sd−1 and I ∈ Rd. There exists C> 0 and τ0 =

τ0(R0,V,λ) such that

‖u‖
X1/2
−ζ

6 CR0‖eφζ (∆+λ−V)
(
e−φζu

)
‖
X−1/2
−ζ

(48)

for all for u ∈ S (Rd) with suppu⊂ BR0 and τ > τ0.

Next, note that

∆
(
e−ζ·xu

)
= e−ζ·u (∆− 2ζ ·∇+ ζ · ζ) u,

and thus lemma 4.2 yields

‖u‖
X1/2
−ζ

6 CR0‖eM
(�·θ)2

2 (∆− 2ζ ·∇+ ζ · ζ +λ−V)

(
e−M (�·θ)2

2 u

)
‖
X−1/2
−ζ

.

Now we proceed to remove the remaining exponential factors. Take u= eM
(�·θ)2

2 v with v ∈
S (Rd) supported in BR0 , then

‖eM
(�·θ)2

2 v‖
X1/2
−ζ

6 CR0‖eM
(�·θ)2

2 (∆− 2ζ ·∇+ ζ · ζ +λ−V)v‖
X−1/2
−ζ

. (49)

Additionaly, if we prove that

‖eM
(�·θ)2

2 χw‖
X1/2
ζ

. ‖w‖
X1/2
ζ

, (50)

it will follow by duality that∥∥∥∥eM (�·θ)2
2 v‖

X1/2
−ζ

. ‖(∆− 2ζ ·∇+ ζ · ζ +λ−V)v

∥∥∥∥
X−1/2
−ζ

,

while if

‖e−M (�·θ)2
2 w‖

X1/2
ζ

. ‖w‖
X1/2
ζ

, (51)
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then again by duality

‖v‖
X1/2
−ζ

. ‖eM
(�·θ)2

2 v‖
X1/2
−ζ

.

Above χ(x · θ) = χ0(x · θ/R) with χ0 a cutoff C∞
0 (R; [0,1]) function such that χ0(t) = 1 for

|t|6 2 and χ0(t) = 0 for |t|> 4. Putting inequalities (49)–(51) we will obtain

‖v‖
X1/2
−ζ

6 C ′R0‖(∆− 2ζ ·∇+ ζ · ζ +λ−V)v‖
X−1/2
−ζ

,

with a new constant C ′ > 0. To indeed prove (50) and (51) we draw next lemma from [5]:

Lemma 4.3 ([5], lemma 2.2). Let f ∈ S (R) be a function of the xn variable. If u ∈ S (Rd)
and τ >M> 1, then

‖fu‖
X1/2
τen

. ‖p̂f‖L1(R)‖u‖X1/2
τen
,

where p(ξ) = (M−1|ξ|+ 1)2.

As before, we can transform the inequality to make it work for an arbitrary ζ as we did
above, and for a f that depends on the variable x · θ, which can be represented as QT

∗f, with
θ = Qen. On the one hand,

‖QT
∗fu‖X1/2

τθ

= ‖fQ∗u‖X1/2
τen

. ‖p̂f‖L1(R)‖Q∗u‖X1/2
τen

= ‖p̂f‖L1(R)‖u‖X1/2
τθ

,

while if ζ = τθ+ iI, then

‖fu‖
X1/2
ζ

= ‖eiI�fu‖
X1/2
τθ

. ‖p̂f‖L1(R)‖eiI�u‖X1/2
τθ

= ‖p̂f‖L1(R)‖u‖X1/2
ζ

.

We summarize all this discussion in the following lemma:

Lemma 4.4. Take R0 > 0 such that suppV⊂ BR0 . There exists C> 0 and τ0 = τ0(R0,V,λ)
such that

‖u‖
X1/2
−ζ

6 CR0‖(∆− 2ζ ·∇+ ζ · ζ +λ−V)u‖
X−1/2
−ζ

for all for u ∈ S (Rd) with suppu⊂ BR0 and τ > τ0.

