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Abstract
We prove that maximum a posteriori estimators are well-defined for diagonal
Gaussian priors µ on ℓp under common assumptions on the potential Φ. Fur-
ther, we show connections to the Onsager–Machlup functional and provide
a corrected and strongly simplified proof in the Hilbert space case p= 2,
previously established by Dashti et al (2013 Inverse Problems 29 095017);
Kretschmann (2019 PhD Thesis). These corrections do not generalize to the
setting 1⩽ p<∞, which requires a novel convexification result for the differ-
ence between the Cameron–Martin norm and the p-norm.

Keywords: inverse problems, maximum a posteriori estimator,
Onsager–Machlup functional, small ball probabilities, sequence spaces,
Gaussian measures

(Some figures may appear in colour only in the online journal)

1. Introduction

Let (X,∥ · ∥X), be a separable Banach space and µ a centered and non-degenerate Gaussian
(prior) probability measure on X. We are motivated by the inverse problem of inferring the
unknown parameter u ∈ X via noisy measurements

y= G(u)+ ε, (1.1)
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whereG : X→ Rd is a (possibly nonlinear) measurement operator and ε is measurement noise,
typically assumed to be independent of u. The Bayesian approach to solving such inverse
problems (Stuart 2010) is to combine prior knowledge given by µ with the data-dependent
likelihood into the posterior distribution µy given by

dµy

dµ
(u) = Z−1 · exp(−Φ(u)). (1.2)

Here, the so-called potential Φ : X→ R depends on G and the statistical structure of the
measurement noise ε, while Z :=

´
X exp(−Φ(u))µ(du) is simply the normalization constant,

which is well defined under suitable conditions on Φ (see assumption 2.1 later on). If, for
example, the measurement noise is distributed according to a centered Gaussian measure
on Rd, ε∼ N(0,Γ) with symmetric and positive definite covariance matrix Γ ∈ Rd×d, then
Φ(u) = 1

2∥Γ
−1/2(y−G(u))∥2, but wewill use general formulation (equation (1.2)) as the start-

ing point for our considerations. For an overview of the Bayesian approach to inverse problems
and a discussion of its well-posedness we refer to (Stuart 2010) and the references therein.

Our focus lies on the analysis of the so-called ‘maximum a posteriori (MAP) estimator’ or
‘mode’, i.e. the summary of the posteriorµy in the form of a single point uMAP ∈ X. In the finite-
dimensional setting X= Rk, if µy has a continuous Lebesgue density ρy, MAP estimators are
simply defined as the parameter of highest posterior density, uMAP = argmaxu∈Rkρy(u) (note
that such maximizers may not be unique or fail to exist).

Unfortunately, this definition does not generalize to measures without a continuous
Lebesgue density, in particular it cannot cover infinite-dimensional settings, where there is
no equivalent of the Lebesgue measure.

For this reason Dashti et al (2013, definition 3.1) suggested to define MAP estimators as
‘maximizers of infinitesimally small ball (posterior) mass’, see definition 1.3 below. To sim-
plify notation, we first introduce the following shorthand for the ratios of ball masses:

Notation 1.1. For a separable metric space X and a probability measure ν on X, we denote the
open ball of radius δ > 0 centered at x ∈ X by Bδ(x). Further, for w,z ∈ X with ν(Bδ(z))> 0,
we set

Rδ
ν(w,z) :=

ν(Bδ(w))
ν(Bδ(z))

, Rδ
ν(w,sup) :=

ν(Bδ(w))
supz∈X ν(Bδ(z))

.

Similarly, we set Rδ
ν(sup,w) :=Rδ

ν(w,sup)
−1 whenever ν(Bδ(w)) ̸= 0.

Remark 1.2. Note that supz∈X ν(Bδ(z))> 0 follows from the separability of X: assume that
(zn)n∈N is dense inX, δ > 0 and ν(Bδ(zn)) = 0 for each n ∈ N. Then ν(X)⩽

∑
n∈N ν(Bδ(zn)) =

0 (since X⊆
⋃
n∈NBδ(zn)) and ν could not be a probability measure.

We work with the following rather general definition of MAP estimators:

Definition 1.3 (Ayanbayev et al 2021a, definition 3.6). Let X be a separable metric space
and ν be a probability measure on X. A strong mode for ν is any z ∈ X satisfying

lim
δ↘0

Rδ
ν(z,sup) = 1. (1.3)

If ν = µy is a Bayesian posterior measure given by (1.2), then we call any strong mode aMAP
estimator.

Other sources, especially from the physics community, see e.g. (Dürr and Bach 1978),
(informally) define the MAP estimator as the minimizer of the so-called Onsager–Machlup
(OM) functional, which can be thought of as a generalization of the negative posterior log-
density (Dashti et al 2013):
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Definition 1.4. Let µ be a Gaussian (prior) measure on a separable Banach space X with
Cameron–Martin space (E, |·|E) and Φ: X→ R be such that exp(−Φ) is µ-integrable. We
define the Onsager-Machlup (OM) functional I : E→ R corresponding to µy given by (1.2) by

I(u) := Φ(u)+
1
2
|u|2E. (1.4)

The connection between OMminimizers and MAP estimators is non-trivial in general sep-
arable Banach spaces3. Natural questions arising in this context are

• whether (or under which conditions) MAP estimators exist and
• whether MAP estimators can equivalently be characterized as minimizers of the OM
functional.

One fundamental ingredient, and the most direct reason why small-ball probabilities are
related to the functional I, is the following theorem about the OM functional:

Theorem 1.5 (Dashti et al 2013, theorem 3.2). Let assumption 2.1 hold. Then for z1,z2 ∈ E,
lim
δ↘0

Rδ
µy(z1,z2) = exp(I(z2)− I(z1)).

However, theorem 1.5 does not yield the full answer regarding the connection of MAP
estimators and OM minimizers—not only is it restricted to elements of the Cameron–Martin
space E, also it only provides pairwise comparisons of two points z1,z2 ∈ E, whileMAP estim-
ators require consideration of the ratio Rδ

µy(z1,sup) and its limit as δ ↘ 0.

Remark 1.6. Note that I amounts to a Tikhonov–Phillips regularization of the misfit functional
Φ, so the results in this manuscript are also to be understood in the context of regularized
optimization.

Dashti et al (2013) discussed, for the first time, the existence of MAP estimators as well
as their connection to minimizers of the OM functional, in the specific setting of a Bayesian
inverse problem of type (1.1). More precisely, they claim to prove the following statements for
every separable Banach space X under assumption 2.1 below (Dashti et al 2013, theorem 3.5):

(I) Let zδ = argmaxz∈Xµ
y(Bδ(z)). There exists a subsequence of (zδ)δ>0 that converges

strongly in X to some element z ∈ E.
(II) The limit z is a MAP estimator of µy (this proves existence of such an object) and it is a

minimizer of the OM functional.

However, while the ideas of Dashti et al (2013) are groundbreaking, their proof of the above
statements, as well as the corrections provided by Kretschmann (2019), rely on techniques that
hold in separable Hilbert spaces rather than separable Banach spaces, see section 1.1.

Further, neither Dashti et al (2013) nor Kretschmann (2019) show the existence of the δ-
ball maximizers zδ above, which are the central objects in their proofs. It turns out that the
existence of zδ is a highly non-trivial issue and has recently been discussed by Lambley and

3 Note that (Dashti et al 2013, theorem 3.2), restated as theorem 1.5 below, only gives partial answers, since only
pairwise comparisons of points lying in E are made, while (Ayanbayev et al 2021a, proposition 4.1) makes the con-
nection between OM minimizers and weak modes (rather than strong modes, which correspond to MAP estimators)
under different assumptions.

3



Inverse Problems 39 (2023) 065009 I Klebanov and P Wacker

Sullivan (2022), who proved their existence for certain measures (including posteriors arising
from non-degenerate Gaussian priors on ℓp) and gave counterexamples for others.

Our approach relies on asymptotic maximizers in the following sense, which are guaranteed
to exist by the definition of the supremum (in fact, even for arbitrary families (εδ)δ>0 in (0,1)).

Definition 1.7. Let X be a separable metric space and ν be a probability measure on X. A family
(ζδ)δ>0 ⊂ X is called an asymptotic maximizing family (AMF) for ν, if there exists a family
(εδ)δ>0 in (0,1) such that εδ ↘ 0 as δ ↘ 0 and, for each δ > 0,

Rδ
ν(ζ

δ,sup)> 1− εδ. (1.5)

Lemma 1.8. For any separable metric space X and any probability measure ν on X, there
exists an AMF for ν. Further, if z̄ is a MAP estimator for ν, then the constant family (z̄)δ>0

forms an AMF for ν.

Proof. This follows directly from the definition of the supremum (in fact, for any family
(εδ)δ>0 a corresponding asymptotic maximizing family (AMF) can be found) and definitions
1.3 and 1.7.

The corresponding statements to (I)–(II) are given in conjecture 2.3. Note that we
strengthened those statements by stating the equivalence of MAP estimators, minimizers of
the OM functional and limit points of AMFs. Especially the latter cannot be expected for the
δ-ball maximizers zδ , even when they exist and are unique, since it is easy to construct MAP
estimators that are not limit points of (zδ)δ>0 as δ ↘ 0, even for continuous measures on R1.
Apart from their guaranteed existence, this is yet another advantage of working with AMFs
(ζδ)δ>0 rather than with (zδ)δ>0.

1.1. Why this paper is necessary

The contribution of this paper is twofold:

1. Remedy the shortcomings of previous work on the existence of MAP estimators mentioned
above and listed in detail below, resulting in a corrected and strongly simplified proof of the
existence of MAP estimators in the Hilbert space setting (theorem 2.4, proven in section 3);

2. Generalize the corresponding result from Hilbert spaces to sequence spaces X= ℓp, 1⩽
p<∞, of pth-power summable sequences and diagonal4 and nondegenerate Gaussian prior
measures, proven in section 4). For this purpose, we develop a novel and non-trivial con-
vexification argument for the difference between the Cameron–Martin norm | · |E and the
ambient space norm ∥ · ∥X in proposition 4.6.

