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Abstract
In this paper we propose a new joint model for the reconstruction of tomography 
data under limited angle sampling regimes. In many applications of tomography, 
e.g. electron microscopy and mammography, physical limitations on acquisition 
lead to regions of data which cannot be sampled. Depending on the severity 
of the restriction, reconstructions can contain severe, characteristic, artefacts. 
Our model aims to address these artefacts by inpainting the missing data 
simultaneously with the reconstruction. Numerically, this problem naturally 
evolves to require the minimisation of a non-convex and non-smooth functional 
so we review recent work in this topic and extend results to fit an alternating 
(block) descent framework. We perform numerical experiments on two synthetic 
datasets and one electron microscopy dataset. Our results show consistently that 
the joint inpainting and reconstruction framework can recover cleaner and more 
accurate structural information than the current state of the art methods.

Keywords: tomography, limited angle tomography, inpainting, anisotropy, 
variational, nonconvex, optimization
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1. Introduction

1.1. Problem formulation

Many applications in materials science and medical imaging rely on the x-ray transform as a 
mathematical model for performing 3D volume reconstructions of a sample from 2D data. We 
shall refer to any modality using the x-ray transform forward model as x-ray tomography. This 
encompasses a huge range of applications including positron emission tomography (PET) 
in front-line medical imaging [1], transmission electron microscopy (TEM) in materials or 
biological research [2–4], and x-ray computed tomography (CT) which enjoys success across 
many fields [5, 6].

The limited angle problem is common in x-ray tomography, for instance in TEM [7] and 
mammography [8], and is caused by a particular limited data scenario. Algebraically, we 
search for approximate solutions to the inverse problem

Given data b find optimal pair (u, v) such that Sv = b,Ru = v

where R is the x-ray transform to be defined in (2.1), S  represents the limited angle sub-
sampling pattern described in figure 1. Typically, limited angle problems can occur due to 
having a large sample or because equipment does not allow the sample to be fully rotated. 
Mathematically, microlocal analysis can be used to categorise the limited angle problem and 
characterise artefacts that occur. Viewed through the Fourier slice theorem, it becomes clear 
that the Fourier coefficients of u are partitioned into those ‘visible’ in b and those contained 
in a ‘missing wedge’ [9]. These coefficients are referred to respectively as the visible and 
invisible singularities of u. The limited angle problem then is both a denoising and inpainting 
inverse problem, on the visible and invisible singularities respectively. The artefacts caused 
by the missing wedge can be explicitly characterised [10, 11] and examples of such streak 
artefacts and blurred boundaries can be seen in figures 2 and 3.

Whilst the techniques developed here can apply to any limited angle tomography problem, 
we focus on the application of TEM for specific examples.

1.2. Context and proposed model

Traditional methods for x-ray tomography reconstruction find approximate solutions to 
SRu = b, constraining Ru = v and only using prior knowledge of u or the sinogram, v. There 
are three main methods which fit into this category:

 •  Filtered back projection (FBP) is a linear inversion method with smoothing on the sino-
gram, v, to account for noise [12–14].

 •  The simultaneous iterative reconstruction technique (SIRT) can be thought of as a pre-
conditioned gradient descent on the function ‖SRu − b‖2

2 [3, 15–17]. Regularisation is 
then typically implemented by an early-stopping technique.

 •  Variational methods where prior knowledge is encoded in regularisation functionals have 
now been applied in this field for nearly a decade. In particular, the current state of the 
art in electron tomography is total variation (TV) regularisation [2, 18, 19] where u is 
encouraged to have a piecewise constant intensity. This will be introduced formally in 
section 2.

FBP and SIRT are commonly used for their speed although variational methods like TV have 
quickly gained popularity as they enable prior physical knowledge to be explicitly incor-
porated in reconstructions. This added prior knowledge tends to stabilise the reconstruction 
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process and figure 2 gives examples where TV can vastly outperform FBP and SIRT when 
either the noise level is large or the angular range small. However, figure 3 further shows 
the limitations of TV when high noise and limited angles are combined. The only difference 

Figure 1. Diagrammatic representation of the acquisition of 2D x-ray transform data , 
the sinogram, in both full range and limited angle acquisition. Note that measurement 
at 180◦ is exactly a reflection of that at 0◦. This symmetry allows us to consider a 180◦ 
range of the sinogram as a full sample. In the limited angle setting we can only rotate 
the sample a small amount clockwise and anti-clockwise which results in missing data 
in the middle of the sinogram.

Figure 2. Demonstration of TV reconstruction in comparison to FBP and SIRT. The 
top row shows reconstructions from noise-less limited angle data and the bottom shows 
reconstructions from noisy limited view data (far left images). Comparing the columns, 
we immediately see that FBP and SIRT are much more prone to angular artefacts than 
TV. In both cases we notice that the TV reconstructions better show the broad structure 
of the phantom.

R Tovey et alInverse Problems 35 (2019) 024004
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between the Shepp–Logan phantom data shown in figures 2 and 3 is that the former is clean 
data, in the image of the forward operator, whilst the latter has Gaussian white noise added. 
We see that as soon as there is a combined denoising/inpainting reconstruction problem, the 
TV prior on u becomes insufficient to recover the structure of the sample.

Recently, these traditional methods have received a revival through machine learning meth-
ods, see for instance [20, 21]. In both of these examples the main artefact reduction is a 
learned denoising step which only enforces prior knowledge on u.

The most common method that has been used to reconstruct pairs (u, v) is to solve each 
inverse problem sequentially. Typically, we can express the pipeline for such methods as:

v = optimal inpainted sinogram given b

u = optimal reconstruction given v.

This has seen much success in heavy metal artefact reduction [22, 23] where a regularisa-
tion functional for the inpainting problem may be constructed from dictionary learning [24], 
fractional order TV [23], and Euler’s Elastica [25]. Euler’s Elastica has also been used in the 
limited angle problem [26] along with more customised interpolation methods [27]. These 
approaches allow us to use prior knowledge on the sinogram to calculate v and then spatial 
prior knowledge to calculate u from v; at no point is the choice of v influenced by our spatial 
prior. A full joint approach allows us to go beyond this and use all of our prior knowledge to 
inform the choice of both u and v. If our prior knowledge is consistent with the true data then 
this extra utilisation of our prior must have the potential to improve the recovery of both u 
and v. To build a model for this framework we shall encode our In this paper, therefore, we 
propose a full joint approach which allows us to use all of our prior knowledge at once. To 
realise this idea we encode prior knowledge and consistency terms into a single energy func-
tional such that an optimal pair of reconstructions will minimise this joint functional, which 
we shall write as:

E(u, v) = α1d1(Ru, v) + α2d2(SRu, b) + α3d3(Sv, b) + α4r1(u) + α5r2(v)
 (1.1)

where αi � 0 are weighting parameters, di are appropriate distance functionals and ri are 
regularisation functionals which encode our prior knowledge. Note that choice of d2 and d3 
are dictated by the data noise model. In what follows, r1 is chosen to be the total variation.

Our choice for r2, the sinogram regularisation, is based on theoretical and heuristic obser-
vations. Thirion [28] has shown that discontinuities in u correspond to sharp edges in the sino-
gram. In figure 3 we also see that blurred reconstructions correspond to loss of structure in the 

Figure 3. Examples when TV reconstructions cannot recover the global structures of 
samples. When there is a large missing wedge (2/3 of data unseen) and noise on the 
projections then reconstructions exhibit characteristic blurring in the vertical direction. 
This can also be seen in the extrapolated region of the sinograms as a loss of structure.

