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Abstract
The goal of this work is to elaborate on new geometric methods of constructing 
exact and parametric quasiperiodic solutions for anamorphic cosmology 
models in modified gravity theories, MGTs, and general relativity, GR. There 
exist previously studied generic off-diagonal and diagonalizable cosmological 
metrics encoding gravitational and matter fields with quasicrystal like 
structures, QC, and holonomy corrections from loop quantum gravity, LQG. 
We apply the anholonomic frame deformation method, AFDM, in order to 
decouple the (modified) gravitational and matter field equations  in general 
form. This allows us to find integral varieties of cosmological solutions 
determined by generating functions, effective sources, integration functions and 
constants. The coefficients of metrics and connections for such cosmological 
configurations depend, in general, on all spacetime coordinates and can be 
chosen to generate observable (quasi)-periodic/aperiodic/fractal/stochastic/
(super) cluster/filament/polymer like (continuous, stochastic, fractal and/or 
discrete structures) in MGTs and/or GR. In this work, we study new classes of 
solutions for anamorphic cosmology with LQG holonomy corrections. Such 
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solutions are characterized by nonlinear symmetries of generating functions 
for generic off-diagonal cosmological metrics and generalized connections, 
with possible nonholonomic constraints to Levi–Civita configurations and 
diagonalizable metrics depending only on a time like coordinate. We argue 
that anamorphic quasiperiodic cosmological models integrate the concept of 
quantum discrete spacetime, with certain gravitational QC-like vacuum and 
nonvacuum structures. And, that of a contracting universe that homogenizes, 
isotropizes and flattens without introducing initial conditions or multiverse 
problems.

Keywords: mathematical cosmology, geometry of nonholonomic spacetimes, 
modified gravity theories, post modern inflation paradigm, loop quantum 
gravity and cosmology, quasiperiodic cosmological structures,  
ekpyrotic universes

1.  Introduction and motivation

It is thought that near the Planck limit any quantum gravity theory is characterized by dis-
crete degrees of freedom, respective of quantum minimal length and quantum symmetries, 
and anisotropic and inhomogeneous fluctuating/random configurations. On the other hand, 
observations show that the accelerating Universe is flat, smooth and scale free at large-scale 
distances when the spectrum of primordial curvature perturbations is nearly scale-invariant, 
adiabatic and Gaussian [1, 2]. We cite papers [3–10] for recent reviews, discussions, critique 
and new results on postmodern inflation scenarios developed and advocated by prominent 
theorists in relation to the Planck 2013 and Planck 2015 cosmological data [11–17]. Here 
we note that for meta-galactic and galactic distances, the Planck 2015 and WMAP, ACT 
and SPT teams’ observation and theoretical results5 on spacetime anisotropy and topology, 
dark energy, and constraints on inflation and accelerating cosmology parameters. Such works 
conclude on the existence of mixed aperiodic and quasiperiodic structures (for gravitational, 
dark matter and standard matter) described as net-works for the first group- and (super) 
cluster-scale, strong gravitational lensing/light filaments/polymer and quasicrystal, QC, like 
configurations.

In our partner works [18–20], we proved that Starobinsky-like inflation [21] and various 
dark energy, DE, and dark matter, DM, effects in a Universe with quasiperiodic (super) cluster 
and filament configurations can be determined by a nontrivial QC spacetime structure. We cite 
see [22–38] for important works and references on the physics and mathematics of QCs in con-
densed matter physics but also with possible connections to cosmology. Various F-modified 
(for instance, F(R) = R + αR2) cosmological models6 can be with singularities and encode 
inhomogeneous and locally anisotropic properties. For reviews on modified gravity theories, 
MGTs, readers may consider [9, 39–45, 46–54]. In papers [55, 56], a detailed analytical and 
numerical study of possible holonomy corrections from LQG to f (R) gravity was performed. 
It was shown that, as a result of such quantum corrections (and various generic off-diagonal, 
nonholonomic and/or QC contributions investigated in [18–20, 49–52]) the dynamics may 