To prove the existence of CGO solutions we should introduce a couple of natural spaces.
Let Ω be a bounded open domain of class C2 such that suppVj ⊂ Ω, j = 1,2, and, for ζ ∈ Cd

and s> 0 define

Xsζ (Ω) =
{
u|Ω : u ∈ Xsζ

}
,

endowed with the norm

‖u‖Xsζ(Ω) = inf
{
‖v‖Xsζ : v|Ω = u

}
,

and

Xsζ,c (Ω) =
{
u ∈ Xsζ : supp u⊂ Ω

}
,
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endowed as well with the norm ‖�‖Xsζ(Ω). The space X
−s
−ζ,c(Ω) is defined as the dual space of

Xsζ(Ω), and it is easy to check that it can be identified with the space of distributions in X−s
−ζ

whose support lays inside Ω. In this context, the a priori estimate in lemma 4.4 works in the
space X−1/2

−ζ,c (Ω), so that the solutions can be constructed in X
1/2
ζ (Ω), as stated in the following

proposition.

Proposition 4.5. Consider d> 3, let Ω be a bounded open domain of class C2 and let R0 > 0
such that suppV⊂ Ω⊂ BR0 . There exist a constant τ0 = τ0(R0,V,λ) such that, for every τ >
τ0, and every ζ = <(ζ)+ i=(ζ) ∈ Cd such that |<(ζ)|= τ , |=(ζ)|= (τ 2 +λ)1/2 and <(ζ) ·
=(ζ) = 0, there exist wζ ∈ X1/2

ζ (Ω) so that vζ = eζ·x(1+wζ) is a solution to the equation
(∆+λ−V)vζ = 0 in Ω and

‖wζ‖X1/2
ζ (Ω)

. ‖V‖
X−1/2
ζ

. (52)

4.2. Proof of theorem 2

With proposition 4.5, we can construct the kind of special solutions that we are looking for,
with ζj · ζj =−λ. Besides, we need ζ j to satisfy that ζ1 + ζ2 =−iκ for an arbitrary given κ ∈
Rd. We can explicitly construct these ζ j by choosing η,θ ∈ Sd−1 such that η · θ = η ·κ= θ ·
κ= 0. Now, for τ > |κ|2

4 −λ we can set

ζ1 = τθ+ i

[
−κ
2
+

(
τ 2 +λ− |κ|2

4

)1/2

η

]
,

ζ2 =−τθ+ i

[
−κ
2
−
(
τ 2 +λ− |κ|2

4

)1/2

η

]
,

(53)

which satisfy both ζj · ζj =−λ and ζ1 + ζ2 =−iκ. Then, if we take τ >max{τ0,( |κ|
2

4 −
λ)1/2}, these ζ j satisfy the conditions of proposition 4.5. Let then V1 and V2 be two potentials
of the form (1), and let vj be the CGO solutions corresponding to ζ j and Vj, j = 1,2. If we

consider any extension of wj ∈ X1/2
ζj

(Ω) to X1/2
ζj

, this extension will be in H1(Rd). Then, wj
belongs to H1(Ω) and so does vj. Therefore, we can apply proposition 3.1 and, plugging v1
and v2 in the orthogonality relation

〈(V1 −V2)v1,v2〉= 0,

we get

〈V1 −V2,e
−iκ·x〉=−〈V1 −V2,e

−iκ·xw1〉− 〈V1 −V2,e
−iκ·xw2〉

− 〈(V1 −V2)w1,e
−iκ·xw2〉.

