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Metrics for next-generation gravitational-wave detectors

Evan D. Hall1 and Matthew Evans1

1LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Gravitational-wave astrophysics has the potential to be transformed by a global network of longer, colder,
and thus more sensitive detectors. This network must be constructed to address a wide range of science goals,
involving binary coalescence signals as well as signals from other, potentially unknown, sources. It is crucial to
understand which network configurations—the number, type, and location of the detectors in the network—can
best achieve these goals. In this work we examine a large number of possible three-detector networks, variously
composed of Voyager, Einstein Telescope, and Cosmic Explorer detectors, and evaluate their performance against
a number of figures of merit meant to capture a variety of future science goals. From this we infer that network
performance, including sky localization, is determined most strongly by the type of detectors contained in the
network, rather than the location and orientation of the facilities.

I. INTRODUCTION

Gravitational-wave science, which started in earnest with
the first detection of gravitational-waves in 2015 [1], has im-
mense unexplored potential. Aiming to exploit this potential,
the gravitational-wave community is already considering de-
signs for next generation of observatories [2, 3]. It is clear
that to get the most science out of the gravitational-wave sig-
nals we detect, a network of large-scale observatories will
be required. However, at present there are many unanswered
questions about how best to construct such a network.

In this paper we will address several of the fundamental
questions required to maximize the scientific potential of a ter-
restrial gravitational-wave detector network. These questions
include: Which science goals are sensitive to the location and
orientation of the detectors in the network, and in what way?
How does the design of the network’s constituents impact its
output? What science can be done with a heterogeneous mix
of second and third generation detectors?

Instrument and facility designs often focus on optimizing
the performance of single detectors rather than networks. Such
optimizations have relied on metrics such as the inspiral range—
the distance out to which each detector could detect a model
system (usually a 1.4–1.4 M� binary coalescence) with a cer-
tain signal-to-noise ratio [4]—or the detector’s strain sensitiv-
ity [5]. A variety of cosmological generalizations of these
range metrics have been developed [6]; one such general-
ization, the response distance, is shown in Fig. 1. Effective
strain sensitivities are shown in Fig. 2, taking into account ef-
fects from frequency-dependent antenna patterns [7] and multi-
interferometer detectors. In these figures and henceforth in the
present work, the instrument designs considered are Advanced
LIGO, a room-temperature detector with glass test masses con-
tained within the 4 km L-shaped LIGO facilities [8]; Voyager,
a potential cryogenic silicon detector designed to fit within the
LIGO facilities [9]; Einstein Telescope (ET), a next-generation
10 km triangular facility containing three pairs of detectors,
both room-temperature and cryogenic (the “ET-D” configu-
ration) [2, 10]; and Cosmic Explorer (CE), a next-generation
40 km L-shaped facility with one cryogenic silicon detector [3].

Systematic studies of gravitational-wave detector network
optimization, measured quantitatively via a set of metrics, go
back more than a decade. Searle et al. [11] considered how co-

incident detections of binary neutron stars could be augmented
by the addition of another facility to the existing gravitational-
wave network. Schutz [12] proposed three figures of merit for
a gravitational-wave network: the triple-coincidence detection
rate, the isotropy of detections across the sky, and the typical
localization of events on the sky. Raffai et al. [13] optimized
the facility placement of a set of triangular (Einstein-Telescope-
like) detectors as well as the placement of a LIGO facility in
India; this procedure was then generalized by Hu et al. [14].
Michimura et al. [15] optimized the optical configuration of
the Kagra detector [16] with respect to the sky localization
performance of the global advanced detector network.

More generally, others [17–19] have already examined the
performance of a set of plausible third-generation gravitational-
wave networks against some set of metrics. The binary-neutron-
star (BNS) localization capabilities of networks with third-
generation detectors has been explored by Mills et al. [17]. The
binary-black-hole (BBH) parameter estimation capabilities—
including masses, spins, redshift, and localization—of net-
works with third-generation detectors has been explored by
Vitale and Evans [18] and Vitale and Whittle [19].