R Tovey et alInverse Problems 35 (2019) 024004
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sinogram. Therefore, r2 will be chosen to detect sharp features in the given data and preserve 
these through the inpainting region. The exact form of r2 will be formalised in section 3.

A typical advantage of joint models is that they generalise previous ones. For instance, 
if we let α2,α4 → ∞ then we recover the TV reconstruction model. Alternatively, if we let 
α3,α5 → ∞ then we recover a method which performs the inpainting and then the reconstruc-
tion sequentially, as in [23, 25, 26]. Recent work [29] has shown that such a joint approach 
can be advantageous in similar situations but closest to our approach is that of [30] where r1 
and r2 were chosen to encode wavelet sparsity in both u and v. We shall demonstrate, as seen 
in figure 4, that the flexibility of our joint model, (1.1), can allow for a better adaptive fitting 
to the data.

1.3. Overview and contributions

The main contribution of this work is to provide a framework for building models of the form 
described in (1.1) and provide new proofs for a numerical scheme for minimising these func-
tionals. This numerical scheme is valid for a very large class of non-smooth and non-convex 
functionals ri and thus could be used in many other applications.

Section 2 first outlines the necessary concepts and notation needed to formalise the state-
ment of our specific joint model in section 3. It will become apparent that the main numer-
ical requirements of this work will require minimising a functional which is neither convex 
or smooth. Section 4 will start by reviewing recent work from Ochs et al [31] and we then 
provide alternative concise and self-contained proofs. Our main contribution here is to extend 
the existing results to an alternating (block) descent scenario. Finally, we present numerical 
results including two synthetic phantoms and experimental electron microscopy data where 
the limited angle situation occurs naturally.

2. Preliminaries

2.1. The x-ray transform

The principal forward model for x-ray tomography is provided by the x-ray transform which 
can be defined for any bounded domain, Ω ⊂ Rn, by

R : L1(Ω,R) → L1(Sn−1 ×Rn,R) such that Ru(θ, y) =
∫

x=y+tθ,t∈R

u(x)dt

 (2.1)
where Sn−1 = {s ∈ Rn s.t. |s| = 1}. In this work, for simplicity, we will only be using n = 2 
although the case n = 3 is completely analogous.

2.2. Total variation regularisation

Total variation (TV) regularisation is extremely common across many fields of image process-
ing [32–34]. The definition of the (isotropic) TV semi-norm on domains Ω ⊂ Rn is stated as

g ∈ L1(Ω,R) =⇒ TV(g) = sup

{∫
〈g(x), div(ϕ)(x)〉 dx

s.t. ϕ ∈ C∞
c (Ω,Rn), |ϕ(x)|2 � 1 for all x

}
.

 

(2.2)

The intuition behind this is that when g ∈ W1,1(Ω,R) then we have exactly

R Tovey et alInverse Problems 35 (2019) 024004



6

TV(g) = ‖∇g‖2,1 =

∫
|∇g(x)|2dx.

From this point forward we shall write the ‖·‖2,1 representation where |∇g| is to be understood 
as a measure if necessary. We shall denote the space of bounded variation as

BV(Ω,R) = {g ∈ L1 s.t. TV(g) < ∞}.

One property that we shall use about the space of bounded variation is BV ⊂ L2 ⊂ L1 which 

holds whenever Ω is compact by the Poincaré inequality: 
∥∥∥g −

∫
g/∫ 1

∥∥∥
2
� TV(g).

The most common way to enforce this prior in reconstruction or inpainting problems is 
generalised Tikhonov regularisation, which gives us the basic reconstruction method [2, 18].

u = argmin
u�0

1
2
‖SRu − b‖2

2 + λTV(u) for some λ � 0. (2.3)

The parameter λ is a regularisation parameter, which allows to enforce more or less regularity, 
depending on the quality of the data b.

2.3. Directional total variation regularisation

For our sinogram regularisation functional we shall use a directionally weighted TV penalty, 
motivated by the TV diffusion model developed by Joachim Weickert [35] for various imaging 
techniques including denoising, inpainting and compression. Such an approach has already 
shown great ability for enhancing edges in noisy or blurred images, and preserves line struc-
tures across inpainting regions [36–38]. The heuristic for our regularisation on the sinogram 
was described in figure 3 and we shall encode it in an anisotropic TV penalty which shall be 
written as

DTV(v) =
∫

|A(x)∇v(x)|dx = ‖A∇v‖2,1 for some anisotropic A : R2 → R2×2.

The power of such a weighted extension of TV is that once a line is detected, either known 
beforehand or detected adaptively, we can embed this in A and enhance or sharpen that line 
structure in the final result. The general form that we choose for A is

A(x) = c1(x)e1(x)e1(x)T + c2(x)e2(x)e2(x)T

such that ei : R2 → R2, |ei(x)| = 1, 〈e1(x), e2(x)〉 = 0
 (2.4)

i.e.

DTV(v) =
∫ √

c2
1| 〈e1,∇v〉 |2 + c2

2| 〈e2,∇v〉 |2dx.

Examples of this are presented in figure 5. Note that the choice c1 = c2 recovers the traditional 
TV regulariser but for |c1| � c2 we allow for much larger (sparse) gradients in the direction of 
e1. This allows for large jumps in the direction of e1 whilst maintaining flatness in the direction 
of e2. In order to generate these parameters we follow the construction of Weickert [35]. Given 
a noisy image, d , we can construct the structure tensor:

(∇dρ∇dT
ρ)σ(x) = λ1(x)e1(x)e1(x)T + λ2(x)e2(x)e2(x)T such that λ1(x) � λ2(x) � 0

where

R Tovey et alInverse Problems 35 (2019) 024004
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dρ(x) = [d � exp(−|·|2/2ρ2)](x) =
∫

exp(−|y−x|2/2ρ2)d(y) etc.

denotes convolution with the heat kernel. This eigenvalue decomposition is typically very 
informative in constructing A. If we define

∆(x) = λ1(x)− λ2(x) is coherence Σ(x) = λ1(x) + λ2(x) is energy

then the eigenvectors give the alignment of edges and ∆,Σ characterise the local behaviour, 
as in figure 6. In particular, we simplify the model to

Ad(x) := c1(x|∆,Σ)e1(x)e1(x)T + c2(x|∆,Σ)e2(x)e2(x)T (2.5)

where the only parameters left to choose are ci. Typical examples of include

c1 =
1√

1 +Σ2
, c2 = 1

c1 = ε, c2 = ε+ exp
(
−1/∆2

)
for some ε > 0.

The key idea here is that c1 � c2 near edges and c1 = c2 on flat regions. In practice d  will 
also be an optimisation parameter and so we shall require a regularity result on our choice of 
d �→ Ad, now characterised uniquely by our choice of ci.

Theorem 2.1. If

 (i)  ci are 2k times continuously differentiable in ∆ and Σ, k � 1
 (ii)  c1(x|0,Σ) = c2(x|0,Σ) for all x and Σ � 0
 (iii)  ∂2j−1

∆ c1(x|0,Σ) = ∂2j−1
∆ c2(x|0,Σ) = 0 for all x and Σ � 0, j = 1 . . . , k

Then Ad is C2k−1 with respect to d  for all ρ > 0,σ � 0.

