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Abstract
This paper is motivated by inverse problems in which the boundary curve of a 
smooth bounded domain has to be reconstructed from indirect measurements. 
As a classical example we study acoustic inverse obstacle scattering problems 
for cylindrical sound-soft scatterers using far-field measurements of scattered 
time-harmonic waves. By introducing a shape manifold as a solution set we 
allow the reconstruction of general, not necessarily star-shaped, curves. The 
bending energy is used as a stabilizing term in Tikhonov regularization to 
gain independence of the parametrization. Moreover, we discuss how self-
intersections can be avoided by penalization with the Möbius energy and 
prove the regularizing property of our approach as well as convergence rates 
under variational source conditions.

In a second part of the paper a discrete setting is introduced, and we describe 
a numerical method for finding the minimizer of the Tikhonov functional on 
the shape-manifold. Numerical examples demonstrate that our method can 
reconstruct non-star-shaped obstacles.

Keywords: shape spaces, inverse obstacle scattering, nonlinear Tikhonov 
regularization
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1. Introduction

Inverse obstacle scattering problems consist of reconstructing the shape of an impenetrable 
or homogeneous scattering obstacle from measurements of scattered waves. Such problems, 
which occur for example in structural health monitoring and medical imaging, have been stud-
ied intensively, see the monographs [12, 14, 26, 39] and references therein.

One may distinguish two main classes of reconstruction methods for inverse obstacle scat-
tering problems: sampling methods and parameterization-based methods. In sampling meth-
ods, an indicator function f : Rd → R ∪ {∞} is constructed based on the measured data, such 
that the value of f  indicates whether a point belongs to the obstacle or not (at least for noise-
free data). Examples include the linear sampling method [1, 12, 13], the factorization method 
[25, 26], and the singular source method [38, 39].

In contrast, parameterization-based methods yield a parameterization of some approx-
imation of the true obstacle. Examples include decomposition methods [15, 27] and iterative 
regularization methods [23], in particular, regularized Newton methods [20, 36] and nonlinear 
Tikhonov regularization.

Both sampling and parameterization-based methods have their respective advantages and 
disadvantages. On the one hand, sampling methods do not require a priori knowledge of the 
obstacle’s topology and often not even of the boundary condition. They are typically easy to 
implement. On the other hand, they often require (i) a lot of data (e.g. the complex-valued 
far-field patterns for all incident fields); are (ii) less flexible concerning modifications of the 
forward problem (e.g. amplitude measurements or nonlinearities); and yield (iii) less accu-
rate reconstructions than parameterization-based methods. Ideally, both types of methods can 
complement each other by using a sampling method to construct an initial guess for a param-
eterization-based method (see remark 3 below).

For parameterization-based methods, one seeks approximate parameterizations of the 
unknown curve within a chosen class of boundary curves. In existing literature, this class is 
often chosen in a rather ad hoc manner. E.g. the obstacle is assumed to be star-shaped with 
respect to some known point such that the boundary can be described by a positive, periodic 
radial function. In this manner, one can formulate inverse obstacle problems as operator equa-
tions in Hilbert spaces. In this case, the attendant penalty terms are usually represented in the 
form of Sobolev norms of the parameterization. However, such norms crucially depend on the 
choice of the parameterization and thus disobey the geometry of the shape to be reconstructed. 
Indeed, a single curve S1 → R2 admits a continuum of possible parameterizations and there-
fore, parameterization-dependent norms break symmetry in an unnatural manner. Moreover, 
the assumption of star-shaped obstacles is severely restrictive.

Our contribution is the introduction of the boundary curve’s bending energy as a regular-
izing term for the two-dimensional case. This approach is purely geometric and independent 
of the choice of any parameterization and thus allows for arbitrary planar curves (of sufficient 
regularity). Considering the set of curves as geometric objects, independent of any particular 
parameterization, is of course a well established paradigm by now in the context of shape 
spaces. Michor and Mumford [33] showed that the space of closed regular curves (of sufficient 
regularity) carries the structure of a Riemannian manifold. This ansatz leads to certain degen-
eracies of geodesics and has therefore subsequently been refined and extended is several direc-
tions, e.g. using curvature-weighted L2-metrics [34], L2-metrics that incorporate a curve’s 
stretching and bending contributions [45, 46], and certain Sobolev-type metrics [5, 6, 10, 
11]. In particular, curvature-based (i.e. second order) formulations penalize a curve’s bend-
ing contributions and lead to physically plausible simulations of thin elastic rods and threads  
[4, 7, 41]. In the discrete setting, curvature-based energies can be approximated using polygonal 
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(piecewise straight) curves. Convergence in Hausdorff distance of the resulting minimizers 
(under suitable boundary conditions and a length constraint) to their smooth counter parts was 
recently shown in [44], which provides one of the theoretical underpinnings of the current 
work. We discuss the attendant discrete model in section 5.

We argue that the use of shape manifolds may be largely preferable over parameterization-
dependent methods, and the use of bending energy may be beneficial whenever regularization 
is applied to the set of curves in form of a penalization. In this paper we focus on Tikhonov 
regularization since it has the simplest and most complete convergence analysis. Our main 
theoretical result is the regularizing property of Tikhonov regularization on shape manifolds 
and convergence rates under variational source conditions.

The plan of the rest of this paper is as follows: We introduce our shape-manifold of curves as 
well as the requisite bending energy functional on this manifold in the next section. Our main 
theoretical results on the regularizing property and convergence rates of the proposed method 
are contained in section 3. We then introduce the sound-soft obstacle scattering problem as 
a typical example of a forward problem and derive some properties of the forward operator 
defined on the shape manifold in section 4. In section 5 we describe our discrete model of the 
shape manifold and explain how to solve the associated minimization problem. We finally 
present our numerical results in section 6 and combine it with a sampling method in section 7.

