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Abstract
Most of the literature on the solution of linear ill-posed operator equations, 
or their discretization, focuses only on the infinite-dimensional setting or 
only on the solution of the algebraic linear system of equations obtained by 
discretization. This paper discusses the influence of the discretization error 
on the computed solution. We consider the situation when the discretization 
used yields an algebraic linear system of equations  with a large matrix. 
An approximate solution of this system is computed by first determining a 
reduced system of fairly small size by carrying out a few steps of the Arnoldi 
process. Tikhonov regularization is applied to the reduced problem and the 
regularization parameter is determined by the discrepancy principle. Errors 
incurred in each step of the solution process are discussed. Computed 
examples illustrate the error bounds derived.

Keywords: inverse problems, regularization methods, Arnoldi 
decomposition, convergence analysis

1.  Introduction

Let A : X → Y  be an injective linear operator between the Hilbert spaces X  and Y , and 
assume that A is not continuously invertible. We are concerned with the solution of operator 
equations of the form
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Ax = y, x ∈ X , y ∈ Y .� (1.1)

Let ‖ · ‖X  and ‖ · ‖Y denote the norms of the spaces X  and Y , respectively. We will assume 
that equation  (1.1) is consistent and are interested in determining the solution of minimal 
norm. We denote this solution by x̂ . The solution x̂  might not depend continuously on y . 
Therefore its computation is an ill-posed problem.

The right-hand side y  of (1.1) is assumed not to be available; only an error-contaminated 
approximation yδ ∈ Y  of y  is known. We assume that yδ satisfies

‖y − yδ‖Y � δ,� (1.2)

with a known bound δ > 0. The solution of the equation

Ax = yδ , x ∈ X , yδ ∈ Y ,� (1.3)

obtained by replacing y  by yδ in (1.1), if it exists, generally, is not a meaningful approx
imation of the desired solution x̂  since A is not continuously invertible. In fact, equation (1.3) 
might not have a solution even when equation  (1.1) does. A regularization method, which 
replaces the operator A by a nearby operator, such that the solution of the modified equation so 
obtained exists and is less sensitive to the error in yδ, has to be used to obtain a meaningful 
approximation of x̂ .

The numerical solution of (1.3) requires discretization at a certain stage of the process. In 
general, this can be done in two ways:

	 (i)	�Regularize then discretize: In this approach, the infinite-dimensional ill-posed problem is 
transformed into a well-posed problem, e.g. by means of Tikhonov regularization. Then 
the well-known error estimates for the regularized solution, see, e.g. [7] for regulariza-
tion in Hilbert spaces, can be applied. In a second step the now well-posed regularized 
equation is discretized, and available error estimators for well posed-problems, e.g. from 
the theory of finite elements, can be used. This approach has been followed in, e.g.  
[4, 10, 16, 20].

	(ii)	�Discretize then regularize: The discretization of the ill-posed operator equation  (1.3) 
yields a linear system of algebraic equations

Anxn = yδn� (1.4)

		 with an ill-conditioned, possibly singular, matrix An ∈ Rn,n , and vectors xn, yδn ∈ Rn . 
Well-known methods from linear algebra are used for its solution; see, e.g. [3, 11, 13]. 
The difficulty with this approach is to obtain convergence and convergence rate results 
for the distance between the solution of the infinite-dimensional problem (1.1) and its 
discretized counterpart xn fulfilling (1.4), see, e.g. [5, 18].

As mentioned above, the approach (i) works particularly well for different variants of Tikhonov 
regularization. Iterative methods, however, require frequent application of the operator, and 
maybe of its adjoint, which is only possible in a discretized form. Iterative methods there-
fore belong to category (ii). An analysis of approach (ii) has been carried out for an adaptive 
version of Landweber iteration [24], but to the best of our knowledge this approach has not 
been investigated for Krylov subspace methods. Additionally, methods that work exception-
ally well in finite dimensions but have no infinite-dimensional counterpart, or for which an 
error analysis is missing in infinite dimensions, belong to category (ii). The latter holds for the 
method discussed in the present paper.
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In this paper, we start with two continuous linear operator equations (1.1) and (1.3), and 
discretize the latter to obtain the linear system of algebraic equation (1.4). We are concerned 
with the situation when the matrix An is large and, in particular, when An is too large to make 
the computation of its singular value decomposition attractive. Then we apply the Arnoldi 
process to compute an approximation of fairly low rank of the matrix An in (1.4). We replace 
An in (1.4) by this low-rank approximation, and compute an approximate solution of the linear 
system of equations with the aid of Tikhonov regularization. The replacement of An by a low-
rank approximation reduces the computational effort required for Tikhonov regularization 
when the matrix An is large, which is the situation of interest to us. Our approach allows us to 
solve problems with a matrix An that is too large to make the use of direct solution methods, 
which require factorization of a large matrix, e.g. of An or a related matrix, too expensive to 
be attractive or feasible. We will discuss the effect on the computed solution of discretization 
errors that stem from replacing the operator A by the matrix An, as well as the effect of the 
error in the right-hand side yδ. Moreover, we are concerned with the influence on the com-
puted solution of the replacement of the matrix An in the linear system (1.4) by a low-rank 
matrix determined by the Arnoldi process. We remark that Tikhonov regularization based on 
partial Arnoldi decomposition, and some variations thereof, have been described in [3, 6, 8, 
14, 15] and in references therein. The contribution of this paper is to provide an error analysis.

This paper is organized as follows. Section  2 discusses results by Natterer [18] on the 
discretization of integral operators. Discretization yields the linear system of algebraic equa-
tion (1.4). We assume that the matrix An determined by discretization is so large that factori-
zation is unattractive or unfeasible. Section 3 reviews the Arnoldi process for computing an 
approximation of fairly low rank of the matrix An in (1.4). We use this low-rank approximation 
in Tikhonov regularization and obtain a quite efficient solution method. To analyze the perfor-
mance of this solution approach, we have to take into account the discretization error as well 
as the error incurred by approximating the matrix An by the low-rank approximation furnished 
by the Arnoldi process. Section 4 applies bounds due to Neubauer [20] to the computed solu-
tion obtained by the Tikhonov regularized problem that uses the approximation of the matrix 
An in (1.4) computed with the Arnoldi process. We remark that while the bounds provided 
by Natterer [18] shed light on the influence of the discretization error on the computed solu-
tion, they are not useful for assessing the effect of approximating the matrix An by a low-rank 
approximation determined by the Arnoldi process. We will comment further on this issue in 
remark 4.10 of section 4. A few computed examples that illustrate the theory are presented in 
section 5, and concluding remarks can be found in section 6.

2.  Discretization of the operator equation

To be able to numerically compute an approximate solution of equation (1.3) in the infinite-
dimensional Hilbert space X , the equation first has to be discretized. This results in the finite-
dimensional equation  (1.4). We introduce a discretization and define a finite-dimensional 
least-squares problem similarly as Natterer [18], who investigated regularization properties 
of projection methods.

Introduce the finite-dimensional subspaces

Xn ⊂ X , dim(Xn) = n,
Yn = AXn,

and define projectors Pn : X → Xn and Qn : Y → Yn. The space Xn is chosen for its conve-
nience to use in applications and for the approximation properties of its elements. For instance, 
Xn may be a space of piece-wise polynomials or finite elements.