Figure 4. Demonstration of the improvement which can be achieved by using a model 
as in (1.1). Left hand images show state of the art reconstructions using total variational 
regularisation (α1 = α3 = α5 = 0). This reconstruction clearly shows the characteristic 
blurring artefacts at the top and bottom. In our proposed joint reconstruction (right 
hand) we can minimise these effects.

R Tovey et alInverse Problems 35 (2019) 024004
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Remark 2.2. 

 •  Property (ii) is necessary for Ad to be well defined and continuous for all fixed d
 •  If we can write ci = ci(∆

2,Σ) then property (iii) holds trivially

The proof of this theorem is contained in appendix A.

3. The joint model

Now that all of the notation and concepts have been defined we can formalise the statement of 
our particular joint model of the form in (1.1):

 •  The forward operator, R, is the x-ray transform from (2.1)
 •  The desired reconstructed sample, u ∈ BV(Ω,R) on some domain Ω
 •  The noisy sub-sampled data, b ∈ L1(Ω′,R) on some Ω′ � S1 ×R�0. We extend such 

that b|Ω′c = 0 for notational convenience.
 •  The full reconstructed sinogram, v ∈ L1(S1 ×R�0,R)

We also define S = SΩ′ to be the indicator function on Ω′. The joint model that we thus pro-
pose is

Figure 5. Examples comparing TV with directional TV for inpainting and denoising. 
Both examples have the same edge structure and so parameters in (2.4) are the same 
in both. DTV uses c2 = 1 and c1 as the indicator (0 or 1) shown in the bottom left plot, 
TV is the case c1 = c2 = 1. Left block: top left image is inpainting input where the 
dark square shows the inpainting region. The structure of c1 allows DTV (bottom right) 
to connect lines over arbitrary distances, whereas TV inpainting (top right) will fail to 
connect the lines if the horizontal distance is greater than the vertical separation of the 
edges. Right block: top left image is denoising input. DTV has two advantages. Firstly, 
the structure of c1 recovers a much straighter line than that in the TV reconstruction. 
Secondly, TV penalises jumps equally in each direction and so the contrast is reduced, 
DTV is able to penalise noise oscillations independently from edge discontinuities 
which allows us to maintain much higher contrast.

R Tovey et alInverse Problems 35 (2019) 024004



9

(u, v) = argmin
u�0

E(u, v) = argmin
u�0

1
2
‖Ru − v‖2

α1
+

α2

2
‖SRu − b‖2

2

+
α3

2
‖Sv − b‖2

2 + β1TV(u) + β2DTVRu(v)
 

(3.1)

where

DTVRu(v) = ‖ARu∇v‖2,1

and αi,βi > 0 are weighting parameters, ARu as defined in (2.5). α1 is embedded in the norm 
as it is a spatially varying weight, taking different values inside and outside of Ω′. We note 
that the norms involving b are determined by the noise model of the acquisition process, in 
this case Gaussian noise. The final metric pairing Ru and v was free to be chosen to promote 
any structural similarity between the two quantities. We have chosen the squared L2 norm for 
simplicity although if some structure is known to be important then there is a wide choice of 
specialised functions from which to choose (e.g. [1]).

The choice of regularisation functionals reflects prior assumptions on the expected type 
of sample; all of the examples shown later will follow these assumptions. The isotropic TV 
penalty is chosen as u is expected to be piece-wise constant. This will reduce oscillations 
from u and favour ‘stair-case’ like changes of intensity over smooth ones. The assumptions 
of our regularisation on v must also be derived from expected properties of u. What is known 
from [28], and can be seen in figure 3, is that discontinuities of u along curves in the spatial 
domain, say γ , generate a so called ‘dual curve’ in the sinogram. Ru will also have an edge, 
although possibly not a discontinuity, along this dual curve. Thus, perpendicular to the dual 
curve v should have sharp features and parallel to the dual curve intensity should vary slowly. 
The assumption of our regularisation is that if a dual curve is present in the visible component 
of the data then it should correspond to some γ  in the spatial domain. The extrapolation of 
this dual curve must behave like the boundary of a level-set of u, i.e. preserve the sharp edge 
and slow varying intensities in v. The main influence of this regularisation is in the inpainting 
region and so any artefacts it introduces should also only effect edges corresponding to these 
invisible singularities, including streaking artefacts. Another bias that is present is an assump-
tion that dual curves are themselves smooth. In the inpainting region, this will encourage dual 
curves with low curvature thus invisible singularities are likely to follow near-circular arcs 
in the spatial domain. Final parameter choices, such as αi,βi and ci, are not necessary at this 
point and will be chosen in section 5.1.

The immediate question to ask is whether this model is well posed. For a non-convex func-
tion we typically cannot expect numerically to find global minimisers but the following result 
shows we can expect some convergence to local minima. We present the following result 
which justifies looking for minima of this functional.

Theorem 3.1. If

 •  ci are bounded away from 0
 •  ρ > 0
 •  Ad is differentiable in d

then sub-level sets of E  are weakly compact in L2(Ω,R)× L2(R2,R) and E  is weakly lower 
semi-continuous. i.e. for all (un, vn) ∈ L2(Ω,R)× L2(R2,R):

E(un, vn) uniformly bounded implies a subsequence converges weakly

R Tovey et alInverse Problems 35 (2019) 024004
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lim inf E(un, vn) � E(u, v) whenever un ⇀ u, vn ⇀ v.

The proof of this theorem is contained in appendix B. This theorem justifies numerical min-
imisation of E  because it tells us that all descending sequences (E(un, vn) � E(un−1, vn−1)) 
have a convergent subsequence and any limit point must minimise E  over the original sequence.

4. Numerical solution

To address the issue of convergence we shall first generalise our functional and prove the 
result in the general setting. Functionals will be of the form E : X × Y → R where X  and Y  
are Banach spaces and E  accepts the decomposition

E(x, y) = f (x, y) + g(J(x, y))

such that:

Sub-level sets of E are weakly compact (4.1)

f : X × Y → R is jointly convex in (x, y) and bounded below (4.2)

g : Z → R is a semi-norm on Banach space Z, i.e. for all t ∈ R, z, z1, z2 ∈ Z

g(z) � 0, g(tz) = |t|g(z) and g(z1 + z2) � g(z1) + g(z2)
 

(4.3)

J : X × Y → Z is C1 and for all K � X × Y , ∃Lx, Ly < ∞ such that ∀(x, y) ∈ K

g(J(x + dx, y)− J(x, y)−∇xJ(x, y)dx) � Lx ‖dx‖2
X

 
(4.4)

g(J(x, y + dy)− J(x, y)−∇yJ(x, y)dy) � Ly ‖dy‖2
Y . (4.5)

Note if g is a norm then Lx can be chosen to be the standard Lipschitz factor of ∇xJ. If J is 
twice Frèchet-differentiable then these constants must be finite. In our case:

f (x, y) =
1
2
‖Rx − y‖2

α1
+

α2

2
‖SRx − b‖2

+
α3

2
‖Sy − b‖2

+ β1TV(x) +
{

0 x � 0
∞ else

g(z) = β2 ‖z‖2,1

J(x, y) = ARx∇y =⇒ τx ∼ β2
∥∥∇2A·

∥∥ ‖R‖TV(y), τy = 0.

