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On de Sitter solutions in asymptotically safe f(R) theories
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The availability of scaling solutions in renormalisation group improved versions of cos-
mology are investigated in the high-energy limit. We adopt f(R)-type models of quantum
gravity which display an interacting ultraviolet fixed point at shortest distances. Expanding
the gravitational fixed point action to very high order in the curvature scalar, we detect a
convergence-limiting singularity in the complex field plane. Resummation techniques includ-
ing Padé approximants as well as infinite order approximations of the effective action are
used to maximise the domain of validity. We find that the theory displays near de Sitter
solutions as well as an anti-de Sitter solution in the UV whereas real de Sitter solutions,
for small curvature, appear to be absent. The significance of our results for inflation, and
implications for more general models of quantum gravity are discussed.
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I. INTRODUCTION

The asymptotic safety conjecture for gravity [1] stipulates that a quantum theory of gravity
may very well exist as a conventional local quantum field theory provided it develops an interacting
UV fixed point at highest energies. In recent years growing evidence for asymptotic safety has been
accumulated, largely based on increasingly sophisticated renormalisation group studies of gravity
without [2–27] or with matter fields [28–40] (see [41] for a review), including the recent proof of
existence for asymptotic safety in 4d quantum gauge theories [42–48], without gravity. In general
the fluctuations of the metric field are found to be strong, strong enough for gravity to become
anti-screening such that Newton’s coupling weakens quantum-mechanically towards shorter dis-
tances [10, 49, 50]. On the other hand, it has also been observed that higher order gravitational
interactions lead to near-Gaussian scaling [20], suggesting that quantum effects for these are some-
what less pronounced. It would thus seem that quantum gravity becomes “as Gaussian as it gets”
[21] despite of its perturbative non-renormalisability [51]. In the language of critical phenomena,
gravitational couplings invariably display interacting fixed points modifying the short distance be-
haviour of the theory with a critical surface of low dimensionality and characteristic non-classical
scaling exponents for a few relevant couplings including Newton’s coupling and the cosmological
constant, together with near Gaussian scaling for its irrelevant higher order couplings.

Cosmology, thanks to the wealth of data available from observation [52–54], offers an important
territory to test the asymptotic safety scenario for gravity. Provided that asymptotic safety is
realised in nature, it is conceivable that the characteristic quantum gravitational modifications
have impacted during the very early universe, including its phase of inflationary expansion and the
phase of late time acceleration. A number of studies have explored these possibilities by exploiting
characteristics of an asymptotically safe fixed point using renormalisation group improvements
of the effective action or of the gravitational equations of motion including those of Friedmann-
Robertson-Walker universes [55–74].

In this paper, we are particularly interested in de Sitter solutions for cosmology, and whether
these may arise through fluctuations of the metric field. To answer this question, the quantum
effective action in the fixed point regime needs to be available. Here, we will exploit polynomial
approximations of the gravitational action up to very high order in the Ricci scalar curvature
which have been made available in [20, 21]. Our study extends earlier investigations [12–14, 61]
to substantially higher order. The necessity for this arises because polynomial approximations of
effective actions have a finite radius of convergence, often dictated by cuts or singularities in the
complexified field plane [75]. Therefore a reliable determination of de Sitter solutions necessitates
a reliable determination of the domain of validity, primarily set by the radius of convergence. In
addition, we will employ resummation techniques for the effective action including Padé resum-
mation and numerical integration beyond polynomial orders. This allows us to investigate the
existence (or not) of cosmological scaling solutions in the fixed point regime both for small and
moderate Ricci curvature even beyond polynomial approximations.

The outline of our paper is as follows. After recalling the key features of inflationary scenarios
and gravitational renormalisation group equations, we analyse the fixed point solutions, the radius
of convergence of high order polynomial approximations, convergence-limiting singularities in the
complex field plane, and compare findings with resummations and numerical integration (Sect. II).
We then exploit our findings to identify stationary solutions of the effective action, reliably, both
for small and large Ricci curvature. The domain of validity is critically assessed. We also perform
resummations for the equation of state to discuss de Sitter and near de Sitter solutions as well as
the impact of higher order invariants (Sect. III). We close with some conclusions (Sect. IV).
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II. ASYMPTOTICALLY SAFE GRAVITY AND INFLATION

In this section, we discuss quantum gravity effects for inflation. Our main emphasis relates
to the high-energy limit and the regime where gravity displays an asymptotically safe fixed point
under the renormalisation group.

A. Inflation and quantum gravity

Inflation is the theory of the universe for which space-time undergoes a phase of accelerated
expansion. There are strong observational indications for inflationary phases, both during the
early-time [52, 53] and the late-time cosmological evolution of the universe [54]. During an in-
flationary era of the universe the spacetime metric is approximately that of a de Sitter universe.
Simple models of inflation include single scalar field theories coupled to gravity. Inflation may
also be generated purely gravitationally. In either case, accelerated expansion sets in provided
the scalar curvature R becomes nearly constant so that the dynamical evolution of the universe
is very similar to that of a de Sitter universe. To be specific, we consider a FRW universe with
scale parameter a(t) and a gravitational action of the f(R) type. The scalar curvature is then
related to the Hubble parameter H = ȧ/a by R = 12(H2 − ε), where ε = −Ḣ/H2 is the slow-roll
parameter, and an overdot denotes a derivative wrt cosmological time. For sufficiently small ε, ε̇
an exponential expansion is observed with a ∝ eH t. In this case, the equation of motion becomes

Rf ′(R)− 2f(R) = 0 (2.1)

whose solutions R = RdS determine the Hubble parameter. An effective f(R) theory could have
two different types of de-Sitter solutions: One which would end after a finite time with RdS = Rinfl

and f(R) ∝ R2
infl leading to inflation in the early universe [76], and a second one for which RdS = 4Λ

(where Λ is the cosmological constant) giving rise to accelerated expansion when dominating the
contributions to the energy density of the universe.

From the perspective of quantum gravity, effective actions of the f(R) type can arise due to
quantum fluctuations of the metric field. A possible window into the form of such actions comes
from the asymptotic safety scenario for quantum gravity, which stipulates that the UV action
should be a fixed point of the renormalisation group. Here we shall assume that the form of
such an action is determined by the existence of an asymptotically safe fixed point for a quantum
version of gravity. The main new effect is that the gravitational couplings become running couplings
depending on the renormalisation group scale k. The most widely studied actions which have been
considered for asymptotic safety are those of the f(R) form [12–14, 20, 21]. For lower energies
and curvatures the action should approximate the Einstein-Hilbert form with a small but possibly
non-zero cosmological constant which could provide for late time acceleration.

A suitable de Sitter fixed point leading to a viable inflationary model has been found in an
f(R)-type approximations not including a cosmological constant [67]. Additional scalar matter
fields have been taken into account in [64, 65, 69–73]. In this paper, we will instead include a
cosmological constant and we will search for de Sitter points based on the high order results in
[20, 21]. In this way, our analysis also covers earlier approaches on cosmological models with
asymptotic safety based on pure gravity as studied in [56–66].