R Ramlau and L Reichel﻿Inverse Problems 35 (2019) 055002
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Consider the linear system of equations

QnAPnx = Qnyδ .� (2.1)

We identify the matrix An and vector yδn in (1.4) with the finite-dimensional operator QnAPn 
and the right-hand side Qnyδ in (2.1), respectively. The unique least-squares solution of mini-
mal norm of equation  (2.1) is given by xn := A†

nyδn, where A†
n denotes the Moore–Penrose 

pseudoinverse of the matrix An. We identify this solution of (2.1) with the solution in Rn of 
(1.4).

Let {ej}n
j=1 form a convenient basis for Xn, such as a basis of piece-wise polynomials or 

finite elements with local support. Consider the representation

xn =

n∑
j=1

x(n)
j ej� (2.2)

of an element xn ∈ Xn . We identify the function xn with the vector

�xn = [x(n)
1 , x(n)

2 , . . . , x(n)
n ]T ∈ Rn.

To shed light on how ‖xn‖X  relates to ‖�xn‖2, we introduce an orthonormal basis {êj}n
j=1 for Xn. 

There is a nonsingular matrix Mn = [mij] ∈ Rn×n such that

[e1, e2, . . . , en] = [̂e1, ê2, . . . , ên]Mn,

i.e. ej =
∑n

i=1 mi,jêi for j = 1, 2, . . . , n. For instance, when the basis {êj}n
j=1 is determined 

from {ej}n
j=1 by the Gram–Schmidt process, the matrix Mn is upper triangular.

We obtain from (2.2) that

xn = [e1, e2, . . . , en]�xn = [̂e1, ê2, . . . , ên]Mn�xn.

It follows that

‖xn‖X = ‖Mn�xn‖2 � ‖Mn‖2‖�xn‖2 = σmax(Mn)‖�xn‖2,� (2.3)

where σmax(Mn) denotes the largest singular value of the matrix Mn. Let σmin(Mn) stand for 
the smallest singular value of Mn. Then we obtain analogously to (2.3) that

‖xn‖X � σmin(Mn)‖�xn‖2.

We will assume that there are constants cmin and cmax (independent of n) such that

0 < cmin � σmin(Mn), σmax(Mn) � cmax < ∞ ∀n.

Then

cmin‖�xn‖2 � ‖xn‖X � cmax‖�xn‖2.� (2.4)

Thus, the norms ‖ · ‖X  and ‖ · ‖2 are equivalent. We will therefore simply write �xn as xn.
Another way of obtaining an estimate (2.4) is by using the decomposition (2.2) directly: 

let 〈·, ·〉 denote the inner product in X  and define the norm ‖x‖X = 〈x, x〉1/2. Since the func-
tions e1, e2, . . . , en are linearly independent, the Gram matrix Dn = (〈ej, ei〉)i,j=1,...n is positive 
definite. Moreover,

‖xn‖2
X = 〈

n∑
j=1

x(n)
j ej,

n∑
j=1

x(n)
j ej〉

=

n∑
j=1

n∑
i=1

x(n)
j x(n)

j 〈ej, ei〉 = �xT
n Dn�xn.

R Ramlau and L Reichel﻿Inverse Problems 35 (2019) 055002
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The constants cmin and cmax in (2.4) can be chosen as the square root of the minimal and 
maximal eigenvalues of Dn, respectively. For instance, if the set {ej}n

j=1 forms an orthonormal 
basis for Xn, then Dn  =  I and (2.4) holds with cmin = cmax = 1. This is the situation when an 
orthonormal wavelet basis is used for the discretization. Another simple example is the use of 
linear B-spline fuctions (hat functions). Let {t1, t2, . . . , tn} be an equidistant partition of the 
interval [0, 1], and let e1, e2, . . . , en denote normalized hat functions associated with this parti-
tion. Define the subspace Xn = span{e1, e2 . . . , en}. A simple calculation shows that

Dn =




1 1
2
√

2
0 0 0 · · · 0

1
2
√

2
1 1

4 0 0
. . . 0

0 1
4 1 1

4 0
. . . 0

0
. . . . . . . . . . . . . . . 0

0
. . . 0 1

4 1 1
4 0

0
. . . . . . 0 1

4 1 1
2
√

2

0 · · ·
. . . 0 0 1

2
√

2
1




∈ Rn×n.

This tridiagonal matrix is diagonally dominant. The upper and lower bounds 1 ± 1
4 (1 +

√
2) 

for the eigenvalues of Dn can be determined by using Gershgorin disks; see, e.g. [27]. These 

bounds are independent of the dimension n. It follows that we may choose σmin = 1
2 (3 −

√
2)1/2 

and σmax = 1
2 (5 +

√
2)1/2 independently of n. Hence, (2.4) also holds in the present situation. 

The bounds (2.4) will be explicitly used in section 4.
The solution xn ∈ Xn  of (2.1) might not be a useful approximation of the desired solution 

x̂  of (1.1) due to a large propagated error stemming from the error in the available data yδn. We 
therefore would like to determine a bound for ‖x̂ − xn‖X . This is generally not possible with-
out some additional assumptions on the solution x̂  of (1.1); in particular, it is not sufficient 
that A and An be close.

Let Ω ⊆ RN, X = L2(Ω), and define the Sobolev spaces Hl = Hl(Ω) for l ∈ R. Assume 
that

‖Ax‖Y ∼ ‖x‖H−l� (2.5)

holds for all x ∈ H−l and some 0 < l < ∞, i.e. the operator A : H−l → Y  is continuously 
invertible. The theory developed by Natterer [18] requires that (2.5) holds for a finite value 
of l.

Example 2.1.  Let Ω ⊂ R2 , Z = {(ω, t) ∈ R3 : ω ∈ R2, ‖ω‖ = 1, t ∈ R}. Let ω⊥ be a 
unit vector perpendicular to ω , and define the Radon transform

A : L2(Ω) → L2(Z),

(Ax)(ω, s) :=
∫

R
x(sω + tω⊥) dt.

Then (2.5) holds with l  =  1/2; see [19].� □ 

R Ramlau and L Reichel﻿Inverse Problems 35 (2019) 055002



6

Example 2.2.  Let

A : L2(Rd) → L2(Rd),

(Ax)(ω, s) := (k ∗ x)(s) =
∫

Rd
k(s − t)x(t) dt, s ∈ Rd,

for some kernel function k ∈ L2(Rd). If the Fourier transform k̂ of k satisfies

|k̂(ξ)| ∼ (1 + |ξ|2)−β/2,

then (2.5) holds with l = β, see, e.g. [9].� □ 

Assume that the minimal norm solution x̂  of (1.1) lives in Hk. Natterer [18] shows that if 
the operator A is injective and the subspaces Xn, n = 1, 2, . . . , are chosen so that an inverse 
estimate is fulfilled (see [18, equation (4.1)–(4.5)] for details on the latter), then one obtains 
the bound

‖x̂ − xn‖X � C
(
h(n)k‖x̂‖Hk + h(n)−lδ

)
� (2.6)

for some constant C that can be chosen independently of h(n), x̂ , and δ. Here, h = h(n) > 0 
is a discretization parameter that depends on the approximation property of the subspaces Xn, 
n = 1, 2, . . . , i.e. on how well x̂  can be approximated by an element in Xn; in particular, h ↘ 0 
as n → ∞. The parameter δ > 0 in (2.6) is the bound (1.2); see [18]. An optimal dimension of 
the discretized problem is given by

n ∼ h−1

((
δ

‖x̂‖Hk

)1/(k+l)
)

� (2.7)

and yields the bound

‖x̂ − xn‖X � C′‖x̂‖l/(k+l)
Hk δk/(k+l)� (2.8)

for some constant C′ > 0; see Natterer [18] for details. For instance, spline and finite element 
approximation spaces Xn allow for bounds of the type (2.6) and (2.8). Natterer [18] proposes 
that the dimension n of the solution subspace of the discretized problem (1.4) be chosen 
according to (2.7). This choice provides regularization of the operator equation (1.3) and no 
further regularization is necessary.

