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Abstract
We study the Radon transform in the plane in parallel geometry possibly under-
sampled in the angular variable. We study resolution, aliasing artifacts, and
edge recovery.
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1. Introduction

The purpose of this paper is to study the Radon transform Rf(ω,p) in ‘parallel geometry’,
see (2.1), in the plane with discrete measurements. We assume that the measurementsRf(ω,p)
are well sampled in the variable p but undersampled in the angular variableω. This corresponds
to practical situations where the measurements are taken at finitely many angles but not as
many as needed for good resolution and to avoid aliasing; on the other hand, at each angle,
the image is resolved well by a high enough resolution device. We are interested in describing
the aliasing artifacts, the resolution limit, and in particular, recovery of edges and jump type
singularities.

SamplingRf pointwise in both variables for f ∈ L∞comp is not a well posed problem sinceRf
does not have enough regularity to have well-defined pointwise values, even if f is piecewise
smooth. On the other hand, discretemeasurements in practice are not done pointwise (even ifR
is not a Radon transform) since pointwise, wewouldmeasure zero signal with significant noise.
Typically, they are locally averaged. In the case of the Radon transform, the x-rays are not ideal
rays; they are either collimated and/or issued from a very small source, and additionally blurred
by diffraction, see also [3, 35]. When the x-ray projection (as a function of the p variable)
is taken at each fixed angle, it is averaged over small detectors (pixels). This is one of the
factors limiting the resolution of CT scans used for common medical imaging to the order of
0.5mm. We refer to [15], for example, for a discussion of the various blur factors affecting the
resolution of x-ray based medical imaging. Another reason to assume a slightly regularized
Rf is that even with perfect not-yet discretized data, when we want to compute something on
a discrete grid, it is beneficial to blur the data a bit before sampling, a common anti-aliasing
technique.

The finite number of angles/directions of those projections could be modeled as pointwise
measurements of an already locally averaged signal. That averaging can be passed to f by
Egorov’s theorem, see section 3.2, which allows us to think of pointwise measurements in the
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angular variable (not locally averaged) of a slightly blurred copy of f, see [37]. To make things
simple, as mentioned above, we assume high enough resolution in the p variable at each fixed
angle so that we can assume formally that we have a function known for all p; and this can be
justified by the sampling theory [37].

The resulting recovery depends on the way it is done even if we just want to apply the
filtered backprojection in a discrete setting. We compare two ‘natural’ implementations of that
formula, and show that they produce different results, in particular each one produces aliasing
artifacts, as expected, but they are different. We analyze the method we call ‘direct’ in more
detail since this is the commonly used one. The other one, which we call the ‘interpolation’
method was already analyzed in [37], and it turns out to produce a reconstruction which is
an angularly averaged version of the direct one, see theorem 6.2, making it of lesser interest,
probably.

We analyze the problem both with ‘classical’ and semiclassical (asymptotic) methods. The
classical point of view is: how well or not classical singularities are resolved. The most gen-
eral tool for that would be Fourier integral operators (FIOs) associated with a pair of cleanly
intersecting Lagrangians, we refer to remark 4.1(a). More direct methods studying singularit-
ies added by a singular cutoff applied to the data, see, e.g. [2, 8, 31] can be used as well, see
also theorem 4.1 below. We do not do full analysis—we just study edge recovery, a partial
case of recovery of conormal singularities.

The semiclassical (asymptotic) analysis follows in parts the theory developed by the author
in [37]: an asymptotic sampling theory as the sampling step tends to zero for FIOswith a canon-
ical relation being locally the graph of a map. The Radon transform is a particular example,
and the approach has been applied to Thermoacoustic Tomography as well [26], and to the
geodesic x-ray transform [28]. We assume that the sampling step is proportional to a small
parameter h> 0, and use the semiclassical pseudodifferential and FIO calculi. This is one of
the technical tools used in this paper. Using it, one can handle undersampling in p as well, as
in [37]. Then R acts on functions depending on h as well, oscillating highly but still smooth.
This makes it different than the point of view in [34], for example, where f is fixed but the
sampling rate decreases.

We want to emphasize that in sampling theory, the reconstruction from samples depends on
the way the interpolation is done, naturally. It could be the Whittaker–Shannon interpolation
formula (sinc based) or some version of it if there is oversampling, or even, say linear/bilinear,
cubic interpolation, etc. The method we call ‘direct’ has no interpolation involved, and yet,
sampling theory appears naturally through the Poisson summation formula, see section 4. This
was unexpected to the author. In particular, the results in [37] do not describe, at least not
directly, the reconstruction with or without aliasing.

The semiclassical treatment has the following advantages. Besides modeling dense enough
measurements, it is also useful in numerical computations, when the small parameter h is pro-
portional to the step size (when using a mesh). Next, classical microlocal analysis is asymp-
totic in the sense that it cares about the Taylor-like expansion of the Fourier transform at the
infinite sphere |ξ|=∞. Roughly speaking, it misses what happens on the way there. An oscil-
lating function, like cos(kx) with k→∞, for example, is smooth, thus negligible in classical
microlocal sense. In a semiclassical sense, it has semiclassical singularities, and it is not an
approximate classical singularity in any reasonable sense; in fact, its weak limit is zero, as
k→∞.

It is known that R, restricted to finitely many directions, has a non-trivial kernel, see, e.g.
[12]. In [22], see also [24], Louis studies the ‘ghosts’, i.e. the null-space. In [23], he describes
the ghosts in all dimensions as a high-frequency phenomenon, generalizing previous works.
This is close in spirit to our asymptotic approach but themethods and the conclusionswe get are
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of a very different nature. Other approaches are based on a priori knowledge or assumptions,
see, e.g. [11]. Sampling for the Radon transform has been studied in [3, 6, 29, 30, 33], and
more recently in [28, 37], and by Katsevich [16–20]. His approach is different from ours, and
the conclusions cannot be compared directly. This work was inspired in part by a conversation
by the author and him. The author thanks François Monard for the discussions and for the [22,
23]. The anonymous referees helped improve the exposition.

We present a brief outline of the paper. In section 2 we present some basic facts about the
Radon transform, the main assumptions and the goal, especially in the asymptotic part. We
present some basic facts about the semiclassical analysis in section 3, and about the asymp-
totic sampling theory developed in [37]. Section 4 describes a commonly used reconstruction
method with discrete data that we call ‘direct,’ and we describe what it recovers. In general, the
reconstruction is a distribution, see theorem 4.2 and section 7, even if f is piecewise smooth.
The result in theorem 4.2(a) is formally new but easy to obtain, not really the main focus of the
paper. Theorem 4.2(b) derives another representation which the author has not seen in the lit-
erature and brings us closer to the asymptotic analysis later. The proof is based on the Poisson
summation formula. We present this theorem in order to compare them to the asymptotic res-
ults, and as a preparation for them. Section 5 is an asymptotic version of the previous one:
what happens if the angular step tends to zero, and the sampled functions are allowed to have
a finer and finer detail (reflected in the asymptotic nature of WFh( fh)). Theorems 5.1 and 5.2
are some of the main results in the paper. Theorem 5.2 in particular, shows that if the Nyquist
condition is satisfied, the ‘direct’ recovery provides a reconstruction up to O(h∞) despite the
fact that there is no Whittaker–Shannon interpolation, which is required by sampling theory!

2. Preliminaries

2.1. The filtered backprojection

We work in the plane. The Radon transform is defined by

Rf(ω,p) =
ˆ
x·ω=p

f(x)dℓ, (2.1)

where dℓ is the Euclidean length measure, and ω ∈ S1, say parameterized as

ω(φ) := (cosφ,sinφ). (2.2)

We denote by ω⊥ = (−ω2,ω1) its rotation by π/2. We always think that φ ∈ [0,2π] is as a
parameterization of the circle S1, i.e. identifying 0 and 2π, i.e. φ ∈ R/2πZ. The Radon trans-
form is even: it is invariant under the map (ω,p) 7→ (−ω,−p), i.e. under (φ,p) 7→ (φ+π,−p).
When we study the microlocal properties of Rf, we think of it as a function of (φ,p).

A popular inversion formula is the so-called filtered backprojection

f =R ′Hg, g=Rf, (2.3)

where R ′g(x) =
´
S1 g(x ·ω,ω)dω is the adjoint, H= 1

4πHdp, with dp = ∂/∂p, and H is the
Hilbert transform

Hg(p) =
1
π
pv
ˆ

g(s)
p− s

ds. (2.4)

One of the advantages of this formula is that if g=Rf with f compactly supported, then so is
g; and to compute the inversion for x in a compact set for x, we need to compute Hdp with p
and s over a bounded interval (for every φ) only. We note that H is the Fourier multiplier by
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−i · sgn(p̂), therefore Hdp = |Dp|, where Dp =
1
i dp. We denote by φ̂ and p̂ the variables dual

to φ and p, respectively.

2.2. Discrete data

Assume we are given the Radon transformRf(ω,p) sampled on a (finite) discrete set of angles
{ωi}. We always assume that suppf⊂ B(0,R) with R> 0 fixed, where B(0,R) is the ball with
center 0 and radius R.

We consider the following two methods of applying the filtered backprojection (2.3) given
discrete data. The first one that we call the interpolationmethod is to interpolateRf(ωj,p) to get
a function for all ‘continuous’ (ω,p), and then apply (2.3). This can be done approximately on
a finer grid. The second one, which we call the direct method is to applyH, and thenR ′ using
a discrete approximations of the latter. This is done by performing a numerical integration by
summing up (HRf)(ωj,x ·ωj) (i.e. replace the actual integral with the Riemann sums (4.2)),
while the interpolation method interpolates (HRf)(ωj,p) first to (HRf)(ω,p), then sets p=
x ·ω and integrates.

To have the flexibility to consider the limited angle problem, let ψ ∈ C∞(S1) be a cut-off
function, and assume we are given

gj(p) = ψ (ωj)Rf(ωj,p) (2.5)

for j in some finite index set. For simplicity, we assume that ψ is even. In fact, since R is
even, we can always symmetrize ψRf, so this assumption is not restrictive. Then we replace
Rf above by ψRf.

2.3. The asymptotic approach

In [37], we proposed an asymptotic point of view following section 3.2. Say that the sampling
rates are proportional to a small parameter h> 0, and we want to understand the asymptotic
behavior as h→ 0. In other words, the sampling rate w.r.t. φ is hs, and we call s a relative
sampling rate. Ignoring possible offsets relative to the origin, we can assume

φj = jhs, and denote ωj = ω(φj), (2.6)

where j runs over a finite set of integer indices. Since φ parameterizes the unit circle, one has
to worry about periodicity or not of the sequence φj. We assume:

Assumption 1. The number π/hs=: m is an integer.