B. Quantum gravity and the renormalisation group

Next we recall how a function f(R) is obtained from quantum gravity effects. We begin with
gravitational effective actions in four-dimensional euclidean space-time which are functions of the
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Ricci scalar

Γk =

∫
d4x
√
| det gµν | Fk(R̄) . (2.2)

where R̄ = R̄(gµν) denotes the Ricci scalar and gµν the metric field. The index k denotes the
renormalisation group (RG) momentum scale. Effective actions which are generic functions of the
curvature scalar are of interest for cosmological model building and dark energy, see [77]. In our
setup, however, the form of the function Fk is not an input: Rather, its shape is entirely dictated
by quantum gravity and must be determined by explicit computation. In more concrete terms,
the RG scale dependence of (2.2) is governed by its functional RG flow [2, 78],

∂tΓk =
1

2
Tr

1

Γ
(2)
k +Rk

∂tRk . (2.3)

Here, Rk denotes a suitably defined Wilsonian momentum cutoff [79–81], t = ln k, and Γ
(2)
k the

variation of the effective action with respect to the propagating fields. The gravitational effective
action (2.2) interpolates between an asymptotically safe fixed point action Γ∗ in the limit k →∞
and a semi-classical low-energy effective action Γ0 in the limit k → 0. For the latter, the effective
action should fall back onto the Einstein-Hilbert action

F0(R̄) ≈ Λ

8πG
− 1

16πG
R̄+ · · · , (2.4)

possibly up to higher order corrections in the Ricci scalar. Here, Λ denotes the cosmological con-
stant, G = 1/(8πM2

Pl) is Newton’s constant with MPl = 2.4.35 × 1018 GeV the reduced Planck
mass, and Λ/(8πG) ≈ 10−47 GeV4 the vacuum energy. The perturbative iterative solution of
(2.3) reproduces the conventional loop expansion [82, 83]. In this limit, corresponding to weak
gravitational interactions G · k2 � 1, the perturbative non-renormalisability of gravity is recov-
ered. A key feature of functional renormalisation with (2.3) is that it does not necessitate weak
coupling. Rather, it allows systematic approximations even at strong coupling where gravitational
interactions become of order unity. The main physics novelty to be exploited below is that the
running Newton coupling g(k) = G(k)k2 does not diverge in the UV, but rather takes a finite value
g → g∗ owing to its own quantum fluctuations. This is the phenomenon of asymptotic safety. The
gravitational fluctuations also dictate the shape of the function Fk in (2.2).

We add a few technical remarks and refer to [12–14, 16] for more details. The RG flow for Fk is
obtained by inserting (2.2) into (2.3), together with suitable gauge fixing and Faddeev-Popov ghost
terms. To find explicit expressions, the operator trace on the RHS of (2.3) for the action (2.2) is
evaluated using background field techniques. The Hessian is obtained by expanding the second
variation of the action around a suitable background metric in the form of gµν = ḡµν +hµν . Gauge
invariance is ensured using the background field method. The operator trace is evaluated using
the early-time heat kernel expansion and spherical backgrounds with constant scalar curvature.
Intermediate technical steps simplify when using the York decomposition and optimised momentum
cutoffs [7, 79, 80]. Analysing the flow equation for Fk within a power series in the curvature
scalar shows the existence of an interacting UV fixed point with three relevant couplings related
to the cosmological constant, Newton’s coupling, and R2 interactions. The scaling dimensions
for these deviate from Gaussian values owing to large anomalous dimensions. Furthermore, the
fluctuations of the metric field are strong enough for gravity to become anti-screening towards
shortest distances. Higher order gravitational interactions also take interacting fixed points. For
these, near-Gaussian scaling exponents are observed [20, 21]. As a final remark, it is useful to
relate these findings with those obtained using conventional perturbation theory. Evaluating the
flow equation (2.3) perturbatively, and around a flat background one recovers the results of Stelle
[84], including the well-known issues with perturbative unitarity. In our setup, however, issues
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with massive ghosts are circumvented dynamically [85] owing to the spectral positivity of the
perturbative RG flow, see [86, 87]. Also, the notorious Goroff-Sagnotti term which plays a central
role for gravity’s perturbative non-renormalisability becomes irrelevant once gravity becomes anti-
screening [51].

C. Quantum gravity in the fixed point regime

From now on we will investigate the shape of the function F in the deep UV regime of the
theory. The explicit form of the fixed point action Γ∗, and hence the function F , has been derived
within high-polynomial orders in the Ricci scalar in [20, 21]. It is the central object of this study.
For the remainder, it is convenient to introduce dimensionless fields, and we write

R = R̄/k2

f(R) = 16π F (R̄)/k4 .
(2.5)

Following [20, 21], we found it convenient to introduce an extra factor 16π into the definition of
f , ensuring that Newton’s coupling is given as −1/f ′ in units of the RG scale without additional
numerical factors, G ·k2 = −1/f ′. Explicit functional flows (2.3) for actions (2.2) in four euclidean
dimensions have been given in [12–14], and in [16] based on the on-shell action, also using [7, 79,
80]. To facilitate consistency checks and a comparison with earlier findings we have adopted the
approach put forward in [12, 14]. We are interested in the shape of f(R) in the deep UV limit
where the theory displays an interacting UV fixed point. At a non-trivial fixed point, the function
f(R) becomes scale-invariant,

∂tf(R) = 0 . (2.6)

Using the explicit functional RG equations as discussed in the previous section, the fixed point
condition (2.6) leads to an explicit, non-linear differential equation determining the function f(R)
[12, 14]

df ′′(R)

dR
=

37
756R

4 + 29
10R

3 + 121
5 R2 + 12R− 216

181
1680R

4 + 29
15R

3 + 91
10R

2 − 54

f ′′(R)

R
−

37
756R

3 + 29
15R

2 + 18R+ 48
181
1680R

4 + 29
15R

3 + 91
10R

2 − 54

f ′(R)

R

+
(R− 3)2f ′′(R) + (3− 2R)f ′(R) + 2f(R)

R
(

181
1680R

4 + 29
15R

3 + 91
10R

2 − 54
) × (2.7)

×

[
R
(
−311

756R
3 + 1

6R
2 + 30R− 60

)
f ′′(R) +

(
311
756R

3 − 1
3R

2 − 90R+ 240
)
f ′(R)

3f(R)− (R− 3)f ′(R)

−607R2 − 360R− 2160

15(R− 4)
− 511R2 − 360R− 1080

30(R− 3)
+ 48π

(
Rf ′(R)− 2f(R)

)]
.

An asymptotically safe interacting fixed point solution f∗(R) with (2.6) and (2.7) has been given
in [20, 21]. Its “UV critical surface” is found to be three-dimensional. The relevant couplings are
mainly given by the vacuum energy, Newton’s coupling, and the R2 coupling, in the sense that
adding further invariants to the polynomial approximation does not lead to new relevant directions.
Moreover, all higher order polynomial couplings are irrelevant and approach near-Gaussian scaling
exponents with increasing canonical mass dimension. Therefore, UV-safe trajectories running out
of the fixed point are characterised by three fundamentally free parameters.

In the remaining part of the paper, we are interested in the UV fixed point solutions f∗(R)
to (2.7) and their main properties, both within polynomial expansions about vanishing curvature
scalar, and within numerical solutions, based on integrations of (2.7) starting from suitable initial
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Λn
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0

1

2
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n

Figure 1. Comparison of the expansion coefficients λn (dots) with the four-parameter fit (2.12), (2.13)
(full red line) based on a selected set of couplings at approximation order N = 35. Dashed lines indicate
extrapolations of the fit.

conditions. We note that the RHS of (2.7) may become singular at specific points in field space
arising through the various denominators in (2.7), specifically

R = −9.99 855 · · · ,
R = 0 ,

R = 2.00 648 · · · ,
R = 3 ,

R = 4 .