We note that the use of wavelet-based projection methods also has been investigated for 
the solution of ill-posed problems. Regularization properties of wavelet methods have been 
shown by Dicken and Maaß [5].

Convergence rates analogous to (2.8), when h is chosen according to (2.7), also can be 
established in a different setting; see Mathé and Pereverzev [17]. They assume that the opera-
tor A is continuously invertible in Hilbert scales (which resembles the condition (2.5)), and 
show convergence rates in a stochastic noise setting with respect to norms of the relevant 
Hilbert scales; see [17, theorem 6.3].

We conclude this section with a comment on condition (1.2). Let yn = Qny and yδn = Qnyδ. 
We will assume that ‖y − yδ‖Y ≈ ‖yn − yδn‖Y. Then (1.2) translates to

‖yn − yδn‖Y � δ.� (2.9)

It is convenient to replace the norm in (2.9) by the Euclidean norm. This can be achieved 
analogously as in the beginning of this section: let { fj}n

j=1 form a convenient basis for Yn, such 
as fj = Aej, where {ej}n

j=1 is a basis for Xn. Represent the element yn ∈ Yn as

R Ramlau and L Reichel﻿Inverse Problems 35 (2019) 055002
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yn =

n∑
j=1

y(n)
j fj,

and define the vector �yn = (y(n)
1 , y(n)

2 , . . . , y(n)
n )T ∈ Rn. We would like to bound ‖yn‖Y in 

terms of ‖�yn‖2. Introduce an orthonormal basis {f̂j}n
j=1 for Yn. There is a nonsingular matrix 

Nn ∈ Rn×n  such that

[ f1, f2, . . . , fn] = [̂f1, f̂2, . . . , f̂n]Nn.

It follows similarly as (2.3) that

‖yn‖Y � σmax(Nn)‖�yn‖2,

where σmax(Nn) denotes the largest singular value of Nn. We will assume that there is an upper 
bound dmax, independent of n, such that

σmax(Nn) � dmax < ∞.

In computations, we will apply the discrepancy principle based on the inequality

‖yn − yδn‖2 � δ,� (2.10)

which implies that

‖yn − yδn‖Y � dmaxδ.

3.  Arnoldi decomposition of a matrix

Let An and yδn be as in (1.4), and assume that n is large. The Arnoldi process is a popular 
approach to reduce a large matrix to a small one by evaluating matrix-vector products with 
the large matrix and applying Gram–Schmidt orthogonalization. The small matrix, denoted by 
H�+1,� below, is an orthogonal projection of An. Application of 1 � � � n steps of the Arnoldi 
process to the matrix An with initial vector yδn gives the decomposition

AnVn,� = Vn,�+1H�+1,�,� (3.1)

where the columns of the matrix Vn,�+1 ∈ Rn,�+1 form an orthonormal basis for the Krylov 
subspace

K�+1(An, yδn) := span{yδn , Anyδn , . . . , A�
nyδn}

with respect to the inner product

〈u, w〉 :=
1
n

n∑
j=1

ujwj, u = (u1, . . . , un)
T , w = (w1, . . . , wn)

T ∈ Rn
� (3.2)

and associated norm

‖u‖2 :=
√
〈u, u〉;

see, e.g. [26]. We also will denote the spectral norm of a matrix by ‖ · ‖2. The matrix Vn,� in 
(3.1) is made up of the first � columns of Vn,�+1, and H�+1,� ∈ R�+1,� is an upper Hessenberg 
matrix, i.e. all entries below the subdiagonal vanish. We assume the generic situation that the 
subspace K�+1(An, yn) is of dimension �+ 1 for all � � 0, otherwise the computations sim-
plify; see below.

R Ramlau and L Reichel﻿Inverse Problems 35 (2019) 055002
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Algorithm 1.  The Arnoldi process.

                                    1: Input: An ∈ Rn,n , yδn ∈ Rn\{0}, number of steps �.

                                    2: v1 := yδn/‖yδn‖2

                                    3: for: j   =  1 to �
                                    4:      w := Anvj  
                                    5:       for k  =  1 to j 
                                    6:         hk,j := 〈vj, w〉
                                    7:         w := w − vjhk,j

                                    8:    end for
                                    9:     hj+1,j := ‖w‖2; vj+1 := w/hj+1,j

                                  10: end for
                                  11: Output: Upper Hessenberg matrix H�+1,� = [hk,j] ∈ R�+1,�, matrix

                                  12:          Vn,�+1 = [v1, v2, . . . , v�+1] ∈ Rn,�+1 with orthonormal columns

Algorithm 1 describes the Arnoldi process for computing the decomposition (3.1). The 
algorithm is said to break down in iteration j  if hk+1,k  >  0 for 1 � k < j, and hj +1,j   =  0 in line 
9. Then the decomposition (3.1) simplifies to

AnVn,j = Vn,jHj,j

and the solution of (1.4) lives in the Krylov subspace Kj(An, yδn) if the matrix Hj ,j  is nonsingu-
lar. This is secured, e.g. if the matrix An is nonsingular. A discussion on how to continue the 
Arnoldi process in case of breakdown when Hj ,j  is singular is provided in [25].

We remark that the Arnoldi process simplifies to the Lanczos process when the matrix An 
is symmetric; see [26, chapter 6].

4. The Arnoldi–Tikhonov method

The results of section  2 suggest that the discretized system can be solved without further 
regularization if the discretization is carried out on a suitably (but not too) fine grid. However, 
numerical realization of regularization by discretization only often leads to difficulties, 
because an appropriate value of the dimension n of the solution subspace generally is not 
known before the computations are begun. For instance, when Xn is a finite element space, 
it may be necessary to determine several discretizations and associated solutions (for differ-
ent values of n) to find a suitable n-value. We therefore prefer to first discretize the spaces X  
and Y  to obtain n-dimensional subspaces Xn and Yn, respectively, that allow approximation 
of elements of X  and Y  with sufficient accuracy, and then regularize (1.4) by Tikhonov’s 
method. In the remainder of this section, we identify the spaces Xn and Yn with Rn and the 
finite-dimensional operator QnAPn in (2.1) with the matrix An ∈ Rn,n  in (1.4).

The solution method considered consists of three steps:

	 1.	�Discretization of the (infinite-dimensional) operator equation. This requires an esti-
mate of the distance between the solution of the infinite-dimensional system and the 
solution of its finite-dimensional approximation.
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	 2.	�Definition of a regularized finite-dimensional system. Estimate the distance between 
the solution of the finite-dimensional system and its regularized version.

	 3.	�Compute an approximate solution of the regularized solution. Estimate the distance between 
the solution of the regularized finite-dimensional system and its computed approximation.