5 Consistency and implications for inflationary, ekpyrotic and anamorphic bouncing cosmologies, and other type 
cosmological models, are discussed in [4, 17].
6 In more general contexts, one considers various modified gravity theories, F(R, T ), F(T), ... determined by 
functionals on Ricci scalars, energy-momentum and/or torsion tensors etc; in various papers, such functionals are 
denoted also as f (R), f (T), ...
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change substantially and, for certain well defined conditions, one obtains better predictions for 
the inflationary phase as compared with current observations. Various approaches to LQG and 
spin network theories, see also constructions on loop quantum cosmology, LQC, are reviewed 
in [57–61]. In the past, certain criticism against LQG (see, for instance, [62]) was motivated 
in the bulk by arguments that the mathematical formalism is not that which is familiar for the 
particle physicists working with perturbation theory, Fock spaces, background fields etc; see 
reply and discussion in [63].

The main objectives of this work are to study how quasiperiodic and/or aperiodic QC 
like structures with possible holonomy LQG corrections modify inflation and acceleration 
cosmology scenarios in MGTs and GR; to analyse if such effects can be modeled in the 
framework of the Einstein gravity theory; and to show how such generic off-diagonal cos-
mological solutions can be constructed and treated in anamorphic cosmology. The exten-
sions of cosmological models to spacetimes with nontrivial quasiperiodic/aperiodic and 
general anistoropic structures is not a trivial task. It is necessary to elaborate on new classes 
of exact and/or parametric solutions of gravitational and matter field cosmological equa-
tions which, in general, depend on all spacetime variables via generating and integration 
functions with mixed smooth and discrete degree of freedom and anisotropically polarized 
physical constants. We emphasize that it is not possible to describe, for instance, growth 
of any QC structure and compute certain cosmological effects determined by non-pertur-
bative and nonlinear gravitational interactions if we restrict our models to only diagonal 
homogeneous and isotropic metrics like the Friedmann–Lamaî tre–Roberstson–Worker, 
FLRW, one and possible generalizations with Lie group/algebroid symmetries [49–52]. In 
such cases, the cosmological solutions are determined by some integration and/or struc-
ture group constants, and depend only on a time like coordinate. We can not describe in a 
realistic form quasiperiodic/aperiodic spacetime structures, and their evolution, using only 
time-depending functions and FLRW metrics. In order to formulate and develop an unified 
geometric approach for all observational data on (super) cluster and extra long cosmological 
distances, we have to work with ‘non-diagonalizable’ metrics7 and generalized connections, 
and apply new numeric and analytic methods for constructing more general classes of solu-
tions in MGTs and cosmology models with quasiperiodic structure, inhomogeneities and 
local anisotropies. The new classes of cosmological solutions incorporate generating func-
tions and integration functions, with various integration constants and parameters, which 
allow more opportunities to compare with experimental data. Even some subclasses of solu-
tions can be parameterized by effective diagonal metrics8, the diagonal coefficients contain 
various physical data of nonlinear classical and quantum interactions encoded via generat-
ing functions and effective sources.

In contrast to the general purpose of unification of physical interactions and develop-
ment of fundamental and geometric principles of quantization (for instance, in string theory 
and deformation quantization), the approaches based on LQG and spin networks were per-
formed originally just as theories of quantum gravity combining the general relativity (GR) 
and quantum mechanics. The main principle was to provide a non-perturbative formulation 
when the background independence (the key feature of Einstein’s theory) is preserved. At the 
present time, LQG is supposed to have a clear conceptual and logical setup following from 
physical considerations and supported by a rigorous mathematical formulation. In this work, 
we study a toy cosmological model with LQG contributions, whilst keeping in mind that such 

7 Which can not be diagonalized by coordinate transforms, in a local or infinite spacetime region.
8 For certain limits with small off-diagonal corrections and/or nonholonomically constrained configurations, for 
instance, incorporating anomorphic smoothing phases.
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constructions will be expanded on for spin network models and further generalizations to QC 
configurations. Here, in addition to the references presented above, we cite some fundamental 
works [64–69] on LQG for also considering developments in loop quantum cosmology and 
possible extensions, for example, to deformation quantization. We emphasize that we analyze 
examples with a special class of holonomy corrections from LQG in order to prove that possi-
ble quantum modifications do not affect the main results on anamorphic cosmological models 
with QC structure.