While these works evaluate the performance of some net-
works, and optimize a few assemblies of detectors for some
performance metrics, they do not address the critical questions
posed earlier in this section. In this work, we present in full the
performance of a large ensemble of networks against a list of
metrics, in order to see the full landscape of network perfor-
mance. This reveals which metrics require careful optimization,
and which are relatively insensitive to network configuration.

II. METRICS THAT CONNECT NETWORK
PARAMETERS WITH SCIENCE GOALS

The questions raised in Sec. I naturally drive one to “op-
timally” choose the network parameters—the number, type,
location, and orientation of third-generation instruments across
the globe—based on what information is needed to address
specific science goals. These goals are quite diverse; e.g., de-
termining the history of star formation, testing corrections to
general relativity, uncovering the nuclear physics inside neu-
tron stars and supernovae, and constraining the dark energy
equation of state. Each of these may require different kinds of
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FIG. 1: The response distance [6, 20] of selected second- and third-
generation detectors for equal-mass, nonspinning binaries, shown as
a function of total source-frame mass. The binaries are distributed
isotropically in sky location and inclination angle. The solid lines
denote the horizon—the redshift beyond which none of the sources
are detected. The shaded bands then show the redshifts at which 10%
and 50% of the sources at that redshift are detected. Here a source
is assumed to be detected if it appears in a detector with matched-
filter signal-to-noise ratio (SNR) ≥ 8. The detectors considered here
are Advanced LIGO (aLIGO) [8], Voyager [9], Einstein Telescope
(ET) [2, 10], and Cosmic Explorer (CE) [3]. The response distance is
a measure of detector sensitivity only; it does not include assumptions

about the redshift distribution of astrophysical sources.

observational information or levels of precision. In addition,
each of these science goals involves a variety of data analysis
techniques and scientific products whose connection to the
network parameters is not immediately obvious.

For these reasons, network optimization studies [13–15] of-
ten focus on optimizing a smaller number of metrics, by which
we mean intermediate data products that have a reasonably
clear dependence on the network parameters and which then
feed into the more specialized analysis that is used to address
the science goals. Such metrics include signal-to-noise ratio,
polarization sensitivity, and source localization.

In addition to choosing a set of metrics, one must also con-
sider whether to optimize these metrics for the best events, or
the typical events. Certain studies benefit from the large statis-
tics of the total population of events, thereby suggesting that
metrics should be optimized for the median event. Other stud-
ies benefit from collecting a few of the loudest events, thereby
suggesting that metrics should be optimized for loudest events.
Still other studies require collecting a few rare or special events,
which may not be captured in the generic metrics; these studies
may need to optimize the median event so as not to lose out on
the rare events.

In the following section we choose a few example metrics
and explore how different third-generation networks perform.
Where appropriate, we examine how networks perform for
both the average (median) event and the best 10% of events.

10 100 1000
Frequency [Hz]

10−25

10−24

10−23

10−22

A
SD

of
st

ra
in

[1
/H

z1/
2 ]

Optimal source
Best 10% of sources
Median source

2018–12–08

aLIGO
Voyager

ET
CE

FIG. 2: Effective strain amplitude spectral density (ASD) of selected
second- and third-generation detectors for monochromatic sources
distributed isotropically in sky position, inclination, and polarization.
The solid lines denote the effective strain sensitivity for an optimally
oriented source. The bands then denote the effective sensitivity for the
best 10% of sources, and the median source. The detectors considered
here are Advanced LIGO (aLIGO), Voyager, Einstein Telescope (ET),

and Cosmic Explorer (CE).

Code Location Lat. Long. θXE

H Hanford, USA 46.5◦ −119.4◦ 126◦

L Livingston, USA 30.6◦ −90.8◦ −162◦

V Pisa, Italy 43.6◦ 10.5◦ 71◦

I* India 14.2◦ 76.4◦ 45◦

K Kamioka, Japan 36.4◦ 137.3◦ 28◦

E* Europe 47.4◦ 8.5◦ 11◦

A* Western Australia −31.5◦ 118.0◦ −58◦

U* Utah, USA 40.8◦ −113.8◦ −30◦

TABLE I: Coordinates and orientations for the facilities considered
in this work. θXE is the counterclockwise angle from due east made
by the X-arm (or for ET, by the base of the triangle). Facilities with
an asterisk have not been constructed and the coordinates are chosen
for illustrative purposes only. Facility coordinates are rounded to the

nearest 0.1◦ (∼10 km accuracy).