2. Shape manifold and elastic energy

In this section we introduce the shape manifold of closed curves Γ in R2 and investigate its 
structure. We further define an energy functional on this manifold.

2.1. The shape manifold

Let Γ ⊂ R2  be a regular, closed curve of class H2 of length L, i.e. there is a parameterization 
γ ∈ H2([0, 1],R2) satisfying γ′(t) �= 0 for all t ∈ [0, 1] and the closing conditions

γ(0) = γ(1) and γ′(0) = γ′(1). (1)

Without loss of generality, we may assume that γ  is of constant speed, i.e. |γ′(t)| = L. Thus, 
we may represent γ  by a triple m = (θ, L, p) with a base point p := γ(0), the curve’s length L, 
and an angle function θ ∈ H1([0, 1],R) via

γ(t) = γm(t) := p +

∫ t

0
γ′(τ) dτ = p + L

∫ t

0

(
cos(θ(τ)), sin(θ(τ))

)
dτ .

 (2)
In order to fulfill the closing conditions (1), θ needs to satisfy

∫ 1

0
cos(θ(t)) dt = 0,

∫ 1

0
sin(θ(t)) dt = 0 and θ(1)− θ(0) ∈ 2π Z.

 (3)

The number θ(1)−θ(0)
2 π  is called the turning number of γ  (not to be confused with the winding 

number). A necessary (but not sufficient) condition for Γ to be embedded is that γ  has turning 
number ±1. Since our application focuses on boundary curves of simply connected domains, 
we may restrict ourselves to curves of turning number  +1 and define the space:

Θ :=
{
θ ∈ H1([0, 1],R)

∣∣ ∫ 1
0

(
cos(θ(t)), sin(θ(t))

)
dt = 0, θ(1)− θ(0) = 2π

}
.

J Eckhardt et alInverse Problems 35 (2019) 104009
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Lemma 1. The space Θ is an embedded submanifold of H1([0, 1],R).

Proof. We may write Θ = {θ ∈ E|Φ(u) = 0} with the affine subspace 
E = {θ ∈ H1([0, 1],R)|θ(1)− θ(0) = 2π} and the smooth mapping Φ : E → R2,

Φ(θ) =

∫ 1

0

(
cos(θ(t)), sin(θ(t))

)
dt.

By virtue of the implicit function theorem, all that we have to do is to show that Φ is a sub-
mersion, i.e. that DΦ(θ) admits a bounded linear right inverse for each θ ∈ E  (see [31, chapter 
II, section 2]). Notice that E is an affine subspace over the linear subspace

H1
per([0, 1],R) :=

{
u ∈ H1([0, 1],R)

∣∣ u(0) = u(1)
}

and that

DΦ u =

(
−
∫ 1

0 sin(θ(t)) u(t) dt∫ 1
0 cos(θ(t)) u(t) dt

)
.

Thus, it suffices to construct a u ∈ H1
per([0, 1],R) solving DΦ u = λ and depending linearly on 

the right hand side for any prescribed λ ∈ R2. We set s(t) := sin(θ(t)) and c(t) := cos(θ(t)) 
and make the ansatz u(t) = a s(t) + b c(t), which leads to the linear equation

(
−〈s, s〉 −〈s, c〉
〈c, s〉 〈c, c〉

)(
a
b

)
=

(
λ1

λ2

)
,

where 〈·, ·〉 denotes the L2 inner product. By Cauchy–Schwarz, the determinant of this system 
is negative since θ(t) is continuous and not constant. □ 

The tangent space of Θ is given by

TθΘ =
{

u ∈ H1
per([0, 1],R)

∣∣DΦ(θ) u = 0
}

.

The family of inner products (gθ)θ∈Θ defined by

gθ(u, v) :=
∫ 1

0

(
u(t) v(t) + u′(t) v′(t)

)
dt for u, v ∈ TθΘ

turns (Θ, g) into a infinite-dimensional Riemannian manifold (in the sense of [31]).
For a compact, convex set of base points B ⊂ R2 and for bounds of acceptable curve 

lengths, we define our space of feasible curves by

M := Θ× [L1, L2]× B.

Then M is a smooth submanifold with corners in the Hilbert space

X := H1([0, 1],R)× R× R2

and its tangent space at an interior point m = (θ, L, p) is given by

TmM = TθΘ⊕ R⊕ R2.

J Eckhardt et alInverse Problems 35 (2019) 104009
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2.2. Elastic energy

Continuing our geometric approach, recall that the Euler–Bernoulli bending energy (see [16]) 
of a planar curve Γ is given by

∫

Γ

κ2 ds,

where ds is the line element and κ denotes the (signed) curvature of Γ. The bending energy, or 
more precisely the curvature, is a geometrical invariant of the curve Γ and thus we gain inde-
pendence under reparameterizations, which is the main benefit of our approach. The bending 
energy models the stored deformation energy of Γ under the assumption of an undeformed 
straight rest state of the same length as Γ.

Let Γ be parameterized by γ  that is represented by m = (θ, L, p) ∈ M as in (2). Then we 

have κ(t) = θ′(t)
L  and ds = L dt . This shows that bending energy scales with 1/λ when Γ is re-

scaled by a factor λ > 0. Thus, without any additional constraints, minimizers of this energy 
do not exist (the energy of γm  converges to 0 for L → ∞). We therefore consider the following 
scale-invariant version Eb : M → [0,∞) of bending energy which is simply the H1-seminorm:

Eb(m) :=
∫ 1

0
θ′(t)2 dt. (4)

As mentioned above, Eb(m) describes the energy required to deform a straight elastic rod 
of length L into Γ. More generally, consider an undeformed rest state Γ∗ of non-vanishing 
curvature (i.e. if Γ∗ is pre-curved). Assuming that Γ∗ is deformed into Γ by a diffeomorphism 
ϕ : Γ∗ → Γ that does not change the line element4, bending energy is given by

∫

Γ∗

(κ∗(s)− κ(ϕ(s)))2 ds.

