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Abstract
We investigate the variational principle for the gravitational field in the pres-
ence of thin shells of completely unconstrained signature (generic shells). Such
variational formulations have been given before for shells of timelike and null
signatures separately, but so far no unified treatment exists. We identify the shell
equation as the natural boundary condition associated with a broken extremal
problem along a hypersurface where the metric tensor is allowed to be non-
differentiable. Since the second order nature of the Einstein–Hilbert action
makes the boundary value problem associated with the variational formulation
ill-defined, regularization schemes need to be introduced. We investigate sev-
eral such regularization schemes and prove their equivalence. We show that the
unified shell equation derived from this variational procedure reproduce past
results obtained via distribution theory by Barrabès and Israel for hypersurfaces
of fixed causal type and by Mars and Senovilla for generic shells. These results
are expected to provide a useful guide to formulating thin shell equations and
junction conditions along generic hypersurfaces in modified theories of gravity.

Keywords: general relativity, thin shells, junction conditions, variational
principles

1. Introduction

Thin shells in general relativity (GR) and field theories in general are weak (distributional)
solutions to the field equations whose pathological behaviour is concentrated to a single hyper-
surface (or a series of nonintersecting hypersurfaces) in spacetime. In GR such solutions may
describe energetic phenomena such as phase transitions, impulsive electromagnetic and gravi-
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tational waves [1, 2]. Thin shells also give rise to junction condition on the common boundary
surface when glueing together spacetime domains.

Thin shells and junction conditions in GR have been considered by Lanczos [3], Darmois
[4], O’Brien and Synge [5], and Lichnerowicz [6], however the most commonly used formu-
lation has been given by Israel [7]. On a timelike or spacelike hypersurface partitioning the
spacetime manifold into two subdomains, Israel prescribed the continuity of the induced met-
ric hab and the Lanczos equation relating the jump of the extrinsic curvature Kab to the surface
energy–momentum tensor. In the absence of a material shell, the Lanczos equation reduces
to the continuity of the extrinsic curvature. The case when the surface energy–momentum
tensor does not vanish will be referred to as a thin shell, and the relations imposed by the van-
ishing of the surface energy–momentum tensor as the junction conditions1. An advantage of
Israel’s formulation is double covariance. For practical calculations it is often useful to work
with coordinate systems adapted to the subdomains that mismatch along the hypersurface.
Differentiability classes of tensor fields may only be established in coordinate systems whose
differentiability class exceeds that of the tensor field. Israel’s equations are, however, relations
between hypersurface tensors and thus one only has to ensure that the parametrization of the
hypersurface is the same as viewed from either side and otherwise work with disjoint systems
of bulk coordinates in each spacetime region.

Israel’s formulation breaks down when the hypersurface has null points. At null points the
normal vector field becomes tangential as well and the extrinsic curvature—which can be seen
as the normal derivative of the metric—becomes an intrinsic tangential quantity that carries
no transverse information. The 3 + 1 orthogonal decomposition along the shell facilitated
by the normal vector becomes degenerate. To fix terminology, a hypersurface will be called
pure if it is either timelike, spacelike or null, while it will be referred to as causality-changing,
signature-changingor non-pure if its causal type is not constant. The term generic hypersurface
is used when the causal type is absolutely not fixed and the surface may either be pure or
causality-changing.

Null shells are physically relevant (we refer to [2] for an extensive treatment of their appli-
cations), for example as models for impulsive electromagnetic and gravitational waves. Gen-
eralizations of the Israel formalism for null shells have been given among others by Clarke and
Dray [8], Barrabès and Israel [9], Mars and Senovilla [10], Poisson [11], Mars [12] and Sen-
ovilla [13]. Out of these, the formalisms of [9, 10, 12, 13] give a unified prescription valid for
generic hypersurfaces2. The common point of generalization is that the normal vector field is
accompanied by a transversal vector field which generates a non-orthogonal decomposition of
the spacetime along the hypersurface. The role of the extrinsic curvature is carried by an anal-
ogous quantity built from the transversal vector field. A hypersurface equipped with a selected
transversal vector field is called a rigged hypersurface. This structure has been investigated
by e.g. Eisenhart [14] and Schouten [15] to describe the geometry of subspaces of manifolds
with linear connections. The formalism has been systematically applied to GR by Mars and
Senovilla in [10].

1 This terminology is not universal. Some authors refer to the Lanczos equation itself as a junction condition, even if
the surface energy–momentum tensor does not vanish.
2 The work by Barrabès and Israel impose the condition n · n = const, i.e. the length of the normal vector is constant
along the hypersurface. This formally restricts their formalism to pure hypersurfaces. However the shell equation
obtained therein agrees (after the differences in conventions have been addressed) by that of e.g. Mars and Senovilla,
which is valid for generic shells, showing that this condition is not imperative in the derivation of the shell equation.
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There exists at least four methods of obtaining the timelike or spacelike shell equation in GR
[13]. These will be referred to as (i) the ‘pillbox integration3’, (ii) the distributional method,
(iii) the intrinsic method and (iv) the variational method. Pillbox integration has been employed
by Israel in [7] and involves writing the field equations in Gaussian coordinates adapted to
the hypersurface, separating a normal derivative and integrating the field equations through
the shell as its thickness tends to zero. This approach is similar to the well-known textbook
method [17] to derive the analogous jump conditions in electrodynamics. The distributional
method has been pioneered by Taub [18], Geroch and Traschen [19]. The metric tensor is
taken to be a C0 regular distribution4, from which it follows that the connection is allowed
to have discontinuities and the curvature tensor may contain a delta function term. The field
equations then impose a relation between the singular part of the Einstein tensor and a singular
contribution to the energy–momentum tensor, which is Lanczos’ equation. If the metric tensor
were allowed to be discontinuous, the connection would pick up a delta function term, and the
curvature tensor (quadratic in the connection) would involve products of delta functions, which
are ill-defined. This imposes the continuity of the metric as a junction condition. The intrinsic
method has been used by Mars [12] as an application of his concept of hypersurface data. He
abstracted the properties of rigged hypersurfaces by defining data on an arbitrary hypersurface
which may correspond to data specified by a rigging when the hypersurface is embedded in a
pseudo-Riemannian space. The purpose has been to open the road for initial value problems
in GR for any possible initial hypersurface, however through the use of the rigged analogues
of the usual constraint equations, it becomes possible to formulate shells in a purely intrinsic
manner with no need for even embedding the hypersurface.

The shell equations have also been obtained via variational methods [20–22]. This is par-
ticularly useful for braneworld scenarios [21], where the Lanczos equation on the brane is a
part of the equations of motion and thus the brane and bulk dynamics arise from a unified
variational principle. When the variational formulation is followed, the combined shell + bulk
dynamics appear as the broken extremals [23] of a variational problem with the shell equation
being the natural boundary condition on the surface.

For a second order theory described by a first order Lagrangian, this is straightforward.
The Einstein–Hilbert Lagrangian on the other hand is second order. Since a second order
Lagrangian normally produces equations of motion of order four, the boundary conditions
pertinent to the variational problem are that of a fourth order differential equation and require
the fixing of both the metric and its transverse derivative at the boundary. As the actual field
equations are only second order, fixing the transverse derivative would overdetermine the field
equations and this causes the variational problem to become ill-defined [24]. When varia-
tional principles with only outer boundaries are considered, a common method of solution
[25] is to add a boundary term (for example the Gibbons–Hawking–York term [26, 27], but
other boundary terms could be introduced at the price of also introducing additional struc-
tures) to the Einstein–Hilbert action such that combined bulk + boundary action requires the
boundary conditions consistent with a first order Lagrangian, and thus the variation problem
becomes well-defined. After Parattu et al [28] such boundary terms will be referred to as vari-
ational counterterms. A shell may be considered as an interior boundary of the spacetime
manifold thus it is clear that some similar regularization procedure is needed to obtain the
correct results. One such way of regularization is to also add the Gibbons–Hawking–York
counterterms to the action at the shell [21, 22]. Another which has been employed by Hájíček

3 This terminology has been borrowed from Misner et al [16].
4 In C1 coordinates, the continuity of the first fundamental form is equivalent to the continuity of the spacetime metric
on the shell. See Clarke and Dray [8] as well as the comments in [10, 13] for proof.
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and Kijowski [20] is to consider the Lagrangian itself as a distribution. Since the Lagrangian
involves a curvature tensor, it has a delta function term which is proportional the difference of
the Gibbons–Hawking–York terms as calculated from the two sides.

The shell equations and junction conditions for null and generic shells have been in gen-
eral derived via the distributional method, which is simple to generalize. Senovilla [13] has
also shown that pillbox integration can also be adapted to the generic case, and the intrinsic
method was already applicable to generic shells. It seems however that not much attention
has been given to the variational method for hypersurfaces that are not timelike or space-
like. Jezierski et al have [29] considered the variational treatment of null shells, however they
did not show that their results agree in the null limit with the results of e.g. Barrabès and
Israel [9] or Mars and Senovilla [10]. There is also an unaddressed issue that has been pointed
out by Parattu et al [30] when investigating counterterms on null boundaries. A variation in
the metric is a variation in the causality, and such variations do not preserve the nullity of
a hypersurface. The underlying reason is that in the tangent space at a fixed point, null vec-
tors form a topologically closed set and every neighborhood of each null vector contains both
timelike and spacelike vectors. A general variation will push the initially null surface off the
lightcone. The same issue is not encountered in regards to timelike or spacelike surfaces as
timelike/spacelike vectors form open sets and each such vector has a neighborhood that con-
sists entirely of timelike/spacelike vectors. It stands to reason that variational methods involv-
ing null surfaces should be formulated in a way that can accommodate surfaces of arbitrary
causal type.

The purpose of this paper is thus to fill this gap in the literature and provide a formulation
of thin shells and junction conditions for GR through a variational principle valid for a generic
hypersurface. A natural question is then why should one consider generic shells. One reason is
that it is beneficial to provide a unified formalism capable of encompassing timelike, spacelike
and null shells at the same time, rather than assuming the signature from the beginning. As
the example of the Barrabès–Israel formalism shows (remarked in footnote 2), such unified
formulations tend to include the case of non-pure hypersurfaces as well. Moreover, as argued
before, even if one is interested in null shells exclusively, the convenient setting for a varia-
tional treatment of null hypersurfaces is the one which is applicable to generic hypersurfaces
equally. For another reason, non-pure hypersurfaces themselves can appear in physically inter-
esting situations. Some examples may be found in [13]. To give one explicitly, the stationary
limit surface of a Kerr black hole is timelike almost everywhere but null at a set of measure
zero. If one wishes to obtain matching conditions for spacetime regions separated by such
hypersurfaces, one must incorporate signature-changing hypersurfaces. For an application of
matching non-pure hypersurfaces, we refer to the works [31–33] by Mars et al on signature
change on brane worlds.