The shortcomings of previous work on the existence of MAP estimators include:

• The crucial object in the proofs of (Dashti et al 2013),

zδ = argmaxz∈Xµ
y(Bδ(z)),

4 By ‘diagonal’ we mean that µ=⊗k∈NN (0,σ2
k ) has a diagonal covariance structure with respect to the canonical

basis, while ‘nondegenerate’ refers to the fact that the eigenvalues of the covariance operator are strictly positive,
σ2
k > 0 for k ∈ N. Note that Gaussian measures on separable Hilbert spaces can always be diagonalized in this sense

by choosing an orthonormal eigenbasis of the covariance operator, see notation 3.1, hence our results constitute a
genuine generalization of the Hilbert space case.
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is defined without a proof of its existence. This is a highly non-trivial issue which was not
fixed by the corrections in Kretschmann (2019). In (Lambley and Sullivan 2022, example
4.8), the authors construct a probability measure on a separable metric space without such
δ-ball maximizers zδ , but prove in (Lambley and Sullivan 2022, corollary 4.10) that such
maximizers exist for posteriors arising from non-degenerate Gaussian priors on ℓp.

• Specific Hilbert space properties are used in Banach spaces, in particular, the proof of
(Dashti et al 2013, theorem 3.5) relies heavily on the existence of an orthogonal basis of the
Cameron–Martin space which satisfies ∥x∥2X =

∑
n∈N x

2
n for x ∈ X, where xn are the coordin-

ates of x in that basis.
• While the defining property of a MAP estimator z ∈ X is given by

lim
δ↘0

Rδ
µy(z,sup) = 1,

the proof of (Dashti et al 2013, theorem 3.5) considers this limit only for a specific null
sequence (δm)m∈N. This is hidden in their notation, where, for simplicity, they adopt the
notation (zδ)δ>0 for subsequences—a rather typical abuse of notation which is illegitimate
in this specific case, since different null sequences (δm)m∈N can yield different candidates
for MAP estimators.

• While Dashti et al (2013, lemma 3.9) is stated for z̄= 0, it is later applied to more general
z̄ ∈ X. In Banach spaces, validity of this substitution is equivalent to tacit assumption of the
Radon–Riesz property, which only holds for a strict subset of separable Banach spaces (and
excludes the paradigmatic case X= ℓ1).

• The proof of (Dashti et al 2013, corollary 3.10) relies on MAP estimators being limit points
of (zδ)δ>0. However, only the reverse implication had been discussed, and, in fact, this
implication is incorrect even when zδ , δ > 0, is guaranteed to exist, as can be easily seen
from the following simple example of a bimodal distribution on R1: let 0< σ < 1 and
µy have Lebesgue density ρy(x)∝ exp(−(x− 1)2/2)χR+ + exp(−(x+ 1)2/(2 ·σ2))χR− .
Then zδ = 1 for all δ < 1

2 , but both x=±1 are true MAP estimators. For this purpose, we
work with AMFs introduced in definition 1.7, the limit points of which we show to coincide
with MAP estimators.

Conjecture 2.3 in general separable Banach spaces and general Gaussian measures remains
unsolved and is an extremely intricate issue. The ‘skeleton’ of our proofs is provided in theorem
2.8, where the main steps are shown under suitable conditions (while proving those conditions
in specific settings typically requires a lot of work). This establishes a framework for proving
conjecture 2.3 in other Banach spaces, thereby paving the road for future research on this topic.

1.2. Related work

The definition of strong modes by Dashti et al (2013) has sparked a series of papers with
variations on this concept, most notably generalized strong modes Clason et al (2019), weak
modes (Helin and Burger 2015). Agapiou et al (2018) studied the MAP estimator for Bayesian
inversion with sparsity-promoting Besov priors. The connection between weak and strong
modes was further explored in Lie and Sullivan (2018), and Ayanbayev et al (2021a, 2021b)
discussed stability and convergence of global weak modes using Γ-convergence. Recently,
Lambley and Sullivan (2022) presented a perspective on modes via order theory.

5



Inverse Problems 39 (2023) 065009 I Klebanov and P Wacker

1.3. Structure of this manuscript

Section 2 describes the common framework along which the well-definedness of MAP estim-
ators can be proven in all cases considered (Hilbert space and X= ℓp) and, possibly, further
separable Banach spaces. Sections 3 and 4 apply this framework in order to prove well-
definedness of the MAP estimator in the Hilbert space and ℓp case, respectively.

2. Existence of maximum a posteriori estimators

This section covers all the main results mentioned in the introduction. Throughout the paper,
we will make the following general assumptions:

Assumption 2.1. Let (X,∥ · ∥X) be a separable Banach space, which we call the ambient
space, and µ be a non-degenerate centered Gaussian (prior) probability measure on X. Let
(E, |·|E) denote the corresponding Cameron–Martin space and µy be the (posterior) prob-
ability measure on X given by (1.2), where the potential Φ : X→ R satisfies the following
conditions:

(a) Φ is globally bounded from below, i.e. there exists M ∈ R such that for all u ∈ X,

Φ(u)⩾M.

(b) Φ is locally bounded from above, i.e. for every r> 0 there exists K(r)> 0 such that for all
u ∈ X with ∥u∥X < r we have

Φ(u)⩽ K(r).

(c) Φ is locally Lipschitz continuous, i.e. for every r> 0 there exists L(r)> 0 such that for all
u1,u2 ∈ X with ∥u1∥X,∥u2∥X ⩽ r we have

|Φ(u1)−Φ(u2)|⩽ L(r)∥u1 − u2∥X.

Purely for convenience, we assume that Φ(0) = 0. This can be easily achieved by subtract-
ing Φ(0) from Φ and incorporating the resulting additional prefactor into the normalization
constant Z in (1.2).

Remark 2.2. Conditions (a)–(c) are identical to (Dashti et al 2013, assumption 2.1), except
that (a) is slightly stronger: (Dashti et al 2013) initially assume the weaker inequality Φ(u)⩾
M− ε∥u∥2X for every ε> 0, but also make the additional assumption of global boundedness
from below (in the sense of (a) in assumption 2.1) in their main theorem 3.5. This assumption
is usually not too restrictive as our condition (a) still covers most practical Bayesian inverse
problems, sinceΦ is typically even non-negative (cf introduction). Further, the non-degeneracy
of µ together with the above conditions guarantees that the ratios Rδ

µ(w,z) and Rδ
µy(w,z) etc

are always well-defined. Given the assumption Φ(0) = 0, condition (b) is an implication of
(c), but we keep the conditions separated for didactical reasons and comparability to previous
papers.

First, let us restate the result in (Dashti et al 2013, theorem 3.5) as a conjecture, since their
proof is only (partially, due to unclear existence of δ-ball maximizing centers zδ) correct in
Hilbert spaces and the Banach space version remains an open problem:

6
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Conjecture 2.3. Let assumption 2.1 hold. Then:

(a) The following statements are equivalent:
(i) z̄ is an X-strong limit point as δ→ 0 of some AMF for µy.5

(ii) z̄ ∈ E and z̄ minimizes the OM functional.
(iii) z̄ is a MAP estimator.

(b) There exists at least one MAP estimator.

The main goal of this paper is to provide proofs of conjecture 2.3 in the special cases where

• X is a separable Hilbert space (theorem 2.4), where we correct and strongly simplify the
proofs initially proposed by (Dashti et al 2013) and worked out in detail in the PhD Thesis
of Kretschmann (2019), or

• X= ℓp with p ∈ [1,∞) and µ=⊗k∈NN (0,σ2
k ) is a diagonal Gaussian measure on X (the-

orem 2.5), which is an entirely new result.

Theorem 2.4. Let assumption 2.1 hold. Then conjecture 2.3 holds for any separable Hilbert
space X= H .

Proof. See section 3.

Theorem 2.5. Let assumption 2.1 hold. Then conjecture 2.3 holds for X= ℓp, p ∈ [1,∞), and
any diagonal Gaussian (prior) measure µ=⊗kN (0,σ2

k ) on X.

Proof. See section 4.

2.1. Proof strategy

In order to prove theorems 2.4 and 2.5, we proceed along the following seven steps, where
(ζδ)δ>0 is an arbitrary AMF for µy and (δm)m∈N denotes an arbitrary null sequence. This is
a rather general approach and can be followed to prove conjecture 2.3 for further classes of
Banach spaces.

(i) Show that (ζδm)m∈N is bounded.
(ii) Extract a weakly convergent subsequence of (ζδm)m∈N, which, for simplicity, we denote

by the same symbol, with weak limit z̄ ∈ X.
(iii) Prove that z̄ lies in the Cameron–Martin space E.
(iv) Show that the convergence is, in fact, strong: ∥ζδm − z̄∥X → 0 as m→∞.
(v) Infer that any limit point z̄ of an AMF (not just the one obtained in (ii)–(iv)) is a MAP

estimator, proving its existence.
(vi) Prove that any MAP estimator minimizes the OM functional and is a limit point of some

AMF.
(vii) Show that any OM minimizer is also a MAP estimator.

An illustration how this proof strategy fits within the context of conjecture 2.3 can be found
in figure 1.

The proof of (i), (iii) and (iv) is highly non-trivial and relies on the following idea: First, we
prove that, under assumption 2.1, the fraction Rδm

µ (ζδm ,0) is bounded away from 0, meaning

5 I.e., there exists a sequence (δn)n∈N with δn ↘ 0 such that ∥ζδn − z̄∥X → 0 as n→∞.
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Figure 1. Strategy for proving the existence and equivalence of AMF limit points, MAP
estimators and OM minimizers.

that the ζδm do not carry negligible prior ball mass in the asymptotic limit. Second, we show
for any sequence (xm)m∈N in X that, if either

• (xm)m∈N is unbounded or
• xm ⇀ z̄ with z̄ /∈ E or
• xm ⇀ z̄ ∈ E but ∥xm− z̄∥X ̸→ 0,

then

liminf
m→∞

Rδm
µ (xm,0) = 0,

providing a contradiction for xm = ζδm . The three properties described above, as well as (ii),
are formulated in condition 2.7 (C1)–(C4) and stated as assumptions in theorem 2.8, which
can therefore be seen as a ‘shell theorem’. Note that steps (v), (vi) and (vii) then follow in any
separable Banach space.

Finally, we prove condition 2.7 (C1)–(C4) and finalize the proof of conjecture 2.3 in the two
mentioned cases—section 3 covers the case where X is a Hilbert space (theorem 2.4), while
section 4 considers X= ℓp, 1⩽ p<∞, and diagonal Gaussian measures (theorem 2.5).

Remark 2.6. Apart from providing a ‘skeleton’ for the proof of conjecture 2.3, the strength of
theorem 2.8 lies in its generality: It holds for any separable Banach space and thereby paves the
way for future research. Further, remarkably, while condition 2.7 (C1)–(C4) are stated in terms
of the prior measure µ, the conclusions are drawn for MAP estimators of µy, with assumption
2.1 providing the sufficient conditions for comparability between prior and posterior in order
to make this possible.