(2.8)

The potential singularity at R = 0 is harmless. Those at R = 3 and 4 are due to the momentum
cutoff. In principle, fixed point solutions can be extended across such singularities at the expense
of a free parameter, see [19, 25, 88] for recent examples. This also signals the onset of a regime
where the derivation of the RG flow based on the early time expansion of the heat kernel may no
longer be trusted. The potential singularities of the differential equation at R = −9.99855 and
R = 2.00648 arise from the scalar metric fluctuations. Therefore, for polynomial expansions about
R = 0, we may expect from (2.8) that the radius of convergence Rc is bounded from above by
Rmax given by

Rc ≤ Rmax = 2.00648 · · · (2.9)

Extending fixed point solutions beyond (2.9) requires that the polynomial couplings at R = Rc
fullfill certain continuity conditions.

D. Polynomial fixed point and convergence

Next we analyse the ultraviolet fixed point solution of polynomial f(R) gravity of [20, 21] in
four dimensions. Following [75] we identify the location of a convergence-limiting pole (or cut) in
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N 35 31 27 23 19 15 11 7

λ0 0.25562 0.25555 0.25560 0.25546 0.25559 0.25522 0.25577 0.25388

λ1 −1.0272 −1.0276 −1.0276 −1.0286 −1.0281 −1.0309 −1.0289 −1.0435

λ2 0.01567 0.01549 0.01539 0.01498 0.01490 0.01369 0.01354 0.007106

λ3 −0.44158 −0.44687 −0.43997 −0.44946 −0.43455 −0.45726 −0.40246 −0.51261

λ4 −0.36453 −0.36802 −0.36684 −0.37407 −0.36981 −0.38966 −0.37114 −0.48091

λ5 −0.24057 −0.23232 −0.24584 −0.23188 −0.25927 −0.22842 −0.31678 −0.18047

λ6 −0.02717 −0.02624 −0.02286 −0.01949 −0.01564 −0.002072 −0.003987 0.12363

λ7 0.15186 0.13858 0.15894 0.13620 0.17702 0.12649 0.23680

λ8 0.23014 0.23441 0.22465 0.22904 0.21609 0.21350 0.23600

λ9 0.21610 0.23820 0.20917 0.24918 0.18830 0.28460 0.12756

λ10 0.08484 0.08207 0.092099 0.095052 0.095688 0.13722 −0.041490

λ11 −0.14551 −0.17774 −0.13348 −0.19444 −0.097057 −0.25527

λ12 −0.32505 −0.33244 −0.33242 −0.36205 −0.31812 −0.46476

λ13 −0.29699 −0.25544 −0.32410 −0.24239 −0.39520 −0.16735

λ14 −0.05608 −0.04049 −0.05633 −0.000217 −0.11204 0.16762

λ15 0.22483 0.16347 0.26944 0.14317 0.37336

λ16 0.36315 0.34000 0.37795 0.28611 0.50997

λ17 0.34098 0.44488 0.28138 0.50187 0.17199

λ18 0.18536 0.23941 0.15207 0.35074 −0.11901

λ19 −0.16304 −0.32036 −0.07588 −0.41733

λ20 −0.61457 −0.73133 −0.53776 −0.95176

λ21 −0.75346 −0.53875 −0.88929 −0.41230

λ22 −0.25160 −0.05746 −0.43756 0.29953

λ23 0.55701 0.22998 0.73065

λ24 0.93392 0.60948 1.3116

λ25 0.70608 1.2552 0.54266

λ26 0.35710 0.98891 −0.31179

λ27 −0.09106 −0.92872

λ28 −1.1758 −2.3752

λ29 −2.2845 −1.1315

λ30 −1.4145 0.64746

λ31 1.6410

λ32 3.5054

λ33 1.7098

λ34 −0.66883

Table 1. Coordinates of the ultraviolet fixed point λn(N) in a polynomial base (2.10) for selected orders
in the expansion. Note that g∗ = −1/λ1. We observe the approximate eight-fold periodicity pattern (2.11)
in the signs of couplings. Notice that the couplings λ2+4i at approximation order N1 = 3 + 4i (the order
at which they first arise) always come out with the “wrong” sign. To achieve the desired accuracy in the
subsequent analysis, we have retained at least 50 significant digits for the couplings. The data for N = 7
and N = 11 agrees with earlier findings in [12] and [61], respectively.
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Figure 2. Location of the convergence-limiting singularities (poles or cuts) of the ultraviolet fixed point
solution f∗(R) in the plane of complexified scalar curvature, indicated by the black dots P and P ∗. Their
approximate distance Rc from the origin and the angle φ under which they appear are also indicated. Notice
that φ is close to π

4 owing to the eight-fold periodicity pattern (2.11).

the plane of complexified Ricci scalar, which is exploited to estimate the radius of convergence. In
[20, 21], we have computed the fixed point coordinates in a polynomial approximation up to order
N = Nmax = 35 in the expansion

f(R) =
N−1∑
n=0

λnR
n . (2.10)

Numerical results for the fixed point couplings up to the order N ≤ Nmax = 35 are summarized in
Tab. 1, showing the fixed point coordinates for selected orders of the approximation. Notice that
the signs of the couplings follow, approximately, an eight-fold periodicity in the pattern [20]

(+ + + +−−−−) . (2.11)

Four consecutive fixed point couplings λ3+4i − λ6+4i come out negative (positive) for even (odd)
integer i ≥ 0. Periodicity patterns such as this one often arise due to convergence-limiting singu-
larities (poles or cuts) of the fixed point solution f(R) in the complex R-plane, away from the real
axis. If the singularity nearest to the origin in field space arises at R = R0 (which can and will
be complex), then the radius of convergence for a field expansion about vanishing field is given
by Rc = |R0|. This is well-known from scalar theories at criticality where 2n-fold periodicities are
encountered regularly [75, 89–92]. Below we determine Rc to establish properties of the interacting
fixed point including the existence or not of de Sitter solutions.
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The polynomial expansion (2.10) has a finite radius of convergence Rc, which is expected to
arise due to a singularity or a cut of the fixed point solution for f(R) in the complex field plane. Its
location can be estimated from the convergence behaviour of the fixed point coordinates. Standard
convergence tests such as the root test or the ratio test fail due to the eight-fold periodicity in the
couplings, and a high-accuracy computation of Rc requires many orders in the expansion. Therefore
we adopt the following strategies. Firstly, we make a low-parameter fit of the fixed point couplings
from Tab. 1 onto a form which reflects the observed periodicity pattern. This provides us with an
estimate for Rc. Secondly, we then cross-check the findings with more sophisticated convergence
tests such as a modified ratio test and the Mercer-Roberts test [75]. We begin with a very simple
four-parameter ansatz

λn = A
cos(nφ+ ∆)

(Rc)n
(2.12)

for the couplings, motivated by the sign pattern observed in the couplings. Also, expansions such
as (2.12) arise naturally provided that the fixed point displays a singularity in the complex plane.
We observe that the periodic pattern starts roughly from n = 5 onwards, and hence we must omit
the first few couplings for the fit. We also omit a few of the highest couplings λn with n > 26.
Typically, the last cycle of eight highest couplings has not yet properly settled on their asymptotic
values. For these reasons we fit (2.12) using the most reliable values of the best solution (N = 35)
given by approximately 2.5 cycles of data points (22 consecutive values from λ5 up to λ26). For
the amplitude, the radius, the angle and the shift, we find

A = 0.1172

Rc = 0.9182

φ = 0.7863

∆ = −0.2919 .