The primary motivation for the development of this work is the formulation of thin shell
equations in modified theories of gravitation. Thin shells have already been considered in
extended gravitational theories, for example in [34] thin shells and junction conditions have
been examined in Brans–Dicke type scalar–tensor theories via the distributional formalism
with the null and non-null cases separately. A variational formalism has also been given
but only for the non-null case. In [35, 36], junction conditions have been formulated in
Gauss–Bonnet gravity for applications to Gauss–Bonnet brane worlds via the variational for-
mulation, but once again only for non-null cases. Shells in higher order gravity have also been
investigated in [37] through the use of distributions. Higher order theories have qualitatively
different shell behaviour with so-called double layers—energy–momentum terms proportional
to the Dirac delta’s derivative—appearing.
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The most general scalar–tensor theory with second-order field equations is Horndeski’s
theory (originally published as [38], but the most common form is the equivalent ‘DGSZ
reformulation’ [39]). Thin shell equations in Horndeski’s theory have been found by Padilla
and Sivanesan [40] through a variational method valid only for non-null hyper surfaces.

In [41] we gave a formulation of null shells in a reduced class of Horndeski theories via
the distributional method and the qualitative form of these equations differed greatly from
those obtained by Padilla and Sivanesan. For a more effective comparison it would have been
beneficial to also follow a variational approach, however no such method was found that would
be valid for generic shells, yet it is a valuable and often-used method for non-null hypersurfaces.
It is thus reasonable to first examine how the variational formalism works for generic shells in
GR before generalizing to more complicated theories.

The main obstacle for such a formalism seems to be the lack of an appropriate variational
counterterm for generic boundaries, as the Gibbons–Hawking–York term is valid only for
timelike and spacelike surfaces. Counterterms valid for null boundaries have been considered
by Parattu et al [30] and extended to piecewise smooth boundaries involving corner terms by
Lehner et al [42]. This formalism can be used when the boundary has separate timelike, null
and spacelike pieces but does not allow for a unified treatment or for cases when the boundary
has null points that do not form an entire segment (for example the null point is isolated or the
null points form a line, etc). An alternative formulation in terms of tetrads have also been given
by Jubb et al [43], which nonetheless shares the features of the formulation by Lehner et al
in that it is necessary to break the boundary into pieces of pure signatures instead of giving a
fully unified treatment.

However a unified counterterm has been provided recently also by Parattu et al in [28],
which is valid for any boundary hypersurface rigged with a transversal vector field and reduces
to the Gibbons–Hawking–York term in the appropriate limit. Although the formulation has not
been extended to corner terms, we are mainly interested in smooth shells (as in the hypersurface
corresponding to the shell being smooth) and therefore this limitation of the formalism does
not affect our results. We show that this counterterm properly regularizes the action at the shell
and the equations derived in e.g. Barrabès and Israel [9], Mars and Senovilla [10] and Senovilla
[13] via the distributional method arise as the natural boundary conditions along the hypersur-
face. To make contact with the alternative distributional regularization procedure of Hájíček
and Kijowski [20], it is also shown that the singular part of the Lagrangian supported on a
generic surface is proportional to the difference of the counterterm of Parattu et al and thus it
leads to the same variational principle we obtain by adding the counterterms manually. Finally,
we also derive the correct shell equation via a first order equivalent to the Einstein–Hilbert
action where no regularization is necessary. This is actually a special case of the regulariza-
tion by counterterms as such first order equivalents can be seen as the Einstein–Hilbert action
augmented by a different counterterm.

Outline of the paper: in section 2 we provide a short summary of the rigged hypersurface
formalism which will be used throughout this paper. In section 3, several known variational
counterterms for the Einstein–Hilbert action are discussed including the one recently proposed
by Parattu et al [28] valid for generic hypersurfaces. Some general properties of these coun-
terterms are investigated. The main part of the paper is section 4, where the dynamics of thin
shells are formulated as a variational principle via three separate regularization schemes. Vari-
ational counterterms are employed in subsection 4.1, distributional regularization is considered
in subsection 4.2 and the shell equation is also derived from a first order action without the need
for regularization in subsection 4.3. Some of the longer calculations are given in appendices
A and B.
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Notation: the spacetime manifold is D + 1 dimensional and is denoted M. Coordinates on
M are xμ with the Greek indices running μ = 0, 1, . . . , D. Σ is a hypersurface in M, that is a
D dimensional submanifold with coordinates ya with Latin indices a, b, c, . . . taking the values
1, . . . , D. Summation convention on repeated indices is assumed. The metric tensor in M is
gμν , its determinant is g and the volume form determined by it is

μg =
√
−g dx0 ∧ . . . ∧ dxD. (1)

Inner products with respect to the spacetime metric are denoted with dots in indexless notation,
e.g. X · Y = XμYνgμν . All manifolds are assumed orientable and oriented.

2. Rigged hypersurfaces

In this section we review the formalism of rigged hypersurfaces, establishing the notation to be
used in the rest of the paper. We refer to the exposition by Mars and Senovilla [10] as well as
the works [12, 44] for proofs of the statements made here. We also recover the limiting cases
when the hypersurface is timelike or spacelike and we derive the null limit.

2.1. Structures induced by the rigging

We consider a hypersurfaceΣ in the D + 1 dimensional manifold M. The hypersurface is given
locally by the embedding functions

xμ = Φμ
(
y1, . . . , yD

)
, (2)

where the ya are the intrinsic coordinates of Σ. The derivatives

eμa :=
∂Φμ

∂ya
(3)

are interpreted as the components of the holonomic coordinate frame of Σ, or from a more
invariant point of view, the components of the pushforward and pullback operations between
Σ and M. Without introducing any extra structure, a vector vμ defined at a point p ∈ Σ is
tangential if it can be written in the form vμ = vaeμa for some intrinsic hypersurface vector
va. Then vμ is the pushforward of va. Thus, it is possible to decide whether a contravariant
vector (and thus a general contravariant tensor in an index-by-index basis) is tangential or not.
A covector nμ defined at some point p ∈ Σ is normal if nμeμa = 0, that is it annihilates all
tangential vectors. The space of normal covectors at each point is one dimensional. Thus it is
meaningful to decide if a covariant vector is normal or not. If ωμ is a covariant tensor at some
p ∈ Σ, its pullback to Σ is the hypersurface covector ωa = ωμeμa (this notion is extended to all
covariant tensors index-by-index).

The induced metric or first fundamental form on Σ is the pullback

hab = gμνeμa eνb . (4)

The point p ∈ Σ is a null point of the hypersurface if and only if hab (p) is a singular matrix.
Since we allow for null points and thus non-invertible induced metrics, we do not raise or lower
Latin indices.

To proceed, we need to introduce a vector field �μ along Σ, which is nowhere tangential
(nor zero). We call this a choice of rigging and the pair (Σ, �) is a rigged hypersurface. The
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set (�, e1, . . . , eD) is then a frame of M along Σ. The choice of rigging selects a unique normal
covector field nμ which satisfies

nμ�
μ = 1. (5)

Then the set
(
n,ϑ1, . . . ,ϑD

)
is the dual frame of (�, e1, . . . , eD), where the covector fields (along

Σ) ϑa
μ are uniquely determined by the duality relations

ϑa
μ�

μ = 0, ϑa
μeμb = δa

b . (6)

Using ϑa
μ, given a hypersurface covector ωa, we can create a spacetime covector ωμ = ϑa

μωa

which satisfies ωa = eμaωμ and ωμ�
μ = 0. Likewise, we can project a spacetime vector vμ into

Σ as va
‖ = vμϑa

μ, and also obtain a direct projection operator Pμ
ν by pushing forward va

‖ , i.e.

vμ‖ = va
‖eμa = vνϑa

νeμa = Pμ
νv

ν , (7)

with

Pμ
ν = eμaϑ

a
ν = δμν − �μnν . (8)

With respect to these bases, the spacetime metric and inverse metric can be expressed as

gμν = �2nμnν + λa

(
nμϑ

a
ν + ϑa

μnν

)
+ habϑ

a
μϑ

b
ν ,

gμν = n2�μ�ν + νa
(
�μeνa + eμa�

ν
)
+ hab

∗ eμa eνb , (9)

where the elements that appear here are given explicitly as

�2 = �μ�
μ = � · �, n2 = nμnμ = n · n,

λa = �μeμa = � · ea, νa = nμϑa
μ = n · ϑa,

hab
∗ = gμνϑa

μϑ
b
ν = ϑa · ϑb. (10)

In particular, hab
∗ may be seen as a pseudo-inverse to hab.

The choice of rigging also gives a volume form

μ�,g = ρ�,g dy1 ∧ . . . ∧ dyD (11)

on Σ with

ρ�,g =
√
−g�μπμμ1...μDeμ1

1 . . . eμD
D , (12)

where πμμ1...μD is the D + 1 dimensional Levi-Civita symbol. This particular volume element
is such that if Ω ⊆ M is a compact D + 1 dimensional domain of integration, whose boundary
∂Ω is rigged with an outward pointing transversal �μ, Gauss’ theorem takes the form∫

Ω

∇μXμ μg =

∮
∂Ω

nμXμ μ�,g, (13)

where nμ is the normal adapted to the rigging, i.e. nμ�
μ = 1. Further properties of the volume

form may be found in [10, 44].
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Extrinsic curvature-type quantities may be obtained by differentiating the frame vectors in
the tangential directions as

χab = −nνeμa∇μeνb = eμa eνb∇μnν , (14)

ϕa = nνeμa∇μ�
ν = −eμa�

ν∇μnν , (15)

ψb
a = eμaϑ

b
ν∇μ�

ν = −eμa�
ν∇μϑ

b
ν . (16)

These are all hypersurface tensors and χab is symmetric. For thin shells and junction conditions
it is also useful to define

Hab = eμa eνb∇μ�ν = ψc
ahbc + ϕaλb, (17)

which is non-symmetric in general and is not independent of the triplet (χ,ψ,ϕ). However, it
will turn out that this quantity is what most naturally generalizes the extrinsic curvature to thin
shells and will play an important role. For Hab we make an exception to our convention not to
raise Latin indices and define

Ha
b = hac

∗ Hcb, H b
a = hbc

∗ Hac, Hab = hac
∗ hbd

∗ Hcd ,

H = Ha
a = Habhab

∗ . (18)

A connection-type quantity γc
ab is also given on Σ by

γc
ab = ϑc

νeμa∇μeνb = −eμa eνb∇μϑ
c
ν . (19)

This connection is torsionless but is not metric compatible in general.