2.2. A framework for proving existence of MAP estimators

While we use the proof strategy described above to prove theorems 2.4 and 2.5, it paves the
way for further research. Note that theorem 2.8 is applicable to any separable Banach space,
so this approach can be followed to prove conjecture 2.3 for other classes of Banach spaces.

Condition 2.7. Under assumption 2.1, we introduce the following four conditions:

(C1) (vanishing condition for unbounded sequences)—For any null sequence (δm)m∈N in R+

and unbounded sequence (xm)m∈N in X,

liminf
m→∞

Rδm
µ (xm,0) = 0.

(C2) (weakly convergent subsequence condition)—If (δm)m∈N is a null sequence in R+ and
(xm)m∈N is a bounded sequence in X such that there exists K> 0 satisfying, for each
m ∈ N, Rδm

µ (xm,0)⩾ K, then (xm)m∈N has a weakly convergent subsequence.

8
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(C3) (vanishing condition for weak limits outside E)—For any null sequence (δm)m∈N
in R+ and weakly convergent sequence (xm)m∈N in X with weak limit z̄ /∈ E,
liminfm→∞Rδm

µ (xm,0) = 0.6

(C4) (vanishing condition for weakly, but not strongly convergent sequences)—For any null
sequence (δm)m∈N in R+ and weakly, but not strongly convergent sequence (xm)m∈N in
X with weak limit z̄ ∈ E, liminfm→∞Rδm

µ (xm,0) = 0.7

Theorem 2.8. Let assumption 2.1 hold and (ζδ)δ>0 be any asymptotic maximizing family
(AMF) in X. Then there exist constants K> 0 and δ0 > 0, such that, for any 0< δ < δ0,

Rδ
µ(ζ

δ,0)⩾ K. (2.1)

It follows that:

(a) If condition 2.7 (C1)–(C4) hold, (ζδ)δ>0 is an AMF in X and (δm)m∈N is a null sequence,
then (ζδm)m∈N has a subsequence which converges strongly (in X) to an element w̄ ∈ E and
any limit point z̄ of (ζδ)δ>0 lies in E and is a MAP estimator for µy.

(b) If condition 2.7 (C3) holds, then any MAP estimator for µy is an element of the Cameron–
Martin space E, minimizes the OM functional and is a limit point of some AMF.

(c) If condition 2.7 (C3) holds and µy has a MAP estimator z̄, then any minimizer x̄ ∈ E of the
OM functional is also a MAP estimator.

In particular, if condition 2.7 (C1)–(C4) are satisfied, then conjecture 2.3 holds.

Proof. Due to assumption 2.1(c) and definition 1.7 there exists a family (εδ)δ>0 such that
εδ ↘ 0 for δ ↘ 0, and, for any 0< δ ⩽ 1,

µy(Bδ(ζ
δ))>

1− εδ

Z
· sup
z∈X

ˆ
Bδ(z)

e−Φ(u)dµ(u)⩾ 1− εδ

Z
·
ˆ
Bδ(0)

e−Φ(u)dµ(u)

⩾ 1− εδ

Z
·
ˆ
Bδ(0)

e−L(1)dµ(u) =
1− εδ

Z
e−L(1)µ(Bδ(0)). (2.2)

Furthermore, by assumption 2.1(a), for any z ∈ X and δ > 0,

µy(Bδ(z)) =
1
Z

ˆ
Bδ(z)

e−Φ(u)dµ(u)⩽ e−M

Z
µ(Bδ(z)). (2.3)

Choosing 0< δ0 ⩽ 1 such that εδ < 1/2 for each 0< δ < δ0, and denoting K := eM−L(1)/2,

µ(Bδ(ζ
δ))⩾ ZeMµy(Bδ(ζ

δ))⩾ (1− εδ)eM−L(1)µ(Bδ(0))⩾ Kµ(Bδ(0)),

proving (2.1).

Proving (a). Consider the sequence ζδm with δm ↘ 0 as m→∞. Then

(i) condition 2.7 (C1) implies boundedness of (ζδm)m∈N in X,

6 This condition corresponds to (Dashti et al 2013, lemma 3.7) and (Kretschmann 2019, lemma 4.11). While this
is sufficiently strong for our purposes, namely the proofs of the main theorems 2.4 and 2.5, we actually prove the
stronger statement with limsup in place of liminf both for Hilbert spaces (corollary 3.6) as well as for X= ℓp (lemma
4.5).
7 This condition corresponds to (Dashti et al 2013, lemma 3.9) and (Kretschmann 2019, lemma 4.13).

9
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(ii) condition 2.7 (C2) implies that (ζδm)m∈N has a weakly (in X) convergent subsequence
with weak limit point w̄ ∈ X.

(iii) condition 2.7 (C3) implies that any weak (in X) limit point z̄ ∈ X of (ζδm)m∈N lies in the
Cameron–Martin space E.

(iv) condition 2.7 (C4) implies that any weak (in X) limit point z̄ ∈ E of (ζδm)m∈N is also a
strong (in X) limit point of (ζδm)m∈N.

In particular, there exists a subsequence of (ζδm)m∈N which converges strongly (in X) to
some w̄ ∈ E. This proves the first part of (a).

Now let z̄ be any limit point of (ζδ)δ>0 and (δm)m∈N be such that (ζδm)m∈N converges
(strongly) to z̄. Note that z̄ ∈ E by (iii). We set

S :=max{∥z̄∥X, sup
m∈N

∥ζδm∥X}.

Using the local Lipschitz constant L(r) for Φ on Br(0) (see assumption 2.1(c)), we obtain, for
any m ∈ N,

Rδm
µy(ζδm , z̄) = exp(Φ(z̄)−Φ(ζδm))

´
Bδm (ζ

δm )
eΦ(ζδm )−Φ(u) dµ(u)´

Bδm (̄z)
eΦ(̄z)−Φ(u) dµ(u)

⩽ exp
(
L(S) · ∥ζδm − z̄∥X+L(S+ δm) · δm+L(S+ δm) · δm

)
Rδm

µ (ζδm , z̄).

Since ζδm → z̄ as m→∞, lemma A.2 and definition 1.7 of AMFs imply

limsup
m→∞

Rδm
µy(sup, z̄) = limsup

m→∞
Rδm

µy(sup, ζδm)Rδm
µy(ζδm , z̄)

⩽ limsup
m→∞

(1− εδm)−1 exp
(
L(S)∥ζδm − z̄∥X+ 2L(S+ δm) · δm

)
Rδm

µ (ζδm , z̄)

⩽ 1. (2.4)

If we can show that limsupδ↘0R
δ
µy(sup, z̄)⩽ 1 (i.e. for any null sequence, not just

for (δm)m∈N), then, since Rδ
µy(sup, z̄)⩾ 1 for each δ > 0, this implies that in fact

limδ↘0R
δ
µy(sup, z̄) = 1, proving that z̄ is a MAP estimator and finalizing the proof.

For this purpose assume otherwise, i.e. there exists a null sequence (εm)m∈N such that
limsupm→∞ Rεm

µy (sup, z̄)> 1.
With the same argumentation as in (i)–(iv), there exists a subsequence of (ζεm)m∈N, which,

for simplicity, we denote by the same symbol, that converges strongly to some element x̄ ∈ E.
Similarly to (2.4) we obtain

limsup
m→∞

Rεm
µy (sup, x̄)⩽ 1. (2.5)

Now, since x̄, z̄ ∈ E, the property of the OM functional, theorem 1.5, guarantees the existence
of the limit limδ↘0R

δ
µy(x̄, z̄) and therefore (2.4) implies

lim
m→∞

Rεm
µy (x̄, z̄) = lim

δ↘0
Rδ

µy(x̄, z̄) = lim
m→∞

Rδm
µy(x̄, z̄)⩽ limsup

m→∞
Rδm

µy(sup, z̄)⩽ 1. (2.6)

It follows from (2.5) and (2.6) that

1< limsup
m→∞

Rεm
µy (sup, z̄) = limsup

m→∞
Rεm

µy (sup, x̄) lim
m→∞

Rεm
µy (x̄, z̄)⩽ 1,

which is a contradiction, finalizing the proof.

10



Inverse Problems 39 (2023) 065009 I Klebanov and P Wacker

Proving (b).Now let z̄ ∈ X be anyMAP estimator (not necessarily the one obtained as the limit
of ζδm). Assuming z̄ /∈ E and considering the constant sequence (z̄)m∈N (clearly converging to
z̄), the vanishing condition for weak limits outside E, condition 2.7 (C3), implies that

liminf
m→∞

Rδm
µ (z̄,0) = 0

for any null sequence (δm)m∈N. Since the constant family (z̄)δ>0 is an AMF for µy by lemma
1.8, (2.1) implies

liminf
δ↘0

Rδ
µ(z̄,0)⩾ K> 0.

This contradiction proves z̄ ∈ E. By definition of MAP estimators and theorem 1.5, it fol-
lows for any z⋆ ∈ E that

1= lim
δ↘0

Rδ
µy(z̄,sup)⩽ lim

δ↘0
Rδ

µy(z̄,z⋆) = exp(I(z⋆)− I(z̄)).

Hence, I(z⋆)⩾ I(z̄) and z̄ is a minimizer of the OM functional. Finally, by lemma 1.8, z̄ is also
a limit point of the constant AMF (z̄)m∈N.

Proving (c). By (b), z̄ ∈ E and minimizes the OM functional I, hence I(z̄) = I(x̄). It follows
from theorem 1.5 that

lim
δ↘0

Rδ
µy(x̄,sup) = lim

δ↘0
Rδ

µy(x̄, z̄) · lim
δ↘0

Rδ
µy(z̄,sup) = exp(I(z̄)− I(x̄)) · 1= 1,

proving (c).
In summary, we have shown that each AMF (the existence of some AMF follows from

lemma 1.8) has a limit point z̄ ∈ E, which is a MAP estimator. Furthermore, each limit point
of an AMF lies in E and is a MAP estimator. In addition, any MAP estimator minimizes the
OM functional and is a limit point of some AMF. Finally, each minimizer of the OM functional
is a MAP estimator. Together, this proves conjecture 2.3.