The error of the computed solution is bounded by the sum of the norms of these three errors. 
We will discuss each one of these errors separately.

Let the Arnoldi decomposition (3.1) be available, and introduce the approximation

A(�)
n := Vn,�+1H�+1,�V

∗
n,�� (4.1)

of the matrix An. In what follows, we need to compute an estimate for the distance between An 
and A(�)

n . To this end we may compute the operator norm ‖An − A(�)
n ‖2, which can be evaluated 

as the largest singular value of the matrix An − A(�)
n . It has recently been shown that a few 

of the largest singular values of a large matrix that stems from the discretization of a linear 
ill-posed problem can be computed quite inexpensively; see [22] for discussions and illustra-
tions. Alternatively, we may use the easily computable Frobenius norm,

‖An‖F :=

√√√√
n∑

i,j=1

|aij|2,

where An = [aij]
n
i,j=1, and apply the bound

‖An − A(�)
n ‖2 � ‖An − A(�)

n ‖F.

Assume that

‖An − A(�)
n ‖2 � h�� (4.2)

for some scalar h� > 0 and define the Tikhonov functional

Jα,n,�(xn) := ‖A(�)
n xn − yδn‖2

2 + α‖xn‖2
2,� (4.3)

where α > 0 is a regularization parameter. We will solve the minimization problem

xδα,n,� := arg min
xn∈Rn

{Jα,n,�(xn)} .� (4.4)

For comparison, we also define the Tikhonov functional Jα,n obtained by replacing A(�)
n  in 

(4.3) by An, i.e.

Table 1.  Example 5.1: the Phillips test problem. The noise level (5.3) is 1%.

n � h� α ‖xδα,n,� − xn‖2/‖xn‖2 ‖xδα,n,� − xδα,n‖2/‖xn‖2

1000 20 1.14 · 10−1 4.90 2.28 · 10−1 3.64 · 10−4

1000 30 1.13 · 10−1 4.96 2.28 · 10−1 3.60 · 10−4

1000 40 1.12 · 10−1 4.90 2.26 · 10−1 3.60 · 10−4

2000 20 8.15 · 10−2 3.82 1.95 · 10−1 3.73 · 10−4

2000 30 8.13 · 10−2 3.81 1.94 · 10−1 3.69 · 10−4

2000 40 8.06 · 10−2 3.79 1.94 · 10−1 3.67 · 10−4

4000 20 5.78 · 10−2 2.97 1.68 · 10−1 3.25 · 10−4

4000 30 5.77 · 10−2 2.97 1.67 · 10−1 3.24 · 10−4

4000 40 5.75 · 10−2 2.96 1.67 · 10−1 3.23 · 10−4
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Jα,n(xn) := ‖Anxn − yδn‖2
2 + α‖xn‖2

2

and solve the minimization problem

xδα,n := arg min
xn∈Rn

{Jα,n(xn)} .� (4.5)

Let us fix n. We would like to choose the parameter pair {�,α} so that xδα,n,� is an accurate 
approximation of the solution x̂  of minimal norm of the operator equation (1.1).

The proper choice of the parameter pair {�,α} has been studied by Neubauer [20], who 
considers the computation of an approximate solution of an operator equation

Tx = yδ , T : X̃ → Ỹ ,

where X̃  and Ỹ  are Hilbert spaces, by first discretizing and then solving the discretized equa-
tion using Tikhonov regularization,

xh,δ
α,� :=

(
T∗

h,�Th,� + αI
)−1

T∗
h,�y

δ
n .

Here Th,� denotes a discretization and modification of T (see below), and T∗
h,� is the adjoint of 

Th,�. Neubauer [20] requires the operator Th,� to satisfy

‖T − Th,�‖2 � h�,
Th,� := R�Th,
R� → Ipoint-wise as � increases,

where R� is an orthogonal projector onto an �-dimensional subspace W� ⊂ Ỹ  to be specified 
below. The dimension � is finite and typically quite small. Moreover, Th is a discretization of 
T and Th,� is a modification of Th determined by R�.

In our application of the results of Neubauer [20], we let T:  =  An and X̃ := Ỹ := Rn. Thus, 
we set

T := An,

Th,� := A(�)
n , ‖An − A(�)

n ‖2 � h�,

W� := R(A(�)
n ),

R� := P
R(A(�)

n )
,

� (4.6)

where P
R(A(�)

n )
 denotes the orthogonal projector onto the (closure of the) range of A(�)

n . The 

operator Th is not important to us; we only use Th,�. We are in a position to show the following 
results.
Proposition 4.1.  Assume that the Arnoldi process does not break down. With the operators 
defined as above, we have

W� ⊂ R(An),� (4.7)

R(R�A(�)
n ) = W�,� (4.8)

‖R�(An − A(�)
n )‖2 � h�,

‖R�(y − yδn)‖2 � δ,� (4.9)

R� → I point-wise onto R(An),� (4.10)
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where the bound (4.9) is inspired by (2.10).

Proof.  First note that the ranges of the operators (matrices) An and A(�)
n  are closed as they are 

maps between finite-dimensional spaces. It follows from (3.1) and (4.1) that

A(�)
n = AnVn,�V

∗
n,�� (4.11)

and, therefore,

W� = R(A(�)
n ) ⊂ R(An),

i.e. property (4.7) holds. Furthermore,

R(R�A(�)
n ) = R(PR(A(�)

n )
A(�)

n ) = R(A(�)
n ) = W�.

This establishes (4.8). Finally, we have

‖R�(An − A(�)
n )‖2 � ‖R�‖2‖An − A(�)

n ‖2

(4.6)
� h�,

‖R�(y − yδn)‖2 � ‖R�‖2‖y − yδn‖2 � δ.

It remains to show (4.10). According to (4.7), we have R(A(�)
n ) ⊂ R(An). We will show 

that for every yn ∈ R(An), there exists an � � 1 such that yn ∈ R(A(�)
n ). Let xn ∈ Rn and de-

fine yn = Anxn. Note that Vn,�V
∗
n,� is an orthogonal projector onto the space R(Vn,�). Assuming 

that the Arnoldi process does not break down, there is an � � 1 (in the worst case, � = n) such 
that xn ∈ R(Vn,�) and, therefore, Vn,�V

∗
n,�xn = xn. It follows from (4.11) that

yn = Anxn = AnVn,�V
∗
n,�xn = A(�)

n xn,

i.e. yn ∈ R(A(�)
n ) and, consequently, R�yn = yn. This shows the point-wise convergence of the 

projector R� to I as � increases.� □ 

Thus, the requirements of Neubauer [20, assumption 2.3] are fulfilled, and we get the fol-
lowing result from [20, proposition 2.6 and theorem 3.1]:

Proposition 4.2.  Let xn be an approximate solution of (2.1) such that

xn = (A∗
n An)

νvn, vn ∈ N (An)
⊥, ν ∈ [0, 1],� (4.12)

‖vn‖ � ρ ∀n ∈ N,� (4.13)

for some constant ρ � 0 independent of n, and assume that ‖yn − Qnyδ‖2 � δ . Let the regu-
larization parameter α > 0 satisfy

α3
〈(

A(�)
n

(
A(�)

n

)∗
+ αI

)−3
R�yδn , R�yδn

〉
= (E h� + C δ)2,� (4.14)

where the inner product 〈·, ·〉 is defined by (3.2) and the constants C  >  1 and E > 3‖xn‖2 are 
chosen such that

0 � E h� + C δ � ‖R�yδn‖2.� (4.15)
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Then the associated solution of (4.4) satisfies

‖xδα,n,� − xn‖2 = O
(
(δ + h�)2ν/(2ν+1)

)
+ p(l, ν)� (4.16)

with

p(l, ν) =




0 if ν = 0,

γl‖(I − R�)z‖ if ν = 1
2 , A∗

n zn = (A∗
n An)

1/2 vn,
γ2

l ‖vn‖2 if ν = 1,
(4/π)γ2ν

l ‖vn‖ otherwise,

γl = ‖(I − R�)An‖2
2 ‖vn‖2.