Representing Γ∗ by m∗ = (θ∗, L, p∗) as above, the scale-invariant version of this energy is 
given by

Eb(m, m∗) =

∫ 1

0
(θ′(t)− θ′∗(t))

2 dt.

This formulation is useful when Γ∗ represents a reasonable initial guess that is further opti-
mized in order to obtain the desired solution.

2.3. Non-self-intersecting curves

When reconstructing a domain, one requires a boundary curve that is free of self-intersections. 
In this context, the following lemma is useful.

Lemma 2. The set of non-self-intersecting curves is open in the X-topology.

Proof. First notice that curves of finite bending energy correspond to elements of the 
Sobolev space H2([0, 1],R2). Furthermore, by construction, each member of M represents 
a C1-immersion γ : S1 → R2; indeed, due to periodic boundary conditions we can take S1 as 
the domain for γ . Since injective immersions of compact domains are embeddings, we may 

4 Notice that for any two (sufficiently regular) planar curves of the same total length L, there exists a 
diffeomorphism between them that preserves infinitesimal length at every point. In particular, such a mapping is not 
necessarily a Euclidean motion.

J Eckhardt et alInverse Problems 35 (2019) 104009
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employ theorem 3.10 from [35], stating that the set of C1-embeddings is open in C1(S1,R2). 
Now, the fact that H2(S1,R2) embeds continuously into C1(S1,R2) implies the result. □ 

Remark 3. If a sufficiently good initial guess m∗ ∈ M of the true solution is available and 
if m∗ is free of self-intersections, then lemma 2 ensures that we can choose

M0 := {m ∈ M|‖m − m∗‖X � δ} (5)

containing only non-self-intersecting curves. In the context of inverse obstacle scattering 
problems such an initial guess can often be constructed by sampling methods as discussed in 
the introduction and in section 7.

Although we have not encountered the problem of self-intersections in practice for our 
method, we briefly outline how to avoid this issue whenever needed. A popular and widely 
studied energy that is self-avoiding (i.e. finite energy guarantees that the curve is free of self-
intersections) is the so-called Möbius energy defined as

EM(Γ) :=
∫

Γ

∫

Γ

(
1

|x − y|2
− 1

dΓ(x, y)2

)
ds(x) ds(y), (6)

where dΓ(x, y) denotes the geodesic distance between x and y  along Γ and integration is per-
formed with respect to the line elements. This parameterization-invariant energy was intro-
duced by O’Hara [37] and its analytical properties have been studied by several authors [8, 9, 
18, 21, 29, 30]. The self-avoiding property is ensured by the first summand of the integrand, 
while the second summand is introduced in order to remove the singularity along the diagonal 
x  =  y . The Möbius energy is invariant under Möbius transformations (i.e. under conformal 
transformations of C ∼= R2) and thus in particular scale-invariant. We will show in section 3 
that using the Möbius energy as an additional penalty term ensures that minimizers of the 
regularized problem are indeed free of self-intersections.

2.4. Properties of the energy functionals

The analysis of well-posedness and convergence properties of Tikhonov regularization in sec-
tion 3 requires some properties of the energy functionals Eb and EM on the Riemannian mani-
fold M. For showing existence of solutions via the direct method of the calculus of variations, 
weakly sequential lower semi-continuity of the objective functional is a desirable property. 
Weak convergence, however, is a concept that is not invariant under nonlinear changes of 
coordinates. Because we parameterized M as in (2), the bending energy becomes a convex 
quadratic functional, enabling us to derive the following result.

Proposition 4. Let E ∈ {Eb, Eb(·, m∗)}. With respect to the X-topology, we have:

 (i)  M ⊂ X is weakly sequentially closed.
 (ii)  E is weakly sequentially lower semi-continuous.
 (iii)  Modulo shifts by elements of 2π Z , the sublevel sets E−1([0, a]) ⊂ M are weakly  

sequentially compact.

Proof. We proceed in the usual manner of the direct method of calculus of variations. In 
order to show (i), consider a sequence (mn = (θn, Ln, pn))n∈N in M that converges weakly to 
some m = (θ, L, p) ∈ M. By the Rellich compactness theorem, H1([0, 1],R) is compactly 
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embedded in C([0, 1],R) equipped with the supremum norm. Thus, weak convergence of 
θn ⇀ θ in H1([0, 1],R) implies strong convergence in C([0, 1],R). Since the closing condi-
tions (3) are continuous on C([0, 1],R), this implies that θ ∈ Θ and thus m ∈ M.

In order to show (ii), notice that E is defined in terms of a squared seminorm on X , which 
is a continuous and convex functional, whose sublevel sets are therefore sequentially closed  
and convex. The fact that sequentially closed convex sets are weakly sequentially closed  
implies (ii).

For showing (iii), we first observe that for each z ∈ 2π Z, the curve represented by (θ + z, L, p) 
is the same as the one represented by (θ, L, p). Now let mn = (θn, Ln, pn) be a sequence in a sub-
level set E−1([0, a]). Modulo shifting by zn ∈ 2π Z, we may assume that θn(0) ∈ [0, 2π]. We 
may define an equivalent norm on H1([0, 1],R) by ‖θ‖∗ := |θ(0)|+ ‖θ′‖L2. We then either have 
‖θn‖H1 � 2π +

√
E(θn)  (for the case of E = Eb) or ‖θn − θ∗‖H1 � 2π + |θ∗(0)|+

√
E(θn) 

(for the case of E = Eb(·, m∗)). In either case, the sequence (mn)n∈N is bounded in H1, and 
hence it has a subsequence (θnk) converging weakly to some θ ∈ H1([0, 1],R). Moreover, 
[L1, L2]× B is compact so that we may find a further subsequence so that mnk  converges weak-
ly to some m = (θ, L, p) ∈ H1([0, 1],R)× [L1, L2]× B. Because of (ii), we have E(m) � a 
and because of (i), m is indeed an element of M. □ 

Lemma 5. The Möbius energy EM : M → [0,∞] defined by (6) is weakly sequentially low-
er semi-continuous with respect to the weak topology of X .