2.3. Some comments on the proof of condition 2.7 (C1)–(C4)

The main obstacle in proving theorems 2.4 and 2.5 is the verification of condition 2.7 (C1)–
(C4). Let us shortly summarize one of the main ideas, demonstrated on the derivation of the
vanishing condition for unbounded sequences (C1) in the finite-dimensional setting X= Rk,
k ∈ N: our aim is to show that, for any δ > 0 the ratio Rδ

µ(x,0) decays to zero as ∥x∥X →∞.
For this purpose we extract a certain prefactor from the integrals in the following way:

Rδ
µ(x,0) =

´
Bδ(x)

exp
(
− 1

2 |u|
2
E

)
du´

Bδ(0)
exp
(
− 1

2 |u|
2
E

)
du

⩽
supv∈Bδ(x) exp

(
− 1

2L(v)
)

infv∈Bδ(0) exp
(
− 1

2L(v)
) ´Bδ(x)

exp
(
− 1

2 (|u|
2
E−L(u))

)
du´

Bδ(0)
exp
(
− 1

2 (|u|
2
E−L(u))

)
du

.

If L satisfies the following conditions,

(i) there exists α> 0 and κ1,κ2 ⩾ 0 such that, for each v ∈ Rk,
∥v∥αX −κ1 ⩽ L(v)⩽ ∥v∥αX +κ2,

(ii) |·|2E−L is non-negative and convex,

11
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then (ii) implies that, by Anderson’s inequality, we can bound the remaining ratio of integrals
from above by 1, while (i) implies that, for any fixed δ > 0, the first fraction vanishes as ∥x∥X →
∞.

In separable Hilbert spaces X= H a function L satisfying (i)–(ii) is not hard to find (in both
finite and infinite dimensions) since both ∥·∥H and |·|E are quadratic. In general separable
Banach spaces the large discrepancy between the geometries induced by the norms ∥·∥X and
|·|E strongly complicates the search for such a function L, where convexity is particularly hard
to ensure. For X= ℓp, the technical proposition 4.6 guarantees the existence of such a function
L. This result together with proposition 4.8 can be seen as the crux to the results presented in
this paper.

3. The Hilbert space case: proof of theorem 2.4

In this section we treat the case where X= H is a Hilbert space, i.e. we prove theorem 2.4.
These results have already been presented by Dashti et al (2013), with some corrections by
Kretschmann (2019). However, both of these manuscripts did not prove the existence of the
central object in their proofs, namely the δ-ball maximizing centers zδ = argmaxxµ

y(Bδ(x)),
which seems to be a highly nontrivial issue, see Lambley and Sullivan (2022). This section
closes this theoretical gap by working with AMFs ζδ defined by definition 1.7 and serves two
further purposes:

First, the Hilbert space case provides insight into the main ideas of the proof of conjecture
2.3 with fewer technicalities than the more general case X= ℓp. Second, we use a helpful state-
ment from (Da Prato and Zabczyk 2002), restated in proposition 3.2 below, which simplifies
the proofs considerably in comparison to (Dashti et al 2013, Kretschmann 2019) and renders
the proofs more streamlined.

Notation 3.1. Let H be an infinite-dimensional separable Hilbert space and µ= N (0,Q) a
centered and non-degenerate Gaussian measure on H . As the covariance operator Q of µ is
a self-adjoint, positive, trace-class operator (Baker 1973), there exists an orthonormal eigen-
basis (ek)k∈N of Q in which µ=⊗k∈NN (0,σ2

k ) is a product measure of one-dimensional
Gaussian measures, where Qek = σ2

kek and σk > 0 for each k ∈ N and
∑

k∈Nσ
2
k <∞. We

assume the eigenvalues to be decreasing, i.e. σ1 ⩾ σ2 ⩾ . . .. We write D= diag(d1,d2, . . .) :=∑
k∈N dk ek⊗ ek for any operator that is diagonal in the basis (ek)k∈N. Denoting ak := σ−2

k for
k ∈ N, the Cameron–Martin space of µ is given by

E= {z ∈ H : |z|E <∞}, |z|2E =
∞∑
k=1

ak⟨z,ek⟩2H , (3.1)

see Da Prato and Zabczyk (2014, theorem 2.23). Finally, we define the orthogonal projection
operators Πk,Πk : H → H , k ∈ N∪{0}, by

Πk(x) :=
k∑
j=1

⟨x,ej⟩H ej, Πk(x) := x−Πk(x).

Note that Π0 = 0 and Π0 = Id.

We start by reciting the following result which will allow us to ‘extract an exponential rate’
by integrating over a slightly wider Gaussian measure:

12
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Proposition 3.2 (Da Prato and Zabczyk 2002, proposition 1.3.11). If Γ: H → H is self-
adjoint and such that Q1/2ΓQ1/2 is trace class on H and additionally ⟨x,Q1/2ΓQ1/2x⟩H <
∥x∥2H for all x ∈ H . Then for µ= N (0,Q) and ν = N (0,(Q−1 −Γ)−1) we have

dµ
dν

(u) =
exp
(
− 1

2 ⟨Γu,u⟩H
)√

det(I−Q1/2ΓQ1/2)
.

Remark 3.3. In one dimension this boils down to the following: let σ> 0 and µ= N (0,σ2).
Then, for any γ < σ−2,

µ(A) =
1√
2πσ2

ˆ
A
exp

(
−γ2 x

2

2

)
exp

− x2

2
(

σ2

1−γ2σ2

)
dx

=

ˆ
A

exp
(
−γ2 x2

2

)
√
1− γ2σ2

dν(x),

where ν = N (0, σ2

1−γ2σ2 ) = N (0,(σ−2 − γ2)−1).

Then we can re-prove the following lemma (as already stated in (Dashti et al 2013) and
(Kretschmann 2019)):

Lemma 3.4 (Dashti et al 2013, lemma 3.6). Let assumption 2.1 hold and X= H be a sep-
arable Hilbert space. Then, using notation 3.1, for any δ > 0 and z ∈ H , and n ∈ N,

Rδ
µ(z,0)⩽ exp

(
−an

2

[
(∥Πn−1z∥H − δ)2 − δ2

])
.

Proof. Using notation 3.1, for arbitrary n⩾ n0, let Γ = diag(0, . . . ,0,r, . . . ,) with entries 0<
r< an starting at position n, such that Q−1 −Γ = diag(a1, . . . ,an−1,an− r,an+1 − r, . . .) is a
valid precision (i.e. inverse covariance) operator of a Gaussian measure onH . This means that
⟨x,Γx⟩= r∥Πn−1x∥2X. This choice of Γ fulfills the conditions of proposition 3.2: first, (Q−1 −
Γ)−1 is a valid covariance operator:

∞∑
i=n

(ai− r)−1 =
∞∑
i=n

a−1
i

1− ra−1
i

⩽ 1

1− ra−1
n

∞∑
i=n

a−1
i =

an
an− r

∞∑
i=n

σ2
i <∞.

Second, since Q is trace class (Baker 1973), so is

Q1/2ΓQ1/2 = diag(0, . . . ,0,rσ2
n ,rσ

2
n+1, . . .).

Finally, as r< an = σ−2
n , and σ2

m ⩽ σ2
n for m> n, we also have that rσ2

m ⩽ 1 for all m⩾ n,
hence ⟨x,Q1/2ΓQ1/2x⟩⩽ ∥x∥2X.

Thus, with ν = N (0,(Q−1 −Γ)−1), proposition 3.2 implies for any δ > 0:

Rδ
µ(z,0) =

´
Bδ(z)

e−
1
2 ⟨x,Γx⟩H dν(x)´

Bδ(0)
e−

1
2 ⟨x,Γx⟩H dν(x)

⩽
exp(− r

2 (∥Πn−1z∥H − δ)2)

exp(− r
2δ

2)

´
Bδ(z)

dν(x)´
Bδ(0)

dν(x)

⩽ exp
(
− r
2

[
(∥Πn−1z∥H − δ)2 − δ2

])
13
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due to Anderson’s inequality (theorem A.4 with γ = ν, A= Bδ(0) and a= z). Since above
inequality holds for any 0< r< an, it also holds for r= an by continuity, and the claim follows.

Corollary 3.5. Let assumption 2.1 hold and X= H be a separable Hilbert space. Then the
vanishing condition for unbounded sequences, condition 2.7 (C1), holds.

Proof. Let (δm)m∈N be a null sequence in R+ and (xm)m∈N be an unbounded sequence in X.
We have to prove that for any ε> 0 and any m ∈ N there exists a m⋆ ⩾ m such that

Rδm⋆ (xm⋆ ,0)
µ ⩽ ε.

Indeed, for arbitrary ε> 0 and m ∈ N there exists M> 0 such that a1M
2

4 ⩾ logε−1. Since (δm)
is a null sequence, there exists m1 ⩾ m such that for all n⩾ m1, δn <M/4. By unboundedness
of (xm)m we can find a m⋆ ⩾ m1 ⩾ m such that ∥xm⋆∥H ⩾M. Then, by lemma 3.4,

Rδm⋆ (xm⋆ ,0)
µ ⩽ exp

(
−a1

2

[
(∥xm⋆∥H − δm⋆)2 − δ2m⋆

])
⩽ exp

(
−a1

2

[
9M2

16
− M2

16

])
= exp(−a1M2

4
)⩽ ε.

Similarly we can shorten the proof of the following lemma:

Corollary 3.6 (Dashti et al (2013, lemma 3.7), Kretschmann (2019, lemma 4.11)). Let
assumption 2.1 hold and X= H be a separable Hilbert space. Then the vanishing condition
for weak limits outside E, condition 2.7 (C3), is satisfied.

Proof. We use notation 3.1 throughout the proof.
Let (δm)m∈N be a null sequence in R+ and (xm)m∈N be a weakly convergent sequence with

weak limit z̄ /∈ E.

Rδm(xm,0)
µ ⩽ ε.