(2.13)

Notice that the angle φ is very close to π/4 ≈ 0.7854, as expected due to the eight-fold periodicity
pattern. Comparing with the exact fixed point values, we observe good agreement even beyond
the fitted domain, see Fig. 1.

A first cross-check is done using the Mercer-Roberts test based on the same data set. It
estimates the angle as φ = 0.7736 ± 3%, confirming that (2.13) provides a good estimate for the
angle φ under which the fixed point solution displays a singularity in the complex field plane, see
Fig. 2. The radius of convergence should be reliable on the 5-10% level. Neither the root test, the
ratio test nor the Mercer-Roberts test provide stable results for the radius of convergence. As a
cross-check for the radius, we therefore adopt a generalised ratio test according to which the radius
is estimated via the limit

Rc = lim
n→∞

∣∣∣∣ λn
λn+m

∣∣∣∣1/m (2.14)

provided it exists, irrespective of the free parameter m. It turns out that if m is taken to be
the underlying periodicity or larger, m ≥ 8, the ratios |λn/λn+m|1/m depend only weakly on the
parameter m, and converge well with increasing n. Since our data sets are finite, the limit 1/n→ 0
can only be performed approximately. We obtain a mean value for R by computing the ratios for
various m, and then averaging over all m. In this manner, the estimate is as stable as it gets, and
largely insensitive to the choice for m. We find

Rc ≈ 0.91± 5% , (2.15)

and the statistical error of approximately a standard deviation is due to the variation with m.
Notice that this procedure is insensitive to the angle φ. It is therefore interesting that the estimates
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Figure 3. The field-dependent UV fixed point f(R), comparing the full numerical integration of (2.7) (no
polynomial approximation; full red line) with the polynomial approximation fN up to orders N = 30 and
34 (thin gray lines). The shaded area extends up to the radius of convergence (2.17).

(2.15) and (2.13) agree. The smallness of the statistical error indicates that the radius is achieved
for most of the data points except for a few where the radius comes out smaller. In this light, a
conservative ‘lower bound’ for the radius is then obtained by projecting onto the smallest estimate

RL(m) ≡ min
n

∣∣∣∣ λn
λn+m

∣∣∣∣1/m (2.16)

from the most advanced data set (N = 35), and for each admissible parameter m (8 ≤ m ≤ N−m).
We then average these lower bounds over m to estimate the conservative lower bound as

RL ≈ 0.82 ± 5% (2.17)

where, again, the statistical error of approximately a standard deviation is due to the variation with
m. The smallness of the statistical error reflects that the value (2.17) is achieved for essentially
all m ≥ 8. For illustration, we show in Fig. 3 the fixed point solution as a function of R to order
N = 31 and N = 35. Both solutions visibly part each other’s ways at fields of the order of (2.17),
supporting our rationale.

We now relate our findings with earlier studies of the radius of convergence based on approxi-
mations up to order N = 11 [61]. There, a larger radius of convergence has been found to be

Rc ≈ 0.99 (2.18)

adopting a procedure different from ours. Error estimates have not been given. Had we restricted
our procedure to the first 11 fixed point couplings (by using either the N = 11 data, or the first
11 entries from the N = 35 data set), our analysis leads to

Rc ≈ 1.0± 20% . (2.19)

Within errors, (2.19) is consistent with the more accurate estimates (2.15) and (2.17). It is also
consistent with the earlier estimate (2.18). The slight over-estimation for Rc at low orders (2.19)
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can be understood in terms of the eight-fold periodicity pattern underlying the data. A first full
cycle of eight is completed at approximation order N = 11; see Tab. 1. At approximation order
N = 35, four such cycles have been completed, offering a more accurate estimate of the radius of
convergence.

We also note that the various estimates for Rc (2.13),(2.15) and the lower bound RL (2.17) are
substantially smaller than the formal upper bound Rmax identified in (2.9). Hence, the theoretically
achievable radius of convergence is not realised by the fixed point solution. Rather, a singularity
or cut in the plane of complex Ricci scalar imposes more stringent limits.

E. Fixed point beyond polynomial orders

Given the good convergence of fixed point couplings, our results should not vary strongly if
the polynomial expansion is pushed to higher orders, including the asymptotic limit N → ∞.
Furthermore, as we argued, the polynomial expansion has a finite radius of convergence, and
pushing the expansion towards N →∞ will not provide access to the regime |R| > Rc. Therefore,
in order to go beyond all polynomial orders, we must find the fixed point solution beyond Rc
by integrating the fixed point condition numerically with initial data provided by the polynomial
approximation, see Fig. 3. Since the fixed point condition is a third order differential equation for
f , (2.7), we need to give three initial conditions. At R = 0 this reduces to two initial conditions
since one condition is “used up” in order to avoid a divergence at the origin. This leaves us with
the two free parameters λ0 and λ1. To numerically integrate (2.7) into positive (negative) values of
R we take initial conditions for f , f ′ and f ′′ from our highest polynomial approximation (N = 35)
at field values R = 0.1 (R = −0.1) deeply within the radius of convergence. We have checked that
our results for f are independent of these technical choices.

In Fig. 3 we compare the full numerical integration (thick red curve) with the polynomial
approximations at order N = 34 and N = 30 (thin gray curves) and note that we are able to
compute f outside the radius of convergence RL. The polynomial and numerical solution coincide
within the radius of convergence, as they must. The validity of the full numerical solution extends
substantially beyond RL. However, we cannot integrate the fixed point up to infinite field due to
technical singularities of the differential equation (2.7) at intermediate or large curvature scalar.
With increasing R, the first integrable pole is located at R ≈ 2.006, see (2.8). On the negative
curvature axis, the closest integrable pole is located at R ≈ −9.99. Both of these can in principle
be dealt with using ideas discussed in eg. [19]. Our numerical integration becomes unreliable close
to R ≈ 2.006 and close to R ≈ −2.541, which prevents the solution being continued to larger values
of |R|. For asymptotically large R, the approximations adopted in (2.7) are less reliable, and we
can expect corrections in a more complete treatment.

F. Resummation

The results of the previous sections show that the polynomial fixed point solution is bounded
to the regime of small fields. However, one may wonder whether resummation techniques could
be used to extrapolate results reliably towards larger values for the scalar curvature. We begin by
exploring whether the eightfold periodicity in the result (2.13) can be used to resum the polynomial
series (2.10) to infinite order. To that end we write

fresum.(R) =

m−1∑
n=0

λnR
n +

∞∑
n=m

λnR
n . (2.20)

Fig. 1 indicates that the eightfold periodicity pattern sets in at about n ≈ 5. Therefore we take
m = 5 in (2.20). We then leave the first sum as it is, and denote it as ftrunc(R). The second
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Figure 4. Shown are results for the field-dependent fixed point f(R), comparing the polynomial approx-
imations fN to orders N = 30 and 34 (thin gray lines) with the resummation fresum. (dashed blue line)
and the truncation ftrunc (long-dashed line) detailed in (2.20), (2.21), and the full numerical integration
(full red line). The shaded area indicates the region up to the radius of convergence of the polynomial
approximation. We observe that the resummation offers a substantial improvement over ftrunc., f30 and f34.
It agrees with the high-order polynomials within, and with the numerical integration beyond, the radius of
convergence.

sum can be evaluated in closed form if we assume that the couplings λn are well-approximated by
(2.12) for all n > 4. This leads to the resummed expression

∞∑
n=5

λnR
n = A

R4

R4
c

RRc cos(∆ + 5φ)−R2 cos(∆ + 4φ)

R2 − 2RRc cosφ+R2
c

(2.21)

in terms of four parameters A,Rc, φ and ∆ which are, approximately, given by (2.13). Owing to
the split (2.20), the resummed expression behaves ∝ R4 asymptotically.