This restricts h to the set h ∈ {π/sm; m ∈ N} for any s> 0 fixed. Then the number of the
distinct ωj is equal to 2m, which determines our index set for j: we can take j = 1, . . . ,2m. That
set is even, and since ωj and−ωj define the same families of lines parallel to each one of those
directions, we actually have m distinct families of parallel lines. Next,Rf is even, and so is ψ,
so we can work with the first half of those ωj’s (so that adding the opposite ones completes the
whole set), i.e. j = 1, . . . ,m, as it is usually done.

Part of our analysis is not asymptotic, then one can take h fixed, say h= 1. Then π/s= m
is an integer. When we do an asymptotic analysis, we take h→ 0, which is to say that m is a
large parameter.

In the asymptotic part, we work with functions f (x) depending on h as well, semiclassically
band limited in the ball |ξ|⩽ B, see section 3.2. To motivate the interest in such functions,
fix a function ψ so that ψ̂ ∈ C∞

0 (R), and set ψh = h−1ψ(·/h). In practice, ψ̂ may not be of
compact support but can decay fast enough to be considered suchwith a small error. The locally
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averagedmeasurements are thenmodeled byψh ∗pRf, where ∗p is the convolutionwith respect
to the p variable. Egorov’s theorem [9, section 8.9.3] implies ψh ∗pRf(x) =RQhf +O(h∞),
where Qh is an h-ΨDO away from ξ= 0 with principal symbol ψh(|ξ|). This can be made
more explicit with the use of the well-known intertwining property of the Radon transform.
This observation has two implications: (1) if f is, say, L∞ only, and independent of h, then
f̃h := Qhf is h-dependent and semiclassically band limited; and (2) we can replace averaged
measurements near a discrete set of points by pointwise measurements of Rf̃.

3. Semiclassical sampling

We present briefly some fundamentals about the semiclassical analysis, and the results in [37]
about asymptotic sampling.

3.1. Elements of semiclassical analysis

Our main reference for semiclassical analysis is [39] but the reader may also consult [4, 25];
and [9] for the theory of the semiclassical FIOs.

We consider functions fh(x) depending on x ∈ Rn and on a small parameter h> 0 as well.
Often, we suppress the dependence on h and just write fh = f. What matters for the analysis
is their asymptotic behavior as h→ 0 but in general, they may not have an actual limit; a
typical behavior are high oscillations as h→ 0. The semiclassical Fourier transform Fhf(ξ) =
f̂(ξ/h) is just a rescaled classical Fourier transformF f. Even though the semiclassical calculus
works on (tempered) distributions, we restrict our attention here to functions called localized
in phase space in [39], and semiclassically band-limited in [37]. Those are functions fh with
the following properties: (i) each one is supported in an h-independent compact set, (ii) fh is
tempered (the Hs norm is polynomially bounded in h−1 for some s), and (iii) there exists a
compact set B⊂ Rn, so that for every open U⊃ B, we have |Fhf(ξ)|⩽ CNhN〈ξ〉−N, for ξ 6∈ U,
∀N. Here, 〈ξ〉= (1+ |ξ|2)1/2.

Then we say that the set B is a band limit of f. Depending on the application, when the
latter is the ball B(0,B) for some B> 0, then B is called a band limit or when it is the square
[−B,B]n, then B is the band limit. Note that the notion of band limit depends on the coordinate
system but then the sampling geometry does as well.

It is convenient to consider each such fh as an equivalence class moduloO(h∞) errors in the
Schwartz class S(Rn) (which conforms with the definition in [39]), which in particular allows
non-compact supports but there are always representatives of the class with compact supports
as stated above.

Such functions belong to C∞
0 (Rn) for every h but as mentioned above, they can oscillate

highly when h→ 0. The semiclassical wave front set WFh( f) is defined as follows.

Definition 3.1. For a tempered fh, WFh( fh) is the set of points x and co-directions ξ defined
as the complement of those (x0, ξ0) for which there is ϕ ∈ C∞

0 (Rn) with ϕ(x0) 6= 0 so that
Fh(ϕ f) = O(h∞) for ξ near ξ0.

We say that gh = O(h∞), if |gh(x)|⩽ CNhN for all N> 0 and all x ∈ Rn. Similarly, we say
that gh = OS(h∞), if such an estimate holds for every seminorm of g in the Schwartz class
S(Rn).

We call the points (x, ξ) ∈WFh( f) semiclassical singularities. They do not necessarily cor-
respond to actual singularities for general tempered fh, and never for semiclassically band lim-
ited ones since those are smooth. We can interpret (x0, ξ0) ∈WFh( fh) as a statement that f (x)
has an oscillating component near x0 in the direction of ξ0 (when ξ0 6= 0) with a frequency
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|ξ0|/h. The semiclassical wave front set is not conic in general. The projection of WFh( f)
onto the dual variable ξ is called the frequency set Σh( f). It is, in fact, the smallest band limit
B. Semiclassically band limited functions have compact semiclassical wave front sets, and
compact frequency sets.

An example of semiclassically band limited functions is f := eix·ξ/hχ(x)with χ ∈ C∞
0 ; then

the band limit is {ξ} as a set, or B := |ξ| as radius of the smallest (closed) ball centered at
zero containing ξ. Then WFh( f) = suppχ×{ξ}. Another example is the coherent state (5.11)
with WFh( f) = {(x0, ξ0)} and a band limit {ξ0} as a set, or B := |ξ0| as a number in the sense
above.

When f is independent of h, WFh( f) captures the classical wave front set in the following
sense: WFh( f) = (supp f×{0})∪WF( f), see [39, p 196]. If ϕ ∈ S , and ϕh(x) = h−nϕ(x/h),
then the Friedrichsmollifier fh = ϕh ∗ f restricts ξ inWFh( f) to supp ϕ̂. This is a way to get fh out
of a singular h-independent f ∈ E ′(Rn) with a non-conic WFh( fh); with fh approximating f, as
it is well known from the theory of distributions. If ϕ̂ ∈ C∞

0 , fh is semiclassically band limited
with band limit (as a set) B= supp ψ̂. If ϕ ∈ S only, this is true with a band limit B up to an
errorO(B−∞) in any Sobolev space. Note thatψh∗ is an h-ΨDO, see below, with symbol ψ̂(ξ).

Semiclassical pseudodifferential operators (ΨDOs) are defined by

Pf(x) = (2πh)−n
¨

ei(x−y)·ξ/hp(x, ξ)f(y)dydξ, (3.1)

where, for every compact set K and α, β, the symbol p(x, ξ), possibly depending on h as well,
satisfies

|∂αx ∂
β
ξ p(x, ξ)|⩽ CK,α,βh

k〈ξ〉m−|β| (3.2)

for some k and m. We also use the notation P= p(x,hD). Acting on semiclassically band lim-
ited functions with a fixed band limit, one can just take a compactly supported p, so the decay
in ξ above would be automatic. Then such P would be actually bounded from any Sobolev
space Hs

1 to any other one Hs
2 with a norm O(h−m+s1−s2). The calculus of h-ΨDOs is similar

to that of classical ones, and we refer to the formulas for sums, composition, adjoint, to [39,
section 4]. The most commonly used h-ΨDOs are those with symbols having a formal asymp-
totic expansion p(x, ξ) = p0(x, ξ)+ hp1(x, ξ)+ . . . . Then p0 is called the principal symbol of
p; well defined on T∗Rn. If p0 6= 0 in some open set U⊂ T∗Rn, then we say that p is elliptic
there. SemiclassicalΨDOs preserve or shrink the semiclassical wave front sets; and if they are
elliptic in U, they actually preserve it there.

(Local) semiclassical FIOs (h-FIOs) are defined similarly but with a phase function
ϕ(x,y, ξ), x ∈ RnX , y ∈ nY, θ ∈ RN, satisfying some non-degeneracy conditions, see [9, 25]:

Af(x) = (2πh)−n
¨

eiϕ(x,y,θ)/ha(x,y,θ)f(y)dydθ, (3.3)

where, for every compact set K and α, β, the amplitude p(x, ξ), possibly depending on h as
well, satisfies estimates similar to (3.2). Similarly to the classical FIOs, a fundamental inherent
object associated with any such FIO is its canonical relation governing the mapping of semi-
classical singularities. To define it, we first consider the characteristic varietyΣϕ := {ϕθ = 0}.
Then we set the canonical relation to be C := {x,ϕx,y,−ϕy}∩Σϕ. We think of C as a rela-
tion, mapping (x, ξ) to all (y,η) so that (x, ξ,y,η) ∈ C. The latter does not need to be an actual
(single-valued) map; it could map a single (x, ξ) to a set of (y,η). The conditions imposed on C
however imply that C is a smooth submanifold of T∗RnX ×T∗RnY . In this paper, we will have
nX = nY = 2.
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3.2. Semiclassical sampling

We summarize some of the results in [37]. The semiclassical sampling theory developed in
[37] is an asymptotic version of the classical one.

3.2.1. Sampling a semiclassically band limited function. For a semiclassically limited func-
tion withΣh( f)⊂ [−B1,B1]× ·· ·× [−Bn,Bn], it is enough to know its samples (which number
isO(h−n)) on a uniform rectangular grid of side sjhj in each direction, with sj < π/Bj, in order
to recover f up to an O(h∞) error. The reconstruction formula is of interpolation type

fh(x) =
∑
k∈Zn

fh(s1hk1, . . . ,snhkn)
∏
j

χj

(
1
sjh

(xj− sjhkj)

)
+OS(h

∞)‖ f‖, (3.4)

with χj ∈ C∞
0 so that supp χ̂j ⊂ (−π,π), and χ̂j(πξj/Bj) = 1 for ξ ∈ Σh( f), under the Nyquist

condition 0< sj < π/Bj; see corollary 3.3 in [37].
The following results are summarized in section 4 of [37], and proved in the rest of the

paper.

3.2.2. Sampling classical FIOs. If A is an FIO (classical), and f is as above, one can determ-
ine the smallest box where WFh(Af) is contained by studying the canonical relation of A. In
particular, this applies to R and to its left inverse R−1. This allows us to compare the sharp
sampling requirements for f and Af (and for A−1f if A is elliptic, associated to a local diffeo-
morphism, like R).

3.2.3. Resolution limit on f posed by the resolution of Af. Loosely speaking, we view res-
olution as the highest frequency resolvable. On the other hand, we would allow that res-
olution to depend on the position x and on the (co-)direction ξ, so ultimately, it would
be the largest WFh( f) we can recover. To motivate this, say that we work with f so that
WFh( f)⊂ B(0,R)×B(0,B) with some R> 0, B> 0. Then B(0,B) is the smallest set con-
taining all frequencies ξ of all such f in our set of functions f. In other words, |ξ|⩽ B, and
we can call B the resolution (limit) of such f. We can apply this to the measurements Af as
well. If A is an elliptic classical FIO associated to a diffeomorphic canonical relation, then
the parametrix A−1 exists, and we may ask ourselves what the resolution limit of f is, posed
by that of Af. As explained above, WFh( f) \ 0= C−1(WFh(Af) \ 0) which has a sharp upper
bound C−1(B(0,R)×B(0,B)) \ 0 over all measurements Af by assumption. The results is not
a product anymore; and in general, the frequency set (the range of ξ) changes with x. For a
fixed x, it is not a ball in general. We interpret this set as the resolution (limit) depending on
the position and on the direction posed by a resolution limit of Af which may be uniform, say
imposed by the sampling rate.