Let ε> 0. Since z̄ /∈ E, |Πnz̄|E →∞ as n→∞ by (3.1),
hence there exists n ∈ N (which we fix from now on) such that

|Πnz̄|E ⩾ 4, exp(− 3
64 |Π

nz̄|2E)< ε. (3.2)

Note that Γ := diag(a1/2,a2/2, . . . ,an/2,0,0, . . .) is a valid choice for the operator Γ in pro-
position 3.2 and observe that

⟨x,Γx⟩H = 1
2 |Π

nx|2E, x ∈ H . (3.3)

Since weak convergence xm ⇀ z̄ implies componentwise convergence, there exists m1 ∈ N
such that, for any m⩾ m1, |Πn(z̄− xm)|E ⩽ 1. Since (δm)m∈N is a null sequence, there exists
m⋆ ⩾ m1 such that, for each m⩾ m⋆, δ2m ⩽ σ2

n/n. It follows from (3.2) for any m⩾ m⋆, any
z ∈ Bδm(xm) and any w ∈ Bδm(0), denoting xm,j,zj,wj for the jth component of xm,z,w, that

(i) |Πn(xm− z)|2E =
∑n

j=1σ
−2
j |xm,j− zj|2 ⩽

∑n
j=1σ

−2
n δ2m ⩽

∑n
j=1 n

−1 = 1;

(ii) |Πnz|E ⩾ 1
2 |Π

nz̄|E+ 1
2 |Π

nz̄|E︸ ︷︷ ︸
⩾2

−|Πn(z̄− xm)|E︸ ︷︷ ︸
⩽1

−|Πn(xm− z)|E︸ ︷︷ ︸
⩽1

⩾ 1
2 |Π

nz̄|E;

(iii) |Πnw|2E =
∑n

j=1σ
−2
j |wj|2 ⩽

∑n
j=1σ

−2
n δ2m ⩽

∑n
j=1 n

−1 = 1⩽ 1
16 |Π

nz̄|2E.
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Using (3.3) and Anderson’s inequality (theorem A.4) applied to the Gaussian measure ν on
H as defined in proposition 3.2, this implies, for any m⩾ m⋆,

Rδm
µ (xm,0) =

´
Bδm (xm)

exp
(
− 1

2 ⟨z,Γz⟩H
)
dν(z)´

Bδm (0)
exp
(
− 1

2 ⟨w,Γw⟩H
)
dν(w)

⩽ exp

(
1
4 sup
w∈Bδm (0)

|Πnw|2E− 1
4 inf
z∈Bδm (xm)

|Πnz|2E
)
ν(Bδm(xm))
ν(Bδm(0))

⩽ exp
(

1
64 |Π

nz̄|2E− 1
16 |Π

nz̄|2E
)

= exp
(
− 3

64 |Π
nz̄|2E
)
< ε,

proving the claim.

Corollary 3.7 (Dashti et al 2013, lemma 3.9 and Kretschmann 2019, lemma 4.13). Let
assumption 2.1 hold and X= H be a separable Hilbert space. Then the vanishing condition
for weakly, but not strongly convergent sequences, condition 2.7 (C4), is satisfied.

Proof. We use notation 3.1 throughout the proof. Let (δm)m∈N be a null sequence in R+ and
(xm)m∈N converge weakly, but not strongly to z̄ ∈ E. We will show that, for any ε> 0 and
m1 ∈ N, there exists m⋆ ⩾ m1 such

Rδm⋆ (xm⋆ ,0)
µ ⩽ ε.

Now let ε> 0 and m1 ∈ N. Since weak convergence xm ⇀ z̄ implies ∥z̄∥H ⩽
liminfm→∞ ∥xm∥H and as the convergence is not strong by assumption, the Radon–Riesz
property guarantees the existence of c> 0 such that

limsup
m→∞

∥xm∥> ∥z̄∥H + c. (3.4)

(Otherwise, limm→∞ ∥xm∥= ∥z̄∥H , in which case weak convergence implies strong con-
vergence.) Since ak →∞ as k→∞, there exists n ∈ N (which we fix from now on) such that
an ⩾−24c−2 logε. Since (δm)m∈N is a null sequence and weak convergence xm ⇀ z̄ implies
componentwise convergence, (3.4) guarantees the existence of m⋆ ⩾ m1 such that δm⋆ ⩽ c/6,
∥Πn(z̄− xm⋆)∥H < c/2 and ∥xm⋆∥H > ∥z̄∥H + c. This implies

∥Πnxm∥H ⩾ ∥xm∥H −∥Πnxm∥H > ∥z̄∥H + c−∥Πn(xm− z̄)∥H −∥z̄∥H ⩾ c/2

and lemma 3.4 yields

Rδm⋆ (xm⋆ ,0)
µ ⩽ exp

(
−an

2

[
(∥Πnxm⋆∥H − δm⋆)2 − δ2m⋆

])
⩽ exp

(
−anc2

24

)
⩽ ε.

Proof of theorem 2.4. By lemma 3.4, corollaries 3.6 and 3.7, condition 2.7 (C1), (C3) and
(C4) are fulfilled, while the weakly convergent subsequence condition (C2) follows from the
reflexivity of H . Hence, all statements follow from theorem 2.8.
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4. The case X= ℓp: proof of theorem 2.5

In this section we will extend the results in section 3 to the spaces X= ℓp, 1⩽ p<∞, i.e. we
will prove theorem 2.5. Note that theorem 2.5 is an actual generalization of theorem 2.4
since the covariance structure in a Hilbert space can always be ‘diagonalized’ by choos-
ing an orthonormal eigenbasis of the covariance operator, which is a consequence of the
Karhunen–Loève expansion (Sprungk 2017, theorem 2.21). In other words, the Hilbert space
case (H ,µ) with an arbitrary non-degenerate Gaussian measure µ is equivalent to the case
(ℓ2,⊗N (0,σ2

k )), where σ
2
k are the corresponding eigenvalues (note that the Cameron–Martin

space E respects this equivalence due to (3.1)), and the setting considered in this manuscript
corresponds to the canonical generalization from ℓ2 to ℓp, 1⩽ p<∞.

While our proof strategy is quite similar to the one in (Dashti et al 2013), the strong dis-
crepancy between the geometries of the unit balls in E and X= ℓp for p ̸= 2 poses a strong
obstacle when attempting to extract an exponential decay rate out of the ratio Rδ

µ(z,0) with
fixed δ > 0, similar to the statement of lemma 3.4 in the Hilbert space case.

To see exactly why this is problematic, let us reiterate on the crucial line in the proof of
lemma 3.4. We set n= 1 for simplicity, and we focus on the finite-dimensional case (or finite-
dimensional approximation to the infinite-dimensional case) which allows towrite the integrals
with respect to Lebesguemeasure. Due to the fact that the Hilbert space norm coincides with an
(unweighted) ℓ2-norm, we can extract a multiple of the Hilbert space norm out of the integral,
where δ > 0, z ∈ H and r> 0 is a sufficiently small constant:

Rδ
µ(z,0) =

´
Bδ(z)

exp
(
− 1

2

[
a1x21 + · · ·+ aNx2N

])
dx´

Bδ(0)
exp
(
− 1

2

[
a1x21 + · · ·+ aNx2N

])
dx

⩽
supx∈Bδ(z) exp(−

r
2∥x∥

2
H )

infx∈Bδ(0) exp(− r
2∥x∥

2
H ))

·

´
Bδ(z)

exp
(
− 1

2

[
(a1 − r)x21 + · · ·+(aN− r)x2N

])
dx´

Bδ(0)
exp
(
− 1

2

[
(a1 − r)x21 + · · ·+(aN− r)x2N

])
dx

⩽
exp(− r

2 (∥z∥H − δ)2)

exp(− r
2δ

2)

where the second factor (the ratio of the remaining integrals) can be bounded by 1 due to
Anderson’s inequality (theorem A.3) under some prerequisites: first, the ambient space norm
∥ · ∥H needs to be dominated by (a multiple of) the Cameron–Martin norm such that the integ-
rand is integrable—this is also true for the Banach space case, simply by compact embedding
of E in X. Second, the function | · |E− r∥ · ∥H needs to be convex. This is trivially the case
in the Hilbert space case due to this difference being a positive definite quadratic, but does
not generalize to the Banach space case. Indeed, | · |E−β∥ · ∥p is not convex for p= 1 and any
β > 0. This issue is solved (in the general ℓp case) by proposition 4.6, which demonstrates how
to find functions L such that | · |2E−βL(·) is convex and L is a suitable surrogate of the ambient
space norm ∥ · ∥p, see figure 2 for an illustration.

Proposition 4.8 then leverages this result towards a generalization of lemma 3.4 in the ℓp

case, after which the proof of validity of condition 2.7 and subsequently theorem 2.5 is more
or less straight-forward.

When working in sequence spaces X⊆ RN, such as ℓp spaces, one important tech-
nique (Dashti et al 2013, Agapiou et al 2018, Ayanbayev et al 2021b) is to consider
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Figure 2. Visualization of the 2d case, X= ℓ1 and µ= N (0,1)⊗N (0,1). Left: Plot
of the function (x1,x2) 7→ x21 + x22 −β(|x1|+ |x2|)2 for a specific β > 0. The level sets
show that this function is non-convex (this is indeed true for any β > 0). Right: Plot of
the function (x1,x2) 7→ x21 + x22 −βL(x1,x2) for suitable β, which is seen to be convex.

finite-dimensional approximations of µ(Bδ(x)), x ∈ X. For this purpose, we introduce the fol-
lowing notation:

Assumption 4.1. We consider X= ℓp := ℓp(N) with 1⩽ p<∞ together with µ=
⊗j∈NN (0,σ2

j ), a non-degenerate centered Gaussian measure on X with diagonal covari-
ance structure, where σ1 ⩾ σ2 ⩾ . . . > 0 and

∑
j∈Nσ

p
j <∞.

Remark 4.2. The condition
∑∑∑

j∈Nσ
p
j <∞ is a necessary condition for µ(X) = 1 (i.e. samples

(xi)i∈N are almost surely in ℓp), see (Ayanbayev et al 2021b, lemma B.3).

Notation 4.3. Let assumption 4.1 hold. Define

α :=min(p,2), q :=max(p,2(p− 1)2), S :=

∑
j∈N

σpj

1/p

.

Further, for k,K ∈ N∪{0} with K> k define the projection operators Pk : RN → Rk,
Pk : RN → RN, PKk : RN → RK−k and P−k : Rk → RN by

Pk(x) := (x1, . . . ,xk), Pk(x) := (xk+1,xk+2, . . .),

PKk (x) := (xk+1, . . . ,xK), P−k(u) := (u1, . . . ,uk,0,0, . . .),

where Pk := 0 for k= 0. Accordingly, we define, for any u ∈ Rk and v ∈ RK,

• |u|Ek :=
∑k

j=1
σ−2
j u2j , |v|EKk :=

∑K

j=k+1
σ−2
j v2j ,

• Bkδ(u) := {w ∈ Rk | ∥w− u∥p < δ},
• µk =⊗k

j=1N (0,σ2
j ).

Note that 1
2 | · |Ek is the negative log density of µk.

Lemma 4.4. If assumption 4.1 holds, then the Cameron–Martin space of (ℓp,µ) is given by

E= {z ∈ ℓp : |z|E <∞} where |z|2E :=
∑∑∑∞

k=1
z2k
σ2
k
.