Table 1. Parameter choices for numerical experiments. Each algorithm was run for 300 
iterations.

α1 α2 α3 β1 β2 β3 ρ σ

Concentric rings phantom 1
22 1Ω′c 1 1 × 10−1 3 × 10−5 3 × 103 1010 1 8

Shepp–Logan phantom 1
42 1Ω′c 1 3 × 10−1 3 × 10−5 3 × 102 1010 1 8

Experimental dataset  
(both sampling ratios)

1
22 1Ω′c 1 3 × 102 1 × 10−5 3 × 101 106 1 0

R Tovey et alInverse Problems 35 (2019) 024004
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Finiteness of 
∥∥∇2A

∥∥ and weak compactness of sub-level sets are given by theorems 2.1 and 
3.1 respectively. The alternating descent algorithm is stated in algorithm 1. Classical alternat-
ing proximal descent would take xn+1 = argmin E(x, yn) + τx ‖x − xn‖2

2 but because of the 
complexity of ARu each sub-problem would have the same complexity as the full problem, 
making it computationally infeasible. By linearising Ad we overcome this problem as both 
sub-problems are convex, for which there are many standard solvers such as [39, 40]. This 
second approach is similar to that of the ProxDescent algorithm [31, 41]. We extend this 
algorithm to cover alternating descent and achieve equivalent convergence guarantees. Using 
algorithm 1, our statement of convergence is the following theorem.

Algorithm 1. 

Input: Any x0 ∈ X , τx, τy � 0.
   n ← 0
   while not converged do
     n ← n + 1
       xn = argmin

x∈X
f (x, yn−1) + τx ‖x − xn−1‖2

X
                         +g(J(xn−1, yn−1) +∇xJ(xn−1, yn−1)(x − xn−1)) (4.6)
       yn = argmin

y∈Y
f (xn, y) + τy ‖y − yn−1‖2

Y
                          +g(J(xn, yn−1) +∇yJ(xn, yn−1)(y − yn−1)) (4.7)
   end while
Ouput: (xn, yn)

Theorem 4.1. Convergence of alternating minimisation: if E  satisfies (4.1)–(4.5) and 
(xn, yn) are a sequence generated by algorithm 1 then

 •  E(xn+1, yn+1) � E(xn, yn) for each n.
 •  A subsequence of (xn, yn) must converge weakly in X × Y .
 •  If {(xn, yn) s.t. n = 1, . . .} is contained in a finite dimensional space then every limit point 

of (xn, yn) must be a critical point (as will be defined in definition 4.4) of E  in both the 
direction of x and y.

This result is the parallel of lemma 10, theorem 18 and corollary 21 in [31] without the 
alternating or block descent setting. There is some overlap in the analysis for the two settings 
although we present an independent proof which is more direct and we feel gives more intui-
tion for our more restricted class of functionals. The rest of this section is now dedicated to 
the proof of this theorem.

For notational convenience we shall compress notation such that:

fn,m = f (xn, ym), Jn,m = J(xn, ym), En,m = E(xn, ym) etc.

4.1. Sketch proof

The proof of theorem 4.1 will be a consequence of two lemmas.

 •  In lemma 4.3 we show for τx, τy (algorithm 1) sufficiently large, the sequence En,n is 
monotonically decreasing and sequences ‖xn − xn−1‖X , ‖yn − yn−1‖Y  converge to 0. This 
follows by a relatively standard sufficient decrease argument as seen in [31, 42, 43].

 •  In lemma 4.6 we first define a critical point for functions which are non-convex and 
non-differentiable. If a subsequence of our iterates converges in norm then the limit must 
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be a critical point in each of the two axes. Note that it is very difficult to expect more than 
this in such a general setting, for instance example 4.2 shows a uniformly convex energy 
which shows this to be sharp. The common technique for overcoming this is assuming 
differentiability in the terms including both x and y [42, 44, 45]. These previous results 
and algorithms are not available to us as we allow non-convex terms which are also non-
differentiable.

Example 4.2. Define E(x, y) = max(x, y) + x2 + y2 for x, y ∈ R . This is clearly joint-
ly convex in (x, y) and thus a simple case of functions considered in theorem 4.1. Suppose 
(x0, y0) = (0, 0) then

x1 = argmin E(x, y0) + τx(x − x0)
2 = 0

y1 = argmin E(x1, y) + τy(y − y0)
2 = 0.

Hence (0, 0) is a limit point of the algorithm but it is not a critical point, E  is uniformly convex 
and so it has only one critical point, (−1/2,−1/2).

4.2. Sufficient decrease lemma

In the following we prove the monotone decrease property of our energy functional between 
iterations.

Lemma 4.3. If for each n

τx � Lx + τX , τy � Ly + τY

for some τX , τY � 0 then
∞∑

τX ‖xn − xn−1‖2
X + τY ‖yn − yn−1‖2

Y � E(x0, y0)

and

E(xn+1, yn+1) � E(xn, yn) for all n.

Proof. Note by equations (4.6) and (4.7) (definition of our sequence) we have

fn+1,n + g(Jn,n +∇xJn,n(xn+1 − xn)) + τx ‖xn+1 − xn‖2
X � En,n (4.8)

fn+1,n+1 + g(Jn+1,n +∇yJn+1,n(yn+1 − yn)) + τy ‖yn+1 − yn‖2
Y � En+1,n.

 (4.9)

Further, by application of the triangle inequality for g and the mean value theorem we have

g(Jn+1,n)−g(Jn,n +∇xJn,n(xn+1 − xn)) + τX ‖xn+1 − xn‖2
X

� g(Jn+1,n − Jn,n −∇xJn,n(xn+1 − xn)) + τX ‖xn+1 − xn‖2
X

= g([∇xJ(ξ)−∇xJn,n](xn+1 − xn)) + τX ‖xn+1 − xn‖2
X

� LipX,g(∇xJ(·, yn)) ‖xn+1 − xn‖2
X + τX ‖xn+1 − xn‖2

X

� τx ‖xn+1 − xn‖2
X .

 
(4.10)
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By equivalent argument,

g(Jn+1,n+1)− g(Jn,n+1 +∇yJn+1,n(yn+1 − yn)) + τY ‖yn+1 − yn‖2
Y � τy ‖yn+1 − yn‖2

Y . (4.11)

Summing equations (4.8)–(4.11) gives

En+1,n+1 + τX ‖xn+1 − xn‖2
X + τY ‖yn+1 − yn‖2

Y � En,n.

This immediately gives the monotone decrease property of En,n. If we also sum this over n 
then we achieve the final statement of the theorem:∞∑

n=1

τX ‖xn+1 − xn‖2
X + τY ‖yn+1 − yn‖2

Y � E0,0 − limEn,n � E0,0 □

4.3. Convergence to critical points

First we follow the work by Drusvyatskiy et al [46] we shall define criticality in terms of the 
slope of a function.

Definition 4.4. We shall say that x∗ is a critical point of F : X → R if

|∂F(x∗)| = 0

where we define the slope of F  at x∗ to be

|∂F(x∗)| = lim sup
dx→0

max(0, F(x∗)− F(x∗ + dx))
‖dx‖

.