2.2. Transformations between riggings

The choice of rigging �μ along a hypersurfaceΣ ⊆ M is not unique and it may be subjected to
two kinds of transformations. The first is a tangential shift

�′μ = �μ + Taeμa , (20)

where Ta is an arbitrary tangent vector field to Σ, and the second kind is a rescaling

�̄μ = α�μ, (21)

where α is a function along Σ that is nowhere vanishing. These transformations form a group
parametrized by D + 1 functions whose structure has been analyzed in [44]. The quantities
associated with rigged hypersurfaces transform under the shift as [10, 12]

�′μ = �μ + Taeμa ,

ϑ′a
μ = ϑa

μ − Tanμ,

�′2 = �2 + 2Taλa + habTaTb,

λ′
a = λa + habTb,

ν ′a = νa − n2Ta,

h′ab
∗ = hab − νaTb − Taνb + n2TaTb,

ϕ′
a = ϕa − χabTb,

8
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ψ′b
a = ψb

a + ϕaTb + DaTb + χacT
bTc,

γ ′c
ab = γc

ab + χabTc,

H′
ab = Hab + DaTchbc − χacλbTc, (22)

while eμa , nμ, hab, χab and μ�,g are invariant. Under a rescaling, the transformations are

�̄μ = α�μ,

n̄μ = α−1nμ,

�̄2 = α2�2,

n̄2 = α−1n2,

λ̄a = αλa,

ν̄a = α−1νa

χ̄ab = α−1χab,

ϕ̄a = ϕa + ∂a ln α,

ψ̄b
a = αψb

a ,

H̄ab = αHab + ∂aαλb,

μ̄�,g = αμ�,g, (23)

while eμa , ϑa
μ, hab, hab

∗ and γc
ab are invariant. Note that since the volume element μ�,g is invariant

under shifts, the definition of μ�,g essentially depends on that of the normal nμ only. Thus if
one has a preferred normal along a hypersurface, the scaling of the normal already fixes the
volume element without the need to choose a rigging explicitly.

2.3. Pseudo-Riemannian limit of rigged hypersurfaces

The usual formalism of timelike and spacelike (collectively, pseudo-Riemannian) hypersur-
faces may be obtained from the rigged formalism by making a particular choice of rigging �μ.
We assume that Σ is timelike or spacelike and set

ε = ±1 =

{
+1 Σ is timelike

−1 Σ is spacelike
(24)

to allow for both cases to be considered simultaneously. The induced metric hab is nondegen-
erate throughout Σ, its inverse hab exists and we raise and lower Latin indices with hab and hab

respectively. Normal vectors are everywhere transversal, therefore we take as the rigging

�μ = n̂μ (25)

the unit normal (i.e. n̂ · n̂ = ε) to Σ, which is unique up to sign. With this particular choice of
the rigging, the normal associated to the rigging is

nμ = εn̂μ. (26)

9
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We will only use n̂ and keep track of the εs that appear. The rest of the quantities become

ϑa
μ = ea

μ = habgμνeνb ,

�2 = n2 = ε,

λa = νa = 0,

hab
∗ = hab,

χab = εKab,

ϕa = 0,

ψb
a = Kb

a ,

Hab = Kab,

μ�,g = μh =
√
−εh dy1 ∧ . . . ∧ dyD, (27)

where

Kab = eμa eνb∇μn̂ν =
1
2

eμa eνbLn̂gμν (28)

is the usual extrinsic curvature and h = det (hab) is the determinant of the induced metric. The
connection γc

ab becomes the Levi-Civita connection of the induced metric hab with

γc
ab =

1
2

hcd (∂ahbd + ∂bhad − ∂dhab) (29)

and Gauss’ theorem takes the form∫
Ω

∇μXμ μg=

∮
∂Ω

εn̂μXμ μh, (30)

where n̂μ is the outward pointing unit normal to ∂Ω.

2.4. Null limit of rigged hypersurfaces

Suppose now that Σ is null. There is no universally preferred convention here for the rigging,
however the null rigging used by e.g. Poisson [11] is a useful choice and we present it here. If
Σ is null then any normal field nμ is also null and is tangential to Σ. Moreover it satisfies the
geodesic equation

(∇nn)μ = κnμ (31)

for some non-affinity function κ. We may then set up coordinates (ya) =
(
r, θA

)
on

Σ(A, B, . . . = 2, . . . , D) such that

nμ =

(
∂

∂r

)μ

, (32)

and choose a null �μ rigging which satisfies

�μ�μ = 0, �μnμ = 1, �μeμA = 0, (33)

10
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where

eμA =

(
∂

∂θA

)μ

(34)

are the rest of the basis fields, necessarily spacelike. The functions

qAB = eμAeνBgμν (35)

are then the components of the spacelike induced metric on the slices r = const. They are also
the only nonvanishing components of the induced metric on the entire surface, i.e.

(hab) =

(
0 0
0 (qAB)

)
. (36)

The D − 1-metric qAB does possess an inverse, denoted qAB and the capital Latin indices
are raised and lowered via qAB and qAB respectively. The most important extrinsic curvature
quantity in this case is Hab, which is now symmetric and we split it as H11, H1A and HAB.
We have

H11 = nμnν∇μ�ν = −nμ�ν∇μnν = −κ,

H1A = HA1 = eμAnν∇μ�ν ,

HAB = eμAeνB∇μ�ν. (37)

We may express most of the quantities with Hab as

ϕ1 = nμnν∇μ�
ν = −κ = H11,

ϕA = eμAnν∇μ�
ν = HA1,

ψ1
1 = nμ�ν∇μ�

ν =
1
2

nμ∇μ (�ν�ν) = 0,

ψ1
A = eμA�ν∇μ�

ν = 0,

ψA
1 = nμeA

ν∇μ�
ν = HA

1 ,

ψB
A = HB

A . (38)

The primary exception is χab, which is

χ11 = nμnν∇μnν = κnνnν = 0,

χ1A = nμeνA∇μnν = κeνAnν = 0,

χAB = eμAeνB∇μnν , (39)

and is thus not expressible with Hab. As only tangential derivatives of tangential vectors are
taken, when thin shells are involved, the jump of this quantity always vanishes.

Finally, with respect to the frame (�, n, eA) the full metric tensor has components

(
gμν

)
=

⎛
⎝0 1 0

1 0 0
0 0 (qAB)

⎞
⎠ , (40)

11
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from which it follows that in this frame

g = −q, (41)

where q = det (qAB). The volume element can be thus written as

μ�,g = μq =
√
q dr ∧ dθ2 . . . ∧ dθD. (42)

Note that while it appears that the volume element μq is canonically given, it does depend on
the way the manifold Σ has been sliced into spacelike D − 1-surfaces.

3. Variational counterterms

The Einstein–Hilbert action over M is

SEH =
1

2κ

∫
M

Rμg, (43)

where κ = 8πG. The integrand is second order in the metric while its Euler–Lagrange
equations are also second order. If we assume the boundary ∂M has been rigged by an outward
pointing vector �μ, we may write its variation in generic form as

δSEH = −
∫

M

1
2κ

Gμνδgμν μg +

∫
∂M

(
Yμνδgμν + Yμν,aδgμν,a + Yμν

� δgμν,�
)
μg,�,

(44)

where δgμν,a = eκa∂κδgμν are the tangential derivatives of the metric variation, δgμν,� =
�κ∂κδgμν is the transversal derivative and Yμν , Yμν,a and Yμν

� are the appropriate coefficients that
appear on the boundary. Imposing Dirichlet boundary conditions δgμν|∂M = 0 gets rid of the
first two terms on the boundary, but not the third. On the other hand demanding the transver-
sal derivatives to also vanish would overdetermine the field equations. In order to make the
variational problem well-defined a variational counterterm

B =

∫
∂M

B
(
g, (∂g)‖, (∂g)�

)
dDy (45)

is added to the action, where (∂g)‖ and (∂g)� are schematic notations for the tangential and
transversal derivatives respectively. If the integrand B satisfies

∂B
∂gμν,�

= −Yμν
� ρg,�, (46)

then it follows that imposing the usual Dirichlet condition δgμν|∂M = 0 on the combined action
SEH + B will get rid of all boundary terms. The variational counterterm is not unique, however
if B and B′ are both integrands of variational counterterms, their derivatives with respect to
gμν,� must be the same function −Yμν

� ρg,� and thus the difference B − B′ is a function of g and
(∂g)‖ only. This result will be of significance for thin shells.

There are several counterterms known for the Einstein–Hilbert action:
The Gibbons–Hawking–York counterterm: when the boundary ∂M consists of pseudo-

Riemannian pieces only, the appropriate rigging (see section 2.3) can be chosen. The coun-
terterm is

BGHY =
ε

κ

∫
∂M

Kμh. (47)

12
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Its validity follows from the variational formula [45]

δSEH = − 1
2κ

∫
M

Gμνδgμν μg +
ε

2κ

∫
∂M

(
Khab − Kab

)
δhab μh −

ε

κ
δ

(∫
∂M

K μh

)
. (48)

The first boundary term involves only tangential derivatives of the metric and the second
term—which contains normal derivatives—is an exact variation. Adding this term to the action
with an opposite sign will ensure that fixing the metric without fixing its derivatives on the
boundary makes all remaining boundary terms vanish.

The Einstein counterterm: we assume that the manifold M is covered by the domain of a
chosen (and fixed) coordinate chart xμ. Let us also take an outward pointing normal nμ along
∂M, and let μg,n denote the corresponding volume element obtained via any rigging �μ which
satisfies �μnμ = 1. The Einstein counterterm is then defined as

BE = − 1
2κ

∫
∂M

nκw
κ μg,n, (49)

where

wκ = Γκ
μνgμν + Γν

νμgκμ. (50)

This expression is naturally defined in the interior of M as well, and by Gauss’ theorem

BE = − 1
2κ

∫
M
∇κw

κ μg, (51)

where the covariant derivative treats wκ as if it was a vector field (the rationale behind this is
that we may consider ∂μ to be a locally defined connection associated to the chart xμ, and from
this point of view the connection coefficients Γκ

μν are tensor components—the components
of the difference tensor between ∇ and ∂). Decomposing the scalar curvature as

R = ∇κ

(
Γκ

μνgμν + gκμΓν
νμ

)
+
(
Γκ

μρΓ
ρ
κν − Γκ

κρΓ
ρ
μν

)
gμν , (52)

one obtains

SEH + BE =
1

2κ

∫
M

gμν
(
Γκ

μρΓ
ρ
κν − Γκ

κρΓ
ρ
μν

)
μg, (53)

which is Einstein’s first order, noncovariantΓΓ-action [46, 47]. Since it is first order, fixing the
metric at the boundary is sufficient to eliminate all boundary terms. The Einstein counterterm
is not unique in the sense that different coordinate systems will produce different Einstein
counterterms, as it is clear from the lack of covariance of (50).