III. METRICS

We have chosen several metrics relating to parameter es-
timation for coalescing binaries, as well as metrics intended
to evaluate network performance for neutron-star/supernova
physics and stochastic backgrounds:

1. the sky localization area of 1.4–1.4 M� binary neutron
star coalescences at redshift z = 0.3, a metric useful for
assessing the feasibility of electromagnetic followup;

2. the signal-to-noise ratio of 30–30 M� binary black hole
coalescences at redshift z = 2, a metric for quantifying
the quality of the most frequent events;

3. the distance uncertainty (or equivalently, redshift uncer-
tainty) of the 30–30 M� binary black hole coalescences
at z = 2, a metric useful for assessing the constrain-
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ing power of third-generation networks on the stellar
evolution history of the universe;

4. the inclination angle uncertainty of the same 30–30 M�
systems at z = 2, which is representative of the net-
work’s ability to distinguish between gravitational-wave
polarizations;

5. the signal-to-noise ratio of a high-frequency strain signal,
a metric useful for studies of the post-merger signal in
neutron star coalescences, and for galactic supernovae;
and

6. the level of stochastic background that could be observed
with SNR = 1 after one year of observation time.

While these metrics have chosen to be representative of the
basic kinds of signal searches and parameter estimation prob-
lems that are carried out with gravitational-wave detectors, they
feed more broadly into overarching science goals. For exam-
ple, for tests of general relativity, the SNR performance for
binary black-hole systems as quantified by metric (2) is related
to the precision with which one can perform spectroscopy on
black hole ringdown signals [21], and the metric (4) is related
to polarization-discrimination ability required to carry out a
broad class of polarization-based relativity tests [22]. Also,
we expect that good network sensitivity to continuous-wave
signals should correlate with the SNR metrics 2 and 5, since
the continuous-wave sensitivity depends strongly on the strain
sensitivities of the constituent detectors in the network; hence
we do not include a separate continuous-waves metric.

Our strategy for exploring the above metrics is as follows.
First, we write down a list of possible three-facility config-
urations using various combinations of second- and third-
generation detectors; in the end we select nine such combi-
nations. (We stress the distinction between detector and facil-
ity: while each Cosmic Explorer facility contains one Cosmic
Explorer detector, each Einstein Telescope facility contains
three Einstein Telescope detectors, arranged in an equilateral
triangle.) For each of these nine configurations, we generate
an ensemble of possible networks by allowing the locations
of the third-generation facilities (ET or CE) to vary randomly
across the globe [23], and by allowing the Voyager detectors
to be chosen randomly from one of five facilities (Hanford,
Livingston, Pisa, India, and Kamioka). For each of the config-
urations involving at least one ET or CE facility, we generate
200 random networks; for the three-Voyager configuration we
generate 10 networks (the maximum possible by choosing 3
facilities from a set of 5); and for the HLV configuration we
use only the one existing network with two LIGO detectors at
Hanford and Livingston and one Virgo detector [24] at Pisa.
Any network realization with the facilities placed too close
together (area of the planar triangle spanned by the facilities
is less than 0.25r⊕2, where r⊕ is the radius of the Earth) is re-
jected. In total, this results in more than 1000 networks whose
performance we evaluate. In the subsequent plots, the random
networks are shown as circles, with the color of each circle
corresponding to the nine configurations given above.

For each of the nine configurations we generate a single,
plausible network using the facility coordinates given in Tab. I,
with detectors assigned to facilities according to Tab. II. These
are shown as colored stars in the subsequent plots.