The first point to note is that this definition generalises the concept of a first order critical 
point for both smooth functions and convex functions (in terms of the convex sub-differential). 
In particular

F ∈ C1 =⇒|∂F(x∗)| = max

(
0, sup

‖dx‖=1
−〈∇F(x∗), dx〉

)
= ‖∇F(x∗)‖

Hence |∂F(x∗)| = 0 ⇐⇒ ‖∇F(x∗)‖ = 0 ⇐⇒ ∇F(x∗) = 0

F convex, hence x∗ ∈ argmin F ⇐⇒ F(x∗) � F(x∗ + dx) for all dx

Hence |∂F(x∗)| = 0 ⇐⇒ ∀dx, 0 �
F(x∗)− F(x∗ + dx)

‖dx‖
⇐⇒ x∗ ∈ argmin F.

For a differentiable function we cannot tell whether a critical point is a local minimum, 
maximum or saddle point. In general, this is also true for definition 4.4, however, at points of 
non-differentiability there is a bias towards local minima. This can be seen in the following 
example.

Example 4.5. Consider F(x) = −‖x‖

|∂F(0)| = lim sup
dx→0

max

(
0,

0 + ‖0 + dx‖
‖dx‖

)
= 1

Hence, 0 is not a critical point of F . This bias is due to the lim sup in the definition which 
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detects the strictly negative directional derivatives. This does not affect smooth functions as 
directional derivatives must vanish continuously to 0 about a critical point.

Some more examples are shown in figure 7. Now we shall show that our iterative sequence 
converges to a critical point in this sense.

Lemma 4.6. If (xn, yn) are as given by algorithm 1 and X, Y are finite dimensional spaces 
then every limit point of (xn, yn), e.g. (x∗, y∗), is a critical point of E  in each coordinate direc-
tion. i.e.

|∂xE(x∗, y∗)| = |∂yE(x∗, y∗)| = 0.

Remark 4.7. 

 •  Finite dimensionality of X  and Y  accounts for what is referred to as ‘assumption 3’ in 
[31] and is some minimal condition which ensures that the limit is also a stationary point 
of our iteration (equations (4.6) and (4.7)).

 •  The condition for finite dimensionality, as we shall see, does not directly relate to the non-
convexity. The difficulty of showing convergence to critical points in infinite dimensions 
is common across both convex [39] and non-convex [31, 42] optimisation.

Proof. First we recall that, in finite dimensional spaces, convex functions are continuous on 
the relative interior of their domain [47]. Also note that by our choice of τx in lemma 4.6, for 
all x, x′, y we have

|g(J(x, y) +∇xJ(x, y)(x′ − x))− g(J(x′, y))|
� |g([J(x, y)− J(x′, y)]−∇xJ(x, y)(x′ − x))|
= |g(∇xJ(ξ, y)(x′ − x)−∇xJ(x, y)(x′ − x))|
� τx ‖ξ − x‖X ‖x′ − x‖X

� τx ‖x′ − x‖2
X

Figure 6. Surface representing a characteristic image, d , to demonstrate the behaviour 
of Σ and ∆. Away from edges (A) we have Σ ≈ ∆ ≈ 0. On simple edges (B) we have 
Σ ≈ ∆ � 0 and, finally, at corners (C) we have Σ � ∆.

R Tovey et alInverse Problems 35 (2019) 024004



15

where existence of such ξ is given by the mean value theorem. Hence, for all x we have

E(xn+1, yn) = fn+1,n + g(Jn+1,n)

� fn+1,n + g(Jn,n +∇xJn,n(xn+1 − xn)) + τx ‖xn+1 − xn‖2
X

� f (x, yn) + g(Jn,n +∇xJn,n(x − xn)) + τx ‖x − xn‖2
X

� f (x, yn) + g(J(x, yn)) + 2τx ‖x − xn‖2
X

= E(x, yn) + 2τx ‖x − xn‖2
X

where the first and third inequality are due to the condition shown above and the second is 
due to the definition of xn+1 in (4.6). Finally, by continuity of f , J and g we can take limits 
on both sides of this inequality:

=⇒ E(x∗, y∗) � E(x, y∗) + 2τx ‖x − x∗‖2
X for all x. (4.12)

This completes the proof for x∗ as

|∂xE(x∗, y∗)| = lim sup
x→x∗

max

(
0,

E(x∗, y∗)− E(x, y∗)
‖x∗ − x‖X

)
� lim sup 2τx ‖x − x∗‖X = 0.

The proof for y∗ follows by symmetry. □ 

Figure 7. Examples of 1D functions where 0 is/is not a critical point by definition 4.4. 
If a function is piece-wise linear then 0 is a critical point iff each directional derivative is 
non-negative. If the function can be approximated on an interval of x > 0 to first order 
terms by F(x) = cx1+ε then criticality can be characterised sharply. If c � 0 then 0 is 
always a critical point. If c < 0 then 0 is a critical point iff ε > 0, however, 0 is never 
a local minimum. (a) Examples of critical points and examples of non-critical points.
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Remark 4.8. 

 •  The important line in this proof, and where we need finite dimensionality, is being 
able to pass to the limit for (4.12). In the general case we can only expect to have 
(xn, yn) ⇀ (x∗, y∗), typically guaranteed by choice of regularisation functionals as in our 
theorem 3.1. In this reduced setting the left hand limit of (4.12) still remains valid,

E(x∗, y∗) � lim inf E(xn+1, yn) by weak lower semi-continuity.

  However, on the right hand side we require:

limE(x, yn) + 2τx ‖x − xn‖2
X � E(x, y∗) + 2τx ‖x − x∗‖2

X

  In particular, we already require ‖x − xn‖X to be weakly upper semi-continuous. 
Topologically, this is the statement that weak and norm convergence are equivalent which 
will not be the case in most practical (infinite dimensional) examples.

 •  The properties we derive for (x∗, y∗) are actually slightly stronger than that of definition 
4.4 which only depends on an infinitesimal ball about (x∗, y∗). However, (4.12) gives us a 
quantification for the more global optimality of this point. This is seen in figure 8.

4.4. Proof of theorem 4.1

Proof. Fix arbitrary (x0, y0) ∈ X × Y  and τX , τY � 0. Let (xn, yn) be defined as in algorithm 
1. By lemma 4.3 we know that {(xn, yn) s.t. n ∈ N} is contained in a sub-level set of E  which 
in turn must be weakly compact by (4.1). The assumption of lemma 4.6 is that we are in a fi-
nite dimensional space and so weak compactness is equivalent to norm compactness, i.e. some 
subsequence of (xn, yn) converges in norm. Also by lemma 4.6 we know that the limit point of 
this sequence must be an appropriate critical point. □ 

5. Results

For numerical results we present two synthetic examples and one experimental dataset from 
Transmission Electron Tomography. The two synthetic examples are discretised at a resolu-
tion of 200 × 200 then simulated using the x-ray transform with a parallel beam geometry 
sampled at 1◦ intervals over a range of 60◦ resulting in a full sinogram of size 287 × 180 
and sub-sampled data at 287 × 60. Gaussian white noise (standard deviation 5% maximum 
signal) is then added to give the data. The experimental dataset was acquired with an annular 
dark field (parallel beam) Scanning TEM modality from which we have 46 projections spaced 
uniformly in 3◦ intervals over a range of 135◦. Because of the geometry of the acquisition, we 
can treat the original 3D dataset as a stack of 2D and thus extract one of these slices as our 
example. This 2D dataset is then sub-sampled to 29 projections over 87◦, reducing the size 
from 173 × 45 to 173 × 29. This results in a reconstruction with u of size 120 × 120 and v of 
size 173 × 180. A more detailed description of the acquisition and sample properties of the 
experimental dataset can be found in [48]. The code, and data, for all examples is available7 
under the Creative Commons Attribution (CC BY) license.