With respect to our toy LQC model, we also note that we restrict our study to quantum 
gravity quasiperiodic effects in anamorphic cosmology by considering a special class of hol-
onomy corrections from LQG in order to distinguish possible non-perturbative and back-
ground independent modifications. In this approach, quantization can be performed in certain 
forms preserving the Lorentz local invariance in the continuous limit. Here we note that if 
the quantization formalism is developed on (co)tangent bundles, one gets quantum correc-
tions and respective cosmological terms violating this local symmetry [72]. In a more general 
context, such an approach involves reformulation of the LQG in nonholonomic variables with 
double 2  +  2 and 3  +  1 fibrations considered in [69, 73]. Details on the so-called ADM, i.e. 
Arnowitt–Deser–Misner, formalism in GR can be found, for instance, in [57–59, 74]. In order 
to construct new classes of cosmological solutions, we shall apply the anholonomic frame 
deformation method, AFDM (see details and examples for accelerating cosmology and DE 
and DM physics in [49, 52, 75–77]).

The paper is organized as follows: In section 2, we outline the most important formulas 
on nonholonomic variables, frame, linear and nonlinear connection deformations used 
for constructing (in general) generic off-diagonal cosmological solutions depending on 
all spacetime coordinates. It is shown how using such constructions we can decouple the 
gravitational and matter field equations in accelerating cosmology if the Einstein gravity 
and various f (R) modifications, with LQG corrections. In nonholonomic variables we 
formulate the criteria for anamorphic cosmological phases and analyze possible small 
parametric deformations in terms of quasi-FLRW metrics for nonholonomic Friedmann 
equations.

Section 3 is devoted to the study of geometric properties of new classes of generic off-
diagonal cosmological solutions modeling QC like structures in MGTs with LQG sources. 
In this section  the conditions on generating and integration functions and integration 
constants when such configurations encode quasiperiodic/aperiodic structure of possible 
different origin (induced by F-modifications, gravitational like polarization of mass like 
constants, anamorphic phases with effective polarization of the cosmological constant, and 
LQC sources) are formulated. Four such classes of solutions are constructed in explicit form 
and the criteria for anamorphic QC phases are formulated. Here, we also provide solutions 
for nonlinear superpositions resulting in hierarchies with new anamorphic QC like cosmo-
logical solutions.

In section 4, we consider small parametric decompositions for quasi-FLRW metrics encod-
ing QC like structures. It is proven that in such cases the cosmological solutions with gravi-
tationally polarized cosmological constants and the criteria for anamorphic phases can be 
written in certain forms similar to homogeneous cosmological configurations. In such cases, 
QC and LQG modified Friedmann equations can be derived in explicit form.

We discuss the results in section 5. Appendix provides a summary on geometric methods 
for constructing off-diagonal and diagonal cosmological solutions.

M M Amaral et alClass. Quantum Grav. 34 (2017) 185002
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2.  Nonholonomic variables and anamorphic cosmology

To be able to construct, in explicit form, exact and parametric quasiperiodic cosmological solu-
tions in MGTs with quantum corrections we have to re-write the fundamental gravitational and 
matter field equations in such nonholonomic variables when a decoupling and general integra-
tion of corresponding systems of nonlinear partial differential equations, PDEs, are possible. 
Readers are referred to [49, 52, 72, 73, 75–77] for details on the geometry and applications of 
the AFDM as a method of constructing exact solutions in gravity and Ricci flow theories. In this 
section, we show how such nonholonomic variables can be introduced in MGT and GR theory 
and formulate a geometric approach to anamorphic cosmology [1–6]. The constructions will be 
used in the next section for decoupling the fundamental cosmological PDEs with matter field 
sources and LQG corrections parameterized as in [55, 56, 69–71, 78, 79].

2.1.  N-adapted frames and connection deformations in MGTs

We presume that the metric properties of a four dimensional, 4d, cosmological spacetime 
manifold V are defined by a metric g of pseudo-Riemannian signature (+ + +−) which can 
be parameterized as a distinguished metric, d-metric,

g = gαβ(u)eα ⊗ eβ = gi(xk)dxi ⊗ dxi + ga(xk, yb)ea ⊗ eb

= gα′β′(u)eα
′
⊗ eβ

′
, for gα′β′(u) = gαβe

α
α′e

β
β′ .