Network H L V I K E A U
HLV aL aL AdV — — — — —
3Voy Voy — Voy Voy — — — —
ET/2Voy — Voy — — Voy ET — —
CE/2Voy — — Voy — Voy — — CE
ET/CE/Voy — — — Voy — ET — CE
2CE/Voy — — — — Voy — CE CE
ET/2CE — — — — — ET CE CE
3CE — — — — — CE CE CE
3ET — — — — — ET ET ET

TABLE II: Composition of plausible network configurations, shown
as stars in the subsequent plots. “aL” is Advanced LIGO, “AdV” is
Advanced Virgo; “Voy” is LIGO Voyager; “ET” is Einstein Telescope,
and “CE” is Cosmic Explorer. H, L, V, I, K, E, A, and U are facilities

whose coordinates are given in Tab. I.

For the metrics involving binary coalescences, we generate
12 × 82 = 768 systems distributed isotropically in the sky (via
the HEALPix scheme [25][26]), and with random inclinations.
The components of the binary are non-spinning and have equal
mass. For each of the >1000 networks, we evaluate each metric
against all of these systems, resulting in a distribution of 768
values; we then extract the median value of this distribution,
and the value delimiting the best 10% of the distribution. No
SNR cuts or trigger thresholds are applied. The stochastic
metric results in only one value per network, so no computation
of quantiles is necessary.

Before presenting the results of the metrics exploration, we
remark on the different topologies of the Cosmic Explorer and
Einstein Telescope facilities. As noted above, the Einstein Tele-
scope facility contains six interferometers arranged into three
identical detectors, arranged in an equilateral triangle. Unlike
the single-detector Cosmic Explorer facility, the three-detector
Einstein Telescope facility can sense both gravitational-wave
polarizations of incoming events, providing information about
the signal that can be used to better estimate the parameters
of the astrophysical source. As will be seen in the next sub-
sections, this difference will impact network performances for
metrics that depend on the polarization content of the signal.

A. Localization of neutron-star binaries at z = 0.3

Out to redshift z = 0.3, one may reasonably expect >500
binary neutron star coalescence events to pass through the
earth every year, even assuming a pessimistic local merger rate
density ∼100 Gpc−3 yr−1. These events, if sufficiently localized,
will be within the followup capabilities of next-generation
telescopes.

With a network of three separate detector facilities, events
can be localized to an ellipse on the sky. In this work we
compute the localization area (90% confidence interval) via
the basic Fisher matrix procedure described by Singer and
Price [27, §B], with uniform priors.

In Fig. 3 we plot the resulting distributions for the best 10%
of localizations, with the networks sorted by the area spanned
by the three facilities. As expected, the localization perfor-
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FIG. 3: Distribution of best 10% sky localization areas (90% con-
fidence) for randomly simulated networks, shown for z = 0.3 and
M1 = M2 = 1.4 M�. The horizontal axis denotes the area of the trian-
gle spanned by the three facilities in units of earth radii squared. Stars

indicate plausible network configurations (Tab. II).
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FIG. 4: Scatter plot showing median sky localization and best 10%
sky localization (90% confidence) for z = 0.3 and M1 = M2 = 1.4 M�.
The HLV point is omitted. Stars indicate plausible facility locations,

as given in Tab. II.

mance scales inversely with the area. It is also clear that each
addition of a 3G facility to the network significantly improves
the network’s localization capability. A network composed of
two 2G facilities and one 3G facility is roughly a factor of 3
better than a baseline set of three 2G facilities. Including two
3G facilities offers an order of magnitude improvement over
the baseline, while a full 3G network offers another factor of 4
or 5, with a significant fraction of localizations below 1 deg 2.

In Fig. 4 we plot the best 10% of localizations against the
median localizations. This result shows that these two metrics
are highly correlated, indicating that there is no need to trade
high performance on the best events for good performance on
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FIG. 5: Scatter plot showing median SNR and best 10% SNR for a
M1 = M2 = 30 M� binary black-hole coalescence at redshift z = 2.

the majority of events, at least for localization capability.