Proof. Recall that (2) constitutes a smooth mapping from M to H2(S1,R2). As shown in 
[9], the Möbius energy is continuously differentiable (and thus continuous) on the space of 
embeddings of class C0,1(S1,R2) ∩ H3/2(S1,R2). Now the statement follows from the com-
pactness of the embedding of H2(S1,R2) into this space. More precisely, let mn, m ∈ M with 
mn ⇀ m. We have to show that EM(m) � c := lim infn→∞ EM(mn). In the case of c = ∞, 
there is nothing to show, so assume that c < ∞. Since EM is invariant under scaling and trans-
lation, we may assume that Ln  =  L  =  1 and pn = p = 0. Denote by γn, γ ∈ H2(S1,R2) the 
corresponding parameterizations. Due to the Rellich embedding, we may pick a subsequence 
such that c = limk→∞ EM(mnk) and such that γnk → γ strongly in C0,1 ∩ H3/2. The latter 
shows that

EM(m) = lim
k→∞

EM(mnk) = c,

which proves the claim. □ 

3. Tikhonov regularization

In this section we consider a general injective operator

F : M0 ⊂ M → Y
mapping a set of embedded curves M0 into a Hilbert space Y . The unknown exact solution 
will be denoted by m† ∈ M0. Noisy data is described by a vector yδ ∈ Y satisfying

‖yδ − F(m†)‖Y � δ.

J Eckhardt et alInverse Problems 35 (2019) 104009
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In order to approximately recover m† from the data yδ, we use Tikhonov regularization with 
some regularization parameter α > 0:

mδ
α ∈ argminm∈M0

[
‖F(m)− yδ‖2

Y + α Eb(m, m∗)
]

. (7)

Here m∗ denotes an initial guess of m† and may be set to 0 if no such initial guess is available. 
If no appropriate submanifold of embedded curves M0 containing the true solution is known, 
we may choose M0 by setting M0 := {m ∈ M|EM(m) � c} for sufficiently large c  >  0 or 
alternatively consider Tikhonov regularization of the form

mδ
α ∈ argminm∈M

[
‖F(m)− yδ‖2

Y + α Eb(m, m∗) + α EM(m)
]

. (8)

Since EM(m) = ∞ if m  is self-intersecting, EM acts as a barrier function: Only the values of F 
on the set of embedded curves are relevant and each curve γmδ

α
 is guaranteed to be embedded.

With the properties of the energy functionals established in the previous section, the 
following convergence properties follow from the general theory of nonlinear Tikhonov 
regularization.

Theorem 6. Assume that M0 ⊂ M contains only non-self-intersecting elements and let 
m† ∈ M0. Suppose that F : M0 → Y is weakly sequentially continuous (with respect to the 
topologies of X  and Y) and injective and M0 is weakly closed in the case of (7).

 (1.)  (existence) The infimum of the Tikhonov functionals in (7) and (8) is attained for any 
α > 0.

 (2.)  (regularizing property) Suppose that F is injective. Moreover, consider a sequence of data 
(yδn) with ‖yδn − F(m†)‖ � δn → 0 as n → ∞. Assume that the regularization param-
eters are chosen such that

αn → 0 and
δn√
αn

→ 0.

  Then for any sequence of minimizers of the Tikhonov functionals we have

lim
n→∞

∥∥mδn
αn

− m†∥∥
X = lim

n→∞

∥∥γmδn
αn

− γm†
∥∥
∞ = 0, (9)

  

lim
n→∞

∥∥F
(
mδn

αn

)
− F

(
m†)∥∥

Y = 0. (10)

 (3.)  (convergence rates) Suppose in the case of (7) that there exists a loss function 
l : M×M → [0,∞) and a concave, increasing function ϕ : [0,∞) → [0,∞) with 
ϕ(0) = 0 such that m† satisfies the variational source condition

l(m, m†) � Eb(m, m∗)− Eb(m†, m∗) + ϕ
(
‖F(m)− F(m†)‖2

Y
)

 (11)

  for all m ∈ M0. Then the reconstruction error for an optimal choice α of α is bounded 
by

l
(
mδ

α, m†) � 2ϕ(δ2). (12)

Proof. We define a functional E : X → [0,∞) by

J Eckhardt et alInverse Problems 35 (2019) 104009
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E(m) :=
{
Eb(m, m∗), if m ∈ M0,
∞, else

or

E(m) :=
{
Eb(m, m∗) + EM(m), if m ∈ M,
∞, else

in the case of (7) or (8), respectively. We show that in both cases E is weakly sequentially 
lower semi-compact, i.e. sublevel-sets of E are weakly sequentially compact. In the first case 
this follows from proposition 4, part (iii) and the assumption that M0 is weakly sequentially 
closed. In the second case this is a straightforward consequence of proposition 4, part (iii) and 
lemma 5.

Extending F to an operator F̃ : X → Y in an arbitrary fashion, we can formally write the 
Tikhonov regularizations (7) and (8) as a minimization problem over X ,

mδ
α ∈ argminm∈X

[
‖F̃(m)− yδ‖2

Y + α E(m)
]

and apply standard convergence results for generalized Tikhonov regularization. The first 
statement now follows from [42, theorems 3.22] or [17, theorems 3.2].

To prove the second statement, let m† = (θ†, L†, p†) and mδn
αn

= (θn, Ln, pn) and recall from 
[42, theorem 3.26] or [17, theorem 3.4] that (10) holds true, and for an injective operator we have 
weak convergence of mδn

αn
 to m† as well as limn→∞ E(mδn

αn
) = E(m†). Since Eb and EM are both 

weakly sequentially lower semicontinuous it follows that limn→∞ ‖θ′n − θ′∗‖2
L2 =‖(θ† − θ∗)

′‖2
L2. 