�
(1)

In these formulas, we use N-adapted frames, eα = (ei, ea), and dual frames, eα = (xi, ea),

ei = ∂/∂xi − Na
i (u)∂/∂ya, ea = ∂a = ∂/∂ya,

ei = dxi, ea = dya + Na
i (u

γ)dxi and eα = eαα′(u)duα
′
.

�
(2)

The local coordinates on V are labeled uγ = (xk, yc), or u = (x, y), when indices run corre
sponding values i, j, k, ... = 1, 2 and a, b, c, ... = 3, 4 (for nonholonomic 2  +  2 splitting, for 
u4 = y4 = t being a time like coordinate and uı̀ = (xi, y3) considered as spacelike coordi-
nates endowed with indices ̀ı, j̀, k̀, ... = 1, 2, 3. We note that a local basis9 eα is nonholonomic 
(equivalently, non-integrable, or anholonomic) if the commutators

e[αeβ] := eαeβ − eβeα = Cγ
αβ(u)eγ� (3)

contain nontrivial anholonomy coefficients Cγ
αβ = {Cb

ia = ∂aNb
i , Ca

ji = ejNa
i − eiNa

j }.
A value N = {Na

i } = Na
i

∂
∂ya ⊗ dxi determined by frame coefficients in (2) defines a nonlin-

ear connection, N-connection, structure as an N-adapted decomposition of the tangent bundle

TV = hTV ⊕ vTV� (4)

into conventional horizontal, h, and vertical, v, subspaces. On a 4d metric-affine manifold V, 
this states an equivalent fibred structure with nonholonomic 2  +  2 spacetime decomposition 
(splitting). In particular, such a h-v-splitting states a double, h and v, diadic frame structure on 
any (pseudo) Riemannian spacetime. We shall use boldface symbols for geometric/physical 
objects on a spacetime manifold V endowed with geometric objects (g,N,D). The values 
D is a distinguished connection, d-connection, D = (hD, vD) defined as a linear connection, 
i.e. a metric-affine one, preserving the N-connection splitting (4) under parallel transports. 
We denote by T = {Tα

βγ} the torsion of D, which can be computed in standard form, see 
geometric preliminaries in [49, 52, 69, 72, 73, 75–77].

9 In literature, one uses equivalent terms like frame, tetrad, vierbein systems.
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On a nonholonomic spacetime manifold V, we can work equivalently with two linear con-
nections defined by the same metric structure g:

(g,N) →

{
∇ : ∇g = 0; ∇T = 0, for the Levi–Civita, LC,−connection
D̂ : D̂g = 0; hT̂ = 0, vT̂ = 0, hvT̂ �= 0, for the canonical d−connection.

� (5)
As a result, it is possible to formulate equivalent models of pseudo-Riemannian geometry and/
or Riemann–Cartan geometry with nonholonomically induced torsion10, see a summary of 
most important formulas in the appendix.

2.2.  Anamorphic cosmology in nonholonomic variables

Based on invariant criteria, authors [1–6] attempted to develop a complete scenario explain-
ing the smoothness and flatness of the universe on large scales with a smoothing phase 
that acts like a contracting universe. In this section, we develop a model of anamorphic 
cosmology in the framework of MGTs with quasiperiodic/aperiodic structures and LQC-
corrections. The approach relies on having time-varying masses for particles and certain 
Weyl-invariant values that define certain aspects of contracting and/or expanding cosmolog-
ical backgrounds. For off-diagonal cosmological models with nontrivial vacuum structures, 
the variation of masses and physical constants have a natural explanation via gravitational 
polarization functions [18–20, 49–52]. Let us denote such variations of a particle mass 
m → m̌(xi, t) � m̌(t) and of Planck mass MP → M̌P(xi, t) � M̌P(t), which depends on the 
type of generating functions we consider. The actions for particle motion and modified grav-
ity are written respectively as

pS=
∫

m̌
M̌P

ds and� (6)