B. Signal-to-noise ratios of black-hole binaries at z = 2

To evaluate the signal-to-noise ratio (SNR) performance of
our ensemble of networks, we compute the matched-filter net-
work SNRs for a population of 30–30 M� binary black hole
coalescences at z = 2 distributed isotropically in the sky and
with random inclinations. Fig. 5 shows the performance of
the ensemble of networks by plotting each network’s median
SNR against its best 10% SNR. Unlike the distribution of lo-
calizations, the distribution of SNRs has comparatively little
dependence on the location and orientation of the detectors;
instead, the network performance is determined predominantly
by the network composition, with a scatter .30%. For this
particular choice of mass and redshift, Cosmic Explorer ac-
cumulates more SNR than Einstein Telescope; however, for
heavy systems (total mass &100 M�) or for systems at very
high redshift, Einstein Telescope will accumulate more SNR.

For the networks consisting of two or more third-generation
facilities, a slight anticorrelation of the median and best 10%
SNRs can be observed. This can be explained as follows: in
all cases the network SNR is dominated by the SNR of the
third-generation detector(s) (see Fig. 1). For networks with
only one third-generation facility, the network SNR is therefore
determined by the antenna pattern of the single third-generation
facility regardless of its location and orientation. For networks
with two or three third-generation facilities, if these facilities
are placed so that their antenna patterns mostly overlap, they
will jointly detect events at the antenna pattern maxima with
good SNR at the expense of events that are incident close to
the antenna pattern minima. This leads to enhanced SNR for
the best 10% of events and diminished SNR for the median
events. Conversely, if these facilities are placed so that their
antenna patterns have little overlap, then the network antenna
pattern is more isotropic, leading to better SNR for the median
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FIG. 6: Distribution of median fractional redshift uncertainties (90%
confidence) for randomly simulated networks, shown for z = 2 and
M1 = M2 = 30 M�. The horizontal axis denotes the condition number

(Appendix A) of the network. The HLV point is omitted.

events and worse SNR for the best 10% of events.

C. Redshift and inclination angle uncertainties for black-hole
binaries at z = 2

Precise measurements of black hole redshifts at z & 1 can
constrain the redshift distribution of black hole binaries, and
hence the star formation rate and the delay time from star
formation to merger [28]. Measurement of the redshift is also
critical to determining the source-frame mass of the component
black holes, and thus their astrophysical origin.

The distance information in a binary coalescence signal
is partially degenerate with the inclination angle ι (iota) of
the binary relative to the line of sight. Disentangling the two
requires good discrimination of the polarization of the incident
wave. To quantify the polarization discrimination ability of
a particular network, we can collect the N detector response
tensors [29], each with five independent components, into an
N × 5 matrix and compute its condition number (appendix A).
The condition number of the network describes how well the
network can reconstruct the parameters of the incoming wave
from the detector signals [30, 31].

Fig. 6 shows the median redshift uncertainties for 30–30 M�
black hole binaries coalescing at z = 2, plotted against the
network condition number. Fig. 7 then shows the median ver-
sus best 10% redshift uncertainties for 30–30 M� black hole
binaries coalescing at z = 2. The equivalent plots for the cos ι
are shown in Figs. 8 and 9.

The primary conclusion which can be drawn from Figs. 7
and 9 is that a network optimized for the best events will
also perform well for typical events, which is similar to the
conclusion for sky localization from Fig.4. Figs. 6 and 8, on
the other hand, indicate that while there is some dependence
on network condition number, distance and inclination angle
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FIG. 7: Scatter plot showing median and best 10% redshift uncertain-
ties (90% confidence) for z = 2 and M1 = M2 = 30 M�. The HLV

point is omitted.
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FIG. 8: Distribution of median fractional uncertainties (90% con-
fidence) in cos ι (the cosine of the inclination angle) for randomly
simulated networks, shown for z = 2 and M1 = M2 = 30 M�. The
horizontal axis denotes the condition number of the network. The
HLV point is omitted. The median uncertainty & 200 % for the three-
Voyager networks and some of the CE–Voyager networks indicates
that essentially no information about the inclination angle is recovered

from the median event for these networks.

uncertainties are not strong functions of detector location and
orientation.