7 https://github.com/robtovey/2018_Directional_Inpainting_for_Limited_Angle

R Tovey et alInverse Problems 35 (2019) 024004

https://github.com/robtovey/2018_Directional_Inpainting_for_Limited_Angle


17

5.1. Numerical details

All numerics are implemented in MATLAB 2016b. The sub-problem for u is solved with a 
PDHG algorithm [39] while the sub-problem for v is solved using the MOSEK solver via 
CVX [40, 49], the step size τ  is adaptively calculated. The initial point of our algorithm is 
always chosen to be a good TV reconstruction, i.e.

u0 = argmin
u�0

1
2
‖SRu − b‖2

2 + λTV(u), v0 = Ru0.

For clarity, we shall restate our full model with all of the parameters it includes. We seek to 
minimise the functional (3.1):

E(u, v) =
1
2
‖Ru − v‖2

α1
+

α2

2
‖SRu − b‖2

2 +
α3

2
‖Sv − b‖2

2 + β1TV(u) + β2 ‖ARu∇v‖2,1

Ad(x) = c1(x|λ1 − λ2,λ1 + λ2)e1(x)e1(x)T + c2(x|λ1 − λ2,λ1 + λ2)e2(x)e2(x)T

where (∇dρ∇dT
ρ)σ = λ1e1eT

1 + λ2e2eT
2 is a pointwise eigenvalue decomposition

c1(x|∆,Σ) = 10−6 +
tanh(Σ(x))
1 + β3∆(x)2 , c2(x|∆,Σ) = 10−6 + tanh(Σ(x)).

We chose these particular ci according to two simple heuristics. If Σ is large (steep gradients) 
then it is likely a region with edges and so the regularisation should be largest but still bounded 
above. If ∆ = 0+ then there is a small or blurred ‘edge’ present and so we want to encourage 
it to become a sharp jump, i.e. ∂∆c1 < 0. Theorem 2.1 tells us that choosing ci as functions 
of ∆2 will guarantee accordance with our later convergence results; this leads to our natural 
choice above. The number of iterations for algorithm 1 was chosen to be 200 and 100 for the 

Figure 8. Theorem 3.1 tells us that (x∗, y∗) is a local critical point but does not qualify 
the globality of the limit point. Equation (4.12) further allows us to quantify the idea 
that if a lower energy critical point exists then it must lie far from (x∗, y∗). In particular, 
it must lie outside of the shaded cone given by the supporting quadratic.
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synthetic and experimental datasets, respectively. To simplify the process of choosing values 
for the remaining hyper-parameters we made several observations:

 (i)  The choice of αi and βi appeared to be quite insensitive about the optimum. It is clear 
within 2–3 iterations whether values are of the correct order of magnitude. After this, 
values were only tuned coarsely. For example, α3 and βi are optimal within a factor of 
10±1/2.

 (ii)  We can chose α2 = 1 without any loss of generality. In which case, in general, β1 should 
the same order of magnitude as when performing the TV reconstruction to get u0, v0.

 (iii)  α2 pairs u to the given data and α1 pairs u to the inpainted data, v. As such, α1 is spatially 
varying but should be something like a distance to the non-inpainting region. We chose 
the binary metric so that u is paired to v uniformly on the inpainting region and not at all 
outside.

 (iv)  DTV specific parameters (β2,β3, ρ,σ) can be chosen outside of the main reconstruction. 
These were chosen by solving the toy problem:

argmin
1
2
‖v − v0‖2

2 + β2 ‖Av0∇v‖2,1

  which is a lot faster to solve. ρ > 0 is required for the analysis and so this was fixed at 
1. σ is a length-scale parameter which indicates the separation between distinct edges. 
β3 relies on the normalisation of the data. As can be seen in table 1, for the two synthetic 
examples, with same discretisation and scaling, these values are also consistent. The only 
value which changes is β2, as expected, which weights how valid the DTV prior is for 
each dataset.

It is unclear whether a gridsearch may provide better results although, due to the number of 
parameters involved, this would definitely take a lot longer and mask some interpretability of 
the parameters. A further comparison of different choices of the main parameters can be found 
in the supplementary material.

5.2. Canonical synthetic dataset

This example shows two concentric rings. This is the canonical example for our model 
because the exact sinogram is perfectly radially symmetric which should trivialise the direc-
tional inpainting procedure, even with noise present. As can clearly be seen in figure 9, the 
TV reconstruction is poor in the missing wedge direction which can be seen as a blurring 
out of the sinogram. By enforcing better structure in the sinogram, our proposed joint model 
is capable of extrapolating these local structures from the given data domain to recover the 
global structure and gives an accurate reconstruction.

5.3. Non-trivial synthetic dataset

This example shows the modified Shepp–Logan phantom which is built up as a sum of ellipses. 
This example has a much more complex geometry although the sinogram still has a clear 
geometry. In figure 10 we see that the largest scale feature, the shape of the largest ellipse, is 
recovered in our proposed reconstruction with minimal loss of contrast in the interior. One 
artefact we have not been able to remove is the two rays extending from the top of the recon-
structed sample. Looking more closely we found that it was due to a small misalignment of 
the edge at the bottom of the sinogram as it crosses between the data to the inpainting region. 
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Numerically, this happens because of the convolutions which take place inside the directional 
TV regularisation functional. Having a non-zero blurring is essential for regularity of the regu-
larisation (theorem 2.1) but the effect of this is that it does not heavily penalise misalignment 
on such a small scale. This means that at the interface between the fixed data-term there is a 
slight kink, the line is continuous but not C1. The effect of this on the reconstruction is the two 
lines which extend from the sample at this point. Looking at quantitative measures, the PSNR 
value rises from 17.33 to 17.36 whereas the SSIM decreases from 0.76 to 0.62, from TV to 
the proposed reconstruction, respectively. These measures are inconclusive and the authors 
feel that they fail to balance the improvement to global geometry verses more local artefacts 
in the reconstructions.

Figure 9. Canonical synthetic example. Top row shows the reconstructions, u, while 
the bottom row shows the reconstructed sinogram, v.