The background connection counterterm: we can also introduce an arbitrary torsionless con-
nection ∇̄μ. Quantities calculated from ∇̄μ are denoted with an overbar. Let nμ be any outward
pointing normal to the boundary ∂M and μg,n the associated volume element. The background
connection counterterm is

BBC = − 1
2κ

∫
∂M

(
nκΔ

κ
μνgμν + nμΔν

νμ

)
μg,n, (54)

where Δκ
μν = Γκ

μν − Γ̄κ
μν is the difference tensor. The Einstein counterterm is reproduced if

M fits into a single coordinate domain and we choose ∇̄μ = ∂μ. The term Δκ
μνgμν +Δν

νμgκμ

is once again defined on the entire manifold M and after using Gauss’ theorem we get

SEH + BBC =
1

2κ

∫
M

[
R̄ + gμν

(
Δκ

μρΔ
ρ
κν −Δκ

κρΔ
ρ
μν

)
μg

]
. (55)
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Since R̄ = gμνR̄μν is the scalar curvature of the nondynamical background connection ∇̄μ, this
action is also first order, from which immediately follows that fixing the metric at the bound-
ary removes all boundary terms. Unlike the Einstein counterterm, the background connection
counterterm is globally defined and both the counterterm and the resulting first order action are
covariant. However the counterterm and action both contain an unphysical background field.
This counterterm is also non-unique, as it depends on the connection chosen as the background.

The rigged counterterm: this counterterm has been introduced by Parattu et al [28] as a
generalization of the Gibbons–Hawking–York term valid for hypersurfaces of arbitrary causal
type. We fix an outward pointing rigging �μ along the boundary ∂M. The rigged counterterm
is [28]

BR =
1
κ

∫
∂M

Pμ
ν∇μnν μ�,g, (56)

where Pμ
ν = δμν − �μnν is a tangential projector that removes the �-directed parts of vectors.

Parattu et al did not employ the formalism of rigged hypersurfaces, therefore this counterterm
appeared in terms of spacetime, rather than hypersurface quantities. We rewrite it via Pμ

ν =
eμaϑ

a
ν and ϑμa = νa�μ + hab

∗ eμb as

Pμ
ν∇μnν = eμaϑ

a
ν∇μnν = eμa

(
hab
∗ eνb + νa�ν

)
∇μnν

= χabhab
∗ − ϕaν

a, (57)

thus the counterterm has the equivalent expression

BR =
1
κ

∫
∂M

(
χabhab

∗ − ϕaν
a
)
μ�,g, (58)

a form resembling the Gibbons–Hawking–York counterterm with χab and ϕa playing the
role of the extrinsic curvature. From (58) it can be seen that when the boundary is pseudo-
Riemannian, choosing �μ = n̂μ gives (see section 2.3) ϕa = 0, χab = εKab and hab

∗ = hab, thus
the rigged counterterm reproduces the Gibbons–Hawking–York term in this limit.

In the presence of a boundary∂M of any causal type, equipped with a rigging, the variational
formula (48) is replaced by [28]

δSEH = − 1
2κ

∫
M

Gμνδgμνμg +
1

2κ

∫
∂M

Πμνδgμνμ�,g −
1
κ

∫
∂M

δ
(
Pμ

ν∇μnνμ�,g

)
, (59)

where

Πμν = gμν
(
Pρ
σ∇ρnσ

)
−∇(μnν) −∇ρ�

ρnμnν . (60)

We remark that this quantity involves the covariant derivative of the normal vector and thus
depends on the extension of it to a neighborhood of the boundary. As the calculations in
appendix A show, the expression is independent of the extension of the normal field. The
quantity Πμν will also be decomposed in terms of hypersurface quantities in subsection 4.1.
The sign of the last term has been corrected as compared to the corresponding result in [28].
The boundary term that results from the variation of SEH + BR is proportional to δgμν and van-
ishes when the metric is fixed on the boundary. The rigged counterterm is not unique, different
choices of rigging will give different counterterms.
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4. Variational formalism of thin shells

We assume that the hypersurfaceΣ partitions the spacetime manifold M into two domains M+

and M−. These domains are manifolds with boundaries and their interiors are disjoint. For
simplicity we assume that M has no outer boundary, which implies that ∂M+ = ∂M− = Σ
(this notation currently ignores orientations). The formalism may be equally well used in the
presence of outer boundaries, but including them would needlessly complicate the notation and
outer boundaries play no role in our formalism anyway.

The regions M+ and M− are distinct as manifolds with smooth5 metrics g+
μν and g−

μν respec-
tively. Coordinate systems xμ+ and xμ− are employed which need not satisfy any matching
conditions at Σ. As per the analysis of Clarke and Dray [8] (also comments made in [10, 13]),
corrected and extended for the case of hypersurfaces with null points by Mars et al [32], the
conditions for the existence of a C1 structure on M is that the induced metrics h+

ab and h−
ab agree

on Σ, and in case Σ is not timelike or spacelike, there is a pair of rigging vectors �μ+ and �μ−
along Σ such that �+ and �− both point towards M+ (or both towards M−, depending on one’s
choice) and

λ+
a = λ−

a , �2
+ = �2

−, (61)

where λ±
a = �± · ea are the projections of the transverse vectors �μ± on the tangent basis of the

hypersurface. This identifies �+ and �− as ‘being the same’, and thus generates a C1 differen-
tiable structure at Σ. It follows that any coordinate system adapted to the rigging �, that is a
coordinate system (σ, ya) such that σ = 0 is the equation for Σ and

� =
∂

∂σ
, (62)

is a C1 coordinate system. If Σ is timelike or spacelike, then the unit normal n̂μ always provides
a rigging which satisfies the above conditions, therefore in that case there is no need to find
a pair of matching riggings and it follows that Gaussian normal coordinates are always C1.
From this point on we assume that all spacetime coordinate systems are C1 on Σ and C4 away
from Σ. Since the final results will be expressed as hypersurface tensors, this does not reduce
the practical applicability of the formalism. In these coordinate systems, the relation h+

ab = h−
ab

also implies that the spacetime metric gμν is continuous, due to expansion (9), which involves
only λa, �2 and hab, which are then all assumed continuous.

We use the notation

[F] = F+
∣∣
Σ
−F−∣∣

Σ
(63)

for the jump discontinuity of a field F at Σ (thus [F] is a function defined only on Σ) and

F̄ = F+θ + F− (1 − θ) (64)

for the ‘soldering’ of a field, where

θ(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 p ∈ M+\Σ

0 p ∈ M−\Σ

1
2

p ∈ Σ

(65)

5 Or is at least C3 to ensure both the field equations and the Bianchi identities exist as regular functions.
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is the Heaviside step function associated to Σ. Any choice of value for θ at Σ ensures that for a
continuous field F, F = F̄ is a pointwise identity. The choice θ|Σ = 1/2 is taken for reasons of
symmetry. We imagine that the hypersurface of discontinuity Σ is the limit of a layer of finite
thickness, where the field F is continuous albeit rapidly varying. In the limit of infinitesimal
thickness a value between F+ and F− should be picked on Σ and taking the arithmetic average
(corresponding to θ|Σ = 1/2) is the most ‘democratic’ choice that gives no preference to the
field values on either side of the layer.

To conform to the usual conventions, we also assume that the rigging vector field � points
from M− to M+. The orientation on Σ is induced by the rigging �. It follows that Σ has
the boundary orientation inherited as the boundary of M− and the opposite to the boundary
orientation inherited from M+.

4.1. Thin shell equation from the action regularized by counterterms

The total action will be taken to consist of the gravitational action SEH, an unspecified bulk
matter action SM and an unspecified thin shell matter action STS. Instead of integrating over
M at once, we split the integrals into sums of integrals over M+ and M−. Since Σ is not
a part of the outer boundary of the manifold, the usual Dirichlet conditions do not apply
to Σ, the metric is not fixed there. We suppose the metric is C0 across Σ and at least C3

away from Σ. Since we are varying within this differentiability class, δgμν also inherits these
properties. The equations of motion of the shell arise as the natural boundary conditions on
the shell as the bulk and boundary contributions to the variation of the action must vanish
separately.

The shell hypersurface Σ is an interior boundary and thus we add the rigged counterterm
(56) to the action at both sides of Σ to ensure the proper boundary behaviour of the action. The
total action is then

S =
1

2κ

∫
M+

R+μg︸ ︷︷ ︸
S+EH

+
1

2κ

∫
M−

R−μg︸ ︷︷ ︸
S−EH

+

∫
M+

L+
M dD+1x︸ ︷︷ ︸
S+M

+

∫
M−

L−
M dD+1x︸ ︷︷ ︸
S−M

− 1
κ

∫
Σ

(
Pμ

ν∇μnν
)
+
μg,�︸ ︷︷ ︸

B+
R

+
1
κ

∫
Σ

(
Pμ

ν∇μnν
)
−μg,�︸ ︷︷ ︸

B−
R

+

∫
Σ

LTS dDy︸ ︷︷ ︸
STS

. (66)

The relative sign difference between B+
R and B−

R is caused by the orientation of Σ being oppo-
site to the boundary orientation inherited from the domain M+. Variation of this integral with
respect to the metric is carried out by applying the variation formula (59) to both the + and −
integrals, giving

δS =

∫
M+

1
2

(
Tμν
+ − 1

κ
Gμν

+

)
δgμν μg +

∫
M−

1
2

(
Tμν
− − 1

κ
Gμν

−

)
δgμν μg

+

∫
Σ

(
1
ρ�,g

δSTS

δgμν
− nκ

[
∂LM

∂gμν,κ

]
− 1

2κ

[
Πμν

])
δgμν μ�,g, (67)

where LM = LM/
√−g is the scalarized matter Lagrangian. The variation of the integral should

vanish for all variations δgμν that are C0 across Σ and C3 away from Σ. In particular, we can
choose an arbitrary δgμν which satisfies δgμν|Σ = 0, which implies that the coefficients of the
δgμν in the bulk integrals should vanish, giving the Einstein field equations in the bulk. It then
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follows that the surface term
∫
Σ (· · ·) δgμν μ�,g should vanish separately even for arbitrary δgμν ,

which results in the equation

Sμν =
1
κ

[
Πμν

]
, (68)

where

Sμν =
2
ρ�,g

δSTS

δgμν
− 2nκ

[
∂LM

∂gμν,κ

]
(69)

is the surface energy–momentum tensor. The second term is a contribution coming from
the bulk matter Lagrangian if it also depends on the derivatives of the metric tensor, usu-
ally via the connection. It arises precisely as follows. If SM is the matter action with SM =∫