3.2.4. Local averaging. As mentioned in section 2.3, if g=Rf, and g is already band lim-
ited in a similar way due to its measurements, or just filtered before inversion to avoid aliasing,
assuming perfect data of infinite resolution, this is passed to f by Egorov’s theorem. Actually,
we do not even need Egorov’s theorem for R, but the argument applies to more general oper-
ators A that are classical FIOs. Assuming that g is replaced by ϕh ∗pRf with some ϕ with
ϕ̂ ∈ C∞

0 , it is enough to show that one can replace f by fh = ψh ∗ f as above with some ψ with
ψ̂ ∈ C∞

0 . The latter follows easily by the previous paragraph and goes back to [37]. Then

8
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ϕh ∗Af = Aψh ∗ f +O(h∞) in S(Rn), i.e. the h-independent f can be replaced by the semi-
classically band limited fh with a negligible error just because we filtered the data, which we
can always do, and should do to prevent aliasing when discretizing.

3.2.5. Aliasing. If the Nyquist condition sj < π/Bj is not satisfied, aliasing occurs. For sim-
plicity, assume all Bj equal (can be done by a linear transformation). As in the classical case,
frequencies ‘fold’ over the Nyquist box. The interpolation formula approximates not fh but

Gf := F−1
h χ̂(s·)

∑
k∈Zn

Fhfh(·+ 2π k/s). (3.5)

When there is a non-trivial contribution from k 6= 0, we get aliasing artifacts.
Writing G=

∑
k∈ZGk, we get that each Gk is an h-FIO with a canonical relation given by

the shifts

Sk : (x, ξ) 7−→ (x, ξ+ 2πk/s). (3.6)

This FIO preserves the space localization but shifts the frequencies, which can be viewed as
changing the direction and the magnitudes of the latter. We identify in this paper canonical
relations with the maps they induce.

Assume now that A is elliptic, associated to a local diffeomorphism C, likeR. Assume that
the measurement Af is aliased, and we apply the parametrix A−1. Then the inversion would
be A−1GkA; and by the h-FIO calculus, away from zero frequencies, that is an h-FIO with
a canonical relation C−1 ◦ Sk ◦C acting on (x, ξ) ∈ supp χ̂(s ·+2kπ). The classical aliasing
creates artifacts at the same location but with shifted frequencies. The artifacts here however
could move to different locations, as it happens for the Radon transform.

3.3. Notation

We summarize here the notations introduced above for the convenience of the reader. The
notion of a semiclassically band limited function (depending on h) is introduced in section 3.1,
where we also introduce the semiclassical Fourier transform Fh, and the notation 〈ξ〉. We
defined there the notion of a band limit either as a set, or as a number, depending on the context.
The notion O(h∞) is defined right after definition 3.1, and simply means decay faster than
CNhN for everyN, as h→ 0.We define the semiclassical wave front setWFh( f), which elements
are called semiclassical singularities, in definition 3.1. Its projectionΣh( f) onto the ξ variable
is called the frequency set of f. Semiclassical pseudodifferential operators are defined in (3.1).
Local semiclassical FIOs (h-FIOs) are defined in (3.3). We denote the open ball centered at 0
with radius R by B(0,R).

4. The direct method, classical (non-asymptotic) view

The method we call ‘direct’ consists of the following. We take h= 1 in this section. The
asymptotic analysis as h→ 0 will be done in the next one. The step size denoted by s, so
φj = sj = π j/m. Given the discrete data Rf(ωj,p), we compute HRf(ωj,p) as before, which
is an operation in the p variable for any ω fixed. If we knew HRf for all ω (and p, of course),
the inversion would have been

f(x) =
ˆ
S1
HRf(ω,x ·ω)dω, (4.1)

9
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Figure 1. The sinogram of the Shepp–Logan phantom with step size 5◦. One first
appliesH in the p variable, and then for each x, one computes the integral

´
HRf(φ,x ·

ω(φ))dφ numerically by summing up the values at each angle along the curve repres-
enting the lines through x.

which is just (2.3). Instead, we perform numerical integration with the given samples by sum-
ming up over ωj , see figure 1, (and multiplying by the step size s= π/m) to get

fδ(x) :=
2π
m

m∑
j=1

HRf(ωj,x ·ωj). (4.2)

Note that first, we would get a sum from j= 1 to 2mwith the coefficient π/m in front. As noted
in the previous section, since HRf is even, by assumption 1, we can reduce the summation as
indicated and multiply by 2. This is what iradon in the current version of MATLAB does, for
example. The resulting f δ would be smooth if f is, which is true for all semiclassically band
limited functions.

Consider limited angle data g= ψRf now. If we had the non-discretized data, the natural
inversion would have been

fψ(x) :=
ˆ
S1
Hg(ω,x ·ω)dω =

ˆ
S1
ψ(ω)HRf(ω,x ·ω)dω, (4.3)

(note that H commutes with ψ), and with discrete data, we do numerical integration

fψ,δ(x) := s
∑
j

(Hgj)(ωj,x ·ωj) =
2π
m

m∑
j=1

ψ (ωj)(HRf)(ωj,x ·ωj) (4.4)

as in (4.2) instead. The subscript δ can be explained by formula (4.6) below. We are not claim-
ing that (4.3) is the ‘best’ inversion with limited angle data; in fact this is a problem with a
lot of proposed ‘solutions’ (and without a unique solution [12]). It recovers the singularities
stably recoverable from the data however. It follows from [36], for example, that

fψ = ψ (D/|D|)f. (4.5)

The following theorem follows easily from the calculus of wave front sets and the explicit
form of the canonical relation of R.

Theorem 4.1. Let f ∈ E ′(R2). ThenWF( fψ,δ) is included in the conormals of all lines {x; (x−
x0) ·ωj = 0} whenever (x0,ωj) ∈WF( f) for some j.

In other words, all singularities of fψ,δ are included in the following set: for every (x0,ωj) ∈
WF( f) we take the conormals to the line through x0 and conormal to ωj. The examples we
present below show that in some cases, this inclusion is actually an equality.

10
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Proof of theorem 4.1. Set

(ψHRf)int,δ(ω,p) =
2π
m

m∑
j=1

ψ(ωj)HRf(ωj,p)δ(ω−ωj), (4.6)

which is as (6.1) below but with χ = δ, the Dirac delta, there. The Riemann sum (4.4)
is the actual integral of the distribution (ψHRf)int,δ(ω,x ·ω) in the ω variable, i.e. fψ,δ =
R ′(HψRf)int,δ . By the calculus of the wave front sets, see, e.g. [13, theorem 8.2.10], the wave
front of the product HRf(ω,p)δ(ω−ωj) is the closure of the vector sum of the wave front
set of each factor (the delta considered as a distribution w.r.t. (ω,p)). Note that the product is
well-defined since WF(Rf) =WF(HRf) (H is elliptic) is separated from the conormals λdφ
for f compactly supported, as it follows easily from the expression for the canonical relation
of R, see, e.g. [37]. Then the closure of that vector sum is the whole R2 \ 0 over every point
where Rf(ωj,p) is singular. Then all those covectors over any such point would be mapped to
singularities conormal to the line ωj · x= p by the inverse canonical relation.

Smooth functions f produce smooth fψ,δ by the theorem but even if f is piecewise smooth,
fψ,δ might be a distribution, not a function, see section 7.

Theorem 4.2. Assume f ∈ S(R2), and let ψ ∈ C∞(S1) be even. Let fψ,δ , given by (4.4), be the
reconstructed f with discrete limited angle data gj given by (2.5). Then

(a) f 7→ fψ,δ is the Fourier multiplier (for ξ 6= 0)

f̂ψ,δ(ξ) =
π

m

m∑
j=1

ψ(ωj)δ

(
ω⊥
j · ξ

|ξ|

)
f̂(ξ). (4.7)

Also,

f̂ψ,δ(ξ) =
π

m

m∑
j=1

δ

(
ω⊥
j · ξ

|ξ|

)[
ψ

(
ξ

|ξ|

)
f̂(ξ)

]
, (4.8)

thus, fψ,δ is a linear operator applied to fψ, which is a Fourier multiplier as well.
(b) We also have

fψ,δ = fψ +
∞∑
k=1

Gkfψ, (4.9)

where fψ is as in (4.5), Gk are the Fourier multipliers

Gk : f 7−→ F−12cos
(
2mkarg(ξ)

)
F f, (4.10)

and the series (4.9) converges uniformly and absolutely.

Proof. By the Fourier slice theorem,

Fp→p̂Rf(ω,p) =
ˆ
e−ip̂pRf(ω,p)dp=

ˆ
e−ip̂y·ωf(y)dy= f̂(p̂ω).

11
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Then

Fp→p̂ψHRf(ω,p) = 1
4π

|p̂|ψ(ω)̂f(p̂ω).

Therefore,

ψ(ω)HRf(ω,p) = 1
8π2

ψ(ω)

ˆ
eip̂p|p̂|̂f(p̂ω)dp̂.

Hence,

(ψHRf)(ω,x ·ω) = 1
8π2

ψ(ω)

ˆ
eip̂x·ω|p̂| f̂(p̂ω)dp̂. (4.11)

We apply the definition (4.4) of fψ,δ now: we discretize (4.11) to plug it in (4.4), and then
take the Fourier transform:

f̂ψ,δ(ξ) =
1

4πm

m∑
j=1

ψ(ωj)

¨
e−ix·ξ+ip̂x·ωj |p̂| f̂(p̂ωj)dp̂dx

=
π

m

m∑
j=1

ψ(ωj)

ˆ
δ(ξ− p̂ωj)|p̂| f̂(p̂ωj)dp̂.

Split the integral above into one over [0,∞) and the other one over [−∞,0], make the change
of variables p̂ 7→ −p̂, and shift the index j so that {ωj} gets multiplied by −1 after this. As a
result, {ωj}2mj=m+1 are brought up into the sum, and in the second integral, p̂ ∈ [0,∞). In other
words, we can extend the summation to j = 1, . . . ,2m but restrict the integration to p̂> 0 only
above.