This implies

‖(θn − θ†)′‖2
L2 = ‖(θn − θ∗)

′‖2
L2 − ‖(θ† − θ∗)

′‖2
L2 + 〈(θ† − θ∗)

′, (θn − θ†)′〉L2

→ 0 as n → ∞.

Modulo shifts in 2π Z, we may assume that θn(0) ∈ [−π,π]. By passing to a subsequence, 
we may assume that θnk(0) → θ†(0). Using the equivalent norm ‖θ‖∗ := |θ(0)|+ ‖θ′‖L2 on 
H1([0, 1],R) this yields strong convergence of (θnk) to θ† in H1([0, 1],R). As weak conv-
ergence in R2 is equivalent to strong convergence, (Lnk , pnk) also converges strongly to (L†, p†). 
As this holds true for any subsequence, the whole sequence (mδn

αn
) converges strongly to m† 

in X . This implies strong convergence of the corresponding curves in the supremum norm.
The third statement follows from [19] or [17, theorem 4.11]. □ 

We point out that the variational source condition (11) is related to stability results as 
worked out for inverse medium scattering problems in [24] where such conditions with loga-
rithmic functions ϕ hold true under Sobolev smoothness conditions on the solution. However, 
for inverse obstacle scattering problems no such verifications of variational source conditions 
are known so far.

Remark 7. It can be seen from the references cited in the proof of theorem 6 that the results 
can be extended to the case where Y  is a Banach space and ‖F(m)− yδ‖2

Y is replaced by more 
general data fidelity terms S(F(m), yδ).
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4. Inverse obstacle scattering problem

As a prominent example of an obstacle scattering problem we consider here the scattering of 
time-harmonic acoustic waves at a sound-soft cylindrical obstacle. The cross section of this 
obstacle is described by a bounded, connected, and simply connected Hölder C1,α-smooth 
domain Ωint (α > 0). Then its unbounded complement Ω := R2 \ Ωint is connected, and the 
boundary curve will be denoted by Γ = ∂Ω = ∂Ωint. Further we consider an incident plane 
wave ui(x) = exp(i k 〈x, d〉) with wavenumber k  >  0 and direction d ∈ S1. Then the forward 
problem consists in finding a scattered wave us ∈ H2

loc(Ω) such that the total wave u := ui + us 
solves the Helmholtz equation with Dirichlet boundary condition

∆u(x) + k2u(x) = 0, x ∈ Ω, (13a)

u(x) = 0, x ∈ Γ, (13b)

together with the Sommerfield radiation condition

lim
|x|→0

√
|x|

(
∂us(x)
∂ |x|

− i k us(x)
)

= 0 (13c)

which holds uniformly for all directions x
|x| ∈ S1. This problem is well-posed under the above 

conditions (see e.g. [32]) and can for example be solved using boundary integral equations (see 
[14]). Recall that solutions to the Helmholtz equation which satisfy the Sommerfield radiation 
condition (13c) have the asymptotic behavior

us(x) =
eik|x|
√
|x|

(
u∞

(
x
|x|

, d
)
+O

(
1
|x|

))
, |x| → ∞ (14)

(see [14, sections 2.2 and 3.4]). The function u∞(·, d) is analytic on S1 and known as the far 
field pattern of the scattered wave us. Often the far field pattern u∞ ∈ L2(S1 × S1) can only 
be measured on some submanifold M ⊂ S1 × S1, e.g. M = S1 × {d} for one incident field or 
M = {(d,−d) : d ∈ S1} for backscattering data.

With the definitions of section 2 we may describe the inverse problems as operator equa-
tions on the Riemannian manifold M: we introduce the operator F : M → L2(M) mapping 
m ∈ M to the far field pattern u∞ of the scattered field in problem (13) for the domain Ω 
corresponding to m . More precisely, the boundary Γ is given by the image of the curve param-
eterization γm(S1) and Ω is the unbounded component of R2 \ γm(S1). The inverse problem is 
described by the operator equation

F(m) = u∞. (15)

By Schiffer’s uniqueness result ([14, theorem 5.1]) F is injective if M = S1 × S1, and by 
the uniqueness result of Colton and Sleeman ([14, theorem 5.1]) it is also injective if M is the 
product of S1 with some finite set and if all curves γm  for m ∈ M0 are contained in a ball of a 
certain size. (Both results are stated in [14] for R3, but also hold true in R2.)

Let us show that the operator F also satisfies the remaining assumptions of theorem 6:

Proposition 8. The operator F maps weakly convergent sequences in M0 (with respect 
to the topology of X) to strongly convergent sequences in L2(S1) and is continuously Fréchet 
differentiable.

In particular, F is strongly and weakly continuous.
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Proof. Notice that the linear mapping X → C1(S1,R2), m �→ γm defined by (2) is com-
pact by embedding theorems for Sobolev spaces, and hence it maps weakly convergent 
sequences to strongly convergent sequences. Moreover, the forward scattering operator 
C1(S1,R2) → L2(S1), γm �→ u∞ is continuously Fréchet differentiable, and in particular con-
tinuous by [23, theorem 1.9]. Therefore, the composition of these two mappings is continu-
ously Fréchet differentiable and maps weakly convergent to strongly convergent sequences.
 □ 

Notice that by the last proposition the operator equation (15) on an infinite dimensional 
manifold M0 is ill-posed in the sense that there cannot exist a strongly continuous inverse of 
F. (Otherwise every weakly convergent sequence in M0 would be strongly convergent.) This 
implies the need for regularization to solve this equation.

Remark 9 (Translation invariance for phaseless data). In many applications only 
the squared amplitude of the far field can be measured, but not the phase. As the ampl-
itude of the far field is translation invariant (see [28]), the corresponding forward operator 
Fampl(m) := |F(m)|2 is also translation invariant, i.e. Fampl(θ, L, p) does not depend on the 
base point p. This case fits very well into our setting since the shape manifold may simply be 
reduced to Mampl := Θ× [L1, L2].