S =

∫
d4u

√
|g|[F(R̂) + mL(φ)]� (7)

=

∫
d4u

√
|g|[1

2
M̌2

P(φ)R̂− 1
2
κ(φ)gαβ(eαφ)(eβφ)− JV(φ) + mL(φ)],

� (8)

where M̌2
P(φ) := M0

Pl

√
f (φ) is positive definite (we can work in a system of coordinates when 

M0
Pl = 1). Above actions are written for a d-metric gαβ (1), κ(φ) is the nonlinear kinetic cou-

pling function and R̂ is the scalar curvature of D̂. In our works, we use left labels in order to 

10 It should be emphasized that the canonical distortion relation D̂ = ∇+ Ẑ, where the distortion distinguished 

tensor, d-tensor, Ẑ = {Ẑα
βγ [T̂

α
βγ ]}, is an algebraic combination of the coefficients of the corresponding torsion 

d-tensor T̂ = {T̂
α

βγ} of D̂. The curvature tensors of both linear connections are computed in standard forms, 

R̂ = {R̂
α

βγδ} and ∇R = {Rα
βγδ} (respectively, for D̂ and ∇). This allows us to introduce the corresponding 

Ricci tensors, R̂ic = {R̂ βγ := R̂γ
αβγ} and Ric = {R βγ := Rγ

αβγ} . The value R̂ic is characterized by h-v N-

adapted coefficients, R̂αβ = {R̂ij := R̂k
ijk, R̂ia := −R̂k

ika, R̂ai := R̂b
aib, R̂ab := R̂c

abc}. There are also two different 

scalar curvatures, R := gαβRαβ and R̂ := gαβR̂αβ = gijR̂ij + gabR̂ab. We can also consider additional constraints 

resulting in zero values for the canonical d-torsion, T̂ = 0, considering some limits D̂|T̂ →0 = ∇.

M M Amaral et alClass. Quantum Grav. 34 (2017) 185002
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denote, for instance, that mL is for matter fields (for this label, m is from ‘mass’) and JV  is for 
the Jordan frame representation11

Here we note that F(R̂) = F[R̂(g, D̂,φ)] is also a functional of the scalar field φ but we 
use simplified notations using the assumption that R̂(g,D̂) are related to φ by a source term 
for modified Einstein equations with such a nonlinear scalar field.

The gravitational field equations for MGT with functional F(R̂) in (7) can be derived by 
a N-adapted variational calculus, see details in [18–20, 49–52] and references therein. We 
obtain a system of nonlinear PDEs which can be represented in effective Einstein form,

R̂µν = Υµν ,� (9)

where the right effective source is parameterized

Υµν = FΥµν + mΥµν + Υµν .� (10)

Let us explain how three terms in this source are defined. The functionals F(R̂) and
1F(R̂) := dF(R̂)/dR̂ determine an energy-momentum tensor,

FΥµν = (
F

2 1F
− D̂2 1F

1F
)gµν +

D̂µD̂ν
1F

1F
.� (11)

The source for the scalar matter fields can be computed in standard form,

mΥµν =
1

2M2
P

mTαβ ,� (12)

and the holonomic contributions from LQG, Υµν  (20), will be defined in section 2.5. We shall 
be able to find, in explicit form, exact solutions for the system (9) for any source (10), which 

via frame transforms Υµν = eµ
′

µeν
′

νΥµ′ν′ can be parameterized into N-adapted diagonalized 
form as

Υµ
ν = diag[ hΥ(xi), hΥ(xi), Υ(xi, t), Υ(xi, t)].� (13)

In these formulas, the generating source functions hΥ(xi) and Υ(xi, t) have to be prescribed in 
some forms which will generate exact solutions compatible with observational/ experimental 
data.