(54)

We would like this terms to vanish. For the first two terms on the right hand side we have that,
by duality,

|〈V1 −V2,e
−iκ·xwj〉|6 ‖V1 −V2‖X−1/2

ζj,c
(Ω)

‖e−iκ·xwj‖X1/2
ζj

(Ω)

. (1+ |κ|) ‖V1 −V2‖X−1/2
ζj

‖Vj‖X−1/2
ζj

,
(55)
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where in the last inequality we have used that supp(V1 −V2)⊂ Ω, inequality (52) and the
following:

‖e−iκ·xwj‖X1/2
ζj

(Ω)
. (1+ |κ|) ‖wj‖X1/2

ζj
(Ω)
. (56)

On the other hand, the third term can be bounded again by duality as

|〈(V1 −V2)w1,e
−iκ·xw2〉|6 ‖(V1 −V2)w1‖X−1/2

ζ2,c
(Ω)

‖e−iκ·xw2‖X1/2
ζ2

(Ω)

. (1+ |κ|) ‖(V1 −V2)w1‖X−1/2
ζ2

‖V2‖X−1/2
ζ2

where we have used again (52), (56) and the fact that supp(V1 −V2)w1 ⊂ Ω. Now, to keep
estimating this term, we need boundedness of the operator multiplication by V1 −V2 from
X1/2
ζ1

(Ω) to X−1/2
ζ2

. In fact, let V be a potential of the form (1) and w ∈ X1/2
ζ1

. Proceeding just as

in section 4.1, we obtain that, for φ ∈ X1/2
ζ2

,

|〈Vw,φ〉|.
(
‖V0‖Ld/2 + ‖α‖L∞(Γ) + ‖g‖L∞

)
‖u‖

X1/2
ζ1

‖φ‖
X1/2
ζ2

,

where the implicit constant depends only on V and d, and u ∈ X1/2
ζ is an arbitrary extension of

w to Rd. Taking the infimum over the norm of u gives us the desired boundedness, i.e.

‖(V1 −V2)w1‖X−1/2
ζ2

. ‖w1‖X1/2
ζ1

(Ω)
,

to estimate the last summand in (54) as

|〈(V1 −V2)w1,e
−iκ·xw2〉|. (1+ |κ|) ‖w1‖X1/2

ζ1
(Ω)

‖V2‖X−1/2
ζ2

. (1+ |κ|) ‖V1‖X−1/2
ζ1

‖V2‖X−1/2
ζ2

,
(57)

where again we have used (52). Therefore, adding inequalities (55) and (57) gives

|〈V1 −V2,e
−iκ·x〉|. (1+ |κ|)

2∑
j,k=1

‖Vj‖X−1/2
ζk

2∑
l,m=1

‖Vl‖X−1/2
ζm

(58)

We now want to show that the right-hand side of (58) goes to zero in some sense as τ grows.
This can be done in average, as showed by Haberman and Tataru in [14]. We state it in the
following lemma, almost identical to lemma 3.5 in [4], with the only addition of the new
component of the potential γs. We repeat the proof here just for the sake of completeness.

Lemma 4.6. Let V be a potential of the form (1) and fix ν ∈ Sd−1 and r> 0. For ζ ∈ Cd of the
form (53), denote ζ = ζ(τ,T) with κ= rTν for some T ∈ SO(d). Then for every s ∈ (1/2,1)
and M> 1, it holds that

1
M

ˆ 2M

M

ˆ
SO(d)

‖V‖2
X−1/2
ζ(τ,T)

dµ(T) dτ .M−ω‖V0‖2Ld/2 +M−2(1−s)
(
‖α‖2L∞(Γ) + ‖g‖2L∞

)
,
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where

ω =

{
1/2 d= 3

1/4 d> 4,

the implicit constant depends on V and d, and µ denotes the Haar measure on SO(d).

Proof. First, for the critically singular part, if d> 4,

‖V0‖
X−1/2
ζ(τ,T)

6 τ−1/2‖V0‖L2 . τ−1/2‖V0‖Ld/2 ,

sinceV0 is compactly supported and d/2> 2 for d> 4. In the case d= 3, by the dual inequality
to Haberman’s embedding (see corollaries 4.8 and 4.22 in [4]),

‖V0‖
X−1/2
ζ(τ,T)

6 τ−d(1/p ′
d−1/q ′

d )‖V0‖
Lq

′
d
. τ−1/4‖V0‖Ld/2 ,

since d/2> q ′
d for d= 3. For the remaining components, use lemma 5.2 in [13], which states

that for f ∈ Ḣ−1, it holds that

1
M

ˆ 2M

M

ˆ
SO(d)