In Fig. 4, we compare the resummation (2.20), (2.21) (short dashed blue line) with the poly-
nomial approximation at high orders (N = 30, 34: thin gray lines), the truncation ftrunc. (N = 5:
long dashed black line), and the full numerical integration (full red line). The difference between
the long-dashed and the short dashed line corresponds to the resummed terms (2.21). While ftrunc

starts deviating from the exact result already for R below the radius of convergence RL ≈ 0.82,
we observe that fresum. provides a much better approximation for f(R) even beyond RL of the
polynomial expansion. The difference fresum(R)− ftrunc(R) is only sensitive to the location of the
singularity nearest to the origin: the information initially encoded in all the higher couplings λn
with n > 4 has been reduced to four parameters (concretely, here, 26 parameters have been reduced
to four). This input appears to be enough to bring fresum quite close to the solution from the full
numerical integration, up to values of the curvature |R| ≈ 1.1, and clearly beyond the domain of
validity RL ≈ 0.82 of the polynomial approximation. We conclude that the simple four-parameter
resummation (2.21) offers a substantial improvement.
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Figure 5. Shown is the field-dependent function f(R) at the fixed point obtained by full numerical
integration of (2.7) (thick red line) in comparison with Padé approximants thereof ([20/16]: dotted line,
[17/14]: dashed-dotted, [15/13]: long-dashed, [16/15]: thin full, [16/17]: short dashed), and the resumma-
tion (2.20), (2.21) (resum./dashed line). The shaded area indicates the radius of convergence RL ≈ 0.82
of the underlying polynomial approximation (2.10). Despite of differences in their asymptotic behaviour,
the Padé approximants agree very well amongst themselves and with the full numerical solution for scalar
curvatures within −2.5 <∼ R <∼ 2 (they coincide with the full red line in Fig. 3), and way beyond the radius
of convergence. See main text for more detail.

G. Padé approximants

Motivated by the findings of the previous section, we now adopt the more sophisticated tech-
nique of Padé approximants. A Padé approximant of the function f(R) in (2.10) is a rational
function – the ratio of two unique polynomials in R of degree M and K – which we denote as
[M/K]. The integers M ≥ 0 and K ≥ 1 are at our disposal. The first M+K+1 Taylor coefficients
of f(R) serve as input, and, by construction, agree with those of the approximant [M/K]. Unlike
in (2.21), the number of parameters is not reduced, and, consequently, we expect that a successful
Padé resummation leads to a further improvement upon fresum.(R).

In practice, and in order to exploit the maximum number of Taylor coefficients Nmax = 35, we
take M close to and below Nmax/2. This is combined with K = M +1,M −1,M −2,M −3,M −4
to account for different large-R asymptotics. Concretely, in Fig. 5 we show a selection of best
fits corresponding to Padé approximants [M/K] with M = 16, K = M + 1 (short-dashed line);
M = 16, K = M − 1 (full line); M = 15, K = M − 2 (long-dashed line); M = 19,K = M − 3
(dashed-dotted line); and M = 20,K = M − 4 (dotted line).

Three comments are in order. Firstly, it is quite noteworthy that all Padé approximants not
only match each other within the radius of convergence of the polynomial expansion (2.17), but
also in the much wider regime −2.5 <∼ R <∼ 2, substantially beyond the radius of convergence of the
polynomial approximation. Secondly, the Padé approximants also coincide with the full numerical
solution of Fig. 3 within the same range −2.5 <∼ R <∼ 2. The domain of validity of the resummed
result is more than twice as large as the original one estimated in (2.17). Finally, for even larger
fields the different resummations deviate from each other owing to the differences in the assumed
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Figure 6. Shown is the stationarity condition for various orders in the polynomial approximation 9 ≤ N ≤
35. The zeros, given in Tab. 2, are candidate for real de Sitter or anti-de Sitter solutions.

asymptotic behaviour. These set in earlier, and are more pronounced, for positive than for negative
curvature. Presumably this is so because the nearest singularity on the real axis of the fixed point
differential equation (2.7) arises first for positive curvature, see (2.8).

We conclude that suitably adapted resummation techniques are powerful tools to increase the
domain of validity for polynomial fixed point solutions. The polynomial couplings λn appear to
encode information about f(R) beyond RL, possibly up to the maximal range (2.9). The fixed
point data is not sufficient to infer the large-field asymptotic behaviour of the function f(R). This
should not come as a surprise: heat kernel expansions have been used in the first place to obtain
the fixed point coordinates which is a very good approximation for small, but less so for large
scalar curvature.

III. DE SITTER AND NEAR-DE SITTER POINTS

In this section, we apply the findings of the previous section to analyse stationary solutions of
fixed point actions, which are of interest for the cosmological evolution in the early universe. Sub-
ject to suitable matching conditions relating the RG scale parameter with physical scales such as
the Hubble parameter, or others, the modified cosmological equation may lead to modified Fried-
mann equations with inflationary regimes [55, 56, 58, 61, 64, 65, 67, 69, 70, 93]. The availability of
stationary points within asymptotically safe f(R) gravity has been investigated previously in [61]
up to order N = 11 in a polynomial approximation. More recently stationary points have been
found in studies of asymptotically safe f(R) gravity utilising an exponential parameterisation of
the metric [27, 88], or a modified functional measure [25]. The importance of stationary points has
been stressed in [94] where it is suggested that the f(R) approximation may break down in their
absence. Aspects of inflationary solutions in higher derivative gravity are addressed in [95].
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A. Stationarity condition

Given the RG fixed point to high order in the polynomial expansion, we now turn to the effective
action which we write in terms of f(R) as

Γk =
k4

16π

∫
d4x
√
|det g| fk(R) . (3.1)

Notice that the explicit RG scale dependence arises because we have used dimensionless fields
and the dimensionless function f . Although we have computed Γk on four-spheres, stationary
points of constant curvature can be found on different topologies by analytical continuation of the
metric and use of the appropriate boundary conditions. For Lorentzian metrics stationary points
of constant (negative) positive curvature correspond to (anti-)de Sitter solutions to the quantum
equations of motion for gµν . Such solutions are given by the condition

E(R) ≡ 2fk(R)−Rf ′k(R) = 0 (3.2)

where we have introduced E(R) to denote the equation of motion related to the action (3.1). When
evaluated on four-spheres however, the volume integration can be performed yielding∫

d4x
√
|det g| = 384π2

R2

1

k4
. (3.3)

Accordingly, we find

Γk = 24π
fk(R)

R2
≡ 384π2Fk(R̄)

R̄2
, (3.4)

where we have re-introduced the action in terms of the dimensionful fields in the second equation.
In this form, and for fixed R or R̄, the sole RG scale dependence originates from the implicit
k-dependence of the function f or F , respectively.