Proof. By (Bogachev 1998, lemma 3.2.2), we may consider µ as a Gaussian measure on a
Hilbert space H ⊇ X, into which X is continuously and linearly embedded, without changing

17



Inverse Problems 39 (2023) 065009 I Klebanov and P Wacker

the Cameron–Martin space or its norm. If p⩽ 2, X is continuously embedded in H = ℓ2 ⊃ X,
since ∥·∥2 ⩽ ∥·∥p. For p> 2, this can be accomplished by choosing any positive sequence

b ∈ ℓ
p

p−2 and H := {x ∈ RN : ∥x∥2H :=
∑

k∈N bkx
2
k <∞}, since, by Hölder’s inequality,

∥x∥2H =
∑
k∈N

bkx
2
k ⩽ ∥b∥ p

p−2
· ∥(x2k)k∈N∥ p

2
⩽ ∥b∥ p

p−2
· ∥x∥2p.

The Cameron–Martin space and its norm for both X and H are therefore given by the well-
known formulas (3.1), see e.g. (Da Prato and Zabczyk 2014, theorem 2.23), proving the claim.

In order to prove theorem 2.5, we will again proceed by showing conditions 2.7 (C1)–(C4)
and then applying theorem 2.8. We start by showing the vanishing condition for weak limits
outside E (C3), while the vanishing condition for unbounded sequences (C1) and the vanishing
condition for weakly, but not strongly convergent sequences (C4) will require some additional
work (propositions 4.6 and 4.8).

Lemma 4.5. Under assumptions 2.1 and 4.1, for any family (xδ)0<δ<1 in X and for any z̄ ∈
X \E, such that xδ ⇀ z̄ converges weakly as δ ↘ 0, we have

limsup
δ↘0

Rδ
µ(x

δ,0) = 0.

In particular, the vanishing condition for weak limits outside E, condition 2.7 (C3), is satisfied.

Proof. We use notation 4.3 throughout the proof. Let (xδ)0<δ<1 be a family in X and z̄ ∈ X \E
such that xδ ⇀ z̄ converges weakly as δ ↘ 0. Let 0< ε < 1 be arbitrary and A :=

√
8log(2/ε).

We proceed in four steps.
Step 1: There exist K1 ∈ N and δ1 > 0 such that, for each u ∈ BK1

δ1
(PK1 z̄), |u|EK1 ⩾ A.

In order to see this, we assume the contrary, i.e. for each K1 ∈ N and δ1 > 0, there exists
u ∈ BK1

δ1
(PK1 z̄) with |u|EK1 < A. Then, for each m ∈ N (choosing K1 = m and δ1 = m−1), there

exists u(m) ∈ Bmm−1(Pmz̄) with |u(m)|Em < A.
Since (P−mu(m))m∈N is bounded in E by A, it has a weakly convergent (in E) subsequence,

which, for simplicity, we also denote by (P−mu(m))m∈N, with weak limit ū ∈ E. Further, since
u(m) ∈ Bmm−1(Pmz̄) for each m ∈ N, P−mu(m) → z̄ strongly in X as m→∞:

∥P−mu(m) − z̄∥pp = ∥u(m) −Pmz̄∥pp+ ∥0−Pmz̄∥pp < m−p+ ∥Pmz̄∥pp −−−−→m→∞
0.

By considering each component j ∈ N separately, weak convergence in E and (strong) con-
vergence in X imply

u(m)j −−−−→
m→∞

ūj, u(m)j −−−−→
m→∞

z̄j, j ∈ N.

Hence, by the uniqueness of the limit (in R), we obtain the contradiction E ∋ ū= z̄ /∈ E.
Step 2: There exists 0< δ2 < δ1/2 such that, for each 0< δ < δ2 and each u ∈ BK1

δ (PK1xδ),
we have that |u|EK1 ⩾ A.

This can be seen as follows: since xδ ⇀ z̄ converges weakly (and therefore componentwise)
in X, there exists 0< δ2 < δ1/2 such that, for each 0< δ < δ2, we have that ∥PK1xδ −PK1 z̄∥p <
δ1/2.

Hence, for each 0< δ < δ2 and each u ∈ BK1
δ (PK1xδ),

∥u−PK1 z̄∥p ⩽ ∥u−PK1xδ∥p+ ∥PK1xδ −PK1 z̄∥p < δ+ δ1
2 ⩽ δ1,

i.e. BK1
δ (PK1xδ)⊆ BK1

δ1
(PK1 z̄) for each 0< δ < δ2, and the claim follows from Step 1.
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Step 3: There exists 0< δ⋆ < δ2 such that, for each δ < δ⋆ and each u ∈ BK1
δ (0), we have

|u|EK1 ⩽ A/
√
2.

This is evident from the fact that | · |EK1 and ∥PK1 · ∥ are equivalent norms on the (finite-
dimensional) vector space PK1X.

Step 4: For each 0< δ < δ⋆, Rδ
µ(x

δ,0)⩽ ε, finalizing the proof.
Let 0< δ < δ⋆. For any x ∈ X, since Bδ(x) =

⋂
k∈NB

k
δ(P

kx)×RN\{1,...,k}, the continuity of
measures implies that µk(Bkδ(P

kx))→ µ(Bδ(x)). Hence, there exists k> K1 such that∣∣∣∣Rδ
µ(x

δ,0)− µk(Bkδ(P
kxδ))

µk(Bkδ(P
k0))

∣∣∣∣⩽ ε

2
.

Since, for any x ∈ X, Rk ∋ v ∈ Bkδ(Pkx) implies PK1v ∈ BK1
δ (PK1x), it follows from Steps 2 and

3 that

Rδ
µ(x

δ,0)⩽
∣∣∣∣Rδ

µ(x
δ,0)− µk(Bkδ(P

kxδ))

µk(Bkδ(P
k0))

∣∣∣∣+ µk(Bkδ(P
kxδ))

µk(Bkδ(P
k0))

⩽ ε

2
+

´
Bkδ(P

kxδ) exp
(
− 1

2

∑k
j=1

u2j
σ2
j

)
du

´
Bkδ(0)

exp
(
− 1

2

∑k
j=1

u2j
σ2
j

)
du

⩽ ε

2
+

supv∈Bkδ(Pkxδ) exp
(
− 1

4 |P
K1v|2EK1

)
infv∈Bkδ(0) exp

(
− 1

4 |PK1v|2EK1
)

·

´
Bkδ(P

kxδ) exp
(
− 1

4

∑K1

j=1
u2j
σ2
j
− 1

2

∑k
j=K1+1

u2j
σ2
j

)
du

´
Bkδ(0)

exp
(
− 1

4

∑K1

j=1
u2j
σ2
j
− 1

2

∑k
j=K1+1

u2j
σ2
j

)
du

⩽ ε

2
+ exp

(
− A2

4 + A2

8

)
· 1= ε,

where we bounded the last ratio of integrals by 1 using Anderson’s inequality (theorem A.3).

As explained above, the following proposition implements a convexification of the function
| · |E−β∥ · ∥p, which is necessary for the application of Anderson’s inequality in the proof of
proposition 4.8:

Proposition 4.6. Using notation 4.3, let 1⩽ p<∞, let k ∈ N and ρ ∈ Rk with

ρ1 ⩾ . . .⩾ρk > 0. Further, let γ > 0, let β∗ :=
2γ2−α

qρα
1

and let 0⩽ β < β∗. Then the functions

Lρ,γ , fρ,β,γ : Rk → R given by

Lρ,γ(x) :=

{ ∑k
j=1(γ

2ρ2j + x2j )
p/2 − (γρj)

p if 1⩽ p⩽ 2,
∥x∥2p if 2< p<∞,

fρ,β,γ(x) =
k∑
j=1

x2j
ρ2
j
−βLρ,γ(x),

satisfy

(a) ∥x∥αp − γα∥ρ∥αp ⩽ Lρ,γ(x)⩽ ∥x∥αp for any x ∈ Rk;
(b) fρ,β,γ is non-negative;
(c) fρ,β,γ is convex.
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Proof. Recall that, for 0⩽ p1 ⩽ p2 <∞, and v ∈ Rn, n ∈ N,

∥v∥p1 ⩾ ∥v∥p2 . (4.1)

While (a) is trivial for p> 2, it follows for 1⩽ p⩽ 2 directly from the inequalities aq ⩽ (a+
b)q ⩽ aq+ bq for any a,b⩾ 0 and q⩽ 1, where the second inequality is a consequence of (4.1)
for v= (a,b):

(a+ b)q = ∥(a,b)∥q1 ⩽ ∥(a,b)∥qq = aq+ bq.

For (b), note that, for any ξ ∈ R, 1⩽ p⩽ 2 and r,β,τ > 0

ξ2

r2
−β(τ 2 + ξ2)p/2 +βτ p ⩾ 0 ⇐⇒ βτ p

(
1+

1
βτ p

ξ2

r2

)
⩾ βτ p

(
1+

ξ2

τ 2

)p/2

,

which holds true, using Bernoulli’s inequality with exponent p/2⩽ 1, for any 0< β ⩽ 2τ 2−p

pr2 :(
1+

ξ2

τ 2

)p/2

⩽ 1+
p
2
ξ2

τ 2
⩽ 1+

ξ2

βτ pr2
.

By applying this observation componentwise with r= ρj and τ = γρj, we see that fρ,β,γ is

(globally) non-negative for any 0< β ⩽minj=1,...,k
2γ2−p

pρpj
= 2γ2−p

pρp1
, proving (b) for any 1⩽

p⩽ 2 (for β= 0 the claim holds trivially). In the case p> 2, (b) follows from (4.1), since, for
any 0⩽ β ⩽ ρ−2

1 ,

k∑
j=1

x2j
ρ2
j
⩾ ρ−2

1 ∥x∥22 ⩾ β∥x∥2p.

For (c), first consider the case 1⩽ p⩽ 2, for which the Hessian of fρ,β,γ is diagonal. Hence
fρ,β,γ is convex if and only if all those diagonal entries,

∂2fρ,β,γ
∂x2j

(x) =
2
ρ2j

−βp
γ2ρ2j +(p− 1)x2j
(γ2ρ2j + x2j )

2−p/2
, j = 1, . . . ,k,

are non-negative functions. Since, for τ > 0, ξ ∈ R and 1⩽ p⩽ 2,

τ 2 +(p− 1)ξ2

(τ 2 + ξ2)2−p/2
⩽ τ 2 + ξ2

(τ 2 + ξ2)2−p/2
= τ p−2 1+ ξ2

τ 2(
1+ ξ2

τ 2

)2−p/2
⩽ τ p−2, (4.2)

fρ,β,γ is convex for each 0⩽ β <minj=1,...,k
2γ2−p

pρpj
= 2γ2−p

pρp1
(by applying (4.2) componentwise

with τ = γρj, j = 1, . . . ,k).
Now consider the case 2< p<∞. The second-order partial derivatives of Lρ,γ for x ̸= 0

are given by

∂2Lρ,γ
∂xl∂xm

(x) =


2(p−1)|xl|p−2

∥x∥p−2
p

− 2(p−2)|xl|2p−2

∥x∥2p−2
p

if l= m,

− 2(p−2)xlxm |xlxm|p−2

∥x∥2p−2
p

if l ̸= m.