11 If in (7) and (8) F(R̂) = R̂2, JV(φ) = −Λ and mL = 0, we obtain a quadratic action for nonholonomic 
MGTs studied in [18–20, 76, 77], when S =

∫
d4u

√
|g|[R̂2 + mL]. The equivalence of such actions to 

nonholonomic deformations of the Einstein gravity with scalar field sources can be derived from the invari-

ance (both for ∇ and D̂) under global dilatation symmetry with a constant σ, gµν → e−2σgµν ,φ → e2σφ̃. 
We can re-define the physical values from the Jordan to the Einstein, E, frame using φ =

√
3/2 ln |2φ̃|, when 

ES =
∫

d4u
√

|g|
(

1
2R̂− 1

2eµφ eµφ− 2Λ
)
. The field equations derived from ES are

R̂µν − eµφ eνφ− 2Λgµν = 0 and D̂2φ = 0.

To find explicit solutions we can consider Υµν ∼ diag[0, 0, Υ, Υ], where Υ(t) will be determined by scalar 
fields in anamorphic QC phase and possible holonomic corrections to the Hubble constant. We obtain the Einstein 

gravity theory if F(R̂) = R for D̂|T̂ →0 = ∇. For simplicity, we can consider matter actions mS =
∫

d4u
√

|g| mL 
for matter field Lagrange densities mL depending only on coefficients of a metric field and do not depend on their 
derivatives when

mTαβ := − 2√
|gµν |

δ(
√
|gµν | mL)
δgαβ

= mLgαβ + 2
δ( mL)
δgαβ

.

.

M M Amaral et alClass. Quantum Grav. 34 (2017) 185002
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2.3.  Small parametric deformations for quasi-FLRW metrics

In N-adapted bases, the models of locally anisotropic and inhomogeneous anamorphic 
cosmology are characterized by three essential properties during the smoothing phase:

	 1.	masses are polarized with a certain dependence on time and space like coordinates 
m → m̌(xi, t) and/or m → m̌(t); 

	 2.	necessary type combinations of N-adapted Weyl-invariant signatures incorporating 
aspects of contracting and expanding locally anisotropic backgrounds; 

	 3.	using nonlinear symmetries of generic off-diagonal solutions gαβ (1) and considering 
nonholonomic deformations on a small parameter ε, we can express, via frame trans-
forms, the cosmological solutions of (9), with prescribed sources [ hΥ, Υ], in such a 
quasi-FLRW form12

ds2 = â2(xk, t)eı̀eı̀ − e4e
4,� (14)

		 for N3
j = nj(xk, t) and N4

j = wj(xk, t), where

eı̀ = (dxi, e3 = dy3 + nj(xk, t)dx j) � (dxi, dy3 + εχ3
j (x

k, t)dx j),

e4 = dt + wj(xk, t)dx j � dt + εχ4
i (x

k, t)dx j.
� (15)

		 The locally anisotropic scale coefficient can be considered as isotropic in certain limits 
(for additional assumptions on homogeneity), â2(xk, t) � â2(t) and computed together 
with effective polarization functions χ3

j  and χ4
i  all encoding data on possible nonlinear 

generic off-diagonal interactions, QC and/or LQG contributions. In next section, we shall 
prove how such values can be computed for certain classes of generic off-diagonal exact 
solutions in MGTs and GR.

Using the effective scale factor â2 from (14), we can introduce the respective effective and 
locally anisotropically polarized Hubble parameter,

Ĥ := e4(ln â) = ∂t(ln â) = (ln â)∗.� (16)

Considering a new time like coordinate ̌t, for t = t(xi, ť) and transforming 
√

|h4|∂t/∂ ť  into a 
scale factor â(xi, ť), we represent (15) in the form

ds2 = ǎ2(xi, ť)[ηi(xk, ť)(dxi)2 + ȟ3(xk, ť)(e3)2 − (ě4)2],

where ηi = ǎ−2eψ , ǎ2ȟ3 = h3, e3 = dy3 + ∂kn dxk, ě4 = ďt +
√
|h4|(∂it + wi).

� (17)
For a small parameter ε, with 0 � ε < 1, we the off-diagonal deformations are given by effec-
tive polarization functions

ηi � 1 + εχi(xk, t̂), ∂kn � εn̂i(xk),
√
|h4| wi � εŵi(xk, t̂).

We can work, for convenience, with both types of nonholonomic ε-deformations of FLRW 
metrics (nonholonomic FLRW models). Such approximations can be considered after a 
generic off-diagonal cosmological solution was constructed in a general form.