Given a test function ρ, we have

〈 f̂ψ,δ,ρ〉=
π

m

2m∑
j=1

ψ(ωj)

ˆ ∞

0
|p̂| f̂(p̂ωj)ρ(p̂ωj)dp̂

=
π

2m

2m∑
j=1

ψ(ωj)

ˆ
S1

ˆ ∞

0
f̂(p̂ω)ρ(p̂ω)δ

(
ω⊥
j ·ω

)
|p̂|dp̂dω

=
π

2m

2m∑
j=1

ψ(ωj)

ˆ
f̂(ξ)ρ(ξ )δ

(
ω⊥
j · ξ/|ξ|

)
dξ.

Therefore,

f̂ψ,δ(ξ) =
π

2m

2m∑
j=1

ψ(ωj)δ
(
ω⊥
j · ξ/|ξ|

)
f̂(ξ),

which can be written as (4.7) as well. To gain reader’s confidence about this computation,
assume ψ= 1, and note that as s= π/m→ 0, the number of samples 2m on the circle is
increasing. The formula above converges to 1

2

´
δ(ω⊥ · ξ/|ξ|)dω = 1, multiplied by f̂(ξ), as

one would expect. This proves (4.7) in (a). Next, note that on the support of δ(ω⊥ · ξ/|ξ|),
we have ω =±ξ/|ξ|, and the differential of ω 7→ ω⊥ · ξ/|ξ| has norm 1 where that function
vanishes. Since ψ is even, this proves (4.8), and completes the proof of (a).
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To prove (b), first we want to connect the actual ω integral in (4.3) with its Riemann sum
in (4.4) in a Fourier transform kind of way. We consider the one-dimensional version first. The
Poisson summation formula implies, say for ρ in the Schwartz class,

s
∑
k∈Z

ρ(sk) =
∑
k∈Z

ρ̂(2π k/s), (4.12)

where s> 0 is fixed, and in our case, s= π/m, as above, see, e.g. [7, section 8.5]. Note that
if ρ is a classically band-limited function with frequencies in [−B,B], then if π/s> B (the
Nyquist condition), only the k= 0 term on the right in (4.12) would be possibly different from
zero. Then (4.12) can be interpreted as saying that the Riemann sum on the left, approximat-
ing
´
ρ(x)dx= ρ̂(0) is exact for such functions. When the Nyquist condition is not satisfied,

then (4.12) is exact for the integral of the aliased reconstruction of ρ, and the k 6= 0 terms on the
right represent corrections coming from the aliased components. Next, notice that the series
on the right in (4.12) converges absolutely since ρ̂ is in the Schwartz class.

In our case ρ is a 2π periodic function, and we sum over k ∈ Z/2mZ (say, over k ∈ {−m+
1, . . . ,m}). Then in (4.12), ρ̂ is evaluated at 2mk, i.e. those are just Fourier coefficients of ρ;
not all of them, just the ones with indices divisible by 2m. The Poisson summation formula
then takes the form

π

m

∑
k∈Z/2mZ

ρ(π k/m) =
∑
k∈Z

ρ̂(2mk). (4.13)

To get (4.13) from (4.12), we use the partition of unity: there exists 0⩽ χ ∈ C∞
0 (R) so that∑

k∈Zχ(t− 2π k) = 1 for all s, see, e.g. [7, lemma 8.5.1]. Then we apply (4.12) to χρ.
We apply (4.13) to (4.4) with ρ(ϕ) := (ψHRf)(ω(φ),x ·ω(φ)), which is smooth. We get

fψ,δ =
∑
k

f(k)χ,δ, f(k)χ,δ := Fφ→φ̂(ψHRf)(ω(φ),x ·ω(φ))
∣∣
φ̂=2mk

. (4.14)

By (4.11), each aliased component in (4.14) is then given by

f(k)ψ,δ(x) =
1

8π2

ˆ ˆ 2π

0
ψ(ω(φ))e−i2mkφ eip̂x·ω(φ)|p̂| f̂(p̂ω(φ))dφdp̂. (4.15)

We split the p̂ integration in two parts: over p̂> 0 and over p̂< 0. In the second one, we make
the change (φ, p̂) 7→ (φ+π,−p̂) to get

f(k)ψ,δ(x) =
1

8π2

ˆ
eix·ξψ(ξ/|ξ|)e−i2mkarg(ξ)̂f(ξ)dξ

+
1

8π2

ˆ
eix·ξψ(−ξ/|ξ|)e−i2mkarg(−ξ)̂f(ξ)dξ

=
1

4π2

ˆ
eix·ξψ(ξ/|ξ|)e−i2mkarg(ξ)̂f(ξ)dξ.

(4.16)

Then

f(k)ψ,δ(x)+ f(−k)
ψ,δ (x) =

1
(2π)2

ˆ
eix·ξψ(ξ/|ξ|)2cos(2mkarg(ξ))̂f(ξ)dξ. (4.17)

This completes the proof of (b).
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Remark 4.1.

(a) By (4.7), the map fψ 7→ fψ,δ is a formal ΨDO but with a singular symbol. Such operators
are studied in [1, 10, 27]. This allows for a point of view more general than that of the-
orem 4.1. Also, (4.7) can be considered asR ′Rb with b a singular weight, and the formula
is the same when b is smooth, see the appendix in [36].

(b) EachGk in (4.9) is aΨDOof order zero, and as such, it does not add additional singularities.
The infinite sum however, may, in general, as it is seen from (4.7), see also section 7.

(c) When we view Gk asymptotically, as m→∞, then Gk are interpreted as semiclassical
FIOs for ξ 6= 0, when m is considered as a large parameter; which add, and also displace
(semiclassical) singularities; see next section.

(d) Formulas (4.7) and (4.9) can be obtained from each other by the Poisson summation for-
mula, as the proof shows.

Remark 4.2. The operator Gk is a convolution with

Cmk|x|−2 cos(2mkarg(x)),

see [21]. The singularity at x= 0 is in principal value sense since the cosine function there has
a zero mean value over the unit circle.

5. The direct method, an asymptotic view

5.1. The aliasing as a semiclassical FIO

We take the asymptotic view now: the angular step size is sh with s> 0 fixed and h→ 0+.
As in theorem 4.2(b) above, according to assumption 1, we assume that sh= π/m with m ∈
N. Then h ∈ {π/ms; m ∈ N} when s> 0 is fixed, and our analysis is asymptotic, as m→∞.
Formula (4.4) takes the form

fψ,δ(x) := 2sh
π/hs∑
j=1

ψ(ωj)(HRf)(ωj,x ·ωj), ωj = ω(shj). (5.1)

The function f is assumed to be h-dependent, and semiclassically band limited, see section 3.1,
say with WFh( f)⊂ B(0,R)×B(0,B). Theorem 4.2 still holds but we replace f̂ now by its
semiclassical version Fhf(ξ) = f̂(ξ/h). The relevant part is (b) in this case with fψ still given
by (4.5). It follows from (4.10) that

Gk : f 7−→ F−1
h 2cos

2π karg(ξ)
sh

Fhf. (5.2)

It is convenient to write the cosine function as a sum of complex exponentials, the way we
derived it in the first place:

Gk =Ak+A−k, Ak : f 7−→ F−1
h e2πikarg(ξ)/shFhf , k=±1,±2, . . . . (5.3)

We get the sum of two unitary h-FIOs away from the zero section. The phase functions are
Φk(x,y, ξ) = 2π karg(ξ)/s+(x− y) · ξ . The characteristic variety Σk := {∂ξΦk = 0} is given
by

y= x+
2π k
s
ξ⊥/|ξ|2.
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Then (x,∂xΦk) 7→ (y,−∂yΦk) on Σk is actually a map, so we get that the canonical relation Ck
of Ak are (the graphs of, and we identify them with their canonical transformations)

Ck : (x, ξ) 7→
(
x+

2π k
s|ξ|

ξ⊥

|ξ|
, ξ
)
. (5.4)

This leads to the following theorem; we refer to section 3 for the definition of a semiclas-
sically band limited function.

Theorem 5.1. Let fh be semiclassically band limited. Then, given its discretized localized
Radon transform {gj} as in (2.5) at φj = shj, j = 1, . . . ,2m, the reconstructed fψ,δ by (4.4)
has the form

fψ,δ = fψ +
∞∑

k=−∞,k ̸=0

Ak fψ, (5.5)

where Ak are the Fourier multipliers given by (5.3). The operators Ak are unitary, and away
from the zero section, they are elliptic semiclassical FIOs of order zero with canonical relations
Ck given by (5.4).

We proved in theorem 4.2 that the series (4.9) converges rapidly, therefore this would be
true in the asymptotic case for (5.5) for every fixed h> 0. In theorem 5.2 below, we estimate
how the convergence depends on h> 0 as well.

Remark 5.1. Theorem 5.1 shows that while artifacts are always created, the original f appears
in the expansion as well. In this sense, no resolution has been lost! That term f could, in
principle overlap or even be canceled by the artifacts of another singularity elsewhere. To
avoid aliasing artifacts in a fixed ball B(0,R), we need 2π/(s|ξ|)> 2R, i.e. s< π/BR. This
is the same requirement we got in [37], see also (6.4). This is formulated in theorem 5.2(b)
below.

Remark 5.2. If we only look at the canonical relation for fψ,δ restricted to B(0,R), the sum
in (5.5) is locally finite. Indeed, since |ξ|⩽ B by the assumption on f, we have 2π/s|ξ|⩾
2π/sB, therefore Ck shifts each x at least at distance 2π k/sB, which is a lower bound of the
distance of the artifacts to x. Then this would leave any disk B(0,R ′) when 2π k/sB> R+R ′,
i.e. when k> sB(R+R ′)/(2π). We show in the proof of theorem 5.2 below that in fact, only
finitely many terms in (5.5) could possibly contribute a non O(h∞) addition to WFh( fψ,δ) \ 0
when fψ,δ is restricted to any fixed bounded set. For that, we need an estimate of each term
Akfψ both in k and h.

Theorem 5.2. Assume that f = fh is a semiclassically band limited function with WFh( f)⊂
B(0,R)×B(0,B) for some R> 0, B> 0. Then

(a) Given R ′ > 0, restricting k in (5.5) to |k|⩽ k0 := sB(R+R ′)/(2π) results in an O(h∞)
error in Cm(B(0,R ′)) for every m.

(b) As a consequence,

WFh(fψ,δ) \ 0⊂
⋃
k∈Z

Ck(WFh(fψ ) \ 0).