‖ f‖2
X−1/2
ζ(τ,T)

dµ(T) dτ .M−1‖Lf‖2Ḣ−1/2 + ‖Hf‖2Ḣ−1 ,

where L̂f= 1|ξ|<2M̂f and Hf = f−Lf stand the low and high frequencies of f, respectively.
Now, for every 1/2< s< 1, we obtain

1
M

ˆ 2M

M

ˆ
SO(d)

‖ f‖2
X−1/2
ζ(τ,T)

dµ(T) dτ .M−2(1−s)‖ f‖2Ḣ−s .

On the one hand, since supp(αdσ)⊂ Ω,

‖αdσ‖2Ḣ−s . ‖αdσ‖2H−s . ‖α‖L2(Γ) . ‖α‖L∞(Γ),

where we have used the dual inequality of the usual trace theorem for Sobolev spaces, as well
as the fact that Γ has finite measure. On the other hand, since γs = χ2Ds g with suppχ⊂ Ω, it
follows that for u ∈ S(Rd),

|〈γs,u〉|6 ‖g‖L∞(Rd)‖Ds
(
χ2u
)
‖L2 . ‖g‖L∞(Rd)‖u‖Ḣs ,

where the last inequality comes by proceeding as in (11). Therefore,

‖γs‖Ḣ−s . ‖g‖L∞(Rd),

which ends the proof of the lemma.

To end the proof of theorem 2, we use an argument that Haberman [13] attributes to Nguyen
and Spirn [26]. Indeed, if we fix r> 0 and ν ∈ Sd−1 and denote ζ = ζ(τ,T) as in lemma 4.6
above, we have that

lim
M→∞

1
M

ˆ 2M

M

ˆ
SO(d)

‖V‖2
X−1/2
ζ(τ,T)

dµ(T) dτ = 0,
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and, for any ε> 0, by simply restricting to Bε = {T ∈ SO(d) : ‖T− I‖6 ε} with I the identity
map, we get that

lim
M→∞

1
Mµ(Bε)

ˆ 2M

M

ˆ
Bϵ

‖V‖2
X−1/2
ζ(τ,T)

dµ(T) dτ = 0.

Now, take a sequence M=Mn such that Mn →∞ as n→∞. Since the quantity in the limit
above is an average, we may choose sequences τε,n, Tε,n and δε,n > 0 such that

‖V‖
X−1/2

ζ(τε,n,Tε,n)
6 δε,n,

and such that δε,n → 0 as n→∞. Therefore, going back to (58), we obtain

|V̂1 −V2 (κε,n) |= |〈V1 −V2,e
−iκε,n·x〉|. δ2ε,n,

where κε,n = rTε,nν. Since Bε is compact, there exists a subsequence Tε,nm converging to some
Tε. Thus,

lim
m→∞

|V̂1 −V2 (κε,nm) |. lim
m→∞

δ2ε,nm = 0,

and, since Vj are compactly supported, V̂1 −V2 is continuous, which means that

V̂1 −V2 (rTεν) = 0.

Finally, since necessarily Tε → I as ε→ 0, we conclude that

V̂1 −V2 (rν) = 0

for any r> 0 and ν ∈ Sd−1 and, by Fourier inversion we obtain that V1 = V2, which ends the
proof of theorem 2.

5. Conclusion

In this paper, we have managed to prove an identifiability result for rough electric potentials
using local near-field scattering data.

To do this, we first analyzed classical resolvent estimates from harmonic analysis to include
a class of potentials that arise as fractional derivatives of L∞ functions, and obtain scattering
solutions to the Schrödinger equation via a combination of Neumann series and Fredholm
theory.

Then, we have proved Runge approximation and interior regularity results that allow us to
extend a method for obtaining an Alessandrini identity with global data to our setting of local
data.