Figure 10. Non-trivial synthetic example of the modified Shepp–Logan phantom. 
Top row shows the reconstructions, u, while the bottom row shows the reconstructed 
sinogram, v. We regain the large-scale geometry of the shape without losing much of 
the interior features.
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5.4. Experimental dataset

The sample is a silver bipyramidal crystal placed on a planar surface, and the challenges 
of this dataset are shown in figure 11. We immediately see that the wide angle projections 
have large artefacts which produces a very low signal to noise ratio. Another issue present 
is that there is mass seen in some of the projections which cannot be represented within the 
reconstruction volume. Both of these issues violate the simple x-ray model that is used. Exact 
modelling would require estimation of parameters which are not available a priori and so the 
preferred acquisition is one which automatically minimises these modelling errors. Another 
artefact is that over time each surface becomes coated with carbon. This is a necessary conse-
quence of the sample preparation and this coating is known to occur during the microscopy. 
The result of modelling errors and time dependent noise is to prefer an acquisition with lim-
ited angular range and earliest acquired projections. Because of this, in numerical experiments 
we compare both TV and our proposed reconstruction using only 3/4 of the available data, 29 
projections over an 87◦ interval, with a bias towards earlier projections. The artefacts due 
to the out-of-view mass are unavoidable but we can perform some further pre-processing to 
minimise the effect. In particular, if we shrink the field of view of the detector then the ‘heavi-
est’ part of the data will be the particle of interest and the model violations will be relatively 
small, increasing the signal to noise ratio. This can be seen as the sharp horizontal cut-off in 
the pre-processed sinograms seen on the right of figure 11. The effect of this on the reconstruc-
tion is going to be that there is a thin ring of mass placed at the edge of the (shrunken) detector 

Figure 11. Raw data for transmission electron microscopy example. Projections at 
large angles, e.g. −68◦, show the presence of the sample holder which violates the 
x-ray modelling assumption that outside of the region of interest is vacuum. If the 
violation is too extreme then this can cause strong artefacts in reconstructions and so 
the common action is to discard such data. The plane surface also violates this model 
but is relatively weak at low angles and so will cause weaker artefacts. A source of 
noise in this acquisition is that over time the surface becomes coated with carbon. This 
is first visible as a thin film at −2◦ and progressively gets thicker through the remaining 
projections. At 34◦ we see a bump of carbon appear on the top right edge. After pre-
processing, as shown top right artificially sub-sample to compare TV with our proposed 
reconstruction method.
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view which will be clearly identifiable in the reconstruction. As a ground truth approximation 
we shall use a TV reconstruction on the full data for the location of the particle alongside prior 
knowledge of this sample for more precise geometrical features. We also note that the particle 
should be very homogeneous so this is another example where we expect the TV reconstruc-
tion to be very good.

The sample is a single crystal of silver and so we know it must have very uniform intensity 
and we are interested in locating the sharp facets which bound the crystal [48]. In figure 12 we 
immediately see that the combination of homogeneity and sharp edges is better reconstructed 
in our proposed reconstruction. Because we expect the reconstruction to be constant on the 
background and the particle, thresholding the reconstruction allows us to easily locate the 
boundaries and estimate interior angles of the particle. Figure 13 shows such images where 
the threshold is chosen to be the approximate midpoint of these two levels. We see that the 
proposed reconstruction consistently has less jagged edges and the left hand corner is better 
curved, as is consistent with our knowledge of the sample. Looking back at the full colour 
images we see that this is a result of lack of sharp decay at the boundary and homogeneity 
inside the sample. Looking for location error we see the biggest error in both TV and joint 

Figure 12. Reconstructions from a slice of the experimental data. We have chosen 
the slice half-way down through the projections shown in figure 11 to coincide with 
one of the rounded corners. The arc artefact was an anticipated consequence due to 
the out-of-view mass, the pre-processing has simply reduced the intensity. Proposed 
reconstructions consistently show better homogeneity inside the particle and sharper 
boundaries. The missing angles direction is the bottom-left to top-right diagonal where 
we see most error in each reconstruction, in particular, the blurring of the top right 
corner of the particle is a limited angle artefact.
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reconstruction is on the bottom-left edge where both reconstructions pull the line inwards. 
However, looking particularly at points (40, 80) and (20, 60), we see that this was less severe 
in the proposed method. The other missing wedge artefact is in the top right corner which has 
been extended in both reconstructions although it is thinner in the proposed reconstruction. 
This indicates that it was better able to continue the straight edges either side of the corner 
and the blurring in the missing wedge direction is more localised than in the TV reconstruc-
tion. Overall, we see see that the proposed reconstruction method is much more robust to an 
decrease in angular sampling range.

6. Conclusions and outlook

In this paper we have presented a novel method for tomographic reconstructions in a limited 
angle scenario along with a numerical algorithm with convergence guarantees. We have also 
tested our approach on synthetic and experimental data and shown consistent improvement 
over alternative reconstruction methods. Even when the x-ray transform model is noticeably 

Figure 13. Comparison between each reconstruction after thresholding. The 
geometrical properties of interest are that each edge should be linear, the left hand 
corner is rounded and the remaining corners are not. The particle of interest is 
homogeneous so thresholding the images should emphasise this in a way which is very 
unsympathetic to blurred edges. Again, the top right corner of each particle in the sub-
sampled reconstructions coincides with the exacerbated missing wedge direction and so 
we expect each reconstruction to make some error here.
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violated, as with our experimental data, we still better recover boundaries of the reconstructed 
sample.

There are three main directions which could be explored in future. Firstly, we think there 
is great potential to apply our framework to other applications, such as in tomographic imag-
ing with occlusions and heavy metal artefacts where the inpainting region is much smaller 
[22, 23]. Secondly, we would like to find an alternative numerical algorithm with either faster 
practical convergence or one which is more capable of avoiding local minima in this non-
convex landscape. Finally, we would like to explore the potential for an alternative regularisa-
tion functional on the sinogram which is better able to treat visible and invisible singularities, 
denoising and inpainting problems, independently. At the moment, the TV prior alone can 
reconstruct visible singularities well however, introducing a sinogram regulariser currently 
improves on the invisible region at the expensive of damaging the visible. Overall, we feel that 
this presents the natural progression for the current work although it remains unclear how to 
regularise these invisible singularities.
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Appendix A. Theorem 2.1

Theorem. If

 (i)  ci are 2k times continuously differentiable in ∆ and Σ, k � 1
 (ii)  c1(x|0,Σ) = c2(x|0,Σ) for all x and Σ � 0

 (iii)  ∂2j−1
∆ c1(x|0,Σ) = ∂2j−1

∆ c2(x|0,Σ) = 0 for all x and Σ � 0, j = 1 . . . , k

Then Ad is C2k−1 with respect to d  for all ρ > 0,σ � 0.

In this proof we will drop the x argument from ci for conciseness of notation. Define

Md = (∇dρ∇dT
ρ)σ .

Note that convolutions are bounded linear maps and ∇dρ ∈ L2 by Young’s inequality hence 
M : L1(R2,R) → L∞(R2, Sym2) is well defined and differentiable w.r.t. d . Hence, it suffices 
to show that A is differentiable w.r.t. M where
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Md = λ1e1eT
1 + λ2e2eT

2 ,λ1 � λ2 =⇒ A = c1(∆,Σ)e1eT
1 + c2(∆,Σ)e2eT

2

where ∆ = λ1 − λ2,Σ = λ1 + λ2. Note that this is not a trivial statement, we can envisage 
very simple cases in which the (ordered) eigenvalue decomposition is not even continuous. 
For instance

M(t) =
(

1 − t 0
0 t

)
=⇒ Σ(t) = 1,∆(t) = |1 − 2t|, e1 =

{
(1, 0)T t <1/2
(0, 1)T t >1/2

.

Hence we can see that despite having M ∈ C∞ we cannot even guarantee that the decomposi-
tion is continuous and so cannot employ any chain rule to say that A is smooth.