Hence, the Hessian of fρ,β,γ for x ̸= 0 can be written in the form

∇2fρ,β,γ(x) = diag
(
(2ρ−2

j − 2β(p− 1)gj(x))j=1,...,k
)
+ 2β(p− 2)h(x)h(x)⊺,
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where diag(d1, . . . ,dk) denotes the k× k diagonal matrix with diagonal entries d1, . . . ,dk and
the functions gj : Rk \ {0}→ R, j = 1, . . . ,k, and h : Rk \ {0}→ Rk are given by

gj(x) =
|xj|p−2

∥x∥p−2
p

, h(x) =

(
xj · |xj|p−2

∥x∥p−1
p

)
j=1,...,k

.

Since |gj|⩽ 1, ∇2fρ,β,γ is symmetric and positive definite on the set Rk \ {0} for 0⩽ β <
1

(p−1)ρ2
1
. In order to prove convexity, we show that for any x,y ∈ Rk and λ ∈ [0,1],

fρ,β,γ(λx+(1−λ)y)⩽ λfρ,β,γ(x)+ (1−λ)fρ,β,γ(y) (4.3)

by considering the following three cases:

1. case: x,y ̸= 0 and the line through x and y does not touch the origin 0 ∈ Rk. In this case,
we can restrict the function fρ,β,γ to an open half-space containing x and y, but not con-
taining 0 ∈ Rk. On this convex set, fρ,β,γ is twice continuously differentiable and positive
definiteness of the Hessian ∇2fρ,β,γ proves convexity, in particular (4.3).

2. case: x,y ̸= 0 and the line through x and y contains the origin 0 ∈ Rk. In this case, there
exists λ⋆ ∈ (0,1) such that λ⋆x+(1−λ⋆)y= 0 and thereby y=− λ⋆

1−λ⋆ x. It follows for
each λ ∈ [0,1] that

λx+(1−λ)y= (λ−λ⋆)x+((1−λ)− (1−λ⋆))y+ 0

= (λ−λ⋆)(x− y) =
λ−λ⋆

1−λ⋆
x.

Since fρ,β,γ(tx) = t2fρ,β,γ(x) for each t ∈ R,

g(λ) := fρ,β,γ(λx+(1−λ)y) = fρ,β,γ

(
λ−λ⋆

1−λ⋆
x

)
=

(
λ−λ⋆

1−λ⋆

)2

fρ,β,γ(x),

which is a quadratic function in λ with non-negative prefactor fρ,β,γ(x)> 0 (by (b)) and
thereby convex. Therefore, we obtain (4.3) from

fρ,β,γ(λx+(1−λ)y) = g(λ · 1+(1−λ) · 0)
⩽ λg(1)+ (1−λ)g(0)

= λfρ,β,γ(x)+ (1−λ)fρ,β,γ(y).

3. case: x ̸= 0 and y= 0. In this case, (4.3) follows from the previous cases by continuity:

fρ,β,γ(λx+(1−λ)y) = lim
t↘0

fρ,β,γ(λx+(1−λ)tx)

⩽ lim
t↘0

λfρ,β,γ(x)+ (1−λ)fρ,β,γ(tx)

= λfρ,β,γ(x)+ (1−λ)fρ,β,γ(y).

Remark 4.7. Note that this bound on β is not optimal. For example, for n= 2, p= 4 and ρ1 =
ρ2 = 1, we consider here fρ,β,γ(x) = x2 + y2 −β

√
x4 + y4. The lemma from above proves that

this function is convex for β < 1
3 . In fact, it is convex even for β <

√
2/3 as can be shown by
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more elementary methods (exclusive to this low-dimensional setting). Note that in this specific
case fρ,β,γ(x)⩾ 0 for β ⩽ 1.

Proposition 4.8. Under assumptions 2.1 and 4.1 and using notation 4.3, for each 0< δ < 1,
each k ∈ N∪{0}, each γ > 0 and each z ∈ X,

Rδ
µ(z,0)⩽ exp

(
− γ2−α

4qσα
k+1

(
(∥Pkz∥p− δ)α − γαSα − δα

))
. (4.4)

Proof. Let β := γ2−α

qσα
k+1

. Let K ∈ N and ρ= (σk+1, . . . ,σK).

Observe that the function f : Rk → R defined by

f(u) = exp
(
− 1

4 |u|
2
EK − 1

4 |u|
2
Ek −

1
4 (|u|

2
EKk

−βLρ,γ(P
K
k u))

)
is positive, symmetrical, integrable (since f(u)⩽ exp(− 1

4 |u|
2
EK) by proposition 4.6(b)) and log-

concave (by proposition 4.6(c)). Hence, by propositions 4.6(a) and (c) and Anderson’s inequal-
ity (theorem A.3),

µK(BKδ (z))
µK(BKδ (0))

=

´
BKδ(z)

exp
(
− 1

2 |u|
2
EK
)
du´

BKδ(0)
exp
(
− 1

2 |u|
2
EK
)
du

⩽
supv∈BKδ(z) exp

(
− β

4 Lρ,γ(P
K
k v)
)

infv∈BKδ(0) exp
(
− β

4 Lρ,γ(P
K
k v)
) ´BKδ(z) f(u)du´

BKδ(0)
f(u)du

⩽ exp

(
− β

4

(
inf

v∈BKδ(z)
(∥PKk v∥αp − γα∥ρ∥αp )− sup

v∈BKδ(0)
∥PKk v∥αp

))
⩽ exp

(
− γ2−α

4qσα
k+1

(
(∥PKk z∥p− δ)α − γαSα − δα

))
.

For any x ∈ X, since Bδ(x) =
⋂
k∈NB

k
δ(P

kx)×RN\{1,...,k}, the continuity of measures implies
that µk(Bkδ(P

kx))→ µ(Bδ(x)). Therefore, taking the limit K→∞ proves the claim.

Corollary 4.9. Under assumptions 2.1 and 4.1 the vanishing condition for unbounded
sequences, condition 2.7 (C1), is satisfied.

Proof. We use notation 4.3 throughout the proof. Let (δm)m∈N be a null sequence in R+

and (xm)m∈N be an unbounded sequence, i.e. there exists a subsequence (xmn)n∈N such that
∥xmn∥p →∞ as n→∞. Using notation 4.3 and proposition 4.8 with γ= 1 and k= 0 we obtain

R
δmn (xmn ,0)
µ ⩽ exp

(
− 1

4qσα
1

(
(∥xmn∥p− δmn)

α − Sα − δαmn

))
−−−→
n→∞

0,

proving the claim.

Corollary 4.10. Under assumptions 2.1 and 4.1 the weakly convergent subsequence condition,
condition 2.7 (C2), is satisfied.

Proof. We use notation 4.3 throughout the proof. If p> 1, the statement follows directly from
the reflexivity of X= ℓp. Now let p= 1, let (δm)m∈N be a null sequence in (0,1) and (xm)m∈N
be a bounded sequence in X satisfying, for some K> 0 and each m ∈ N, Rδm

µ (xm,0)⩾ K.
We first show that (xm)m∈N is equismall at infinity, i.e. for every r> 0 there exists k ∈ N

such that, for each m ∈ N, ∥Pkxm∥1 < r. Assuming the contrary, there exists r> 0 such that,
for any k ∈ N, there exist mk ∈ N such that ∥Pkxmk∥1 ⩾ r.
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If the sequence (mk)k∈N was bounded by some N ∈ N, then, using the fact that
limk→∞ ∥Pkx∥1 = 0 for any (fixed) x ∈ X,

r⩽ limsup
k→∞

∥Pkxmk∥1 ⩽ lim
k→∞

sup
n=1,...,N

∥Pkxn∥1 = 0< r.

Since this is a contradiction, (mk)k∈N is unbounded. Using σk ↘ 0 and δk ↘ 0 as k→∞, this
implies the existence of k ∈ N such that δmk ⩽ r/8 and

exp

(
− r2

32σk+1
∑

j∈Nσj

)
< K.

Using proposition 4.8 with γ := r
4
∑

j∈N σj
we obtain

R
δmk (xmk ,0)
µ ⩽ exp

− γ

4σk+1

∥Pkxmk∥1 − 2δmk − γ
∑
j∈N

σj


⩽ exp

(
− r
16σk+1

∑
j∈Nσj

(
r− r

4 −
r
4

))

⩽ exp

(
− r2

32σk+1
∑

j∈Nσj

)
< K,

contradicting the assumption Rδm
µ (xm,0)⩾ K for each m ∈ N.

Hence, (xm)m∈N is equismall at infinity and, combined with its boundedness, this implies
the existence of a weakly convergent subsequence of (xm)m∈N by (Trèves 1967, theorem 44.2).

Corollary 4.11. Under assumptions 2.1 and 4.1 the vanishing condition for weakly, but not
strongly convergent sequences, condition 2.7 (C4), is satisfied.

Proof. We use notation 4.3 throughout the proof. Let (δm)m∈N be a null sequence in R+ and
(xm)m∈N be a weakly, but not strongly convergent sequence in X with weak limit z̄ ∈ E,

Step 1: There exists a c> 0 and k0 ∈ N such that, for any k⩾ k0,

limsup
m→∞

∥Pkxm∥X > c.

There exists A> 0 such that limsupm→∞∥xm− z̄∥X > A (otherwise the convergence would
be strong). Let c := A

2 . Since z̄ ∈ E, we have |Pkz̄|E → 0 as k→∞ by lemma 4.4 and therefore
∥Pkz̄∥X → 0 as k→∞ by continuous embedding E⊂ X (Bogachev 1998, proposition 2.4.6).
Hence, there exists k0 ∈ N such that, for each k⩾ k0, ∥Pkz̄∥X < c. Let k⩾ k0 and assume the
contrapositive, i.e. limsupm→∞∥Pkxm∥X ⩽ c. But then, since weak convergence implies com-
ponentwise convergence,

2c= A< limsup
m→∞

∥xm− z̄∥X = limsup
m→∞

∥Pk(xm− z̄)+Pkxm−Pkz̄∥X

⩽ limsup
m→∞

∥Pk(xm− z̄)∥X︸ ︷︷ ︸
=0 by weak conv.