Additionally, O has to be replaced by O for ν = 1.

Remark 4.3.  The smoothness condition (4.12) is for infinite-dimensional problems a fair-
ly strong restriction. In finite dimension, we observe that (4.12) implies that xn ∈ N (An)

⊥. 
Therefore, there is a unique vn ∈ N (An)

⊥ such that xn = (A∗
n An)

νvn. However, the uniform 
boundedness of ‖vn‖, see inequality (4.13), generally remains an open problem; see proposi-
tion 4.5 below.

Remark 4.4.  The quantities in (4.16) may depend on n. Generally, h� does not vary much 
as � is kept fixed and n is increased; see section 5 for illustrations. When n is fixed and � in-
creases, h� decreases. We are interested in choosing � large enough so that both terms in the 
right-hand side of (4.16) are sufficiently small; see corollary 4.6 below. Moreover, condition 
(4.15) requires � to be large enough.

Let us now give an example where the uniform boundedness of the source elements vn, 
required in proposition 4.2, can be guaranteed:

Proposition 4.5.  Let the conditions of proposition 4.2 except for condition (4.13) hold. 
Assume that A is self-adjoint, fulfilling (2.5), An = Pn APn, and the solution x ∈ Hk of the 
equation Ax  =  y  fulfills a source condition with ν = 1/2 and source element v ∈ Hk̃. If An 
is injective, then also the solutions of the equations  Anxn = yn, n = 1, 2, . . . , fulfill a source 
condition with ν = 1/2, and the associated source elements vn are uniformly bounded.

Proof.  For ν = 1/2 and a self-adjoint operator A, the source condition transfers to

x = (A∗A)1/2v = Av.� (4.17)

As An is also self-adjoint, finite-dimensional, and injective, xn also fulfills a source condition; 
see remark 4.3,

xn = (A∗
n An)

1/2vn = Anvn

with a unique vn. As A fulfills (2.5), the distance between x and xn can be bounded by

‖x − xn‖X � C′‖x‖l/(k+l)
Hk δk/(k+l)

n ,

see (2.8), and δn = ‖y − yn‖ ↘ 0asn → ∞. Using again (2.8) for solving (4.17) with 
δ̃n = ‖x − xn‖, we obtain with v ∈ Hk̃,

R Ramlau and L Reichel﻿Inverse Problems 35 (2019) 055002



13

‖v − vn‖X � C′‖v‖l/(k̃+l)
Hk̃ δk̃/(k̃+l)

n ,

i.e. vn → v and consequently ‖vn‖ is uniformly bounded as n → ∞.� □ 

The best convergence rates can be achieved for ν = 1:

Corollary 4.6.  Assume that the conditions of proposition 4.2 hold, let ν = 1, and let α̂ 
solve (4.14). Then for � such that

max{h�, ‖(I − R�)A(�)
n ‖2} ∼ δ,

we have

‖xδα̂,n,� − xn‖2 = O
(
δ2/3

)
as δ ↘ 0.

Proof.  The first term on the right-hand side of (4.16) behaves like O(δ2/3) if h� ∼ δ. For 
the second term, we have

‖(I − R�)An‖2 � ‖(I − R�)A(�)
n ‖2 + ‖(I − R�)(An − A(�)

n )‖2

� ‖(I − R�)A(�)
n ‖2 + h�.

Since R� → I  as � → n, we can choose � large enough such that ‖(I − R�)A
(�)
n ‖2 � δ and 

obtain

‖xδα̂,n,� − xn‖2 = O
(
δ2/3

)
+ 2δ2‖v‖2 = O

(
δ2/3

)

as δ ↘ 0.� □ 

With the same argument we achieve optimal convergence rates for each ν ∈ (0, 1) if 
p(l, ν) = O(δ2ν/(2ν+1)), which holds for l small enough.

Now let us further specify the orthogonal projector R�.

Proposition 4.7.  Let A(�)
n = Vn,�+1H�+1,�V

∗
n,� be defined by (4.1) and let 

H�+1,� = U�+1Σ�+1,�W
∗
�  denote a singular value decomposition, i.e. U�+1 ∈ R�+1,�+1 and 

W∗
� ∈ R�,� are orthogonal matrices, whereas Σ�+1,� ∈ R�+1,� is a diagonal matrix with non-

negative diagonal entries arranged in nonincreasing order. In particular, all entries of the last 

row of Σ�+1,� vanish. Then the projector R� : Rn → P
R(A(�)n )

 is given by

R� = Vn,�+1U�+1Iq,�+1U∗
�+1V∗

n,�+1,� (4.18)

where Iq,�+1 ∈ R�+1,�+1 is defined in (4.21) below and q � 0 denotes the rank of the matrix 
H�+1,�.

Proof.  It is well known that

P
R(A(�)n )

= A(�)
n

(
A(�)

n

)†
.
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Moreover,
(

A(�)
n

)†
=

(
Vn,�+1H�+1,�V

∗
n,�

)†
= Vn,�H

†
�+1,�V

∗
n,�+1.� (4.19)

The singular value decomposition of H�+1,� yields

H†
�+1,� = W�Σ

†
�+1,�U

∗
�+1.� (4.20)

Now using (4.19) and (4.20), we obtain

A(�)
n

(
A(�)

n

)†
= Vn,�+1U�+1Σ�+1,�Σ

†
�+1,�U

∗
� V∗

n,�+1.

Finally, when H�+1,� is of rank q � �, we have

Iq,�+1 := Σ�+1,�Σ
†
�+1,� =

(
Iq 0
0 0

)
∈ R�+1,�+1� (4.21)

with Iq being the q × q identity matrix.� □ 

The use of the discrepancy principle requires the solution of equation (4.14). The following 
result is concerned with the evaluation of the left-hand side of this equation.

Proposition 4.8.  Under the assumptions of proposition 4.7, and with the same notation, 
it holds

〈(
A(�)

n

(
A(�)

n

)∗
+ αI

)−3
R�yδn , R�yδn

〉

=
(
R�yδn

)∗
Vn,�+1U�+1

(
Λ�+1 + αI�+1

)−3
U∗

�+1V∗
n,�+1R�yδn

�

(4.22)

=
(
yδn
)∗

Vn,�+1U�+1Iq,�+1
(
Λ�+1 + αI�+1

)−3
Iq,�+1U∗

�+1V∗
n,�+1yδn ,� (4.23)

where Λ�+1 ∈ R�+1,�+1 is a diagonal matrix made up by the squares of the singular values of 
the Hessenberg matrix H�+1,� ∈ R�+1,� and with the last diagonal entry zero.