To prove the Runge approximation result, we had so solve a Neumann problem for
∆+λ−V. This entails choosing, for a fixed frequency λ, a domain such that λ is not a
Neumann eigenvalue for the operator −∆+V. It is left for future work to find a proof that
this can always be done.

Finally, we have used a Carleman estimate to prove the existence of CGO solutions that
allows to derive the desired identifiability from the Alessandrini identity.
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Appendix. Solution of the Neumann problem

Along this section, we aim to prove the following result, which is used in the proof of the
Runge approximation, proposition 3.4. Throughout this appendix, consider a bounded open
domain Ω of class C2 such that suppV⊂ Ω.

Theorem A.1. Suppose λ> 0 is not a Neumann eigenvalue for the operator−∆+V inΩ. Let
f ∈ L2(Ω) be such that supp f⊂ Ω. Then, there exist u ∈ H1(Ω) solving the problem{

(∆+λ−V)u= f in Ω,

∂νu= 0 on ∂Ω.
(59)

Remember that we say that λ is a Neumann eigenvalue for −∆+V in Ω if there exists φ
not identically zero solving the homogeneous Neumann problem..{

(∆+λ−V)φ = 0 in Ω,

∂νφ = 0 on ∂Ω.
(60)

These eigenvalues in fact form a countable set. To see this, define the unbounded operator
(TN,D(TN)) over L2(Ω) as TNu= (−∆+V)u, with domain

D(TN) =
{
u ∈ L2 (Ω) : (−∆+V)u ∈ L2 (Ω) , ∃∂νu on ∂Ω and ∂ν u|∂Ω = 0

}
.

Observe now that a Neumann eigenvalue for −∆+V on Ω will be an eigenvalue for
(TN,D(TN)). The domain D(TN) is a separable Hilbert space, since it is a subspace of L2(Ω),
and TN is symmetric over D(TN), which ensures that the set of its eigenvalues must be
countable.

Indeed, suppose that there is an uncountable set of such eigenvalues. Let λ and µ be any
two distinct eigenvalues, and u and v be corresponding distinct eigenfunctions. Then,

λ〈u,v〉= 〈TNu,v〉= 〈u,TNv〉= µ〈u,v〉,

and thus u⊥ v, which contradicts the fact that D(TN) is separable.
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Wewill now prove theoremA.1 using the method of layer potentials. Most of the arguments
that we will follow come from [8–10]. The first step in the argument is to realize that, to
solve (59), we only need to be able to solve the following problem, for g ∈ C∞(∂Ω):{

(∆+λ−V)v= 0 in Ω,

∂νv= g on ∂Ω.
(61)

This can be done by taking a function w that satisfies the equation

(∆+λ−V) w= f.

This function can be constructed in X∗
λ, for instance, by using the techniques in section 2 after

observing that, if f ∈ L2(Ω), then its extension by 0 to Rd is in Xλ.
Also, since supp f⊂ Ω, we have by theorem 11.1.1 in [17] that w is smooth near ∂Ω.

Therefore, we can define its outward normal derivative in ∂Ω, which will belong to C∞(∂Ω).
Now, if we can solve problem (61), set g= ∂νw, and denote by v the solution to this problem.
Then, it is easy to check that u= w|Ω − v solves the problem (59).

Note that w|Ω ∈ H1(Ω) by proposition 2.4, so we will only need to prove that v belongs to
H1(Ω) to conclude that u belongs too.

In this case it will be useful to think of the fundamental solution for the operator ∆+λ in
Rd, denoted by Φλ, not in the distributional sense as in (5), but as a Hankel function. In fact,
Φλ will take the form

Φλ (x) =
i
4

(
λ1/2

2π|x|

)d/2−1

H(1)
d/2−1

(
λ1/2|x|

)
, (62)

where H(1)
ν denotes the Hankel function of the first kind (or Bessel function of the third kind).