We also note that the networks with one Einstein Telescope
and two Voyagers yield smaller redshift and inclination uncer-
tainties than the networks with one Cosmic Explorer and two
Voyagers, even though (as remarked in section III B) Cosmic
Explorer accumulates more SNR for this particular black hole
system than Einstein Telescope. We expect that the smaller
uncertainties arise from the fact that Einstein Telescope senses
both polarizations of the signal while Cosmic Explorer senses
only one.
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FIG. 9: Scatter plot showing median and best 10% uncertainties (90%
confidence) in cos ι for z = 2 and M1 = M2 = 30 M�. The HLV point

is omitted.

0 5 10 15
Median high-frequency SNR

0

5

10

15

20

25

30

B
es

t1
0%

hi
gh

-f
re

qu
en

cy
SN

R

HLV
3Voy
ET/2Voy
CE/2Voy
ET/CE/Voy

2CE/Voy
ET/2CE
3CE
3ET

FIG. 10: Median and best 10% high-frequency signal-to-noise ratios
for a distribution of 3G networks, assuming a strain with uniform

amplitude |h( f )| = 1 × 10−25 Hz−1 between 400 Hz and 4 kHz.

D. Signal-to-noise ratios at high frequency

Gravitational-wave observations at the kilohertz scale can
reveal information about nuclear processes from newly merged
neutron stars (the so-called “post-merger” phase of the wave-
form) [32, 33] and the physics behind core-collapse super-
novae [34]. There is considerable uncertainty in the waveforms
produced from these events. Therefore, we construct a metric
consisting of a uniform strain signal in the detector with am-
plitude |h( f )| = 1 × 10−25 Hz−1 from 400 Hz to 4 kHz and zero
elsewhere; this frequency range encompasses the frequency
spectra predicted from multiple neutron-star post-merger mod-
els and the expected peak gravitational-wave emission frequen-
cies from core-collapse supernovae.

1 10 100
Condition number

10−14

10−13

10−12

10−11

10−10

Ω
G

W

HLV
3Voy
ET/2Voy
CE/2Voy
ET/CE/Voy

2CE/Voy
ET/2CE
3CE
3ET

FIG. 11: Limits on a white stochastic background, given one year of
integration time and a detection threshold SNR of 1. The networks
are sorted along the horizontal axis by their condition number (Ap-

pendix A.

The resulting distributions of signal-to-noise ratios, plotted
as median versus best 10%, is shown in Fig. 10. Changing the
uniform strain to a frequency-dependent strain h( f ) ∝ 1/ f 1/2

does not substantively alter the trends shown in Fig. 10. As
in the plot of SNRs for binary black hole systems in Fig. 5, a
slight anti-correlation can be seen between the median SNRs
and the best 10% SNRs for the three-CE networks and three-
ET networks. However, the conclusion from this plot is very
similar to that of Fig. 5: while there is an anti-correlation
between the best and the median SNR for networks involving
3G detectors, the magnitude of the effect is too small to be a
strong driver of network design choices.

E. Stochastic background

A major goal of gravitational-wave astronomy is to detect
a stochastic background from unresolved binary systems, and
perhaps from primordial fluctuations in the early universe [35].
This background appears as a continuous, broadband signal
that is correlated between the detectors in a network. It can
be expressed in terms of a strain power spectral density S ( f ),
but is more often expressed as a strain energy density Ω( f ) ∝
f 3S ( f ).

As a metric, we consider the maximum background that
can be resolved with SNR = 1 after one year of integration
time [36], assuming the background is white [Ω( f ) = ΩGW =

const.] as expected for a primordial background. Ultimately,
the performance of the network in constraining a stochastic
background is determined by the network’s effective stochastic
strain sensitivity, whose power spectral density (PSD) Seff( f )
is given by [37]

1
S 2

eff
( f )

=

N∑

i=1

N∑

j>i

Γ2
ij ( f )

Si( f )Sj( f )
, (1)
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where Γij is the overlap reduction function between detectors
i and j, Si and Sj are the detectors’ strain PSDs, and N is the
total number of detectors in the network.