5. Discrete setting

In order to treat bending energy computationally, we represent closed curves by closed poly-
gons. To this end, consider an arbitrary (but fixed) partition (0 = τ0 < τ1 < · · · < τn = 1) of 
the unit interval and let the angle variable be given by a piecewise constant function repre-
sented by a vector θ = (θ1, . . . , θn), i.e. θ(t) = θj for t ∈ (θj−1, θj]. In perfect analogy to (2), 
we then define a polygon of length L by

γ(t) := p + L
∫ t

0

(
cos(θ(τ)), sin(θ(τ))

)
dτ . (16)

Analogously to the smooth case, in order to fulfill the closing conditions (1), θ needs to satisfy

Φ(θ) = 0, where Φ(θ) =

∫ 1

0

(
cos(θ(t)), sin(θ(t))

)
dt. (17)

Define the turning angles by [θ]i := (θi+1 − θi), where indices are taken modulo n and [θ]i is 
shifted such that [θ]i ∈ (−π,π] for all i. The number 

(∑
i[θ]i

)
/2π is known as the discrete 

turning number of γ .
Let Θn := {θ ∈ Rn |Φ(θ) = 0} and define the space of discrete curves by

Mn := Θn × [L1, L2]× B ⊂ Xn := Rn × R× R2,

for a compact, convex set of base points B ⊂ R2 and minimal and maximal acceptable curve 
lengths 0 < L1 � L2 < ∞. On this space, the scale-invariant version of discrete bending 
energy for a curve m ∈ Mn is readily defined as
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Eb,n(m) :=
n∑

i=1

(
[θ]i
hi

)2

hi =

n∑
i=1

([θ]i)
2

hi
, (18)

see, e.g. [22]. Here the dual edge lengths are given by hi := (τi+1 − τi−1)/2 for i ∈ {1, . . . , n}, 
where we set τn+1 = 1 + τ1. This expression provides the natural analogue5 of the smooth ver-
sion (4). It goes back to the work of Hencky in his 1921 PhD thesis [22] and is in the spirit of 
discontinuous Galerkin (DG) methods [3]. A completely analogous discrete version of this energy 
can be defined for open polygons. In this case, for clamped boundary conditions and under the 
constraint of fixed total curve length, the set of minimizers of this discrete energy converges in 
Hausdorff distance to the corresponding set of smooth minimizers under mesh refinement, see 
[44]. More specifically, the angle variables converge in L∞ and in W1,p  for p ∈ [2,∞) under a 
suitable smoothing operator for the angle variables. Finally, a discrete analogue Eb,n(m, m∗) of the 
smooth pre-curved energy Eb(m, m∗) is readily obtained by replacing [θ] by ([θ]− [θ]∗) in (18).

5.1. Implementation details

For convenience, we briefly sketch here the implementation of our method.
The regularized functional that we seek to minimize on the space Mn ⊂ Xn is of the form

J α : Mn → R, m �→ 1
2

∥∥Fn(m)− yδ
∥∥2
Yn

+ α En(m). (19)

Here, Fn : Mn → Yn is some discretization for polygonal closed curves of the forward opera-
tor F, the term yδ ∈ Yn represents the measured data in some finite dimensional Euclidean 
space Yn, the scalar α � 0 is the regularization parameter, and En = Eb,n or En = Eb,n + EM,n 
with a discrete approximation EM,n of the Möbius energy EM.

Remark 10. We skip the requisite details on the definition of EM,n since our numerical 

experiments show that in practice the tracking term 1
2

∥∥Fn(m)− yδ
∥∥2
Yn

 (see (19) below) is 

sufficient to prevent iterates from developing self-intersections. Notwithstanding, for details 
on discrete Möbius energy, see [29, 30], and for Γ-convergence to the smooth case see [43].

The discrete nonlinear Tikhonov regularization on Mn may then be written as the follow-
ing constrained minimization problem:

Minimize J α(m) subject to Φ(m) = 0 and (L, p) ∈ [L1, L2]× B. (20)

We will ignore the inequality constraints (L, p) ∈ [L1, L2]× B for simplicity, although it would 
not be difficult to include them. In particular, these constraints never became active in our numer-
ical experiments. We only require these constraints for the theoretical analysis in section 3.

Since Fn does not have a natural extension outside the discrete shape space 
Mn = {m |Φ(m) = 0}, standard methods of constrained nonlinear programming are not 
applicable. When using iterative methods for minimizing J α, we require an intrinsic step-
ping method on the constraint manifold Mn in order to supply the forward operator Fn with 
meaningful input. Prominent examples of such methods are intrinsic Newton-type algorithms 
on Riemannian manifolds, see, e.g. [40]. In such methods, one determines the update direction 
u ∈ Xn by solving a saddle point system of the form

5 Notice that discrete bending energy corresponds to its smooth counterpart in the sense that turning angles at ver-

tices correspond to curvatures integrated over dual edges, i.e. [θ]i ∼=
∫ (τi+1+τi)/2
(τi+τi−1)/2 κ(s) ds. This perspective naturally 

leads to formulation (18).
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(
H(m) DΦ�(m)

DΦ(m) 0

)(
u
µ

)
=

(
−DJ α(m)

0

)
, (21)

where H is (a surrogate for) the Hessian of the objective functional, the manifold Mn is given 
by the constraint equation (17), which we encode by a function Φ : Xn → R2, and µ ∈ R2 
denotes a Lagrange multiplier. The resulting linear systems have roughly the size n × n and 
can be solved using a direct solver. In our implementation, we usually use n  =  100.

A first example is the full intrinsic Hessian, which can be obtained from the Lagrange func-
tion L(m,λ) := J α(m) + λ�Φ(m) of (20) as

H(m) = D2
mL(m,λm) = D2J α(m) + λ�

m D2Φ(m). (22)

The requisite Lagrange multiplier λ�
m ∈ R2 is obtained by multiplying the equa-

tion DmL(m,λ) = 0 by DΦ†(m) from the right, i.e.