MLM (g, ∂g,ψ, ∂ψ) dD+1x, and scalar Lagrangian function LM = LM/
√−g, the variation of

the matter action with respect to the metric is

δSM =

∫
M

((
∂LM

∂gμν
− ∂κ

∂LM

∂gμν,κ

)
δgμν + ∂κ

(
∂LM

∂gμν,κ
δgμν

))
dD+1x. (70)

The total divergence term here can be expressed in terms of the scalar Lagrangian and the
covariant divergence. Specifically, since the metric determinant is independent of the metric’s
first derivative, we get

∂LM

∂gμν,κ
=

∂LM

∂gμν,κ

√
−g, (71)

and even though gμν,κ is not a tensor, ∂LM/∂gμν,κ is (see [15], chapter 2, section 11). We can
therefore write

δSM = Bulk terms +
∫

M
∇κ

(
∂LM

∂gμν,κ
δgμν

)
μg

= Bulk terms +
∮
∂M

nκ
∂LM

∂gμν,κ
δgμνμ�,g. (72)

If this integral is performed over a spacetime with a shell Σ we thus obtain the difference

term −nκ

[
∂LM
∂gμν,κ

]
on the shell which contributes to the energy–momentum tensor. Out of the

standard model fields, only the Lagrangian of the Dirac field depends on the connection, how-
ever the Dirac field being spinorial, an alternative formulation based on orthonormal tetrads
would be necessary to incorporate them into the formalism. For some exotic matter fields (for
example the scalar sector of Horndeski’s theory [38]) this term may be nonvanishing. As far
as we are aware, such possible contributions to the thin shell energy–momentum tensor have
not been explored so far in the literature.

Equation (68) is the equation of motion for the thin shell in unprojected form. To proceed,
we decompose the tensor Πμν in the frame (�, ea). This is best accomplished by transitioning
to a coordinate system (σ, ya) adapted to the rigging � (i.e. �μ =

(
∂/∂σ

)μ
and the ya are the

hypersurface coordinates), giving

Π00 = χab

(
n2hab

∗ − νaνb
)
+ n2ϕaν

a −
(
n2
)2
ψ,

Π0a = χcd

(
νahcd

∗ − νchad
∗
)
+ n2ϕchac

∗ − n2ψνa,

Πab = χcd

(
hab
∗ hcd

∗ − hac
∗ hbd

∗
)
+ ϕc

(
νahbc

∗ − hab
∗ νc + hac

∗ ν
b
)
− ψνaνb, (73)
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where ψ = ψa
a is the trace. The details of this derivation may be found in appendix A.

Since the metric is continuous, only the extrinsic curvature-type quantities χab, ϕa, ψb
a may

suffer jumps, as they in general involve the metric’s transversal derivatives. The reason for
the introduction of the tensor Hab in (17) has been that as it turns out the jumps of all such
quantities may be related to that of Hab. We refer to Mars and Senovilla for details (equations
(72)–(76) in [10]) and merely list the jump relations[

ψb
a

]
= [Hac] hbc

∗ ,

[ϕa] = [Hab] νb,

[χab] = n2 [Hab] ,[
γc

ab

]
= − [Hab] νc, (74)

where

[Hab] = eμa eνb
[
∇μ�ν

]
= −eμa eνb

[
Γκ

μν

]
�κ, (75)

and is always symmetric. The jump of the metric derivatives can be written as[
∂κgμν

]
= δλκ

[
∂λgμν

]
=
(
eλaϑ

a
κ + �λnκ

) [
∂λgμν

]
=
[
∂agμν

]
ϑa
κ +

[
gμν,�

]
nκ =

[
gμν,�

]
nκ, (76)

where the jump of the tangential derivative
[
∂agμν

]
ϑa
κ vanishes because of the continuity of

the metric and gμν,� = �κ∂κgμν is the transversal derivative. We then have

[
Γκ

μν

]
=

1
2

(
nμξ

κ
ν + nνξ

κ
μ − nκξμν

)
, (77)

where ξμν :=
[
gμν,�

]
and it follows that

[Hab] =
1
2

eμa eνbξμν =
1
2

eμa eνb
[
gμν,�

]
, (78)

which in adapted coordinates is the jump of the transversal derivative of the induced metric,

[Hab] =
1
2

[
∂hab

∂σ

]
. (79)

For this reason it is [Hab] that carries information about the discontinuities of the metric’s
transversal development.

Inserting the jump relations (74) into (73) gives[
Π00

]
= [χab]

(
n2hab

∗ − νaνb
)
+ n2 [ϕa] νa −

(
n2
)2

[ψ]

=
(
n2
)2

[H] −
(
n2
)2

[H] + n2 [Hab] νaνb − n2 [Hab] νaνb

= 0, (80)[
Π0a

]
= [χcd]

(
νahcd

∗ − νchad
∗
)
+ n2 [ϕc] hac

∗ − n2 [ψ] νa

= n2 [H] νa − n2 [Hcd] νchad
∗ + n2 [Hcd] hac

∗ ν
d − n2 [H] νa

= 0, (81)
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and [
Πab

]
= [χcd]

(
hab
∗ hcd

∗ − hac
∗ hbd

∗
)
+ [ϕc]

(
νahbc

∗ − hab
∗ νc + hac

∗ ν
b
)
− [ψ] νaνb

= n2
(
[H] hab

∗ −
[
Hab

])
+
[
Hb

c

]
νaνc +

[
Ha

c

]
νbνc

− [Hcd] hab
∗ νcνd − [H] νaνb. (82)

It follows that the jump
[
Πμν

]
is a tangential tensor field along Σ, which we may write as[

Πμν
]
=
[
Πab

]
eμa eνb . Following from (68), the surface energy–momentum tensor must also be

tangential with Sμν = Sabeμa eνb and the shell equation can be considered as the hypersurface
tensor equation

κSab = n2
(
[H] hab

∗ −
[
Hab

])
+
[
Hb

c

]
νaνc +

[
Ha

c

]
νbνc − [Hcd] hab

∗ νcνd

− [H] νaνb. (83)

Since a contravariant tensor being tangential is an intrinsic notion independent of any choice
of rigging, the components

[
Πab

]
are calculated from

[
Πμν

]
in a way that is independent of

the rigging. Applying the transformation formulae of section 2.2 to (83) shows that
[
Πab

]
is

invariant under the shift transformation �μ 
→ �μ + Taeμa of the rigging and changes as
[
Πab

]

→

α−1
[
Πab

]
under the rescaling �μ 
→ α�μ. This ambiguity in the shell equation is related to the

fact that for a generic hypersurface there is no preferred scaling for the normal field nμ. In the
variational principle, both

[
Πab

]
and Sab appear as a factor in the expression(

Sab − 1
κ

[
Πab

])
δhab μ�,g, (84)

and the volume element μ�,g depends on the scaling of the normal. It follows that for the
densitized surface tensor Sab = Sabρ�,g and densitized Π-tensor Pab = Πabρ�,g, the analogous
equation

κS
ab =

[
P

ab
]

(85)

is completely independent of any gauge choices, including the scaling of the normal. If one
wishes to use tensor equations, the scaling ambiguity in the generic case is unavoidable. For
timelike or spacelike hypersurfaces a canonical choice is given by the unit normal which fixes
the scaling of

[
Πab

]
and Sab, while in the null case Poisson [11] gave a physical interpretation

of this ambiguity in terms of observers taking measurements of the null shell.
The tensor Πμν which has been split into the components Π00, Π0a and Πab may be iden-

tified with the canonical momentum of the gravitational field, up to scaling and densitization
(canonical momenta are usually taken to be tensor densities). Ordinarily, canonical momenta
are constructed by foliating spacetime into a one-parameter family of spacelike hypersurfaces
[25], but one may equally well consider the analysis of dynamics decomposed with respect
to any foliation of spacetime, including the case when foliate with respect to the transversal
coordinate σ adapted to the rigging �μ. In the usual formulation, the canonical momentum is
the derivative of the Lagrangian with respect to ‘time’ (which in this case is σ) however it
is well-known [48] that the canonical momentum may also be identified with the coefficients
of the field variation on the boundary when the Dirichlet conditions are not imposed. This is
the basis for the so-called covariant phase space formalism [49, 50]. For the Einstein–Hilbert
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action extended with the rigged boundary term, by (59), the boundary part is

1
2κ

∫
∂M

Πμνδgμνμ�,g =
1

2κ

∫
∂M

(
Π00δ�2 +Π0aδλa +Πabδhab

)
μ�,g, (86)

which shows that Π00, Π0a and Πab are proportional to the canonical momenta corresponding
to the metric degrees of freedom �2, λa and hab. The shell equation then has the interpretation
that the surface energy–momentum tensor is the jump of the canonical momentum on the
hypersurface.

If the condition δgμν|∂M = 0 is not imposed on a boundary (such is the case for thin shells),
the vanishing of the variation of the action forces the coefficients of the δgμν to vanish on the
boundary. Since these coefficients are identified with the canonical momentum of the field, the
canonical momentum must vanish on the boundary. This is referred to as the natural boundary
condition [23], as it arises without having to impose a boundary condition by hand. We can
thus also see that the shell equation 1

2 Sab − 1
2κ

[
Πab

]
= 0 is the natural boundary condition for

the combined gravitation + bulk matter + shell matter actions on the hypersurface.
Unlike the equations of motions, canonical momenta are not invariant under equivalence

transformations of Lagrangians such as adding total divergences and—in the case of Ein-
stein–Hilbert type Lagrangians—they are sensitive to the specific form of the variational
counterterm added to the action. However as discussed in section 3, the difference of two
variational counterterms may depend only on the metric tensor and its tangential derivatives,
but never on the transversal derivative. Only the transversal derivative has nonzero jump, thus
while the expressions Π00, Π0a and Πab depend on the choice of counterterm, their jumps (of
which only

[
Πab

]
is nonvanishing) do not. Therefore, the thin shell equation (83) is actually

independent of the choice of counterterm.
If Σ is timelike or spacelike and we apply the canonical choice of rigging presented in

section 2.3, we obtain the equation

κSab = ε
(
[K] hab −

[
Kab

])
, (87)

which is the well-known Lanczos equation [7]. If instead we take Σ to be null and choose the
null rigging adapted to a spacelike foliation of Σ (section 2.4), we decompose the equation into
components S11, S1A and SAB, which are respectively

κS11 = − [HAB] qAB,

κS1A = [H1B] qAB,

κSAB = − [H11] qAB. (88)

These relations agree with those of Poisson [11], who interprets μ := S11 as the surface energy
density, jA := S1A as the surface current and—since SAB is diagonal in that it is proportional to
the metric—p := − [H11] as the isotropic surface pressure of the null shell.