The structure of this proof breaks into four parts:

 (i)  If c1(0,Σ) = c2(0,Σ) then A is well defined
 (ii)  If ci ∈ C2 for some open neighbourhood of point x such that λ1(x) > λ2(x) then A is 

differentiable w.r.t. M on an open neighbourhood of x
 (iii)  If ∂∆c1(0,Σ) = ∂∆c2(0,Σ) = 0 at a point, x, where λ1(x) = λ2(x) then A is differenti-

able on an open neighbourhood of x
 (iv)  If ∂2j−1

∆ c1(0,Σ) = ∂2j−1
∆ c2(0,Σ) = 0 at a point x where λ1(x) = λ2(x) and for all 

j = 1 . . . , k then A is C2k−1 on an open neighbourhood of x

Proof. Proof of part i: note that when λ1 = λ2 the choice of ei is non-unique subject to 
e1eT

1 + e2eT
2 = id and so we get

A = c1(0,Σ)id + (c2(0,Σ)− c1(0,Σ))e2eT
2 .

Hence A is well defined if and only if c1(0,Σ) = c2(0,Σ) for all Σ � 0.
As we are decomposing 2 × 2 matrices it will simplify the proof to write explicit forms for 

the values under consideration.

M =

(
M11 M12
M12 M22

)
=⇒ λi =

M11 + M22 ±
√

(M11 − M22)2 + 4M2
12

2

Σ = M11 + M22, ∆ =
√
(M11 − M22)2 + 4M2

12

∆ �= 0 =⇒ e1 =
(2M12,∆− M11 + M22)

T
√
(∆− M11 + M22)2 + 4M2

12

=
(∆+ M11 − M22, 2M12)

T
√
(∆ + M11 − M22)2 + 4M2

12

,

e2 =

(
0 −1
1 0

)
e1.

We give two equations for e1 to account for the case when we get (0,0)T

0 .
Proof of part ii: note that Σ is always smooth and ∆ is smooth on the set {∆ > 0}
Case M12(x) �= 0: now both equations of e1 are valid (and equal) and the denominators 

non-zero on a neighbourhood. Hence, we can apply the standard chain rule and product rule 
to conclude.
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Case M12(x) = 0: in this case M(x) is diagonal but as ∆ = |M11 − M22| > 0 we know that 
one of our formulae for e1 must be valid with non-vanishing denominator in a neighbourhood 
and so we can conclude as in the first case.

Proof of part iii: given the Neumann condition on ci we shall express ci locally by Taylor’s 
theorem.

ci(∆,Σ) = ci(0,Σ) + O(∆2) = c1(0,Σ) + O(∆2).

Now we consider a perturbation:

M =

(
m 0
0 m

)
, ε =

(
ε11 ε12
ε12 ε22

)

=⇒ A(M + ε)− A(M) = (c1(0, 2m + ε11 + ε22)− c1(0, 2m))id + O(∆2)

∆2 = (ε11 − ε22)
2 + 4ε2

12 = O(‖ε‖2
) =⇒ O(∆2) � O(‖ε‖2

)

=⇒ A(M + ε)− A(M)

‖ε‖
=

∂Σc1(0, 2m)tr(ε)
‖ε‖

+ O(‖ε‖).

In particular, A is differentiable w.r.t. M at x.

Proof of part iv: the proof of this follows exactly as the previous part,

ci(∆,Σ) =
k−1∑

0

∆2j

j!
∂2j
∆ci(0,Σ) + O(∆2k)

where the remainder term is sufficiently smooth. Hence ci is at least 2k − 1 times differenti-
able w.r.t. M. □ 

Appendix B. Theorem 3.1

Theorem. If

 •  ci are bounded away from 0
 •  ρ > 0
 •  Ad is differentiable in d

then sub-level sets of E  are weakly compact in L2(Ω,R)× L2(R2,R) and E  is weakly lower 
semi-continuous. i.e. for all (un, vn) ∈ L2(Ω,R)× L2(R2,R):

E(un, vn) uniformly bounded implies a subsequence converges weakly

lim inf E(un, vn) � E(u, v) whenever un ⇀ u, vn ⇀ v

Proof. If ci are bounded away from 0 then in particular we have ARun � 1 so 
DTVun(vn) = ‖ARun∇vn‖ � ‖∇vn‖ = TV(vn). Hence,
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E(un, vn) uniformly bounded =⇒

‖SΩ′c(Run − vn)‖2
2 + ‖SΩ′Run − b‖2

2 + ‖SΩ′vn − b‖2
2

+ TV(un) + TV(vn) uniformly bounded

=⇒
∥∥A(u, v)T − b

∥∥2
2 + TV ((u, v)) uniformly bounded

for some linear A and constant b. Thus we are in a very classical setting where weak compact-
ness can be shown in both the ‖(u, v)‖2 norm and ‖(u, v)‖1 + TV((u, v)) [50].

We now proceed to the second claim, that E  is weakly lower semi-continuous. Note that 
all of the convex terms in our energy are lower semi-continuous by classical arguments so it 
remains to show that the non-convex term is too. i.e.

(un, vn) ⇀ (u, v) ?
=⇒ lim inf ‖ARun∇vn‖2,1 � ‖ARu∇v‖2,1 .

We shall first present a lemma from distribution theory.

Lemma B.1. If Ω is compact, ϕ ∈ C∞(Ω,R) and wn
L p

⇀ w then

wn � ϕ → w � ϕ convergence in Ck(Ω,R) for all k < ∞.

Proof. Recall that wn ⇀ w =⇒ ‖wn‖p � W  for some W < ∞. By Hölder’s inequality:

|wn � ϕ(x)− w � ϕ(y)| �
∫

|wn(z)||ϕ(x − z)− ϕ(y − z)| �p,Ω |x − y|W ‖ϕ′‖∞

|wn � ϕ(x)| �p,Ω W ‖ϕ‖∞

i.e. {wn s.t. n ∈ N} is uniformly bounded and uniformly (Lipschitz) continuous.

wn ⇀ w =⇒ wn � ϕ(x)− w � ϕ(x) = 〈wn − w,ϕ(x − ·)〉 → 0 for every x.

Hence, we also know wn � ϕ converges point-wise to a unique continuous function. Suppose 
‖wnk � ϕ− w � ϕ‖∞ � ε > 0 for some ε and sub-sequence nk → ∞. By the Arzela–Ascoli 
theorem some further subsequence must converge uniformly to the point-wise limit, w � ϕ, 
which gives us the required contradiction. Hence, wn � ϕ → w � ϕ in L∞ = C0. The general 
theorem follows by induction. □ 

This lemma gives us two direct results.

ρ > 0 =⇒ (Run)ρ → (Ru)ρ in L∞

{(Run)ρ} ∪ {(Ru)ρ} compact, Ad ∈ C1(d) =⇒ ARun → ARu in ‖·‖2,∞ .

Hence, whenever w ∈ W1,1 we have

‖ARun∇w‖ � ‖ARu∇w‖ − ‖(ARun − ARu)∇w‖
� ‖ARu∇w‖ − ‖ARun − ARu‖2,∞ TV(w).

By density of W1,1 in the space of bounded variation, we know the same holds for w = vn. We 
also know TV(vn) is uniformly bounded thus
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lim inf ‖ARun∇vn‖ = lim inf ‖ARu∇vn‖ .

Hence, for all ‖ϕ‖2,∞ � 1 we have

〈v,∇ · (ARuϕ)〉 = lim inf
n

〈vn,∇ · (ARuϕ)〉 � lim inf ‖ARu∇vn‖ � lim inf ‖ARun∇vn‖

as required. □
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