Strictly speaking the function of the curvature given by (3.4) is valid only on four-spheres. We
also note that Γ∗ diverges at R = 0, because the fixed point solution obeys f(R = 0) > 0 whereas
the volume diverges as 1/R2. To analyse the extremal points, we therefore must seperately discuss
the cases of positive and negative curvature, and Euclidean and Lorentzian signatures. However,
for curvatures R 6= 0 and 1/R 6= 0, the stationarity for (3.4)

∂Γk
∂R

= 0 (3.5)

translates directly to the condition (3.2). Therefore, assuming the validity of analytical continua-
tion, we can use (3.5) to find solutions to the quantum equations of motion. Positive real solutions
to (3.2) are termed de Sitter solutions R = R

dS
in the literature. In a slight abuse of language,

we will refer to any solution of (3.2) as R = R
dS

. The stationarity condition (3.2) remains alge-
braically the same at or away from fixed points 1, and it holds equally for dimensionful fields and
the dimensionful function F after trivial replacements. It is required that the Ricci scalar is finite
for solutions to (3.2). If no such solutions were to be found, the action would take its extremal
values at the boundaries of the definition domain, R = 0, and 1/|R| = 0, without necessarily
obeying (3.2).

1 Away from the fixed point, further contributions, for example by matter perturbations, will eventually become
important enough to drive away from the de Sitter solution, see e.g. [96].
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Figure 7. Comparison of the expansion coefficients ξn in (3.6) (dots) with the fit in (3.7) (full red line)
based on a selected set of couplings at approximation order N = 35. The dashed line extrapolates the fit.

B. Real de Sitter solutions

We can look for solutions to (3.2) at each order N in the approximation by plotting the LHS
of the equation and looking for stable zeros for all approximation orders N . Prior to this, we need
to estimate the radius of convergence for E(R) accurately, to ensure solutions are in the physical
domain. To that end, we expand the stationarity condition (3.2) as a polynomial in the Ricci
scalar,

E(R) =
∑
n

ξnR
n , (3.6)

and search for a fit for the expansion coefficients ξn as

ξn = A
cos(nφ+ ∆)

(Rc)n
. (3.7)

This provides us with an estimate for the radius of convergence for E(R). Fitting the four free
parameters in (3.7) to the data, we find

A = 0.5282

Rc = 0.8584

φ = 0.8226

∆ = 2.1334

(3.8)

for the amplitude, the radius, the angle and the shift, respectively. Fig. 7 shows that (3.8) provides
a good fit to the data. The angle is similar to the one found in (2.13) but the radius is slightly
smaller. We additionally adopt the generalised ratio test. Since R2 is a ‘zero-mode’ of (3.2)
there will be no terms proportional to R2 in (3.6). Therefore we take n ≥ 3 when determining
Rc(m) ≡ minn[Rc,m(n)], and average m over values 8 ≤ m ≤ 31, see Sect. II D. Using this method
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Figure 8. Shown are all real de Sitter and anti-de Sitter solutions for each polynomial approximation
order N (crossed circles). Numerical values are given in Tab. 2. The shaded area indicates the estimated
radius of convergence (3.9). The eight-fold periodicity pattern in the signs of couplings leads to solutions
close to the radius of convergence. We conclude the absence of real de Sitter or anti-de Sitter solutions for
small curvature scalar within the radius of convergence of the polynomial expansion.

we obtain the lower bound estimate

RL ≈ 0.77± 5% (3.9)

which is lower than the corresponding lower-bound estimate obtained from the polynomial expan-
sion of f(R). The reason for this is that the equation of motion contains a derivative of f(R) which
is more sensitive to the polynomial approximation, lowering the expected radius of convergence.
A summary of the various radii of convergence including error estimates is given in Tab. 3.

With these results at hand we now return to the search for zeros of (3.6). In fact, real solutions
to (3.2) can be found at some orders in the approximation. In Fig. 8, we display all real de
Sitter solutions for each and every approximation order N , indicated by crossed circles, and the
estimate for the radius of convergence (3.9), indicated by the shaded area. Numerical results are
shown in Tab. 2. These solutions may be considered as physical provided they arise within the
radius of convergence of the expansion and persist to high orders in the expansion. Some solutions
accumulate close to R

dS
≈ 0.8− 0.9 and R

dS
≈ −(0.9− 1.0), and appear to be at the boundary of

the radius of convergence (2.15) and (2.17) as determined from f(R). Most notably, we find that
de Sitter solutions occur within the radius of convergence, as determined from E(R), but only low
orders in the approximation, without persisting to higher orders. We conclude that the data does
not offer evidence for a real de Sitter solution at small Ricci curvature.
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approx. positive root negative root complex root

N R
dS
> 0 R

dS
< 0 ReR

dS
ImR

dS
|R

dS
|

2 0.5171

3 0.5174

4 0.6949 −1.637

5 0.5630 0.2095 0.6008

6 −1.626 0.5459 0.2023 0.5822

7 2.148 −1.206 0.5421 0.2089 0.5810

8 0.9338 0.5371 0.2262 0.5827

9 0.7856 −1.135 0.5428 0.2345 0.5913

10 0.7580 0.5531 0.2363 0.6015

11 0.7692 0.5547 0.2357 0.6027

12 −0.981 0.5596 0.2420 0.6097

13 0.5592 0.2452 0.6106

14 −1.196 0.5610 0.2460 0.6125

15 2.130 −0.997 0.5590 0.2453 0.6105

16 0.9336 0.5592 0.2436 0.6099

17 0.8158 −0.991 0.5626 0.2420 0.6124

18 0.7986 0.5652 0.2415 0.6147

19 0.8079 0.5648 0.2414 0.6142

20 −0.931 0.5645 0.2425 0.6144

21 0.5635 0.2420 0.6133

22 −1.029 0.5642 0.2417 0.6138

23 2.528 −0.947 0.5635 0.2418 0.6132

24 0.9514 0.5631 0.2418 0.6128

25 0.8286 −0.938 0.5638 0.2415 0.6134

26 0.8141 0.5648 0.2413 0.6142

27 0.8202 0.5646 0.2413 0.6140

28 −0.910 0.5647 0.2420 0.6143

29 0.5644 0.2419 0.6141

30 −0.970 0.5648 0.2418 0.6144

31 2.923 −0.924 0.5645 0.2418 0.6141

32 0.9824 0.5643 0.2417 0.6139

33 0.8365 0.5647 0.2416 0.6142

34 0.8235 0.5653 0.2414 0.6147

35 0.8270 0.5651 0.2414 0.6145

mean (all) n/a n/a 0.5560 0.2377 0.6084

mean (cycle) 0.5647 0.2417 0.6143

st. dev. (%) ±0.06% ±0.08% ±0.04%

Table 2. Selected de Sitter solutions from the polynomial approximation up to including N = 35. For each
order the smallest positive, the smallest negative, and the complex root with smallest length are shown,
provided they exist. The mean values taken over all data and a cycle of the eight highest orders, are also
given. The standard deviation is very small, establishing that the complex conjugate pair of de Sitter
solutions is very stable and converges rapidly. The positive roots for N = 2 to 11 agree with [61]. Notice
that the real roots display an eight-fold periodicity pattern.