+ limsup
m→∞

∥Pkxm∥X︸ ︷︷ ︸
⩽c by assumption

+ ∥Pkz̄∥X︸ ︷︷ ︸
<c since k⩾k0

< 2c,

which is a contradiction, proving the claim.
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Step 2: For each 0< ε < 1, liminfm→∞Rδm
µ (xm,0)< ε.

Let 0< ε < 1, δ0 := c
4 , γ := c

4S and k⩾ k0 such that

σk+1 <

(
c2

44−αS2−αq(− logε)

)1/α

.

Let m0 ∈ N. Using Step 1, there exists m⩾ m0 such that δm < δ0 =
c
4 and ∥Pkxm∥X > c. Since

3α−2
4α ⩾ 1

4 for 1⩽ α⩽ 2, and by setting γ = c
4S , proposition 4.8 implies

Rδm
µ (xm,0)⩽ exp

(
− γ2−α

4qσα
k+1

(
(∥Pkxm∥p− δm)

α − γαSα − δαm

))
⩽ exp

(
−

( c
4S )

2−α

4qσα
k+1

((
3c
4

)α −
(
c
4

)α −
(
c
4

)α))
⩽ exp

(
− c2

44−αS2−αqσα
k+1

)
< ε.

Proof of theorem 2.5. By lemma 4.5, corollaries 4.9–4.11, condition 2.7 (C1)–(C4) are ful-
filled and all statements follow from theorem 2.8.

5. Conclusion

We proved the existence of MAP estimators in the context of a Bayesian inverse problem
for parameters in a separable Banach space X, where X is either a Hilbert space or X= ℓp,
p ∈ [1,∞), with a diagonal Gaussian prior. The Hilbert space case had been proven before
by (Dashti et al 2013, Kretschmann 2019), however, they did not show the existence of the
central object in their proofs, namely the δ-ball maximizers zδ = argmaxz∈Xµ

y(Bδ(z)). We
fixed this gap by working with an AMF (ζδ)δ>0 ⊂ X defined by definition 1.7 and strongly
simplified their proof by employing (Da Prato and Zabczyk 2002, proposition 1.3.11), restated
in proposition 3.2. We decided to present this elegant and simple proof even though the Hilbert
space case can be understood as a special case of X= ℓp for p= 2. The case p ̸= 2, on the other
hand, turned out to require novel techniques to prove the corresponding results. The crucial
mathematical argument in this case relies on a convexification of the difference | · |2E−β∥ · ∥2X
(proposition 4.6). This allows to extract a suitable ‘rate of contraction’ such that the ratio
Rδ

µ(z,0) can be bounded for any fixed δ > 0 by a function decaying exponentially in ∥z∥X
(proposition 4.8).

We have also outlined a general proof strategy in section 2 how similar results (i.e. con-
jecture 2.3) can be obtained for further separable Banach spaces. For this purpose, we filtered
out four crucial conditions, namely condition 2.7 (C1)–(C4), which need to be proven in the
Banach space of interest, and then the corresponding result follows almost immediately from
theorem 2.8.

Note that our results rely strongly on the characteristics of the ℓp norm and the diagonal
structure of the covariance matrix of the Gaussian measure. We suspect that the generalization
to Gaussian measures on arbitrary separable Banach spaces requires deeper insight into the
compatibility between the ambient space’s geometry and the Cameron–Martin norm. We hope
that our theorem 2.8 paves the way for future research in this direction.

24



Inverse Problems 39 (2023) 065009 I Klebanov and P Wacker

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy (EXC-2046/1, Project 390685689) through
the Project EF1-10 (IK) and EF1-19 (PW) of the Berlin Mathematics Research Cen-
ter MATH+. The authors would like to express their gratitude to Birzhan Ayanbayev,
Martin Burger, Nate Eldredge, Remo Kretschmann, Hefin Lambley, Han Cheng Lie, Claudia
Schillings, Björn Sprungk, and Tim Sullivan for fruitful discussions and pointing out both
errors and solution strategies.

Appendix. Gaussian measures in Banach spaces

In notation, we will mainly follow (Bogachev 1998). The continuous (or topological) dual
space of X is denoted by X⋆, while X′ denotes its algebraic dual. In some cases, we will
assume that X is a Hilbert space, in which case we write X= H for clarity. The object µ
will always be a centered Gaussian measure on X (or H ). We denote the Cameron–Martin
space by (E,⟨·, ·⟩E), where we write the Cameron–Martin norm with single bars in order to
differentiate it from the ambient space norm: |u|E :=

√
⟨u,u⟩E.

It turns out that the extension of the covariance operator

Rµ : X
⋆ → (X⋆)′, (Rµ f)(g) := ⟨ f,g⟩L2(µ)

to the reproducing kernel Hilbert space (RKHS) X⋆
µ := X⋆L

2(X,µ)
of µ satisfies Rµ(X⋆

µ) = E
(Bogachev 1998, theorem 3.2.3), where E is viewed as a subspace of (X⋆) ′. In addition,
Rµ : (X⋆

µ,⟨·, ·⟩L2(µ))→ (E,⟨·, ·⟩E) is an isometric isomorphism (Bogachev 1998, p 60) and sat-
isfies the reproducing property

f(h) = ⟨Rµ f,h⟩E, f ∈ X⋆
µ, h ∈ E, (A.1)

which follows from the above and from treating h= Rµg (for some g ∈ X⋆
µ) as an element of

(X⋆) ′:

f(h) = f(Rµg) = (Rµg)( f) = ⟨ f,g⟩L2(µ) = ⟨Rµ f,Rµg⟩E = ⟨Rµ f,h⟩E.

Remark A.1. In the special case where the measure is defined on a Hilbert space H , the
covariance operatorRµ takes the form of a self-adjoint, non-negative trace-class operator:Rµ =
Q where

Q : Q−1/2(X) = X⋆
µ → E= Q1/2X.

In addition, the CM inner product and norm take the form

⟨u,v⟩E = ⟨Q−1/2u,Q−1/2v⟩H , |u|E = ∥Q−1/2u∥H . (A.2)

A result we are going to use in this context is the following technical lemma:
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Lemma A.2. Let X be a separable Banach space and µ a centered Gaussian measure on X,
z̄ ∈ E and xδ ⇀ z̄ weakly in X. Then

limsup
δ→0

Rδ
µ(x

δ, z̄)⩽ 1.

Proof. For any ĥ ∈ X⋆, the Cameron–Martin formula (Bogachev 1998, corollary 2.4.3) implies

µ(Bδ(x
δ)) =

ˆ
Bδ(xδ)

dµ=

ˆ
Bδ(xδ−Rµĥ)

exp
(
− 1

2 |Rµĥ|2E− ĥ(u)
)
dµ(u)

⩽ µ(Bδ(x
δ −Rµĥ)) exp

(
− 1

2 |Rµĥ|2E
)

sup
u∈Bδ(xδ−Rµĥ)

e−ĥ(u)

⩽ µ(Bδ(0))exp
(
− 1

2 |Rµĥ|2E− ĥ(xδ −Rµĥ)
)

sup
u∈Bδ(0)

e−ĥ(u), (A.3)

where we used Anderson’s inequality (theorem A.4) in the last step. Since
ˆ
Bδ(0)

exp(−(R−1
µ z̄)(u))dµ(u) =

ˆ
Bδ(0)

exp((R−1
µ z̄)(u))dµ(u)

due to symmetry of the set Bδ(0), another application of the Cameron–Martin theorem yields

µ(Bδ(z̄)) = exp
(
− 1

2 |̄z|
2
E

) ˆ
Bδ(0)

exp(−(R−1
µ z̄)(u))dµ(u)

= exp
(
− 1

2 |̄z|
2
E

) ˆ
Bδ(0)

exp((R−1
µ z̄)(u))+ exp(−(R−1

µ z̄)(u))

2
dµ(u)

⩾ exp
(
− 1

2 |̄z|
2
E

)
µ(Bδ(0)), (A.4)

where we used the inequality a+ a−1 ⩾ 2 for any a> 0 (alternatively, (A.4) can be proven via
Jensen’s inequality). Since xδ → z̄ weakly in X, it follows from (A.3) and (A.4) that, for any
ĥ ∈ X⋆,

limsup
δ↘0

Rδ
µ(x

δ, z̄)⩽ limsup
δ↘0

exp
(
1
2 |̄z|

2
E− 1

2 |Rµĥ|2E− ĥ(xδ −Rµĥ)
)

sup
u∈Bδ(0)

e−ĥ(u)

⩽ exp
(
1
2 |̄z|

2
E− 1

2 |Rµĥ|2E− ĥ(z̄−Rµĥ)
)

= exp
(
1
2 |̄z|

2
E− 1

2 |Rµĥ|2E−⟨Rµĥ, z̄−Rµĥ⟩E
)

= exp
(
1
2 |̄z|

2
E− 1

2 |Rµĥ|2E−⟨z̄, z̄−Rµĥ⟩E+ |Rµĥ− z̄|2E
)
,

where we used the reproducing property (A.1). Choosing a sequence (ĥn)n∈N in X⋆ such that
Rµĥn → z̄ strongly in E (this is possible by density of X⋆ in R−1

µ E), replacing ĥ by ĥn in the
above inequality and taking the limit n→∞ proves the claim.

Theorem A.3 (Anderson’s inequality, version 1; Bogachev 2007, theorem 3.10.25). Let A
be a bounded centrally symmetric convex set in Rn, n ∈ N and let f : Rn → R be

• non-negative and locally integrable,
• symmetrical, i.e. f(−x) = f(x) for each x ∈ Rn, and
• unimodal, i.e. the sets {f⩾ c} are convex for all c> 0.
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Then, for every h ∈ Rn and every t ∈ [0,1], one hasˆ
A
f(x+ th)dx⩾

ˆ
A
f(x+ h)dx.

In particular, for every z ∈ Rn,
´
z+A f(x)dx⩽

´
A f(x)dx.

Theorem A.4 (Anderson’s inequality, version 2; Bogachev 1998, corollary 4.2.3). Let γ
be a centered Gaussian measure on a Banach space X. Let A be a centrally symmetric convex
set. Then for any a ∈ X, we have that γ(A+ a)⩽ γ(A).
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