The resulting limits on ΩGW for different networks are
shown in Fig. 11, where the networks are again sorted by their
condition number. For the networks comprising single-detector
facilities (i.e., no ETs), one should expect an anticorrelation
between condition number and the limit on ΩGW since the
network’s effective noise is minimized when its overlap re-
duction functions are maximized [Eq. (1)], which occurs for
colocated and co-oriented detectors. On the other hand, the net-
works containing Einstein Telescope facilities already contain
triplets of colocated detectors, for which the overlap reduction
functions are large regardless of how the facilities are placed.
Thus the stochastic constraining power of the networks with
ET facilities show essentially no dependence on the condition
number.

Additionally, we find that the network performance for con-
straining an unresolved white dwarf binary [Ω( f ) ∝ f 2/3] is
tightly correlated with the constraining power on ΩGW.

IV. DISCUSSION

In this paper we explore a wide variety of potential future
gravitational-wave detector networks and quantify their per-
formance in terms of metrics that determine their scientific
potential. Rather than engaging in a black-box optimization,
we connected network performance to physically meaningful
quantities, such as network area, which allowed us to draw
general conclusions about the importance of various aspects of
the network.

First, the performance of a three-facility network is deter-
mined primarily by the type of detectors it contains, rather
than the location and orientation of the facilities. This is par-
ticularly evident for the signal-to-noise ratio metrics. For the
localization metrics, the network area has a large effect on the
performance, but nonetheless this effect is subdominant to the
effect of the network composition.

Second, there is a steady progression of scientific potential
as more third-generation facilities are added to an existing
network of evolved second generation detectors. This is to say
that a single 3G facility will not be sufficient to do all of the
science accessible to a full 3G network, nor do we need to have
three 3G facilities in order to expand our gravitational-wave
potential beyond the second generation.

Lastly, there is not much difference between ranking net-
works by their median performance or the performance for the
best 10% of events. In the signal-to-noise ratio metrics one ob-
serves a slight anti-correlation, particularly for networks with
two or three third-generation facilities, but this is a .30% effect
that is subdominant to sky localization—as seen in Fig. 3, the
largest networks (area ' 1.3r 2

⊕) typically achieve a factor of ∼3
better BNS localization than networks whose area is similar to
the area of the current HLV network (' 0.3r 2

⊕).
We offer several caveats for the results presented here. First,

the parameter estimation is Fisher-matrix-based, and the re-
sults may differ from a full numerical parameter estimation;

this is particularly true for the distance and inclination metrics,
where priors play an important role. Second, the systems pre-
sented here are localized primarily using timing information;
for heavier and higher-redshift systems, amplitude and phase
information become important. This means that the relative
orientations of different facilities may become important for
these systems. Third, time-dependent antenna pattern effects
were not considered. In general, nearby sources may spend
more than an hour in band, leading to a significant apparent
motion on the sky due to the Earth’s rotation. For sources
which are detected by only one or two facilities, timing trian-
gulation cannot be used and hence the additional localization
and distance information afforded by the Earth rotation effect
is non-negligible [38]. Hence this effect will be important for
certain events detected by a network of one CE/ET detector
and two Voyagers, or two CE/ET detectors and one Voyager—
in particular, some of the 1.4–1.4 M� neutron star detections
at z = 0.3 considered in this work may have improved local-
ization areas once the Earth’s rotation is accounted for. The
results presented here thus represent a worst-case scenario.

With these caveats, we conclude that when designing a three-
facility ground-based gravitational-wave detector network, one
has a great deal of freedom to choose the locations and orien-
tations of the facilities, meaning that the selection process for
new detector sites should emphasize geophysical suitability,
cost, and other practical considerations. However, our results
show that one must think carefully about what facilities and
detectors are employed. There is a clear gain in adding more
third-generation facilities to the global network, and more-
over the detectors installed in each facility are also important:
single-detector, Cosmic-Explorer style facilities offer different
strengths than multi-detector Einstein-Telescope style facili-
ties, and these strengths depend not just on the facilities in
isolation but rather their collective performance as part of a
global third-generation gravitational-wave detector network.

Appendix A: Network condition number

This appendix describes the network condition number used
in the main text [30, 31]. A detector network can be viewed as
a linear system that transforms an incoming gravitational-wave
strain tensor into a set of detector signals. The condition num-
ber of this linear transformation quantifies how well the strain
tensor can be reconstructed from the detector signals, with a
smaller condition number indicating better reconstruction.