(c) If B> 2π/(s(R ′ +R)), then fψ,δ = fψ +O(h∞) in Cm(B(0,R ′)) for every m. In particular,
if B< π/sR (the Nyquist condition), then fψ,δ = fψ +O(h∞) in Cm(B(0,R)) for every m.
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(d) Under the Nyquist condition B< π/sR of (c), in the whole R2,

WFh( fψ,δ − fψ) \ 0=
⋃

k∈Z\0

Ck(WFh( fψ ) \ 0). (5.6)

Proof. Recall that the large parameter m is related to the small one h by m= π/(sh). The
operator Ak admits the representation (4.15), excluding ψ there, as shown in (4.16). In other
words, rescaling p̂ to p̂/h, we get

Akf(x) = (8π2h2)−1
ˆ ˆ 2π

0

ˆ
eiΨk(x,y,ϕ)/hf(y)dydϕdp̂ (5.7)

with a phase Ψk :=−2mkhϕ+ p̂(x− y) ·ω(ϕ) =−2π kϕ/s+ p̂(x− y) ·ω(ϕ). Since Σh( f)⊂
B(0,B), and Σh( f) is compact, then there are B ′ < B ′ ′ < B so that Σh( f)⊂ B(0,B ′). Let
Q(y, p̂) be a h-ΨDO cutoff with suppQ⊂ B(0,R)×B(0,B ′ ′), with Q= 1 on B(0,R)×
B(0,B ′). Then we can insert the factor Q(y, p̂) in (5.7) which would result in an O(h∞) error.
This limits the range of p̂ in (5.7) to |p̂|< B ′ ′. Then ∂ϕΨk =−2π k/s+ p̂(x− y) ·ω⊥(ϕ), and
for |k|> k0,

|∂ϕΨk|⩾ 2π |k|/s−B ′ ′(R+R ′)

= (B−B ′ ′)(R+R ′)+ 2π (|k| − k0)/s> C|k|.
(5.8)

On the other hand, we have the upper bound

|∂mϕΨk|⩽ Cm(1+ |k|). (5.9)

Clearly, LeiΨk = eiΨk with L :=−ih|∂ϕΨk|−2∂ϕΨk · ∂ϕ. Integrating N times in (5.7) w.r.t. ϕ,
we derive the estimate

‖Akf‖L2(B(0,R ′)) ⩽ CN(h/|k|)N, k⩾ k0, ∀N= 1,2, . . . . (5.10)

Estimate (5.10) implies (a) immediately.
Part (b) now follows directly from (a), theorem 5.1, and from the properties of semiclassical

FIOs, see [9, 25].
For statement (c), note that when 2π/sB> R ′ +R, Ck sends (x, ξ) with |x|< R, |ξ|< B

outside B(0,R ′) (cross B(0,B)) when k 6= 0. This also follows directly from (a). Then only the
k= 0 term in (5.5) provides a non-trivial contribution to the sum.

For part (d), note first that the inclusion ⊂ follows as in (a). To prove the equality, choose
(x♯, ξ♯) in the union on the right, say corresponding to k= k0, i.e. (x♯, ξ♯) = Ck0(x0, ξ0) for some
(x0, ξ0) ∈WFh( fψ). Then k0 and (x0, ξ0) with that property are uniquely determined. Indeed,
we must have ξ0 = ξ♯ (we work in a fixed coordinate system, and comparing covectors at
different points makes sense); and there is unique k so thatC−1

k (x♯, ξ0) = C−k(x♯, ξ0), see (5.4),
would land in B(0,R) since B< π/sR. This is also true under a small perturbation of (x♯, ξ♯).
Next, each Ak is elliptic, which proves the claim.

Remark 5.3. We want to emphasize that the equivalent to (c) above in [37] was derived about
the interpolation method we discuss in next section, i.e. we have the same about fψ,χ we study
there. Then the two methods are equivalent when the Nyquist condition holds.

Remark 5.4. The proof of theorem 5.2 (d) reveals something more. The function fψ,δ − fψ
can be regarded as the artifacts under the inversion of R. They lie outside B(0,R) by part (c).
Moreover, they consist of the union of unitary images under Ak which do not intersect each
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Figure 2. Illustration to the canonical maps Ck ofAk. Left: fixing |ξ0| (the dashed line),
produces a finite number of points along the line through x0 normal to ξ0 where x0 is
mapped (with the same ξ). The horizontal axis is the shift relative to x0 along that line.
Right: the image of (x0, ξ0) ∈ N∗γ.

other in the following sense. Each singularity in the artifact comes from a unique one from
WFh( f), and micro-localizing near (x♯, ξ♯) allows us to recover f microlocally at the unique
pre-image just by applying

∑
Ak, which is non-trivial for one k only. In particular, we can

recover f up to O(h∞) from its artifacts outside B(0,R).

Remark 5.5. As a corollary, if the singularities are conormal to an edge as in section 8, their
artifacts appear conormal to lines tangent to that edge, as in the classical case; and along each
such tangent line, they stay at distance at least 2π/sB from the point of tangency. This is illus-
trated in figure 2, right. In other words, f δ is separated from the artifacts, assuming WFh( f)
small enough. In a typical application of theorem 5.2(d), B(0,R) is not going to be the com-
putational window, it would be a much smaller neighborhood of a point x0. Then the theorem
applies to f (micro)-localized there. On the other hand, without the localization, the recon-
structed f near x0 could be affected by artifacts caused by singularities farther away.

5.2. Numerical examples

Our first example demonstrates the theorems, with ψ= 1, and in particular, the role of the
magnitude |ξ| of the frequency ξ. We take the ‘coherent state’

fh(x;x0, ξ0) = eix·ξ0/h−|x−x0|2/2h (5.11)

with some x0, ξ0 6= 0 as a test function; more precisely its real part <fh. It is well known [39]
that WFh( fh) = {(x0, ξ0)}; then WFh(<fh) also adds the point (x0,−ξ0). In figure 3, row one,
we plot a coherent state on the square [−1,1]2 discretized to a 800× 800 grid with |ξ0|= 0.8,
h= π/360≈ 0.0087, s= 10, so that sh= π/36, i.e. the angular step is 5◦, corresponding to
m= π/hs= 36. The amplitude range in each case is [−1,1], corresponding to the minimum
and the maximum of <fh; in particular the gray background corresponds to f = 0. Then (5.4)
predicts a shift of the phantom in the direction ξ⊥ at distance π/4≈ 0.7854 for k=±1, which
is shown in sub-figure (b) with direct inversion, and in (c) by computing Gkf as the Fourier
multiplier (5.2). On the second row, we multiply ξ by 1.7, which decreases the size of the shits
by the same factor by (5.4). Finally, on row three, we decrease h by 2. This shrinks the visible
size of the phantom by

√
2, compared to the first row, and increases the absolute frequency

ξ/h by the same factor because the semiclassical one ξ remains the same.
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Figure 3. The direct method. A coherent state, (row one); then the state with ξmultiplied
by 1.7 (row two); then as in row one but h is halved. The shifted artifacts stay at distances
inversely proportional to |ξ|. In row one, sh= 2π/72 (i.e. 5◦).

6. The interpolation method, an asymptotic view

6.1. Asymptotic analysis of the interpolation method

We interpolate the data to a function of the ‘continuous’ (φ,p) ∈ [0,2π]× [−R,R] (as usual
thinking about [0,2π] as a parameterization of the circle S1, i.e. identifying 0 and 2π). There
are many ways to interpolate discrete data, of course, and our choices are dictated by sampling
theory requirements. Once we do that, we invert the data even though the interpolated Rf
almost certainly does not belong to the range of R by applying either the filtered backprojec-
tion (2.3) to it or some other operator which is a parametrix of R. Numerically, we can just
pass to a finer grid, upsample the data there, and do the inversion. We want to understand the
resulting inversion.
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Figure 4. The sinogram of a very small Gaussian, sampled at 5◦ in φ, then interpolated.
In the steep parts of the curve, the interpolation is not optimal but it is good along the
horizontal ones.

The interpolated data (2.5) then would looks like this:

gint =
π/sh∑
j=1

ψ(ω( jhs))Rf(ω( jhs),p)χ
(φ− jhs

hs

)
, (6.1)

see (3.4) and figure 4, where the interpolation kernel χ depends on a priori assumptions on the
largest semiclassical wave front set WFh(Rf) (which in turn depends on similar assumptions
on WFh( f)), and on s, see section 3.

Assume thatWFh(Rf) restricts the dual variable φ̂ to |φ̂|⩽ B ′ < Bwith some semiclassical
band limit B, where B is fixed to allow for some degree of oversampling below. A priori,
B

′
can be very close to B, and B/B ′ can be considered as the degrees of oversampling. For

lack of aliasing plus the so chosen degree of oversampling, we require s⩽ π/B (the Nyquist
conditions), the interpolation functions to be smooth, to satisfy supp χ̂⊂ [−π,π], and χ̂(φ̂) =
1 for |φ̂|⩽ πB ′/B. Then (6.1) provides an approximation of Rf up to an O(h∞) error, see
section 3.

The critical case of no-oversampling (B ′ = B), which we do not allow, requires interpola-
tion functions χ(s) = sinc(π x), where sinc(x) = sinx/x. This function decays slowly and in
practical implementations it is often replaced by a kernel with a compact support extending
over only a few neighboring points. On the other hand, with some oversampling, we can (and
we did) chose χ to be of Schwartz class. A practical choice of a interpolation kernel satisfying
the requirements approximately is the Lanczos-3 interpolation kernel

Lan3(x) := h0(3− |x|)sinc(π x)sinc(π x/3), (6.2)

where h0 is the Heaviside function. While the Fourier transform of sinc(π x) is the character-
istic function of [−π,π], the Fourier transform of Lan3 is essentially (but not exactly, of course)
supported in twice that interval but it is very close to 1 in a half of it: in [−π/2,π/2], see [38].
Therefore, Lan3 would lead to some aliasing but it will preserve most of the non-aliased fre-
quencies. On the other hand, if we use Lan3(x/2) instead, its Fourier transform satisfies the
requirements approximately with a degree of oversampling approximately 2, while attenuating
frequencies with magnitudes in [−π/2,π]. The resulting interpolation (6.1) then would be Rf
with a low pass filter applied, up to an O(h∞) error.

Note that H could be applied before or after the interpolation (6.1) with the same result.
The inversion in this case would be

fψ,χ :=R ′Hgint. (6.3)
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Figure 5. Aliasing with the interpolation method: (x, ξ) shifts to (xshifted, ξ) along the
line tangent to γ at x. The point xshifted can be at distance at most d/3 to the left and d to
the right of x0, where d= |x− x0|.

As mentioned above, by [37], if supp f⊂ B(0,R), the sharp condition for avoiding
aliasing, is

s< π/(RB), (6.4)

where B is the band limit for fh. In that case, one can reconstructRf up to O(h∞) by (6.1), and
then f. If s< π/(2RB) (oversampling by a factor of two), one can use the Lanczos-3 interpol-
ation which is local and much more practical, to achieve great accuracy. When (6.4) does not
hold, and one still uses the same reconstruction, aliasing occurs. The aliasing artifacts appear
as a sum of h-FIOs with canonical relations which happen to be the same as (5.4), when

x · ξ⊥ + 2kπ/s ∈ [−π/s,π/s], (6.5)

(and we relabeled them by changing the sign of k compared to [37]). If (6.4) holds, we have
|x · ξ⊥|< RB< π/s, thus (5.4) can hold with k= 0 only, hence no aliasing.