Proof.  We first show (4.22). Using the notation of proposition 4.7, we obtain
(

A(�)
n

)∗
= Vn,�H

∗
�+1,�V

∗
n,�+1 = Vn,�W�Σ

∗
�+1,�U

∗
�+1V∗

n,�+1,

and taking into account that the matrices U� and W� are orthogonal, and that the matrices Vn,� 
and Vn,�+1 have orthonormal columns, yields

A(�)
n

(
A(�)

n

)∗
= (Vn,�+1U�+1Σ�+1,�W

∗
� V∗

n,�)(Vn,�W�Σ
∗
�+1,�U

∗
�+1V∗

n,�+1)

= Vn,�+1U�+1Σ�+1,�Σ
∗
�+1,�U

∗
�+1V∗

n,�+1

= Vn,�+1U�+1Λ�+1U∗
�+1V∗

n,�+1,

where

Λ�+1 := diag
(
σ2

1,σ2
2, . . . ,σ2

� , 0
)
∈ R�+1,�+1
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and σ1 � σ2 � . . . � σ� � 0 are the singular values of the matrix H�+1,�. We obtain

A(�)
n

(
A(�)

n

)∗
+ αI = Vn,�+1U�+1

(
Λ�+1 + αI�+1

)
U∗

�+1V∗
n,�+1

+α(I − Vn,�+1V∗
n,�+1).

Since Vn,�+1V∗
n,�+1 and I − Vn,�+1V∗

n,�+1 are complementary orthogonal projectors, it follows 
that

(
A(�)

n

(
A(�)

n

)∗
+ αI

)3
= Vn,�+1U�+1

(
Λ�+1 + αI�+1

)3
U∗

�+1V∗
n,�+1

+α3(I − Vn,�+1V∗
n,�+1).

Introduce the vector

zδn := Vn,�+1U�+1

(
Λ�+1 + αI�+1

)−3
U∗

�+1V∗
n,�+1R�yδn .

Then

(
A(�)

n

(
A(�)

n

)∗
+ αI

)3
zδn = R�yδn

and, therefore,

(
A(�)

n

(
A(�)

n

)∗
+ αI

)−3
R�yδn = zδn .

This shows (4.22). Equation (4.23) now follows by substituting (4.18) into (4.22).� □ 

In actual computations, the matrix H�+1,� typically is small; see section 4 for illustrations. 
The singular value decomposition of H�+1,� therefore is quite inexpensive to compute and the 
left-hand side of (4.22) easily can be evaluated.

Corollary 4.9.  Let the conditions in section 2 hold and choose n according to (2.7). Assume 
that 1 � � � n is large enough so that (4.14) has a solution, which we denote by α̂. Consider 
the regularized solution xδα̂,n,�, defined by (4.4) with α = α̂, an element in Xn. Assume that the 
conditions of corollary 4.6 hold. Then

‖x̂ − xδα̂,n,�‖X � C′‖x̂‖l/(k+l)
Hk δk/(k+l) +O(δ2/3) as δ ↘ 0� (4.24)

for a suitable constant C′ > 0 with the parameter l the same as in (2.5).

Proof.  Let xn ∈ Xn  be the minimal-norm solution (2.2) of (2.1) with n chosen according to 
(2.7). Then we obtain by the triangle inequality and (2.8) that

‖x̂ − xδα̂,n,�‖X � ‖x̂ − xn‖X + ‖xn − xδα̂,n,�‖X
� C′‖x̂‖l/(k+l)

Hk δk/(k+l) + ‖xn − xδα̂,n,�‖X .

Now considering xn and xδα̂,n,� elements in Rn, we obtain from (2.4) that

cmin‖x̂ − xδα̂,n,�‖2 � ‖x̂ − xδα̂,n,�‖X � cmax‖x̂ − xδα̂,n,�‖2.
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The inequality (4.24) now follows from corollary 4.6.� □ 

Remark 4.10.  We conclude this section with a comment on why our analysis requires re-
sults by both Natterer [18] and Neubauer [20], because it may appear more natural to choose 
Th,� = A(�)

n  and apply Neubauer’s result, only, without invoking those of Natterer. Our reason 
for using the bounds provided by Natterer is that in order to be able to use the results of Neu-
bauer, without applying those of Natterer, we need a bound for

‖A − A(�)
n ‖,

where we consider A(�)
n  an operator from X  to Y  and ‖ · ‖ denotes the appropriate operator 

norm. For many standard discretizations with suitable basis functions such a bound can be 
determined. However, this is not the case for the Arnoldi approximation A(�)

n , as the Arnoldi 
process depends on the starting vector. Therefore, we need a discrete approximation An of A 
so that we are able to evaluate

‖An − A(�)
n ‖2

numerically. Here A(�)
n  is considered a matrix. The application of the Arnoldi process to An 

gives an approximation of the solution of the discretized equation. Natterer’s bounds are re-
quired to bound the distance to the solution of the infinite-dimensional problem.

5.  Computed examples

We apply the Arnoldi–Tikhonov method to a few ill-posed operator equations and illustrate 
the influence of different discretizations. All computations were carried out using MATLAB 
with about 15 significant decimal digits.

Example 5.1.  Consider the Fredholm integral equation of the first kind discussed by Phil-
lips [23],

∫ 6

−6
κ(s, t)x(t)dt = g(t), −6 � s � 6,� (5.1)

where the solution x(t), kernel κ(s, t), and right-hand side y(s) are given by

x(t) =
{

1 + cos
(
πt
3

)
, |t| < 3,

0, |t| � 3,

κ(s, t) = x(s − t),

y(s) = (6 − |s|)
(

1 +
1
2
cos

(πs
3

))
+

9
2π

sin

(
π|s|

3

)
.

�

(5.2)

We discretize this integral equation by a Nyström method based on the composite trapezoidal 
rule with n nodes. This yields a nonsymmetric matrix An ∈ Rn,n . The vector xn ∈ Rn is a 
discretization of the exact solution (5.2). We define the associated right-hand side yn = Anxn, 
which is assumed to be unknown. An associated contaminated right-hand side, yδn ∈ Rn, which 
is assumed to be known, is obtained by adding a vector en ∈ Rn, with normally distributed 
random entries with mean zero, that models ‘noise’, to y n. The noise vector en is scaled to cor-
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respond to a prescribed noise level

ν =
‖en‖2

‖yn‖2
.� (5.3)

We will use δ = ν‖yn‖2 when determining the regularization parameter α by solving (4.14).
Application of � steps of the Arnoldi process to the matrix An with initial vector 

v1 = yδ/‖yδ‖2 yields the decomposition (3.1), as well as the low-rank approximation A(�)
n  of 

An defined by (4.1). Table 1 displays the approximation error

h� = ‖An − A(�)
n ‖2;� (5.4)

see (4.2).
We determine the regularization parameter α by solving (4.14) with E = 3‖xn‖2 and 

C  =  1, as suggested by proposition 4.2, and then solve the regularized problem (4.4) with the 
low-rank matrix A(�)

n  for xδα,n,�. The inequality (4.15) holds for all examples in this section. 
Table 1 shows the relative error ‖xδα,n,� − xn‖2/‖xn‖2. This error depends both on the error in 
yδn and on the approximation error (5.4). For fixed n, the approximation error (5.4) is seen to 
decrease as � increases in table 1.