C. Comparison

At this point it is useful to make contact with the results of [61]. While our results up to
order N = 11 agree with [61], we are reaching the exact opposite conclusion. The reason for
this is a subtle one, related to the slow convergence of the polynomial expansion. The eight-fold
periodicity pattern in the couplings, (2.11), entails de Sitter solutions around R

dS
≈ 0.77 for nine
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approximation radius estimate info

a) N = 11 0.99 eff action, (2.18) – from Ref. [61]

b) N = 11 1.00± 20% eff action, root test (2.19)

c) N = 35 0.91± 5% eff action, fit and root tests, (2.13), (2.15)

d) N = 35 0.82± 5% eff action, lower bound, (2.17)

e) N = 35 0.86 eq of motion, fit and root tests, (3.8)

f) N = 35 0.77± 5% eq of motion, lower bound, (3.9)

Table 3. Summary of estimates for the radius of convergence based on the action and the equations of
motion, also comparing different approximation orders. Errors are statistical, roughly a standard deviation.

of the first eleven approximation orders considered in [61], see Tab. 2, suggesting that these are
viable. The underlying eightfold periodicity only became visible starting from approximation order
N = 11− 14 onwards, based on the sign pattern of couplings (Tab. 1) or their magnitude (Fig. 1),
respectively. Then, for all N > 11 − 14, a de Sitter candidate arises in four out of eight cases.
However, with increasing N , the de Sitter candidates no longer reside within the domain of validity.
This follows from the various estimates for the radii of convergence summarised in Tab. 3. Firstly,
using the polynomial approximation for f(R), the uncertainty in the radius of convergence at order
N = 11 comes out large, about 20%, Tab. 3 b). This is going down to the 5% range at N = 35,
Tab. 3 c) and Tab. 3 d). The positive de Sitter solutions of [61] sit close to the boundary of this
error estimate. Secondly, once the polynomial approximation for E(R) is analysed to estimate
the domain of validity, the radius comes out smaller by about 5%, see Tab. 3 e) and Tab. 3 f).
Combining the decrease of the radius of convergence and its error bar (with increasing N) with
the slight growth of real de Sitter solutions RdS > 0 (see Tab.2), it becomes evident that these
solutions slip out of the domain of validity.

D. Complex de Sitter solutions

For completeness, we check whether de Sitter solutions exist within the radius of convergence
for complex Ricci scalar. Within the polynomial approximation to order N , the de Sitter condition
(3.2) will naturally have up toN−1 different solutions in the complex plane. In Fig. 9, we display all
of these solutions for all orders N . We find that most solutions are outside the estimated radius of
convergence. Those with positive real part accumulate close to the distance Rc (3.8). Interestingly,
within the radius of convergence (3.9), there exist exactly two solutions with |R

dS
| < RL, a complex

conjugate pair, for each approximation order as soon as N ≥ 5. The complex de Sitter solution
has a positive real and a small imaginary part,

ReR
dS

= 0.5647± 0.02%

ImR
dS

= ±0.2417± 0.02%

|R
dS
| = 0.6143± 0.02% .

(3.10)

Notice that the solution is particularly stable from order to order, reflected by the tiny standard
deviation. Quantitatively, our results are summarized in Tab. 2, where the smallest positive,
negative, and the smallest complex solution per order are shown.

E. From near-stationary to stationary points

We have established that the fixed point theory does not offer a stationary point with a real
de Sitter solution, at least in the regime for small scalar curvature. On the other hand, a near-
stationary solution is located close to where ∂Γ/∂R is smallest. In fact, solving minR(2f − Rf ′)
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Figure 9. Real and complex de Sitter solutions R
dS

in the plane of complexified Ricci scalar in units of k2,
colour-coded from blue to red with increasing approximation order N . Higher order data points are shown
on top of the lower order ones. The lower bound RL for the radius of convergence, (3.9), is indicated by a
black circle. The gray ring covers the range between RL and Rc, see (3.8). Most roots with positive real
part accumulate close to the radius Rc. Notice the existence of a unique and stable de Sitter solution with
a positive real and a small imaginary part within the radius of convergence for all approximation orders
N ≥ 5.

for R one finds the near-stationary solution

Rns ≈ 0.602 , (3.11)

whose location is dictated by the nearby exact complex root (3.10) with Rns ≈ |RdS
|. For illustra-

tion, the left panel of Fig. 10 displays the near-stationary solution, showing that it corresponds
to a nearly flat effective fixed point action Γ∗(R) starting from curvatures R around and above
(3.11). We may conclude that the near-stationarity leads to near-de Sitter behaviour in the deep
UV for scalar curvatures around (3.11).

Up to now we have discussed a model of quantum gravity with high-order interactions in the
Ricci scalar. In a more extended study one should retain other curvature invariants as well. If
the UV fixed point is a feature of the full theory, we expect that the impact of further curvature
invariants is to change the fixed point couplings. To mimick the influence of (neglected) curvature
invariants, and to check how this is influencing the existence (or not) of de Sitter solutions, we have
introduced fudge factors by varying the values of the first few couplings λ0, λ1, λ3 and λ4 by ±50%.
(Notice that de Sitter solutions are insensitive to the coupling λ2). One finds that variations of
λ3 and λ4 do barely change the nature of the de Sitter solution. Instead, varying λ0 and λ1 has a
more substantial influence. For example, reducing λ1 by a fudge factor of c > 1 without changing
g∗ nor the other couplings, leads to a real de Sitter solution once c ' 1.25, see Fig. 10 (left panel).
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Figure 10. Left panel: the fixed point effective action (3.4) as a function of scalar curvature. The near-
stationary point (3.11) is indicated by a full dot. Right panel: solutions RdS to the stationarity condition
assuming that λ∗ at the UV fixed point is reduced by a fudge factor c > 1, while g∗ and all other fixed
point couplings remain unchanged. The complex de Sitter solution (dashed red line) then becomes a real
one (full red line) as soon as c ' 1.25. Once a real solution exists, its location is well-approximated by
(3.12) indicated by the blue dashed-dotted line. All higher order couplings only add small corrections.

This can also be understood from Fig. 11: lowering λ0 lowers the entire curve without changing
its shape, which can lead to real de Sitter solutions. We conclude that stationary solutions may
exist close to the near-stationary solution of the fixed point theory described by (2.10).

Interestingly, if a real de Sitter solution exists, it is already well-approximated by the leading
order estimate

RdS ' −2
λ0

λ1
≡ 4λ∗ . (3.12)

If the root is complex, then (3.12) offers a fair approximation to its real part. In either case, the
impact of higher order couplings on the numerical value for RdS appears to be small. The right
panel of Fig. 10 compares the approximate solution (3.12) (blue dashed-dotted line) with the full,
real or complex, solution (full or dashed red lines, respectively). We conclude that if a real de
Sitter points exists, its value is fixed primarily by the dimensionless cosmological constant λ∗.