By (5.10), k depends on (x, ξ). Note that for each (x, ξ) with ξ 6= 0, there is unique k satis-
fying (5.10) with the exception of the case when the left-hand side happens to be an endpoint
on the interval on the right; but then χ̂ kills the interpolation for such frequencies because we
assume supp χ̂φ ⊂ [−π,π]. On the other hand, if we use the Lanczos-3 kernel, which does not
satisfy this condition, even approximately (but it does in [−2π,2π], as explained above), we
can get two aliased artifacts.

In figure 5, we illustrate this analysis for a singularity (x, ξ), say conormal to a smooth
curve γ (which is not important). We have x · ξ⊥ > 0, so if aliasing happens, we must have
k< 0 in (5.10). Then that (x, ξ) would shift along the ray issued from x tangent to the curve
γ, in the direction −ξ⊥, i.e. towards the point on that tangent line closest to the origin. The
jump at γ may create a singularity at (x,−ξ) as well but then k> 0 and the artifact would still
appear on the same ray.

A closer inspection of conditions (5.4) and (5.10) reveals that the aliased images of (x, ξ)
may appear at points x over some interval over that tangent line only. Indeed, condition (5.10)
is equivalent to

−x · ξ⊥ ∈ [(2k− 1)π/s,(2k+ 1)π/s]. (6.6)

Then x is displaced along the line through x in the direction of ξ⊥ by 2π k/(s|ξ|), and for the
shifted x we have

−
(
x+

2π k
s

ξ⊥

|ξ|2

)
· ξ

⊥

|ξ|
∈ 1

|ξ|
[−π/s,π/s].
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Write x · ξ⊥ = x · (ξ⊥/|ξ|)|ξ| in (6.6), and determine the range of |ξ|with ξ/|ξ| fixed, assuming
first −x · ξ⊥ > 0, hence k> 0. We see then that x can shift along the line through x in the
direction ξ⊥/|ξ| within the range of the signed distances

−x · ξ⊥

|ξ|

[ 2k
2k+ 1

,
2k

2k− 1

]
, k= 1,2, . . . , x · ξ⊥ > 0, (6.7)

where we used the convention k(a,b) = (ka,kb). When −x · ξ⊥ < 0 (then k< 0), we get the
same conclusion just by replacing ξ by −ξ, and k by −k. Thus (6.7) holds for k< 0, as we
indicated above. In figure 5, we have k=−1.

The largest of the intervals in the square brackets in (6.7) is [2/3,2]. The upper bound of the
distance 2|x · ξ⊥|/|ξ| is achieved right when aliasing occurs, i.e. when k= 1 in (5.10) and the
l.h.s. approaches −π/s. If we keep the direction of ξ the same but increase its magnitude, the
aliased singularity moves closer to x until it gets at distance (2/3)|x · ξ⊥|/|ξ|. Then it jumps
to 4/3 of that factor, moves to 4/5, etc. In the end, the minimal interval is [2/3,2]. Therefore,
we have the following.

Theorem 6.1. Under the conditions of theorem 5.2, statements (a) and (b) there are preserved
for fψ,χ. Instead of an equality in (c), we have

WFh( fψ,χ) \ 0⊂
{
x−

[
2
3
,2

]
x · ξ⊥

|ξ|
ξ⊥

|ξ|
, (x, ξ) ∈WFh( fψ) \ 0

}
. (6.8)

6.2. Translation non-invariance and refocusing

One of the consequences of the analysis in [37] is that the resolution, defined there, is inversely
proportional to |x| (and also direction dependent). This is also consistent with (6.4), where R�
1 allows B� 1 for the same step s. This makes the origin a special point, with the resolution
near it the highest. In a way, the interpolation method is ‘focused’ at the origin. It is easy to see
that the parallel geometry parameterization is not invariant under translations and rotations in
the sense that it does not preserve its form. Rotations x 7→ Ux are innocent; they just transform
ω into ω̃ := U∗ω. In (2.2), this corresponds to shifting φ (and still considering in modulo 2π).
Shifting x by x̃= x− x0 however, changes the type of the equation x ·ω(φ) = p to

x̃ ·ω(φ) = p− x0 ·ω(φ). (6.9)

Setting

p̃= p− x0 ·ω(φ), (6.10)

we get a pseudo-parallel parametrization but p̃ depends on φ now. This is reasonable to expect:
each time we choose an angle φ, we are free to put the origin on the line ω(φ)⊥ parameterizing
the lines with that direction, anywhere we want to. In (2.1), the choice happens to correspond
to the line through the origin in the x-plane. This makes the origin a special point without any
need to be such. We are free to change that parameterization to (6.9), for example, to even do
something different, choosing p̃ to be a more general function of φ.

That freedom does not do much when we haveRf(ω,p) for all ω and p (or for them in some
open set). In the discrete setting however, things change. We will call the re-parameterization
(6.10) refocusing. If we knowRf(ω,p) for ω in a discrete set (and all p), we can perform (6.10)
for each such ω, and x0 fixed. This would map the curve x0 ·ω = p, see figure 4 into the straight
line p̃= 0. Then the inversion would look like x0 were the origin, which would move the
aliasing artifacts elsewhere! Recall that we assume a high enough sampling rate sp in the p
variable, which makes implementing (6.10) easy.
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6.3. Relation between the two methods

Finally, we show that the interpolation reconstruction operator is just the ‘direct’ one convolved
in the ω variable with the interpolating function.

Theorem 6.2. For every f ∈ C∞
0 (R2) and ψ ∈ S(R), a

fψ,χ(rω(θ)) = χsh ∗θ fψ,δ(rω(θ)),

where ∗θ is the circular convolution in the θ variable, and χh(θ) = h−1χ(θ/h).

Proof. By (6.1) and (6.3),

fψ,χ(x) =
ˆ ∑

j

ψ(jsh)(HRf)(ω(jsh),x ·ω(φ))χ
(φ− jsh

sh

)
dφ.

Write x= rω(θ), andmake the change of variables φ̃ = φ− jsh. Since x ·ω(φ̃ + jsh) = rω(θ) ·
ω(φ̃ + jsh) = rω(θ− φ̃) ·ω( jsh), we get

fψ,χ(rω(θ)) = sh
ˆ ∑

j

ψ(jsh)(HRf)(ω(jsh),rω(θ− φ̃) ·ω(jsh))χsh(φ̃)dφ̃.

This is exactly the circular convolution of (5.1) with χsh as claimed.

The convolution in theorem 6.2 is a Fourier multiplier in polar coordinates, in the angular
variable, withFhχs. Passing back to the Cartesian coordinates, we get an h-ΨDOwith principal
symbol χs(−x2ξ1 + x1ξ2) at least away from x= 0. This shows that the two reconstructions are
related by an h-ΨDO, and since we showed in theorem 5.1 that fψ 7→ fψ,δ is an h-FIO, it now
follows that fψ 7→ fψ,χ is an h-FIO with the same canonical relation, something we proved
directly in theorem 6.1.

6.4. Comparison of the two methods

We managed to get from the discrete measurements gj (2.5) to ‘continuous’ ones with the aid
of the Poisson summation formula (4.12). We will offer here an alternative point of view.

We can think of the numerical integration formula (4.4) in the following way. First, we
interpolate the discrete data somehow with an interpolation kernel χ having total integral one.
We do that for each x, along the curve φ 7→ (ω(φ),x ·ω(φ)), see figure 1. Then integrating the
interpolated function removes χ and reduces to the finite sum (4.4).

The interpolation method, on the other hand, interpolates horizontally in figure 1, i.e. along
the lines φ 7→ (ω(φ),p= const.). Only one of those lines coincides with some of the lines
above: the line p= 0 (in the (φ,p) plane, more precisely, on the cylinder S1 ×R), which cor-
responds to all lines in the x plane through x= 0. The two methods are equivalent, roughly
speaking, in an infinitesimal neighborhood of x= 0, as theorem 6.2 indicates as well. Away
from x= 0, fψ,χ is just an angularly blurred version of fψ,δ . The advantage of the direct method
is that the interpolation before integration (which is not needed, as explained above) is x-
dependent. In that sense, that method focuses at every point x to evaluate fψ,δ there.

7. Recovery of an edge and aliasing from an edge, classical view

Assume that f is piecewise smooth with a jump over a smooth curve (an ‘edge’) near some
point x0, and has no other singularities. We want to understand how well the edge is resolved,
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and what kind of aliasing artifacts are created. We want to emphasize that if f has other singu-
larities, they may create aliasing artifacts near x0 as well, interfering with the ones we analyze
here. This problem has been studied in the literature for special shapes, at least. For example,
the cases of f being a characteristic function of an elliptical domain or of a square are explicitly
computed in [5, pp 473–6], see also the references there, and [32, 35].

Assume that we use the direct method, formula (4.2), which is also (4.4) when we restrict
our attention to lines close to being tangent to the edge, and ψ= 1 there. It is enough to ana-
lyze each summand in (4.2) independently. We are going to analyze three cases which do not
exhaust all possible ones. In this section, h= 1, i.e. we do not take the angular step to be a
small parameter, respectively m is fixed. We study the direct method here only.

7.1. A flat edge

Assume that the edge is flat neat x0. Then the recovered f δ depends on whether that edge is
normal to some of the ωj’s (i.e. parallel to some of the lines in our family) or not; and in the
latter case, it will depend to the distance of its normal to {ωj}.

Assume first that the edge is normal to ωj0 for some j0. ThenRf(ωj0 ,p) would have a jump-
type of singularity at some p= p0, and Rf(−ωj0 ,p) would have a jump-type of singularity
at p=−p0. Without loss of generality, we can assume that it is the former term appearing
in (4.2). ThenHRf(ωj0 ,p)would be a distribution but not a (locally L1) function! Indeed, writ-
ingRf(ωj0 ,p) = kh0(p− p0), k 6= 0, modulo higher regularity terms (which regularity depends
on the behavior of f near that edge), where h0 is the Heaviside function, one needs to under-
standHRf(ωj0 ,p)∼ kHh0(p− p0). Therefore, the leading singularity of f δ would be expected
to be (ignoring the localization for a moment),

2π
m
kHh0(p− p0) =

k
2m

Hdph0(p− p0) =
k
2m

Hδ(p− p0)

=
k

2πm
pv

1
p− p0

, where p= x ·ω.

In (7.1), we provide a more precise statement, and a second term. Note that this is the behavior
along the line x ·ωj0 = p0 independently of whether the point on that line is on the actual edge
or not. The result is a distribution. All other terms in (4.2) would contribute smooth terms, so
this describes all leading order singularities of f δ under our assumptions.