We conclude this section by comparing the result (83) to the analogous results in previous
works. As mentioned in footnote 2, Barrabès and Israel [9] assume n · n = const, which for-
mally excludes causality-changing hypersurfaces and they use the normalization n · � = η−1,
where η is a nowhere vanishing function along Σ. One this differing normalization convention
is taken into account, equation (31) in [9] agrees with our shell equation (83). In place of Hab,
they employ a different quantity (denotedKab), the jump of which however coincides with that
of Hab in all cases.

In [10] Mars and Senovilla consider only junction conditions and analyze the distributional
forms of curvature tensors, therefore the shell equation itself does not appear directly. However
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since the energy–momentum tensor is proportional to the Einstein tensor, the singular part of
the Einstein tensor (equation (71) in [10]) agrees with our

[
Πab

]
up to the appropriate con-

stant factor and projection. This singular part of the Einstein tensor also appears in explicitly
projected form in equation (23) of [13].

4.2. Thin shell equation from the action regularized distributionally

Here we explore a different method of regularizing the action integral at the shell. In the time-
like case this method was applied by Hájíček and Kijowski [20]. We show that it also works
for shells of any signature. We can write the metric tensor as

gμν = ḡμν = g+
μνθ + g−

μν (1 − θ) , (89)

where θ is the Heaviside step function defined in (65). This relation is then interpreted distri-
butionally. Reasonably rigorous treatments of tensor distribution theory on manifolds, can be
found in [10, 18, 19, 51, 52], therefore we only do here a short review.

If T is a type (k, l) tensor field on M we say that a type (l, k) tensor density ϕ of weight 1
is a dual density to T, since then the contraction 〈ϕ, T〉 = ϕμ1...μk

ν1...νl Tμ1...μk
ν1 ...νl is a scalar

density of weight 1 that may be integrated over D + 1 dimensional regions of M. Let us define
the vector space Dk,l(M) to consist of smooth compactly supported tensor densities of type
(l, k) (called test densities), and the space D∗

k,l(M) to consist of linear functionals on Dk,l(M)
that are continuous in the following sense. A linear functional χ : Dk,l(M) → R is continuous
and thus belongs to D∗

k,l(M) if for each sequence ϕn ∈ Dk,l(M) of test densities whose supports
are contained in a common compact set K ⊆ M which is itself located in the domain of a
coordinate chart, and such that the components (ϕn)μ1...μk

ν1...νl and their partial derivatives of
all orders tend to 0 uniformly,we have limn→∞ χ[ϕn] = 0. Elements of D∗

k,l(M) are called tensor
distributions of type (k, l). A tensor distribution χ ∈ D∗

k,l(M) is regular if there exists a (locally
integrable but otherwise ‘rough’) tensor field also denoted χ such that for any test density ϕ
we have χ[ϕ] =

∫
M〈χ,ϕ〉 dD+1x. This integral converges because ϕ has compact support and

since the integrand is a density, no volume form is necessary here. Otherwise the distribution
is singular. We remark that it is well-defined to take the tensor product of a tensor distribution
with a smooth tensor field, however products with non-smooth tensor fields only make sense
in limited circumstances.

de Rham [51] refers to a distributional k-form in the above sense as a current of degree k
or a k-current for short. Since antisymmetric contravariant tensor densities with (D + 1) − k
indices can be identified canonically with k-forms, it follows that the dual densitiesϕ of k-forms
ω can be canonically identified with (D + 1) − k-forms under the pairing map 〈ϕ,ω〉 = ω ∧ ϕ,
thus k-currents are continuous linear functionals on (D + 1) − k-forms. de Rham defines the
boundary ∂ω of a k-current ω by ∂ω[ϕ] = ω[dϕ], then the (distributional) exterior derivative
by dω = (−1)k+1∂ω.

Finally, a few remarks on notation and local representations are in order. As de Rham
proves6 in [51], distributions have the sheaf property, i.e. if D∗

k,l(U) denotes the space of
type (k, l) tensor distributions over the open set U, and V ⊆ U is an open subset, we have a
well-defined restriction map resV,U(χ) ≡ χ|V given by

χ|V [ϕ] :=χ[extU,V (ϕ)], (90)

6 de Rham deals only with currents in [51], not general tensor distributions. However his arguments are straightforward
to generalize to tensor distributions, in fact to distributions modelled on sections of arbitrary vector bundles.
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where extU,V : Dk,l(V) → Dk,l(U) extends the tensor densityϕ ∈ Dk,l(V) defined on V with com-
pact support to a tensor density defined on U with compact support by taking ϕ to be zero on
U\V . This means that the rule U 
→ D∗

k,l(U) is a presheaf of real vector spaces, and is in fact
a sheaf, i.e. if a tensor distribution vanishes in a neighborhood of each point in U, then it van-
ishes on U, and if compatible local distributions are given on an open cover, they glue together
to give a well-defined tensor distribution on the covered domain. One may then show that if
U ⊆ M is a coordinate domain and χ ∈ D∗

k,l(U) is a tensor distribution of type (k, l), we can
write χ uniquely as

χ = χμ1...μk
ν1...νl

∂μ1 ⊗ . . . ∂μk ⊗ dxν1 ⊗ · · · ⊗ dxνl , (91)

where the components are scalar distributions on U, and for distributions defined on M, the
entire distribution may be reconstructed from its sets of components if the manifold is covered
by coordinate domains. Moreover, on any test density ϕ we have

χ[ϕ] = χμ1...μk
ν1 ...νl

ϕμ1...μk
ν1 ...νl[1], (92)

where the contraction is a distributional scalar density (i.e. D + 1-form) interpreted as a D + 1-
current and it acts on the 0-form 1. Although the 1 function is not compactly supported, one
can also show [51] that it makes sense to let a distribution act—through the use of a partition
of unity—on a non-compactly supported test density and if the distribution itself has compact
support, then this is always convergent, therefore the above expression is well-defined. If we
further denote the action of a D + 1-current ω on 1 as

ω[1] :=
∫

M
ω, (93)

we obtain ‘classical’ notation for tensor distributions (e.g. similar to what is found in [1]), since
(1) it is possible to use index notation with tensor densities and make local calculations, (2)
actions of distributions can be symbolically denoted by an integral.

We identify the Heaviside step function θ with the corresponding 0-current and define the
(one-form) Dirac delta δΣ∗ associated to the hypersurface Σ to be the exterior derivative of the
Heaviside current, i.e. we have for any smooth compactly supported D-form (or equivalently,
vector density) ϕ

δΣ∗ [ϕ] = dθ[ϕ] = −∂θ[ϕ] = −θ[dϕ] = −
∫

M
θ dϕ

= −
∫

M+
dϕ = −

∫
−Σ

ϕ =

∫
Σ

ϕ. (94)

Since M is equipped with a volume form μg, choosing a rigging �μ pointing from M− to M+

with adapted normal nμ satisfying nμ�
μ = 1, also defines the volume element μ�,g on Σ. Then

it becomes possible to define a scalar distribution δΣ evaluated on a test D + 1-form ϕ as

δΣ[ϕ] :=
∫
Σ

f μ�,g, (95)
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where f is the scalar function uniquely determined7 byϕ = fμg. It is easy to verify the relation
(δΣμ are the components of the one-current δΣ∗ )

δΣμ = nμδ
Σ, (96)

which shows that the scalar δΣ depends on the choice of normal (i.e. it depends on the rigging
� only up to scaling). For any soldered quantity F̄ we then have distributionally

∂μF̄ = ∂μF + [F] δΣμ = ∂μF + [F] nμδ
Σ. (97)

Since the jump of the metric vanishes, the connection can be written as

Γκ
μν = Γ̄κ

μν , (98)

and its jump as (77)

[
Γκ

μν

]
=

1
2

(
nμξ

κ
ν + nνξ

κ
μ − nκξμν

)
, (99)

where ξμν =
[
gμν,�

]
. The curvature tensor is then

Rκ
λμν = R̄κ

λμν + δΣμ
[
Γκ

νλ

]
− δΣν

[
Γκ

μλ

]
= R̄κ

λμν +
(
nμ

[
Γκ

νλ

]
− nν

[
Γκ

μλ

])
δΣ. (100)

Let Rκ
λμν denote its singular part, i.e. the coefficients of δΣ. Expanding gives

Rκλμν = nκ

[
Hλμ

]
nν − nκ [Hλν] nμ + nλ [Hκν] nμ − nλ

[
Hκμ

]
nν , (101)

where
[
Hμν

]
= [Hab]ϑa

μϑ
b
ν (we refer to [10] for details). The scalar curvature is calculated by

contracting the curvature tensor twice as R = R̄ +RδΣ, where

R = 2
(
[Hab] νaνb − n2 [H]

)
. (102)

According to the jump relations (74), we may rewrite this as

R = −2
(
[χab] hab

∗ − [ϕa] νa
)

, (103)

which is −2κ-times the jump of the integrand of the rigged counterterm (58). The gravitational
(scalar) Lagrangian in the presence of a shell and interpreted as a distribution is then

LEH =
1

2κ
R − 1

κ

(
[χab] hab

∗ − [ϕa] νa
)
δΣ. (104)

It follows that the Einstein–Hilbert action over M is

SEH =
1

2κ

∫
M

R̄μg −
1
κ

∫
Σ

(
[χab] hab

∗ − [ϕa] νa
)
μ�,g

=
1

2κ

∫
M+

R+ μg +
1

2κ

∫
M−

R− μg −
1
κ

∫
Σ

[
Pμ

ν∇μnν
]
μ�,g, (105)

7 Note that in a shell spacetime, μg is merely continuous on Σ. This is not a problem as some distributions (those that
can be identified with Radon measures), including the various Dirac deltas can also be seen to be linear functionals on
continuous, rather than smooth test functions [51, 53].
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where we have used that χabhab
∗ − ϕaν

a can be written in the form Pμ
ν∇μnν . If we add to this

the bulk and thin shell matter actions, we obtain the same variational principle as given by
(66). We have thus shown that if instead of splitting the action into separate integrals on M+

and M− and adding counterterms, we integrate over M while taking into account the singular
contribution to the Lagrangian, the resulting singular terms give precisely the difference of the
counterterms that otherwise would have had to be added by hand.