F. De Sitter solutions at large curvature

Further real de Sitter solutions may exist for larger Ricci curvature and outside the radius RL,
but within the region where a full numerical or resummed result for E(R) exist. To investigate
these cases, we analyse the equation of motion E(R) using numerical integration in the regime
−2.5 ≤ R ≤ 2, together with Padé approximants, of various kinds, for the polynomial expansion of
E(R). Our numerical integration becomes unreliable close to R ≈ 2.006 and close to R ≈ −2.541,
which prevents the solution being continued to larger values of |R|. The numerical solution does
not show any de Sitter solutions satisfying the equation of motion within the region −2 ≤ R ≤ 2.
However, the function E(R) becomes very small in the regime R ≈ 1, see Fig. 11. To confirm
our result, we additionally approximate E(R) through Padé approximants as we did in Sec. II G
for f(R). Specifically, in Fig. 11, we display the Padé approximants [20/16] (dotted line), [17/14]
(dashed-dotted), [14/12] (long-dashed), [16/15] (thin full), and [16/17] (short dashed), together
with the numerical integration (full red line). The shaded area indicates the radius of convergence
of the underlying polynomial approximation, (3.9).
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Figure 11. Shown is the function E(R) = 2f(R)−Rf ′(R) at the fixed point obtained by the full numerical
integration of (2.7) (thick red line) in comparison with several Padé approximants thereof ([20/16]: dotted
line, [17/14]: dashed-dotted, [14/12]: long-dashed, [16/15]: thin full, [16/17]: short dashed), and the
resummation (2.20), (2.21) (resum). The shaded area indicates the radius of convergence (3.9) of the
underlying polynomial approximation (3.6). Stationary points of the fixed point action correspond to zeros
of E(R). Despite of differences in their asymptotic behaviour, the Padé approximants agree very well with
the numerical solution within −1.5 <∼ R <∼ 1.2, much beyond the range RL (3.9) (see main text).

We find very good agreement between Padé approximants and the numerical solution beyond the
radius of convergence RL, up to the range −1.5 <∼ R <∼ 1.2, and in the regime where E(R) becomes
small numerically. Once 1.2 <∼ R, numerical differences arise. The equation of motion E(R) is
more sensitive to the large-R behaviour of the Padé approximants than the fixed point action f(R).
The numerical result agrees best with Padé approximants whose asymptotic behaviour is given by
∝ R2 or ∝ R3. In all cases, no de Sitter solution shows up for R <∼ 2. Within the uncertainties of
our study we cannot exclude de Sitter solutions for even larger values of the curvature.

For negative scalar curvature R <∼ −1.5, we also find that differences between Padé approxi-
mants become significant. An anti-de Sitter solution is found from the numerical solution at

RAdS ≈ −2.36138 . (3.13)

This result should be cross-checked with Padé approximants, as these allow extrapolation to the
regime where the numerical integration is no longer applicable. The Padé approximants also
predict a de Sitter solution, roughly in the range RAdS ≈ −(2.5 − 3.5), although the location is
clearly not determined accurately. We may conjecture that an anti-de Sitter solution at scalar
curvature |R| of the order of a few exists within the present approximation.

G. Discussion

We have established the absence of real de Sitter solutions in the fixed point regime for small
Ricci scalar |R| < RL, based on high orders in the polynomial approximation for the fixed point.
In addition, we have also found evidence for the absence of de Sitter solutions within the wider
range −2 <∼ R <∼ 1.5. Here, resummation techniques and numerical integration have been used to
establish the result. We have not explored the possibility of de Sitter solutions for large curvature
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scalar beyond the domain of validity of our study, but it is conceivable that a de Sitter solution
for finite R exists. The anti-de Sitter solution close to (3.13) gives a first indiction of this. Further
work is needed to obtain flow equations valid for all values of R where de Sitter solutions may be
found. In [19] it has been shown, albeit in a different RG scheme, that a valid fixed point solution
may display a power-law behaviour asymptotically, modulo oscillating logarithmic corrections.
The existence of de Sitter solutions then depends on the coefficients of this asymptotic behaviour.
Similar results may apply to our model and it remains to be seen whether or not they would
offer de Sitter solutions (3.2) for asymptotically large R � 1. If no solutions to the de Sitter
condition (3.2) for finite R can be found, the action takes its extremal values at the boundaries
of vanishing or infinite curvature. In the limit |R| → 0, the action becomes maximal because of
f(R = 0) > 0, suggesting that a global minima is achieved either for large and finite R outside the
range considered here, or at asymptotically large |R| =∞.

The ultraviolet fixed point displays a stable complex de Sitter solution with positive real part,
close to the real axis, for each and every approximation order starting at N = 5; see (3.10). The
relevancy of this solution for cosmological applications is unclear: it would seem to imply that a
“near de Sitter” phase with inflationary expansion in the fixed point regime of f(R) gravity could
exist, as long as the imaginary part is sufficiently small (as it is here). Small variations in the
fixed point couplings show that the complex de Sitter solution becomes real once other curvature
invariants or matter are taken into account (Fig. 10). A first example for this has been given in
[97]. There, it has been established that Ricci tensor fluctuations such as in quantum gravity with
action ∝ F (R2) + R · Z(RµνRµν) induce de Sitter solutions even at an asymptotically safe UV
fixed point.

IV. CONCLUSIONS

We have studied the availability of inflationary solutions for cosmology from asymptotically safe
models of quantum gravity in the high-energy regime. The relevant information – encoded in the
full fixed point effective action – requires a good understanding of the fixed point couplings them-
selves, including the relevant as well as the higher order irrelevant interactions. The reason for this
relates to a singularity (cut or pole) in the plane of complexified Ricci curvature whose fingerprint
is the characteristic convergence pattern of gravitational couplings in the physical domain (Fig. 2).
This is reminiscent of other quantum field theories at a critical point [75, 98], and required high
polynomial orders to determine couplings with good accuracy including errors. Our findings then
exclude the existence of de Sitter solutions in the deep UV regime for small Ricci curvature up
to the order of the RG scale R ∝ k2. Interestingly though, the theory does display a complex de
Sitter solution with small imaginary part, corresponding to near de Sitter behaviour in the physical
regime (Fig. 9). Our findings also serve as a word of caution: while low-order approximations of
the gravitational effective action often detect the UV fixed point correctly, e.g. [4–15], the existence
or not of de Sitter solutions in the scaling regime is much more sensitive to the precise strength of
higher derivative interactions [20, 21]. Here, low order approximations do not prove sufficient to
determine de Sitter solutions reliably (Tab. 2).

Under mild variations of fixed point couplings, in particular the cosmological constant, we
have established that near de Sitter solutions bifurcate into real ones, showing that the purely
gravitational fixed point is located at the boundary of theories with or without small-field de
Sitter solutions (Fig. 10). For this reason, the inclusion of further curvature invariants such as
Ricci or Riemann tensor invariants [97], derivatives thereof, or the use of improved approximation
schemes [99–101], can tip the balance from near- to real de Sitter solutions. Recent work suggests
that the presence of Ricci tensor interactions ∼ (RµνR

µν)n is of particular relevance for this to
happen [97]. In a different vein, it will be equally important to understand how gravitational
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f(R) actions behave away from the fixed point, and whether inflationary phases of cosmology can
be achieved along trajectories which connect the UV fixed point with the IR regime of classical
general relativity [65, 70]. Overall, it then is conceivable that asymptotically safe quantum gravity
can trigger a phase of inflationary expansion in the very early universe, but more work is required
to settle the specifics for this.

On the technical side, a novelty of our study is the use of resummation techniques such as Padé
to obtain improved results for the gravitational effective action. Intriguingly, Padé approximants
ameliorate the result in field space far beyond the polynomial radius of convergence (Figs. 4, 5 and
11). It is conceivable that the technique will prove useful for other theories as well. Together with
infinite order approximations, resummations have enlarged the domain of validity of our study.
It is noteworthy that the resummed results are in agreement with the full numerical solutions
even beyond the radius of convergence, showing that the set of polynomial couplings encode more
physics information than previously exploited. On the other hand, the large-curvature asymptotics
– which serves as an input into Padé approximants – is not well predicted within the present setup.
The reason for this is that the underlying heat kernel expansion becomes less reliable for large
curvature. We hope to revisit these aspects in due course.
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