If the edge is not normal to any ωj, then f δ would be smooth. When the edge is ‘almost
normal’ to some ωj however, there will be a steep change across that line.

In figure 6, we demonstrate this behavior. The computations are done in a 1000× 1000
grid. The angular step is 10◦, with the vertical direction being among the set of the directions
(corresponding to φ1 = 0 being the first one). The reason the bright phantom looks so pale
in (b) is that the range has been adjusted from [0,1] in (a) to [−2.1,2.7]. Two cross-sections,
marked with small horizontal bars in (b), are plotted. The one through the maximum of the
jump actually recovers the edge well, plus a pv(1/x) type of singularity as predicted. The edge
is well recovered because the contributions from the lines with directions close to vertical
are smooth but sharply changing near the edge. This is better understood in asymptotic sense,
when the angular step size gets smaller and smaller, as we do later. The second cross-section is
near the bottom of the square, where the jump is zero, and what is left is a pv(1/x) singularity.
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Figure 6. A flat edge with s= 10◦ with pv(1/x) singularities visible in the reconstruc-
tion. Near the actual edge, the jump is recovered well but this is due to smooth but
sharply changing contributions from close non-tangent lines.

7.2. A strictly convex/concave edge

Assume that the edge is strictly convex or concave, depending on the direction at which we
are looking, i.e. it is a smooth curve with nonzero curvature near x0. Then Rf would have
singularities at lines tangent to the edge, where f jumps. Fixing one such direction,Rf(ω,p)∼
kh0(p− p0)

1/2
+ , where t+ =max(t,0), t− = (−t)+, k= 2

√
2f(x0)/

√
|κ|, andκ is the curvature.

Again, without loss of generality we assumed that the curve lies in p⩾ p0, not p⩽ p0. As
above, we need to understand H applied to it. This is done in (7.2) in lemma 7.1. We get that
f δ would have conormal singularities along the line determined by (ωj0 ,p0) of the kind

− k
2πm

(p− p0)
−1/2
−

as the most singular part of f δ , near the line x ·ωj = p0. This is an integrable singularity. A

numerical reconstruction is shown in figure 7. The −x−1/2
− singularities are well visible.

7.3. Artifacts from a corner

Let f has a jump across a corner, like f = h0(x1)h0(x2) near x= 0. ThenWF( f) over the corner
consists of all directions, which will create singularities conormal to all lines in our set through
this corner. To bemore precise, assume that we have two smooth curves through x0, intersecting
transversally, so that f is equal to the restriction of a smooth function f 0 with f0(x0) 6= 0, to one
of the four sectors, and zero in the other three. Assume that ωj0 is not normal to either of those
curves at x0. Then R(ωj0 ,p)∼ k(p− p0)+ locally, k 6= 0, modulo smoother terms. By (7.3) in
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Figure 7. A convex edge with s= 10◦ with −x−1/2
− singularities visible in the recon-

struction. Near the actual edge, the jump is recovered well but this is due to smooth but
sharply changing contributions from close non-tangent lines.

lemma 7.1, f δ would have conormal singularities along the line determined by (ωj0 ,p0) of the
kind

k
2πm

log |p− p0|.

It is the weakest of the three.
A numerical illustration is presented in figure 8. In (d), we see log type of peaks along a

horizontal line staying at 30% from the bottom. Most of them point down, corresponding to
+ log | · |. They correspond to lines through the corner not entering the sector where f > 0. The
most left one corresponds to a line through the corner entering that sector, and the singularity
is of the type − log | · |. This explains why that peak points upwards.

We used the following lemma above.

Lemma 7.1. Let ϕ ∈ C∞
0 (R). Then

Hϕh0(x) =
1

4π2

(
ϕ(0)pv

1
x
+ϕ ′(0) log |x|

)
mod C0(R), (7.1)

Hϕx+ =
1

4π2
ϕ(0) log |x| mod C0(R), (7.2)

Hϕx
1
2
+ =− 1

4π2
ϕ(0)x

− 1
2

− mod C0(R). (7.3)

Proof. The lemma is a computation of a singularity conormal at x= 0 under the action of the
ΨDO H= (4π)−1|D|. The result is given by [14, theorem 18.2.12]. In our case, a (compactly
supported) conormal distribution in R at x= 0 of order m is given by
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Figure 8. A corner with s= 18◦ with± log |x| singularities visible in the reconstruction.
Near the actual edge, there is a similar singularity as well plus a blurred version of the
jump, which is one.

u(x) =
1
2π

ˆ
eixξa(ξ)dξ,

i.e. just the inverse Fourier transform of a, where a is a symbols of order m+ 1/4. Applying
various smooth cutoffs to u which are equal to one near x= 0 may change the symbol only up
to a term of order−∞. If ϕ does not satisfy that, the symbol would be modified depending on
the Taylor expansion of ϕ at zero. The distributions in the lemma are not compactly suppor-
ted before multiplying by ϕ but they are homogeneous, thus they have homogeneous Fourier
transforms singular at ξ= 0 only. One can see that a multiplication by ϕ(x) would produce a
compactly supported conormal distribution with a symbol equal to those Fourier transforms,
up to O(|ξ|−∞).

Applying a ΨDO p(x,D) of order m
′
to a conormal distribution of order m in our case

produces a conormal distribution at x= 0, again of order m+m ′, with complete symbol∑
〈−iDx,Dξ〉jp(x, ξ)a(ξ)/j!|x=0, (7.4)

see, e.g. [14]. In our case, p(x,D) = (4π)−1|D|ϕ(x), i.e. it has an amplitude a(x,y, ξ) =
(4π)−1|ξ|ϕ(y). For its symbol p(x, ξ) we have

4πp(x, ξ) = ϕ(x)|ξ| − iϕ′(x)sgnξ .

The symbol of the Heaviside function h0 is −i/ξ (away from ξ= 0), therefore, in (7.4), we
have

4πp(x, ξ)a(ξ) =−iϕ(x)sgnξ −ϕ ′(x)sgnξ /ξ . (7.5)

26



Inverse Problems 39 (2023) 105003 P Stefanov

By (7.4), the symbol of the conormal distribution 4πϕh0 then is

4πp(x, ξ)a(ξ) =−iϕ(0)sgnξ −ϕ ′(0)sgnξ /ξ + iϕ ′ ′(0)sgnξ/ξ2 mod S−3. (7.6)

Now,−i sgnξ is the symbol (the Fourier transform) of π−1 pv(1/x). Next,−sgnξ/ξ is the sym-
bol of the distribution with derivative having symbol −i sgnξ, which is π−1 pv(1/x). Taking
antiderivative of the latter, we get π−1 log |x|. Finally, i sgnξ/ξ2 is obtained from −i sgnξ by
multiplying by −1/ξ2, which corresponds to taking the second antiderivative; hence we get
π−1x(log |x| − 1), which is a continuous function. The latter also follows from the fact that a
symbol∼ 1/ξ2 at ξ→∞ is L1 there, therefore, its inverse Fourier transform is continuous. By
the same argument, the remainder in (7.6) produces a C1 function, and one can get a complete
singular expansion, in fact. This proves (7.1) in the lemma.

Equation (7.2) follows in a similar way. The symbol of the conormal distribution a(ξ) = x+
is −1/ξ2, therefore in (7.5) we have

4πp(x, ξ)a(ξ) =−ϕ(x)/|ξ|+ iϕ′(x)sgnξ /ξ2

instead. The second term produces a continuous function while the first one, by the calcula-
tions, above, would produce a leading term π−1ϕ(0) log |x| plus another continuous function.

For the last identity (7.3) in the lemma, we need the symbol of x1/2+ . SinceH= (4π)−1|D|=
(4π)−1Hd/dx, dropping the factor (4π)−1 for a while, we can apply d/dx first to study x−1/2

+ .
We have

(xλ−1
+ )̂ = Γ(λ)

(
e−iπλ/2ξ−λ+ + eiπλ/2ξ−λ−

)
, λ 6∈ Z,

see, e.g. [7, chapter 8.6]. When <λ > 0, xλ−1
+ is locally integrable and in general, it is defined

by analytic extension in λ. Therefore, with λ= 1/2,

(x−1/2
+ )̂ =

√
π
(
e−iπ/4ξ

−1/2
+ + eiπ/4ξ−1/2

−

)
.

Then H is a multiplication with −i sgn(ξ) on the Fourier side, which happens to make sense
on x−1/2

+ , hence

(Hx−1/2
+ )̂ =−i

√
π
(
e−iπ/4ξ

−1/2
+ − eiπ/4ξ−1/2

−

)
=−

√
π
(
eiπ/4ξ−1/2

+ − ei3π/4ξ−1/2
−

)
=−

√
π
(
eiπ/4ξ−1/2

+ + e−iπ/4ξ
−1/2
−

)
=−(x−1/2

− )̂ .

Therefore, Hx−1/2
+ =−x−1/2

− .

We can use this calculation in (7.4), where a(ξ) = (x1/2+ )̂ to prove (7.3). The next (continu-
ous) term as a square root singularity, which we will not investigate.

8. Recovery of edges, an asymptotic view

8.1. The direct method

Recovery of edges will be analyzed here based on theorems 5.1 and 5.2. In the numerical
examples in the previous section, we can see that besides the aliasing artifacts creating specific
singularities along the edge, the actual jump looks well recovered. The horizontal profiles there
are a Gaussian cut by half by the Heaviside function, which creates a jump of size one. In
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figure 6(c), one can see a jump one with Cpv(1/x) added. In figure 7(c), if we average the
x−1/2
− oscillations on the left, the jump is still close to one. Finally, in figure 8(c), the (weaker)

log |x| singularity is added to a smoothened out cut-off Gaussian with a jump close to one,
as well. As explained in that section, removing the predicted singularities, what remains is a
continuous function, so the jumps are smoothened out. The reason they appear close to actual
jumps in those numerical examples is that the angular step size is not ‘too small’ but it is still
‘small.’ If we increase it, the jumps do not look well recovered anymore.

The observed effect is better understood, in author’s view, asymptotically, as the angular
step size tends to zero. As explained earlier, we assume now that f = fh is a semiclassically
band limited function with bound B.

We start with a general observation which we will not formalize as a theorem. Consider a
jump type of singularity. Locally, after a change of variables, it is a multiple of the Heaviside
function h0(x2) in the x2 variable, modulo lower order terms. To account for the localization,
we represent it as f = ϕ(x)h0(x2) with some ϕ ∈ C∞

0 . It is convenient to assume that ϕ(x) =
ϕ1(x1)ϕ2(x2). Then

f̂(ξ) = ϕ̂1(ξ1)ϕ̂2 ∗
(
πδ(ξ2)− i.pv

1
ξ2

)
= ϕ̂1(ξ1)

(
π ϕ̂2(ξ2)− iϕ̂2 ∗ pv

1
ξ2

)
.