λ�
m = −DJ α(m)DΦ†(m).

Here DΦ†(m) denotes the Moore–Penrose inverse with respect to a finite difference approxi-
mation of the H1-inner product.

Notice that assembling the system with the full intrinsic Hessian contains a contribution of 
the form 〈Fn(m)− yδ , D2Fn(m)(·, ·)〉Yn , which is dense and costly to compute. We therefore 
use a Gauss–Newton inspired surrogate, which is given in bilinear form as6

H(m) = 〈DFn(m) ·, DFn(m) · 〉Yn + α Hess En(m), (23)

where we identify matrices with bilinear forms and where the intrinsic energy Hessian has 
the form

Hess En(m) = D2En(m)− DEn(m)DΦ†(m)D2Φ(m). (24)

Notice that the second term on the right hand side of this equation  arises from the sec-
ond term on the right hand side of (22). In the language of differential geometry, the term 
DΦ†(m)D2Φ(m) encodes the second fundamental form of the constraint manifold. The quan-
tities on the right hand side of (24) are easy to assemble for En = Eb,n due to the quadratic 
nature of Eb,n.

Another attractive alternative is to use

H(m) = 〈DFn(m) ·, DFn(m) · 〉Yn + α 〈·, ·〉X.

This way, H(m) is always positive definite on the null space of DΦ(m) and the saddle-point matrix 
from (21) is guaranteed to be continuously invertible. Thus, in this case, the method boils down to a 
gradient descent in the manifold Mn with respect to the Riemannian metric induced by H.

Once an update direction u has been computed in the above fashion, the next iterate is 
found by first setting x0 = m + t u for some small t  >  0. Restoring feasibility (i.e. ensuring 
that the next iterate resides on the constraint manifold) is then achieved by iterating

xk+1 = xk − DΦ†(xk) Φ(xk), (25)

until Φ(xk) is sufficiently small7. The step size t can be determined by a standard backtracking 
line search, while the matrix-vector product ũ = DΦ†(x) ṽ is computed by solving the saddle 
point problem

6 Notice that in this formulation we have also dropped the additional term of the form 
〈Fn(m)− yδ , DFn(m)DΦ†(m)D2Φ(m)〉Yn since it does not lead to improved convergence rates.
7 Notice that the Newton-type method (25) for underdetermined systems would correspond to a nearest point 
projection if the constraint were linear.

J Eckhardt et alInverse Problems 35 (2019) 104009



14

(
GXn DΦ�(x)

DΦ(x) 0

)(
ũ
µ̃

)
=

(
0
ṽ

)
.

Here GXn is the Gram matrix of the discrete H1-inner product on Xn, the upper left n × n block of 
which is a finite-difference Laplacian. Analogously, DEb,n(m)DΦ†(m) = (DΦ†(m))�DEb,n(m) 
can be computed this way by utilizing the dual saddle point system. Finally, one updates m 
to the last iterate xk .

6. Ab initio reconstructions

In this section we demonstrate the benefits of our new approach in numerical experiments 
for the inverse obstacle scattering problem introduced in section 4. The forward scattering 
problems were solved by a boundary integral equation method using a Nyström method with 
n points as described in [14, section 3.6]. To this end we interpolated the polygonal curve 
approximations described in section 5 trigonometrically. Both the evaluation of discrete for-
ward operator Fn and the evaluation of its Jacobian DFn as described e.g. in [23] require O(n3) 
flops.

We always use 20 equidistant incident plane waves and n  =  100 points for the reconstruc-
tion curves; the far field pattern is measured at 40 equidistant measurement directions. The 
wavelength is chosen of the same order of magnitude as the diameter of the obstacle. In all our 
examples we added independent, identically distributed, centered Gaussian random variables 
to the simulated far field data at each sampling point such that the relative noise level in the 
l2-norm was 5% (in figures 1–3) or 1% (in figures 4 and 5).

The regularization parameter α was determined by the discrepancy principle. More 
precisely, we first minimized the Tikhonov functional for a large α by an intrinsic Gauss–
Newton-type method as described in section 5 with update direction u defined by (21), (23) 
and (24). The Gauss–Newton iteration was stopped when ‖u‖ or the norm of the gradient of 
the Tikhonov functional ‖DJ α(m)‖ was smaller than 10−5. Then we decreased α by a factor 
of 2 and minimized the Tikhonov functional for this smaller α using the previous minimizer 
as an initial guess as long as the condition 

∥∥Fn(mα)− yδ
∥∥ � 1.1δ was satisfied.

In figures 1 and 2 we show reconstructions of two non-star-shaped domains. Figure 1(d) 
illustrates that the far field pattern is uniformly fitted well. Moreover, we demonstrate in fig-
ure 2(b) that the reconstructions are almost independent of the choice of the number n of 
points on the curves as long as n is large enough. Also the number of Gauss–Newton steps 
and the regularization parameter α determined by the discrepancy principle do not depend on 
n. Note that concave parts of the boundary where multiple reflections occur in a geometrical 
optics approximation are more difficult to reconstruct than convex parts. In view of the fact 
that we use only one wave length which is almost of the size of the obstacle and a noise level 
of 5%, these reconstructions for this exponentially ill-posed problem are already remarkably 
good. The reconstructions could be further improved by using shorter wave lengths as illus-
trated in figure 5(c).

Figure 3(a) already illustrates the obvious limitation of the commonly used radial function 
parameterizations to star-shaped domains. In figure 3 we demonstrate a further disadvantage 
of such parameterizations, which is the dependence on the choice of the center point. We can 
observe unwanted deformations in the reconstruction or even a failure if the center point is 
chosen too close to the boundary of the exact domain. This is expected since the penalty term 
corresponding to the exact solution explodes as the origin tends to the boundary. In contrast, 
in the proposed approach based on the bending energy the position of the obstacle with respect 

J Eckhardt et alInverse Problems 35 (2019) 104009



15

to the origin has no influence on the global minimum of the Tikhonov functional (although 
local minimization methods will get stuck in local minima if the initial guess is too far away 
from the true obstacle).