It is interesting to note that there is no a priori reason for the singular part of the Lagrangian
to have the same value as the difference of the counterterms. The Einstein–Hilbert Lagrangian
density can be written in the form

LEH = Pκλμν (g)
√
−g∂κ∂λgμν + Q (g, ∂g)

√
−g, (106)

where the coefficients are

Pκλμν (g) =
1

2κ

(
gκμgλν − gκλgμν

)
, (107)

and

Q (g, ∂g) =
1

2κ
ΓκμνΓ

κμν − 1
2κ

gκλΓ
κ
∗Γ

λ
∗ , (108)

andΓκ
∗ = Γκ

μνgμν . Since only the second derivatives contribute singular terms, the Lagrangian
has the distributional form

LEH = L̄EH + Pκλμν√−gnκnλ

[
gμν,�

]
δΣ, (109)

while a variational counterterm is given by

B = −
∮
∂M

nκnλPκλμνgμν,�μ�,g, (110)

which is obtainable by integrating the first term in LEH by parts.
Since Pκλμν is algebraic in the metric and thus does not depend on the transversal deriva-

tives, it is clear that the jump of the integrand of B is the same as the singular part of LEH.
However if Pκλμν were to depend on the metric’s transversal derivative, the singular part of
the Lagrangian would be mathematically meaningless as Pκλμν would be discontinuous at Σ
where it is being evaluated. If we choose θ|Σ = 1/2 as the value of the step function on Σ, then
the meaning of such an expression can be salvaged as Pκλμν evaluated on the average value of
the metric’s transversal derivative at the price of taking products of Dirac deltas with discontin-
uous functions. Moreover, were Pκλμν to depend on the metric’s derivatives, the counterterm
would have to take a different form as one could no longer get rid of second derivatives in the
action by simple integrations by parts.

It thus seems that such a simple relation between the singular part of the Lagrangian and the
jump of the counterterms exists if the Lagrangian is affine in the second derivatives of the field
with coefficients that do not depend on the derivatives of the field, however if these conditions
are violated in a modified gravitational theory the above derivation breaks down and further
analysis would be necessary.

4.3. Thin shell equation from a first order action

We mention here for completeness that the correct shell equation may also be obtained without
having to regularize the Einstein–Hilbert action on Σ by employing a first order equivalent.

24



Class. Quantum Grav. 39 (2022) 015004 B Racskó

To ensure global validity, we choose the background connection action (55) rather than the
noncovariant ΓΓ-action (53).

As we have shown in section 3, we may view the first order equivalents as the Ein-
stein–Hilbert action extended with a particular variational counterterm. Therefore we may
ascertain without any explicit calculations that the first order action (55) leads to the correct
shell equation, as the difference of two different variational counterterms to not depend on the
metric’s transversal derivative, therefore their jumps always agree. However it is the jump of
the counterterm that appears in the action (66), therefore a first order action will lead to the
same variational principle and thus the same shell equation.

Nonetheless it is instructive to rederive the result via the first order action from the
beginning. The background connection action (55) is

S∇ = SEH + BBC =

∫
M

L∇ μg, (111)

where

L∇ =
1

2κ

{
R̄ + gμν

(
Δκ

μρΔ
ρ
κν −Δκ

κρΔ
ρ
μν

)}
, (112)

and Δκ
μν = Γκ

μν − Γ̄κ
μν . To ensure manifest covariance, we consider L∇ to be a function

of gμν and ∇̄κgμν , the covariant derivative of the metric with respect to the background
connection, where the relation [25]

Δκ
μν =

1
2

gκλ
(
∇̄μgνλ + ∇̄νgμλ − ∇̄λgμν

)
(113)

is relevant. A variation of the action leads symbolically to

δS∇ =

∫
M

(
δL∇ + L∇gμνδgμν

)
μg, (114)

where

δL∇ =
∂L∇
∂gμν

δgμν +
∂L∇

∂∇̄κgμν
δ∇̄κgμν

=
∂L∇
∂gμν

δgμν +
∂L∇

∂∇̄κgμν
∇̄κδgμν. (115)

Since the background connection ∇̄κ has no a priori relation with the volume element μg, we
may not use Gauss’ theorem with it. Therefore we must express ∇̄κδgμν with the Levi-Civita
connection ∇κ. This is accomplished via the difference formula [25]

∇̄κδgμν = ∇κδgμν +Δλ
κμδgλν +Δλ

κνδgμλ. (116)

Inserting this into the variation gives

δL∇ =

(
∂L∇
∂gμν

+
∂L∇

∂∇̄κgλν
Δμ

κλ +
∂L∇

∂∇̄κgμλ
Δν

κλ −∇κ
∂L∇

∂∇̄κgμν

)
δgμν

+∇κ

(
∂L∇

∂∇̄κgμν
δgμν

)
, (117)
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thus the variation of the action is

δS∇ =

∫
M

(
∂L∇
∂gμν

+ L∇gμν +
∂L∇

∂∇̄κgλν
Δμ

κλ +
∂L∇

∂∇̄κgμλ
Δν

κλ

−∇κ
∂L∇

∂∇̄κgμν

)
δgμν μg+

∮
∂M

nκ
∂L∇

∂∇̄κgμν
δgμν μ�,g. (118)

The bulk terms must be − 1
2κ Gμν in disguise, since the action differs from the Einstein–Hilbert

action in a total derivative term only. For the boundary term we have

2κ
∂L∇

∂∇̄κgμν
= Δκμν − 1

2

(
gλνgκμ + gλμgνκ − gλκgμν

)
Δλ −

1
2

gμνΔκ
∗ , (119)

where Δλ = Δμ
μλ and Δκ

∗ = Δκ
μνgμν . The details of the analogous derivation for the ΓΓ-

action (53) are given in appendix 9 of [47] and is therefore omitted here. Let the contraction
of the above expression be denoted

Mμν := 2κnκ
∂L∇

∂∇̄κgμν
= nκΔ

κμν − 1
2

(
gλνnμ + gλμnν − nλgμν

)
Δλ

− 1
2

gμνΔκ
∗nκ. (120)

We rewrite the variational principle for thin shells as

S =
1

2κ

∫
M+

{
R̄ + gμν

(
Δκ

μρΔ
ρ
κν −Δκ

κρΔ
ρ
μν

)}
μg

+
1

2κ

∫
M−

{
R̄ + gμν

(
Δκ

μρΔ
ρ
κν −Δκ

κρΔ
ρ
μν

)}
μg

+

∫
M+

LMdD+1x +

∫
M−

LM dD+1x +

∫
Σ

LTS dDy, (121)

and varying this with respect to the metric gives

δS =

∫
M+

1
2

(
Tμν − 1

κ
Gμν

)
δgμν μg +

∫
M−

1
2

(
Tμν +

1
κ

Gμν

)
δgμν μg

− 1
2κ

∫
Σ

[Mμν] δgμν μ�,g +

∫
Σ

1
2

Sμνδgμν μ�,g, (122)

where Sμν is again defined by (69). Imposing the stationarity of the action gives the boundary
equation

κSμν = [Mμν] . (123)

The jump of Mμν can be written as

[Mμν] = nκ

[
Γκμν

]
− 1

2

(
gλνnμ + gλμnν − nλgμν

)
[Γλ] − 1

2
gμν

[
Γκ
∗
]

nκ, (124)

where Γλ = Γμ
λμ and Γκ

∗ = Γκ
μνgμν . The connection ∇̄μ was assumed to be a smooth back-

ground structure, therefore
[
Δκ

μν

]
=
[
Γκ

μν

]
−
[
Γ̄κ

μν

]
=
[
Γκ

μν

]
. If we decompose [Mμν] in

the frame (�, ea) (since the calculation is lengthy, the details are in appendix B), we obtain that
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[
M00

]
= 0,

[
M0a

]
= 0, and thus [Mμν] is tangential with [Mμν] =

[
Mab

]
eμa eνb , its projected

components being[
Mab

]
= n2

(
[H] hab

∗ −
[
Hab

])
+ νa

[
Hb

c

]
νc +

[
Ha

c

]
νbνc − [Hcd] νcνdhab

∗

− [H] νaνb, (125)

which is equal to
[
Πab

]
. The shell equation is

κSab =
[
Mab

]
, (126)

where Sab is defined by Sμν = Sabeμa eνb . This equation agrees with (83), which shows that the
first order action indeed leads to the correct equations.

We remark that the corresponding derivation for the Einstein–Hilbert action extended with
counterterms crucially relied on the variation formula (59) originally derived by Parattu et al
[28], which is a nontrivial result and difficult to obtain. On the other hand the first order action
provided a straightforward derivation, which is clearly advantageous. The disadvantage of the
first order approach is that sufficiently complicated theories of gravitation (e.g. Horndeski the-
ory [38]) do not admit first order equivalent Lagrangians, therefore this method cannot always
be relied on.

Whether a given modified theory of gravity with second order field equations can be
described in terms of a first order Lagrangian can be determined easily by looking at the field
equations. A first order Lagrangian will produce Euler–Lagrange equations that have at most
an affine dependence on the second derivatives of the field variables. However it is known [54,
55] that—at least locally—the converse of this statement is also true, every locally variational
second-order differential equation8 that is affine in the second derivatives has a local first order
Lagrangian. Thus, a theory of gravitation specified in terms of a second order Lagrangian
with second order field equations will have a (possibly only local and non-covariant)
first order equivalent if and only if the field equations are affine functions of the second
derivatives.

Looking at the field equations of Horndeski’s theory (presented for example [40]) one can
ascertain that the restrictions G5(φ, X) = 0, G4(φ, X) = G4(φ) and G3(φ, X) = G3(φ) are nec-
essary to ensure the existence of a first order equivalent. This includes the Brans–Dicke type
theories where the scalar field Lagrangian is first order and the non-minimal coupling of the
scalar field to gravity does not involve the scalar field derivatives but excludes the Galileon-
type models as well as kinetic gravity braiding where the higher-order nonlinear derivative
interaction of the scalar field prevents the existence of first order equivalent Lagrangians. Out-
side Horndeski theories, Gauss–Bonnet gravity is an example of a theory with no first order
Lagrangian, as the field equations are quadratic in the curvature tensors [35].

5. Conclusions

The purpose of this paper was to provide a variational formalism for spacetimes containing a
thin shell of completely unconstrained signature. To treat shells of arbitrary signature, we have
used the formalism of rigged hypersurfaces, reviewed in section 2. Shells are incorporated into
the variational principle as interior boundaries and their equations of motion are the natural

8 Strictly speaking, those differential equations for which the number of equations agree with the number of unknown
functions, which are referred to as source equations in e.g. [56]. Euler–Lagrange equations are always source
equations.
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boundary conditions on them. The Einstein–Hilbert action needed to be regularized at the shell
to ensure a valid variational principle. We have investigated multiple possible regularization
procedures.