Assuming f smoothened by a convolution with some ψh as above, we get

Fh(ψh ∗ f)(ξ) = ψ̂(ξ)̂f(ξ/h) =−iψ̂(ξ)ϕ̂1(ξ1/h)
[
ϕ̂2(·) ∗ pv

1
·

]
(ξ2/h)+O(h∞). (8.1)

The only rays along which this is not O(h∞) in a conic neighborhood are the ones parallel
to the ξ2 direction. Along them, ξ1 = 0 and the expression in the brackets has the asymptotic
∼ h/ξ2 for |ξ2|> 1/C, ∀C. With this in mind, (8.1) is like −ihψ̂(0, ξ2)ϕ̂1(0) 1

ξ2
along the axis

ξ1 = 0, which matters the most. The factor ψ̂(0, ξ2) plays a role of a low pass filter modeling
the effect of averaging the measurements. If its cutoff frequency, call it B, satisfies (6.4), then
there is no aliasing. When it does not, and this is the case we want to understand, there is
aliasing as explained earlier. We get artifacts along the line tangent to the curve where the
jump occurs, passing to a point where it happens. It is important to note that the number of
non-negligible terms in (5.5), restricted to B(0,R) is independent of h and depends on B only.
The factor h above shows that the aliasing artifacts decrease as h when h→ 0.

Numerical example.We take a function jumping from 0 to 1 in a slightly smoothened way,
across the parabola x= 1.5y2 in a square of size 2 in the plane. Instead of taking f = h0(x−
1.5y2), we replace the Heaviside function by hλ(t) = 1

2 (1+ erf(λt)), where erf is the ‘error

function’ defined as the normalized antiderivative of the Gaussian e−t2 with erf(0) = 0, and
limt→±∞ erf(t) =±1. Then hλ is the Heaviside function convolved with a highly concentrated
Gaussian, as λ� 1. Its Fourier transform multiplies 1/(iξ) (for ξ 6= 0) by a Gaussian as well.
While thatmultiplier is not compactly supported, for all computational purposes here, it is. This
makes the jump function semiclassically band limited with h proportional to 1/λ. Finally, we
localize f = hλ(x− 1.5y2) by multiplying by a function of compact support equal to one near
the vertex.

We take λ= 500. We perform the computations on a 4000× 4000 grid with an angular step
of 0.8◦. The phantom is shown in figure 9(a). The reconstructed one looks virtually the same
with the artifacts barely visible, shown in figure 10 on a different scale. We zoom in at the
vertex of the hyperbola in figure 9(b) to compare the original phantom and the reconstruction.
The squares shown are approximately 70× 70 pixel crops of the 4000× 4000 original and
of the 4002× 4002 recovery, respectively (MATLAB’s iradon adds a pixel on each side if
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Figure 9. A convex ‘semiclassical edge’ with s= 0.8◦.

Figure 10. A zoomed in 525× 525 crop of the reconstruction in figure 9, with range
[−0.1,0.1], clipping all values ⩾0.1. A neighborhood of the edge is free of artifacts.

the output size is not specified). In figures 9(c) and (d), we show plots of horizontal cross-
sections of the edge through the vertex, well stretched compared to (a), with 6% of the total
cross-section plotted. The edge is very will recovered, and the artifacts (the low amplitude
oscillations) are separated from the edge at a distance controlled by the effective band limit
of f.

Finally, in figure 10, we show an approximately 525× 525 crop, zoomed in, of the vertex
area rendered to the range of values [−0.1,0.1] (the original one is [0,1]) to emphasize on the
artifacts.We see that in some neighborhood of the edge, there are no artifacts. This is consistent
with the cross-section plot in figure 9(c), and with figure 2, right, see also remark 5.2.
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Figure 11. A function f with a jump type singularity and its recovered version from Rf
sampled with a 5◦ step in (a) and (b); and a 3◦ step in (c) and (d). The origin is in the
center.

Compared to the situation on section 7, we have an artifact free neighborhood (in the case
of convex edges), and the semiclassical singularities not extending too far from a point. Also,
those are semiclassical singularities, high oscillations instead of being classical one.

8.2. The interpolation method

We comment briefly on the recovery of edges with the interpolation method using theorem 6.1.
In figure 11, we present a numerical example with a characteristic function, slightly blurred,
of a disk placed off center. The conversion in (b) is the direct one. The artifacts are separated
from the edge and extend everywhere. The reconstruction in (c) is the interpolated one, and
the aliasing artifacts are localized in accordance with theorem 6.1 and figure 5. In (c), we plot
a version with an enhanced contrast.

Note that in (c) and in (d), parts of the edge are more blurred than the original, and some
oscillations (Gibb’s like effect) are visible. The explanation is that when an artifact is cre-
ated, that frequency is removed from the edge, since for each of them, only one k is possible
in (5.4), (5.10). We used the Lanczos-3 interpolation here, which has an oscillating kernel.
This, and theorem 6.2 explain why those edges have oscillations when reconstructed. The
effect is stronger for the edges with tangents passing through the origin since they would be
most affected by the angular convolution.

Data availability statement

This is a math paper, no data collected. The data that support the findings of this study are
available upon reasonable request from the authors.

Appendix. Sampling on the unit circle

The circle is a manifold, with no unique chart possible (but two suffice). The definition of
a (classical) band limit is not invariant under coordinate changes but is invariant under rigid
motions, so it requires some clarification what it means on the unit circle. Note that in contrast,
the semiclassical band limit is based on WFh( f), which is defined by localization first, thus it
is well defined assuming angular parameterization.

Let f be a function on the unit circle. We can think of it as a function of the polar angle φ,
periodic with period 2π. The natural Fourier transform is an expansion in Fourier series. On
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the other hand, there are natural coordinate maps on the unit circle preserving the arc-length.
We can remove any fixed point x0 from it, say having a polar angle φ0 mod 2π and map the
rest to (φ0,φ0 + 2π) by the polar angle. Given a distribution f on S1, depending on h, we can
localize it to that chart by a smooth cut-off χ.

Definition A.1. If χ f is semiclassically band limited for every such chart, we call f semiclas-
sically band limited with band limit B being the supremum of the band limit over all such
charts.

Lemma A.1. The supremum B in definition A.1 is finite. Moreover, B=max(B1,B2), where
B1, B2 are two such band limits for two charts corresponding to two distinct cut-off points,
and the corresponding χ1, χ2 form a partition of unity.

Proof. For every distribution on S1, we can write f = χ1f+χ2f. Let x0 ∈ S1 with a polar
angle φ0 mod 2π be a cut-off point for a local chart. Let χ0 ∈ C∞(S1) be zero near x0. Then
χ0f = χ0χ1f+χ0χ2f. The term χ0χ1f can be written as a sum of two functions: one supported
between x0 and x1 (going in positive direction along the circle), and the other one supported
between x1 and x0. They both can be re-mapped to the chart associated with x1 at the expense of
possible shifting by 2π k, k ∈ N. That shift does not change the semiclassical band limit, and
a multiplication by a C∞

0 function cannot make it greater; therefore, the semiclassical band
limit of χ0χ1f does not exceed B1. We analyze χ0χ2f in the same way to get an upper bound
B2. Therefore, an upper bound is B=max(B1,B2) but since it is attained for either χ1f or χ2f,
it is actually the least one.

Definition A.2. The function fh ∈ C∞(S1) is called semiclassically band limited with band
limit B, if (i) it is tempered, i.e. ‖ fh‖L2(S1) ⩽ Ch−N for some N, (ii) and for its Fourier coeffi-
cients fn, for each B ′ > B, we have

| fn|⩽ CN|n|−N, |n|> B ′/h. (A.1)

Proposition A.1. Definitions A.1 and A.2 are equivalent.

Proof. Let f be a semiclassically band limited with a band limit B, according to definition A.1.
Since χ f is tempered for any cutoff χ as in definition A.1, we deduce that f is tempered, too.
The Fourier coefficients of f are given by

fn =
ˆ 2π

0
e−inφf(ω(φ))dφ.

We view the integration above as an integration over S1 since e−inφ is 2π-periodic. Then we
apply the partition of unity 1= χ1 +χ2 to f as in lemma A.1. The integral of each term res-
ulting from that can be written as an integral over a subinterval of the real line. It is enough to
consider the first one only. We have

ˆ φ1+2π

φ1

e−iφ(hn)/h(χ1f)(ω(φ))dφ.

This is the semiclassical Fourier transform of χ1f evaluated at φ̂ = hn. It is O(hN〈φ̂〉−N) for
everyN, and for |φ̂|> B ′ > B, which impliesO(hN(1+ h|n|)−N), henceO(1+ |n|)−N for |n|>
B ′/h.

Assume definition A.2 now. Then f is tempered and we have (A.1). Write

f(φ) =
1
2π

∑
einφfn.
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For χ ∈ C∞
0 ,

Fhχ f(φ̂) =
1
2π

∞∑
n=−∞

fnχ̂(φ̂/h− n). (A.2)

Choose B ′ > B ′ ′ > B and restrict φ̂ to |φ̂|> B ′. Notice first that

|χ̂(φ̂/h− n)|⩽ CN|φ̂/h− n|−N = CNh
N|φ̂− hn|−N. (A.3)

Summing over |n|⩽ B ′ ′/h in (A.2), we get∣∣∣∣∣∣
∑

|n|⩽B ′ ′/h

fnχ̂(φ̂/h− n)

∣∣∣∣∣∣⩽ C ′
Nh

N|φ̂ |−N for |φ̂|> B ′, (A.4)

where we used (A.3), and the fact that the number of terms above isO(h−1). For the remainder
of the sum, we have∣∣∣∣∣∣

∑
|n|>B ′ ′/h

fnχ̂(φ̂/h− n)

∣∣∣∣∣∣⩽ CN
∑

|n|>B ′ ′/h

|n|−N−2|χ̂(φ̂/h− n)|. (A.5)

We want to show that it is O((h/|φ̂|)N), ∀N. We will multiply by (φ̂/h)N =
(
(φ̂/h− n)+ n

)N
and show that it is uniformly bounded. Using the binomial formula, we just need to show
that multiplying (A.5) by nN−k(φ̂/h− n)k, 0⩽ k⩽ N, leaves it uniformly bounded. Since χ̂ is
Schwartz class, it is enough to estimate∑

|n|>B′′/h

|n|−N−2|n|N−k =
∑

|n|>B′′/h

|n|−2|n|−k ⩽ C.

Therefore, (A.5) is O((h/|φ̂|)N), indeed. This, combined with (A.4) shows the same for Fjχ f
for |φ̂|> B ′, for every fixed χ ∈ C∞

0 .

Finally, we will mention that on the circle, the sinc interpolation of classically band-limited
functions on it (trigonometric polynomials) has its analog as well, see [5].
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