Let xδα,n denote the solution of the regularized problem (4.5) with the matrix An. We 
are interested in how much the replacement of An by the low-rank approximation A(�)

n  af-
fects the quality of the computed solution. Therefore, we tabulate the normalized dif-
ference ‖xδα,n,� − xδα,n‖2/‖xn‖2. Table  1 shows this difference to be much smaller than 
‖xδα,n,� − xn‖2/‖xn‖2. Hence, the use of A(�)

n  instead of An, with a fixed value of α, does not 
affect the quality of the computed solution significantly.

Table 1 shows results for different problem sizes, n ∈ {1000, 2000, 4000}, and noise level 
1%. The quality of the computed solution xδα,n,� is seen not to be very sensitive to the problem 
size n or to the number of steps � carried out with the Arnoldi process. For n fixed, table 1 
shows h� to decrease as � increases. Also the relative error ‖xδα,n,� − xn‖2/‖xn‖2 can be seen to 
decrease slowly as � increases. Moreover, the error decreases when n increases and � is kept 
fixed.

The quality of the computed solution is, of course, sensitive to the noise level. This is illus-
trated by table 2, which shows results for noise level 0.1%. The α-values of table 2 are smaller 
than of table 1, as can be expected. Moreover, the relative errors ‖xδα,n,� − xn‖2/‖xn‖ reported 
in table 2 are smaller than the corresponding errors of table 1.

We would like the �th singular value of A(�)
n , i.e. of H�+1,�, to be much smaller than the first 

one (the largest singular value). Then A(�)
n  captures all essential properties of An. To illustrate 

that this is the case, we display in table 3 the largest and smallest singular values, σ(�)
1  and σ(�)

� , 
respectively, of the matrix H�+1,� in the definition (4.1) of A(�)

n . The table shows singular val-
ues for the matrices H�+1,� determined for table 1. The size of the largest singular value is seen 
to be independent of �, while the smallest singular value decreases slowly as � and n increase.

In the computations reported in tables 1–3, we assumed that the noise level δ is known 
exactly. In the next couple of tables, we illustrate the situation when only an upper bound for 
the noise level is known. To investigate the sensitivity of the computed solution to the error in 
δ, we repeat some of the computations of tables 1 and 2 with the value of δ increased by 50% 
and 100% in equation (4.14), but without changing the noise vector en.
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Table 4 is analogous to table 1 and displays relative errors for the situation when the com-
putations are carried out with the same data as for table 1, but the noise level is assumed to 
be 50% larger. As can be expected, the errors ‖xδα,n,� − xn‖2/‖xn‖2 are larger than the corre
sponding errors in table 1. However, they are still small enough so that the computed solutions 
xδα,n,� furnish meaningful approximations of xn. The relative differences ‖xδα,n,� − xδα,n‖2/‖xn‖2 
are somewhat smaller than the corresponding differences in table 1, which shows that the 
error introduced by using the Arnoldi process is negigible also when the noise level is overes-
timated. Table 5 differs from table 4 only in that the true noise level is 0.1%. Since the noise 
level is smaller in table 2 than in table 1, a 50% overestimation of the noise level only has a 
small effect on the errors ‖xδα,n,� − xn‖2/‖xn‖2 reported in table 5.

Tables 6 and 7 are analogous to (parts of) tables 4 and 5, respectively, and display the 
error ‖xδα,n,� − xn‖2/‖xn‖2 for the situation when the noise level has been overestimated by 
100%. As expected, the errors reported in the tables 6 and 7 are larger than those reported in 
tables 4 and 5, respectively, but not by much. We conclude that the solution method gives use-
ful computed solutions also in the situation when the noise level in the data yδn is significantly 
overestimated.� □ 

Table 2.  Example 5.1: the Phillips test problem. The noise level (5.3) is 0.1%.

n � h� α ‖xδα,n,� − xn‖2/‖xn‖2 ‖xδα,n,� − xδα,n‖2/‖xn‖2

1000 20 1.14 · 10−1 4.44 2.13 · 10−1 4.20 · 10−4

1000 30 1.13 · 10−1 4.42 2.12 · 10−1 4.16 · 10−4

1000 40 1.12 · 10−1 4.36 2.11 · 10−1 4.14 · 10−4

2000 20 8.15 · 10−2 3.27 1.77 · 10−1 4.28 · 10−4

2000 30 8.13 · 10−2 3.26 1.77 · 10−1 4.22 · 10−4

2000 40 8.06 · 10−2 3.24 1.76 · 10−1 4.20 · 10−4

4000 20 5.78 · 10−2 2.42 1.48 · 10−1 3.69 · 10−4

4000 30 5.77 · 10−2 2.41 1.47 · 10−1 3.67 · 10−4

4000 40 5.75 · 10−2 2.41 1.47 · 10−1 3.66 · 10−4

Table 3.  Example 5.1: the Phillips test problem. Largest and smallest singular values 

σ
(�)
1 � . . . � σ

(�)
�  of the matrices H�+1,� in the definition (4.1) of the approximations 

A(�)
n  of An used in table 1.

n � σ
(�)
1 σ

(�)
�

1000 20 5.80 2.44 · 10−4

1000 30 5.80 9.36 · 10−5

1000 40 5.80 3.37 · 10−.5

2000 20 5.80 2.26 · 10−4

2000 30 5.80 6.44 · 10−5

2000 40 5.80 2.11 · 10−5

4000 20 5.80 1.99 · 10−4

4000 30 5.80 3.38 · 10−5

4000 40 5.80 1.54 · 10−5
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Example 5.2.  This example also considers the integral equation (5.1), but uses a different 
discretization. The discretization is computed with the MATLAB function phillips from Regu-
larization Tools by Hansen [12]. This function uses a Galerkin method with n orthonormal 
box functions as test and trial functions and yields a symmetric indefinite matrix An ∈ Rn×n. 
The vector xn ∈ Rn is a scaled discretization of the exact solution (5.2). Since the matrix An 
is symmetric, the Arnoldi process (Algorithm 1) simplifies to the Lanczos process. Table 8 
is analogous to table 1 and shows results for the noise level (5.3) 1%. Results for noise level 
0.1% are displayed in table 9, which is analogous to table 2. Due to the different scaling of 
matrices and right-hand sides in this and the previous examples, the quantities h� and α will 
differ. However, the relative errors tabulated in the last two columns are comparable, and it is 
clear that the Galerkin method of the present example furnishes more accurate approximations 
of xn than the Nyström discretization of Example 5.1. The exact solution xn and the computed 
approximation xδα,n,� for n  =  2000, � = 30, and ν = 1 · 10−2, are shown in figure 1.� □ 

Table 4.  Example 5.1: this table  is analogous to table  1 with the noise level (5.3) 
overestimated by 50%.

n � ‖xδα,n,� − xn‖2/‖xn‖2 ‖xδα,n,� − xδα,n‖2/‖xn‖2

1000 20 2.36 · 10−1 3.26 · 10−4

1000 30 2.36 · 10−1 3.23 · 10−4

1000 40 2.34 · 10−1 3.23 · 10−4

4000 20 1.78 · 10−1 3.01 · 10−4

4000 30 1.78 · 10−1 3.00 · 10−4

4000 40 1.77 · 10−1 2.99 · 10−4

Table 5.  Example 5.1: this table  is analogous to table  2 with the noise level (5.3) 
overestimated by 50%.