In subsection 4.1, regularization has been carried out by adding variational counterterms
(reviewed in section 3) to the action. The shell equation (83) obtained by varying this mod-
ified action reproduces the results obtained through distributional methods by Barrabès and
Israel [9], Mars and Senovilla [10] and Senovilla [13]. We have shown that the shell equation
does not depend on the choice of the counterterm and have identified the geometric quan-
tity the jump of which appears in the equations of motion to be the (tensorial) canonical
momentum of the gravitational field, generalized to unconstrained instead of just spacelike
foliations.

We have considered a different regularization process in subsection 4.2 by focusing on the
singular part of the Lagrangian. We have shown that the singular term is related to the jump
of the counterterm and leads to the same variational principle. This generalized the procedure
employed by e.g. Hájíček and Kijowski [20] to arbitrary shells. We have also argued that a
more general Lagrangian might have a less trivial relationship between the singular parts and
the counterterms.

Finally, in subsection 4.3, we have obtained the equations of motion of the shell by employ-
ing a first order equivalent Lagrangian. This lead to a simpler variational procedure, but we
have noted that more complicated theories might not have first order equivalents, rendering
this method less adequate for generalization.

Aside from filling a gap in the literature, we expect that this work would be useful for formu-
lating thin shells and junction conditions along generic hypersurfaces in second order modified
theories of gravity, such as Horndeski theory [38]. Second order Lagrangians are capable of
producing second order differential equations at least quadratic in the second derivatives (the
equations of motions associated with the G3 term in Horndeski’s theory is an example), which
could lead to ill-defined products of delta functions if the distributional method were to be
followed. Thus it would seem that variational approaches to thin shells are better behaved for
such theories and always lead to unambigous shell equations.
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Appendix A. Decomposition of Πμν

In this appendix we carry out the explicit decomposition of the tensor field

Πμν = gμν
(
Pρ

σ∇ρnσ
)
−∇(μnν) −∇ρ�

ρnμnν (A.1)
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defined along the hypersurface Σ in the frame (�, ea). This calculation is best carried out by
evaluating Πμν in adapted coordinates (σ, ya) such that the ya parametrize Σ, while

�μ =

(
∂

∂σ

)μ

. (A.2)

In such an adapted coordinate system we have

�μ = δμ0 , nμ = δ0
μ,

gμν = n2δμ0 δ
ν
0 + νa

(
δμ0 δ

ν
a + δμa δ

ν
0

)
+ hab

∗ δμa δ
ν
b ,

nμ = gμ0 = n2δμ0 + νaδμa , (A.3)

Pρ
σ∇ρnσ = χcdhcd

∗ − ϕcν
c, (A.4)

and the connection Γκ
μν has components

Γ0
00 = U, Γa

00 = Za, (A.5)

Γ0
0a = ϕa, Γ0

ab = −χab, Γa
0b = ψa

b , Γc
ab = γc

ab. (A.6)

The elements U and Za involve transversal derivatives of the frame vectors and thus are not
independent of the way the quantities are extended off Σ. Fortunately, they will cancel. We
first evaluate what we can without fixing the free indices as

Πμν = gμν
(
χcdhcd

∗ − ϕcν
c
)
+ gμκgνλΓ0

κλ − Γρ
ρ0nμnν , (A.7)

then we get

Π00 = n2
(
χabhab

∗ − ϕaν
a
)
+
(
n2
)2

U + 2n2ϕaν
a − χabν

aνb

−
(
n2
)2

U −
(
n2
)2
ψ

= n2
(
χabhab

∗ − ϕaν
a
)
+ 2n2ϕaν

a − χabν
aνb −

(
n2
)2
ψ

=
(
n2hab

∗ − νaνb
)
χab + n2νaϕa −

(
n2
)2
ψ, (A.8)

Π0a = νa
(
χbchbc

∗ − ϕbν
b
)
+ g0κgaλΓ0

κλ − Γρ
ρ0n2νa

= νa
(
χbchbc

∗ − ϕbν
b
)
+ n2νaU + n2hab

∗ ϕb + νaνbϕb − νbhac
∗ χbc

− n2νaU − n2νaψ

=
(
νahbc

∗ − νbhac
∗
)
χbc + n2hab

∗ ϕb − n2νaψ, (A.9)

Πab = hab
∗
(
χcdhcd

∗ − ϕcν
c
)
+ gaκgbλΓ0

κλ − Γρ
ρ0ν

aνb

= hab
∗
(
χcdhcd

∗ − ϕcν
c
)
+ νaνbU + νahbc

∗ ϕc + hac
∗ ν

bϕc − hac
∗ hbd

∗ χcd

− Uνaνb − νaνbψ

=
(
hab
∗ hcd

∗ − hac
∗ hbd

∗
)
χcd +

(
νahbc

∗ + hac
∗ ν

b − hab
∗ νc

)
ϕc − νaνbψ. (A.10)
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Appendix B. Decomposition of [Mμν ]

We now carry out the decomposition in the frame (�, ea) of the tensor field

[Mμν] = nκ

[
Γκμν

]
− 1

2

(
gλνnμ + gλμnν − nλgμν

)
[Γλ] − 1

2
gμν

[
Γκ
∗
]

nκ, (B.1)

defined only along the hypersurface Σ, given in (124). As we have argued at (76), we may
write the jump of the metric’s derivative as[

∂κgμν

]
= nκξμν , (B.2)

where ξμν =
[
gμν,�

]
is the jump of the transversal derivative. The jump of the connection is

then

[
Γκ

μν

]
=

1
2

(
nμξ

κ
ν + nνξ

κ
μ − nκξμν

)
. (B.3)

This gives

[Γλ] =
[
Γμ

λμ

]
=

1
2

(
nμξ

μ
λ + nλξ

μ
μ − nμξμλ

)
=

1
2

nλξ
μ
μ , (B.4)

and

[
Γκ
∗
]
=

1
2

(
2nμξ

κμ − nκξμμ
)
= nμξ

κμ − 1
2

nκξμμ. (B.5)

We also have

nκ

[
Γκ

μν

]
=

1
2

(
nμξ

κ
ν nκ + nνξ

κ
μnκ − n2ξμν

)
. (B.6)

With these, we can write

[Mμν] =
1
2

(
nμξνκnκ + nνξμκnκ − n2ξμν

)
− 1

4

(
gλνnμ + gλμnν − nλgμν

)
× nλξ

κ
κ − 1

2
gμν

(
nλξ

κλ − 1
2

nκξλλ

)
nκ

=
1
2

(
nμξνκnκ + nνξμκnκ − n2ξμν

)
− 1

4

(
nνnμ + nμnν − n2gμν

)
ξκκ

− 1
2

gμνnκnλξ
κλ +

1
4

n2gμνξλλ . (B.7)

Contracting with nν gives

[Mμν] nν =
1
2

(
nμξνκnνnκ + n2ξμκnκ − n2ξμνnν

)
− 1

4

(
n2nμ + n2nμ − n2nμ

)
ξκκ − 1

2
nμnκnλξ

κλ +
1
4

n2nμξλλ

=
1
2

nμξνκnνnκ −
1
4

n2nμξκκ − 1
2

nμnκnλξ
κλ +

1
4

n2nμξλλ = 0. (B.8)
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Since [Mμν] is symmetric, this implies that it is tangential to Σ with [Mμν] =
[
Mab

]
eμa eνb , and

these components are given by[
Mab

]
= ϑa

μϑ
b
ν [Mμν]

=
1
2

(
νaξνκϑb

νnκ + νbξμκϑa
μnκ − n2ξμνϑa

μϑ
b
ν

)
− 1

4

(
2νaνb − n2hab

∗
)
ξκκ − 1

2
hab
∗ nκnλξ

κλ +
1
4

n2hab
∗ ξλλ

=
1
2

(
νaϑb

μ + νbϑa
μ

)
ξμνnν −

1
2

n2ξμνϑa
μϑ

b
ν +

1
2

(
n2hab

∗ − νaνb
)
ξκκ

− 1
2

hab
∗ nκnλξ

κλ (B.9)

In order to proceed, we write

ξμν =
(
ϑa
μeκa + nμ�

κ
) (

ϑb
νeλb + nν�

λ
)
ξκλ

= 2 [Hab]ϑa
μϑ

b
ν + ξ�a

(
ϑa
μnν + nμϑ

a
ν

)
+ ξ�nμnν , (B.10)

where we have used [Hab] = 1
2 eμa eνbξμν and defined

ξ�a = ξμνeμa�
ν , ξ� = ξμν�

μ�ν. (B.11)

Then

ξμνϑa
μnν = 2

[
Ha

b

]
νb + ξ�b

(
hab
∗ n2 + νaνb

)
+ ξ�νan2,

ξμνϑa
μϑ

b
ν = 2

[
Hab

]
+ ξ�c

(
hac
∗ ν

b + νahbc
∗
)
+ ξ�νaνb,

ξμνnμnν = 2 [Hab] νaνb + 2n2ξ�aν
a +

(
n2
)2
ξ�,

ξκκ = 2 [H] + 2ξ�aν
a + n2ξ�, (B.12)

and inserting these back into
[
Mab

]
gives

[
Mab

]
=

1
2

(
2νa

[
Hb

c

]
νc + ξ�c

(
νahbc

∗ n2 + νaνbνc
)
+ ξ�νaνbn2

)
+

1
2

(
2νb

[
Ha

c

]
νc + ξ�c

(
νbhac

∗ n2 + νaνbνc
)
+ ξ�νaνbn2

)
− 1

2
n2
(
2
[
Hab

]
+ ξ�c

(
hac
∗ ν

b + νahbc
∗
)
+ ξ�νaνb

)
+

1
2

(
n2hab

∗ − νaνb
) (

2 [H] + 2ξ�cν
c + n2ξ�

)
− 1

2
hab
∗

(
2 [Hcd] νcνd + 2n2ξ�cν

c +
(
n2
)2
ξ�
)
. (B.13)

Here all terms involving ξ�a and ξ� cancel, and the remaining terms are[
Mab

]
= n2

(
[H] hab

∗ −
[
Hab

])
+ νa

[
Hb

c

]
νc + νb

[
Ha

c

]
νc

− hab
∗ [Hcd] νcνd − [H] νaνb. (B.14)

31



Class. Quantum Grav. 39 (2022) 015004 B Racskó

ORCID iDs
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