We summarize that the proposed approach for solving inverse obstacle problems on a shape 
manifold with bending energy penalization may yield considerably better reconstructions than 

Figure 1. Comparison of our method (b) to previous radial function parameterizations 
(a) for a smooth non-star-shaped domain. We use 20 equidistant incident waves with 
wavelength indicated in (a) and 5% Gaussian white noise. (a) true obstacle (dotted 
green), initial guess (dashed yellow), and reconstruction (solid blue) using a radial 
function parameterization with center indicated by the black cross; (b) reconstruction 
using bending energy penalization; (c) real part of far field of the reconstruction in (b); 
(d) difference to the observations of the real parts of reconstructed far field in (b).

Figure 2. Reconstruction of a smooth non-star-shaped domain by our method with 5% 
Gaussian white noise. Parameters, line styles and colors are chosen as in figure 1. Panel 
(b) shows a magnification of reconstructions for different numbers of points (n  =  50, 
100, and 150) illustrating the asymptotic independence of the results on the choice of n.
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radial function parameterizations even for star-shaped obstacles and allows the reconstruction 
of considerably more complicated curves.

7. Reconstructions with initial guesses provided by sampling methods

7.1. The factorization method

Let us briefly recall the factorization method as an example of a sampling method and typical 
numerical implementations of this method. Suppose that M = S1 × S1 and denote the integral 
operator with kernel u∞ by U∞ ∈ L(L2(S1)), i.e.

(U∞g)(x̂) :=
∫

S1
u∞(x̂, d) g(d) ds(d), x̂ ∈ S1.

Moreover, let rz(x̂) := exp(−i k x̂�z) denote the far field pattern of a point source at z ∈ R2. 
The main result justifying the factorization method (see [25, theorem 3.8]) is that

rz ∈ ran(U∗
∞U∞)1/4 ⇔ z ∈ Ωint.

In practice, given only a discrete and noisy version of U∞, one constructs an approximation 
A to the operator (U∗

∞U∞)−1/4 (e.g. by a truncated eigenvalue decomposition) and uses sub-
level sets of the function

χ(z) := ‖A rz‖2 (26)

Figure 3. Comparison of our method to previous radial function parameterizations for 
a star-shaped domain. Parameters and line styles are chosen as in figure 1. (a), (b) and 
(d) show reconstructions using a radial function parameterization with different choices 
of the center point indicated by a black cross; (c) and (e) are magnifications of (b) and 
(d) around the center point, respectively; (f) shows the reconstruction by our bending 
energy approach.
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as approximations of Ωint since for continuous noiseless data χ(z) < ∞ (with an appropriate 
definition of χ) if and only if z ∈ Ωint. There are several variants concerning the choice of A 
which follow the same pattern (see [2]).

In order to find a parameterization of some level line of a function χ ∈ C1(R2) in the form 
(2) we introduce the forward operator F1/χ : M → L2([0, 2π]) defined by

Figure 4. Obstacle reconstruction by parameterization of a level line for the 
factorization method. We use 20 incident waves and 1% Gaussian white noise. The 
values of the function 1/χ with χ given by (26) are indicated by colors and the true 
obstacle by a dotted green line. The solid blue line shows a parameterized level line of 
1/χ approximating the true obstacle.

Figure 5. Reconstructions by our method for different initial guesses and different 
wave numbers. We use far field data with 1% Gaussian white noise and otherwise the 
same parameters and line styles as in figure 1. In panel (a) the initial guess (dashed 
yellow) is chosen as a circle, in panels (b) and (c) the initial guess is taken from the 
factorization method as illustrated in figure 4. The reconstruction in (c) uses far field 
data for a smaller wavelength.
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(
F1/χ(m)

)
(t) :=

1
χ(γm(t))

, t ∈ [0, 2π].

Then the problem to find a parameterization of the β-level-line of χ can be formulated as 
an operator equation F1/χ(m) = β 1 where 1 ∈ L2([0, 2π]) is the constant 1 function. This 
problem may again be solved by Tikhonov regularization. The use of F1/χ yields a more 
global convergence behavior than the use of Fχ. Notice that F1/χ is Fréchet differentiable 
with (DF1/χ(m) h)(t) = −χ(m(t))−2 〈gradχ(γm(t)), γh(t)〉. Notice that for χ given by (26), 
we have ∂zjχ(z) = 2�〈A rz, A ∂zj rz〉.

The reconstruction of a level line of χ (or equivalently 1/χ) is illustrated in figure 4 using 
data corrupted by 1% Gaussian white noise.

7.2. Numerical results

We now use the parameterization of the level line curve illustrated in figure 4 as an initial 
guess m∗ in Tikhonov regularization. The result is shown in figure 5(b). In most parts the 
reconstruction is hard to distinguish from the true curve by eye, and it is much better than a 
reconstruction using a circle as initial guess as shown in figure 5(a). Only in some interior 
parts of the ‘horseshoe’ the reconstruction in (b) seems to take a ‘short cut’. A reason may be 
that the initial guess curve γm∗ is ‘too short’ in the interior part, and consequently geodesic 
distances of points on γm∗ relative to its length L* do not match the geodesic distances of 
their best approximations on γm† relative to L†. Therefore, the bending energy Eb(m†, m∗) is 
quite large whereas due to the ‘short cut’ in the Tikhonov estimator mα the bending energy 
Eb(mα, m∗) is much smaller. However, as illustrated in figure 5(c), for smaller wavelengths the 
difference of the corresponding data fidelity terms becomes large enough to compensate for 
this effect.
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