n � ‖xδα,n,� − xn‖2/‖xn‖2 ‖xδα,n,� − xδα,n‖2/‖xn‖2

1000 20 2.14 · 10−1 4.16 · 10−4

1000 30 2.13 · 10−1 4.12 · 10−4

1000 40 2.12 · 10−1 4.10 · 10−4

4000 20 1.49 · 10−1 3.66 · 10−4

4000 30 1.49 · 10−1 3.65 · 10−4

4000 40 1.48 · 10−1 3.64 · 10−4

Table 6.  Example 5.1: this table  is analogous to table  1 with the noise level (5.3) 
overestimated by 100%.

n � ‖xδα,n,� − xn‖2/‖xn‖2 ‖xδα,n,� − xδα,n‖2/‖xn‖2

1000 20 2.45 · 10−1 2.91 · 10−4

1000 30 2.44 · 10−1 2.88 · 10−4

1000 40 2.42 · 10−1 2.88 · 10−4
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Example 5.3.  We turn to the Fredholm integral equation  of the first kind discussed by 
Baart [1],

∫ π

0
κ(s, t)x(t)dt = g(s), 0 � s �

π

2
,

where κ(s, t) = exp(s cos(t)) and g(s) = 2 sinh(s)/s. The solution is given by x(t) = sin(t). 
We discretize this integral equation by a Galerkin method using n orthonormal box functions 
as test and trial functions. The discretization is computed with the MATLAB function baart 
from [12] and gives a nonsymmetric matrix An ∈ Rn,n  and a vector xn ∈ Rn that is a scaled 
discretization of the exact solution. Similarly as in example 5.1, we define the ‘unknown’ 
exact right-hand side by yn = Anxn, and obtain the associated contaminated right-hand side 

Table 7.  Example 5.1: this table  is analogous to table  2 with the noise level (5.3) 
overestimated by 100%.

n � ‖xδα,n,� − xn‖2/‖xn‖2 ‖xδα,n,� − xδα,n‖2/‖xn‖2

4000 20 1.50 · 10−1 3.64 · 10−4

4000 30 1.50 · 10−1 3.63 · 10−4

4000 40 1.49 · 10−1 3.62 · 10−4

Table 8.  Example 5.2: the Phillips test problem. The noise level (5.3) is 1%.

n � h� α
‖xδα,n,�−xn‖2

‖xn‖2

‖xδα,n,�−xδα,n‖2

‖xn‖2

1000 20 1.76 · 10−2 1.48 · 100 1.10 · 10−1 1.39 · 10−14

1000 30 5.40 · 10−3 9.92 · 10−1 8.65 · 10−2 1.87 · 10−14

1000 40 2.38 · 10−3 7.94 · 10−1 8.58 · 10−2 2.29 · 10−14

2000 20 1.76 · 10−2 1.49 · 100 1.10 · 10−1 1.76 · 10−14

2000 30 5.39 · 10−3 9.98 · 10−1 8.70 · 10−2 2.50 · 10−14

2000 40 2.21 · 10−3 8.63 · 10−1 7.99 · 10−2 2.81 · 10−14

4000 20 1.80 · 10−2 1.50 · 100 1.11 · 10−1 2.60 · 10−14

4000 30 5.80 · 10−3 1.02 · 100 8.83 · 10−2 3.73 · 10−14

4000 40 2.57 · 10−3 8.83 · 10−1 8.11 · 10−2 4.38 · 10−14

Table 9.  Example 5.2: the Phillips test problem. The noise level (5.3) is 0.1%.

n � h� α
‖xδα,n,�−xn‖2

‖xn‖2

‖xδα,n,�−xδα,n‖2

‖xn‖2

1000 20 1.76 · 10−2 8.73 · 10−1 8.02 · 10−2 2.16 · 10−14

1000 30 5.40 · 10−3 3.55 · 10−1 4.73 · 10−2 5.05 · 10−14

1000 40 2.40 · 10−3 2.21 · 10−1 3.66 · 10−2 8.52 · 10−14

2000 20 1.75 · 10−2 8.71 · 10−1 8.01 · 10−2 2.91 · 10−14

2000 30 5.39 · 10−3 3.55 · 10−1 4.73 · 10−2 6.63 · 10−14

2000 40 2.22 · 10−3 2.14 · 10−1 3.60 · 10−2 1.09 · 10−13

4000 20 1.76 · 10−2 8.73 · 10−1 8.03 · 10−2 4.45 · 10−14

4000 30 5.78 · 10−3 3.73 · 10−1 4.86 · 10−2 9.99 · 10−14

4000 40 2.57 · 10−3 2.31 · 10−1 3.74 · 10−2 1.63 · 10−13
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yδn ∈ Rn, which is assumed to be known, by adding a vector en ∈ Rn with normally distrib-
uted entries with zero mean to y n. The vector en is scaled to correspond to a prescribed noise 
level. A few computed results are displayed in table 10. The table shows the relative error 
‖xδα,n,� − xn‖2/‖xn‖2 to be independent of n for n large, and to decrease as the noise level (5.3) 
decreases.

The singular values of the matrices An, when ordered in decreasing order, decrease rapidly 
with increasing index. It therefore is not meaningful to choose � larger than 10. The largest 
singular value of all the matrices H11,10 generated for table 10 is 3.23 and the smallest one for 
all matrices is about 1 · 10−13.

We remark that since the singular values of A decrease exponentially with their index num-
ber, the condition (2.5) is not valid for any finite l. Nevertheless, this example illustrates that 
the approximation method described in this paper also can be applied in this situation.� □ 

-6 -4 -2 0 2 4 6
-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 1.  Example 5.2: exact solution xn (dashed curve) and computed solution xδα,n,� 
(continuous curve) for n  =  2000, � = 30, and noise level ν = 1%.

Table 10.  Example 5.3: the Baart test problem for � = 10, three sizes n, and two noise 
levels ν .

n h� ν α
‖xδα,n,�−xn‖2

‖xn‖2

‖xδα,n,�−xδα,n‖2

‖xn‖2

1000 3.01 · 10−4 1 · 10−2 5.25 · 10−3 3.30 · 10−1 9.73 · 10−5

2000 4.70 · 10−4 1 · 10−2 5.28 · 10−3 3.30 · 10−1 1.55 · 10−4

4000 3.16 · 10−4 1 · 10−2 5.17 · 10−3 3.29 · 10−1 1.28 · 10−4

1000 3.01 · 10−4 1 · 10−3 1.98 · 10−3 1.86 · 10−1 3.23 · 10−4

2000 4.70 · 10−4 1 · 10−3 2.27 · 10−3 1.90 · 10−1 4.49 · 10−4

4000 3.16 · 10−4 1 · 10−3 2.00 · 10−3 1.86 · 10−1 4.36 · 10−4
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6.  Conclusion and extensions

The paper presents an analysis of the influence of discretization and truncation errors on the 
computed approximate solution. These errors are caused by replacing an operator A first by 
a large matrix An, which in turn is approximated by a matrix A(�)

n  of rank at most � � n. The 
choice of the regularization parameter in Tikhonov regularization is discussed. Computed 
examples illustrate the theory.

The matrix A(�)
n  is determined by the application of � steps of the Arnoldi process to the 

large matrix An. Other approaches to determine low-rank approximations are available, such 
as methods based on Golub–Kahan bidiagonalization or block Golub–Kahan bidiagonaliza-
tion; see, e.g. Bentbib et al [2] and Gazzola et al [8]. The analyses for these methods differ 
from the one of this paper and are presently being pursued.
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