The astrophysical strain incident on a detector network is
described by a symmetric, traceless Cartesian tensor of order 2;
in terms of three-dimensional rectilinear geocentric coordinates
(x1, x2, x3), its matrix representation is

H =


H11 H12 H13
H12 H22 H23
H13 H23 H33

 , (A1)

with the additional constraint H11 + H22 + H33 = 0.
Correspondingly, the response tensor D(i) of the ith detector

to H is also a symmetric, traceless Cartesian tensor of order 2,
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defined as the difference of the outer products of the detector’s
arm vectors X̂(i) and Ŷ(i):

D(i) =
1
2

[
X̂(i)⊗X̂(i) − Ŷ(i)⊗Ŷ(i)

]
. (A2)

The (weighted) signal appearing in the ith detector is then given
by the contraction of D(i) and H into a scalar:

h(1) = w(1)D(1) : H (A3a)
...

h(N) = w(N)D(N) : H. (A3b)

The weights {w(i)} account for the fact that in a heterogeneous
network, some detectors respond to the incident strain tensor
with greater fidelity than others. In this work we choose to
weight the signals by the detector noise performance at 100 Hz:
w(i) = 1/

√
S (i)(100 Hz), where S (i)( f ) is the power spectral

density of the ith detector’s strain noise.
A symmetric, traceless, order-2 tensor in R3 has five in-

dependent components, meaning that both H and the de-
tector tensors can be written in terms of five basis vectors
E1, . . . ,E5 [29] [39]. The Cartesian matrix representation of
one such (orthonormal) basis is

E1 =
1√
2


1 0 0
0 −1 0
0 0 0

 (A4a)

E2 =

√
2
3



1
2 0 0
0 1

2 0
0 0 −1

 (A4b)

E3 =
1√
2


0 1 0
1 0 0
0 0 0

 (A4c)

E4 =
1√
2


0 0 1
0 0 0
1 0 0

 (A4d)

E5 =
1√
2


0 0 0
0 0 1
0 1 0

 . (A4e)

With this representation, the tensor H can be written as a super-
position of the basis vectors:

H =

5∑

j=1

H( j)E j, (A5)

where each H( j) can be computed via the contraction H : E j.
Likewise, for the ith weighted detector tensor we can write

w(i)D(i) =

5∑

j=1

M(i j)E j, (A6)

with M(i j) = w(i)D(i) : E j. Thus the ith element of the system
of equations (A3) can be written as

h(i) =


5∑

j=1

M(i j)E j

 :


5∑

j′=1

H( j′)E j′



=

5∑

j=1

5∑

j′=1

M(i j)H( j′)E j : E j′

=

5∑

j=1

M(i j)H( j), (A7)

where we obtain the last line by using the fact that the basis
is orthonormal: E j : E j′ = δ j j′ , where δ j j′ is the Kronecker
delta. Equation (A7) describes a matrix equation in which an
N × 5 matrix M (whose coefficients are the collection {M(i j)})
maps the five-element vector H =

(
H(1) H(2) · · · H(5)

)T
onto

an N-element vector h =
(
h(1) h(2) · · · h(N)

)T
.

The linear system (A7) may not result in a uniquely de-
termined solution for H from the vector h of observations,
resulting in either a family of solutions in the underdetermined
case or a best-fit solution in the overdetermined case, found by
solving the system in the least-squares sense. Once a particu-
lar solution H is chosen, one can estimate how observational
uncertainty in h is related to uncertainty in the solution H by
examining the system’s condition number κ, which is defined
in terms of the singular values of M and its pseudoinverse M+:

κ(M) = σmax(M) × σmax(M+), (A8)

where σmax(·) denotes the maximum singular value [41]. A
condition number κ ∼ 1 indicates that fractional uncertainties
in h tend to produce fractional uncertainties in H of a similar
magnitude; while κ � 1 indicates that fractional uncertainties
in h tend to produce larger fractional uncertainties in H.
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