If we define uin(x,y) = Φλ(x− y) and recall the limiting properties of the Hankel functions, it
is relatively easy to check that

uin (x,y) = F(x,y) |x− y|2−d,

∂νxuin (x,y) = G(x,y) |x− y|2−d,

∂νyuin (x,y) = ∂νxuin (y,x) = G(y,x) |x− y|2−d,

(63)

with F and G being two bounded functions on ∂Ω× ∂Ω. Then, uin, ∂νxuin and ∂νyuin are, by
definition, weakly singular kernels of order d− 2 on ∂Ω× ∂Ω. The following lemma is a
combination of those in [10], chapter 3B, and is an important piece to solve the problem (61).

Lemma A.2 ([10]). If we denote by T the integral operator over ∂Ω defined by a weakly sin-
gular kernel K of order α on ∂Ω× ∂Ω, with 0< α < d− 1, as

(Tf)(x) =
ˆ
∂Ω

T(x,y) f(y) dS(y) ,

then the following statements hold:

(1) T is compact on L2(∂Ω),
(2) T transforms bounded functions into continuous functions, and
(3) if f ∈ L2(∂Ω) and f+Tf ∈ C(∂Ω), then f ∈ C(∂Ω).
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Take now uto = uin+ usc, where usc is the scattering solution defined in (S) and constructed
in section 2, and define for f continuous on ∂Ω and x ∈ Rd \ ∂Ω the single layer potential
with moment f as

(Sf)(x) =
ˆ
∂Ω

uto (x,y) f(y) dS(y) ,

and the double layer potential as

(Df)(x) =
ˆ
∂Ω

∂νyuto (x,y) f(y) dS(y) .

Define further the operator N , which is the adjoint of D over ∂Ω, as

(N f)(x) =
ˆ
∂Ω

∂νxuto (x,y) f(y) dS(y) , x ∈ ∂Ω,

that must be understood as an improper integral. Now, we have the following lemmas, which
are similar to classical results as in [8–10] for the Helmholtz and Laplace equations.We denote
by u+ the trace on ∂Ω of u|Rd\Ω, and by u− the trace on ∂Ω of u|Ω. As well, we denote by
∂νu+ and ∂νu− the normal derivative of those, always with respect to the outward-pointing
normal vector of ∂Ω (as seen from inside Ω).

Lemma A.3. Consider d> 3. Let f ∈ C(∂Ω). Then, the single layer potential u= Sf is con-
tinuous throughout Rd, and we have the limiting values

∂νu± (x) = (N f)(x)∓ 1
2
f(x) , x ∈ ∂Ω, (64)

where the integral exists as an improper integral. Consequently, we have the jump relation
∂νu− − ∂νu+ = f on ∂Ω. Furthermore, u it is a solution in H1

loc(Rd) to (∆+λ−V)u= 0 in
Rd \ ∂Ω and fulfills SRC (2).

Proof. First, note that the single layer potential for the homogeneous Helmholtz equation

v(x) =
ˆ
∂Ω

uin (x,y) f(y) dS(y)

can be extended to the boundary, is a solution in H1
loc(Rd) to (∆+λ)v= 0 in Rd \ ∂Ω, fulfills

SRC (2) and has boundary values

∂νv± (x) =
ˆ
∂Ω

∂νxuin (x,y) f(y) dS(y)∓
1
2
f(x) , x ∈ ∂Ω,

which is a classical result, see for example [9]. Now, define

w(x) =
ˆ
∂Ω

usc (x,y) f(y) dS(y) .

To see that w is in H1
loc(Rd), take K ∈ Rd compact, and observe that, by proposition 2.4 and

theorem 1,

‖w‖H1(K) . sup
y∈∂Ω

‖usc (� ,y)‖H1(K) . sup
y∈∂Ω

‖usc (� ,y)‖X∗
λ
. sup

y∈∂Ω
‖Vuin (� ,y)‖Xλ

.
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If we take a smooth cut-off function η such that η ≡ 1 in suppV and η ≡ 0 in ∂Ω, we have that
V(x)uin(x,y) = V(x)η(x)uin(x,y) and

‖Vuin (� ,y)‖Xλ
. ‖ηuin (� ,y)‖X∗

λ
. 1,

where we have used that multiplication by V is bounded from X∗
λ to Xλ, as showed in

section 2, and that uin(� ,y) is smooth away from y by theorem 11.1.1 in [17], since it solves
(∆+λ)uin(� ,y) = 0. This proves that w is in H1

loc(Rd)
Moreover, since usc solves the problem (S), it is easy to check that u= v+w solves (∆+

λ−V)u= 0 in Rd \ ∂Ω and fulfills the SRC (2). Also, since for any y ∈ ∂Ω, usc(� ,y) solves
(∆+λ)usc(�y) = 0 in Rd \ suppV, it is smooth in this set by theorem 11.1.1 in [17], and in
particular it is smooth near ∂Ω. Therefore, the limiting values of w on the boundary are just

∂νw± (x) =
ˆ
∂Ω

∂νxusc (x,y) f(y) dS(y) , x ∈ ∂Ω,

and therefore (64) is fulfilled.

Lemma A.4. Consider d> 3. Lef f ∈ C(∂Ω). Then, the double layer potential u=Df can be
extended continuously to ∂Ω, and we have the limiting values

u± (x) = (Df)(x)± 1
2
f(x) , x ∈ ∂Ω, (65)

where the integral exists as an improper integral. Consequently, we have the jump relation
u+ − u− = f on ∂Ω. Furthermore, u a solution in H1

loc(Rd) to (∆+λ−V)u= 0 in Rd \ ∂Ω,
it fulfills SRC (2) and ∂νu− − ∂νu+ = 0 on ∂Ω.

Proof. The proof goes exactly as the proof of lemma A.3 above, we just need to make a
comment on how to prove the last statement. Indeed, the fact that the double layer potential
for the homogeneous Helmholtz equation

v(x) =
ˆ
∂Ω

∂νyuin (x,y) f(y) dS(y)

fulfills that ∂νv− − ∂νv+ = 0 on ∂Ω is classical (see for example [9]). Meanwhile, the function

w(x) =
ˆ
∂Ω

∂νyusc (x,y) f(y) dS(y)

is smooth away from suppV, since usc(�,y) is smooth away from suppV as well.

With lemma A.3, we can find an H1(Ω) solution to the problem (61) for g ∈ L2(∂Ω) if we
can find ϕ ∈ L2(∂Ω) solving the integral equationNϕ+ 1

2ϕ = g. We will solve this equation
via Fredholm theory. For simplicity, define the operators

K = 2D, K∗ = 2N ,

and the equation we are trying to solve can be written as (K∗ + I)ϕ = 2g. Note that K∗ is the
adjoint operator of K and, by lemma A.2, both are compact operators over L2(∂Ω). To prove
the existence of a solution, it is enough to prove that the operator K∗ + I is surjective, which
by Fredholm alternative is equivalent to proving that K+ I is injective. Indeed, we have the
following lemma:
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Lemma A.5. Suppose that λ> 0 is not a Neumann eigenvalue for the operator −∆+V in Ω.
Then,

ker(K+ I) = {0} .

Proof. Let ψ ∈ ker(K+ I), which, by lemma A.2, will be continuous on ∂Ω. Now define v=
Dψ. By lemma A.4, v is a solution to the problem

(∆+λ)v= 0 in Rd \Ω,
v+ = 0 on ∂Ω,

v satisfying SRC.

Then, v= 0 inRd \Ω, by uniqueness of the exterior Dirichlet problem [8]. Therefore, ∂νv+ = 0
on ∂Ω and, again by lemma A.4, ∂νv− = 0. This means that v is as well a solution to the
problem {

(∆+λ−V)v= 0 in Ω,

∂νv− = 0 on ∂Ω,

but, since λ is not a Neumann eigenvalue for −∆+V in Ω, we have that v= 0 in Ω, and in
particular v− = 0. Finally, by lemma A.4, ψ = v+ − v− = 0, and the lemma is proved.

With this last lemma, the proof of theorem A.1 is concluded.
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