12 This term means that for ε → 0 and any approximation â2(t) a standard FLRW metric is generated.
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2.4.  Effective FLRW geometry for nonholonomic MGTs

Following a N-adapted variational calculus for MGTs Lagrangians resulting in respective 
dynamical equations (see similar holonomic variants in [55, 56]), we can construct various mod-
els of locally anisotropic spacetimes [18–20, 49–52]13. For Υµν = FΥµν  in (9) and a d-metric 
(1) with diagonal homogeneous approximations, we obtain from (7) that in the Einstein frame

FS = M2
P

∫
d4u

√
|g|F(R̂) → EFS = M2

P

∫
d4u EFL,

for EFL = a3

[
1
2
R+

1
2

(
∂φ

∂t

)2

− V(φ)

]
, where R = 6

∂H
∂t

+ 12H
2
.

In these formulas, V(φ) is an effective potential and a  and φ are independent variables defined 
correspondingly by

a :=
√

1F(R̂)â, dt :=
√

1F(R̂)dt,
∂

∂t
:= ∂;

φ :=

√
3
2
ln | 1F(R̂)|, V(φ) =

1
2


 R̂

1F(R̂)
− F(R̂)(

1F(R̂)
)2


 .

�

(18)

Using above variables for the Hamiltonian constraint EFH := ∂a∂( EFL)

∂∂a
+ ∂φ (∂ EFL)

∂∂φ
− EFL 

and effective density

ρ :=
1
2
(∂φ)2 + V(φ),� (19)

we express the effective Friedmann equation (in the Einstein frame, it is a constraint) 3H
2
= ρ  

when the dynamics is given by the conservation law ∂ρ = −3H(∂φ)2. This dynamics is 
encoded also in an effective Raychaudhury equation 2∂H = −(∂φ)2, with (∂ρ)2 = 3ρ(∂φ)2.

2.5.  LQC extensions of MGTs

LQC corrections to MGTs have been studied in series of works [55, 56, 70, 71, 78, 79]. As 
standard variables (we follow our notations (18)), we use β := γH, where γ  is the Barbero–
Immirzi parameter [66–68], and the volume V := a3. For diagonal configurations, the holo-
nomy corrections to the Friedemann equations are of type

H
2
=

ρ

3
(1 − ρ

ρc
),� (20)

13 In our works, we have to elaborate more ‘sophisticate’ systems of notations because such geometric model-
ing of cosmological scenarios and methods of constructing solutions of PDEs should include various terms with 
h-v-splitting; discrete and continuous classical and quantum corrections, diagonal and off-diagonal terms, different 
types of connections which were not considered in other works by other authors. The most important conventions 
on our notations are that we use boldface symbols for the spaces and geometric objects endowed with N-connection 
structure and that left labels are abstract ones associated to some classes of geometric/physical objects. Right Latin 
and Greek indices can be abstract ones or transformed into coordinate indices with possible h- and v-splitting. 
Unfortunately, it is not possible to simplify such a system of notations if we follow multiple purposes related to 
geometric methods of constructing exact solutions in gravity and cosmology theories, analysing different phases of 
anamoprhic cosmology with generic off-diagonal terms etc.
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where the critical density ρc := 2/
√

3γ3 is computed in EF (see [60] for a status report on dif-
ferent approaches to LCQ). This formula can be applied for small deformations with respect 
to N-adapted frames taking, for simplicity, a function ρ(t) determining the component Υµν  
in (9) and (10).

In a more general context, we can consider locally anisotropic configurations  
with ρ(xi, t) associated to any EFH[β(xi, t), V(xi, t)], with conjugated Poisson bracket 

{β(xi, t), V(xi, t)} = γ/2, when H(xi, t) = sin(
√

2
√

3γβ(xi,t))√
2
√

3γ
 , for a re-scaling in order to have 

a well-defined quantum theory. We note that there were formulated different models and 
inequivalent approaches to LQG and LQC, see a variant [69] which is compatible with defor-
mation quantization. For simplicity, we shall add the term

Υ = − ρ2

3ρc
� (21)

in N-adapted Υµν = diag[Υ,Υ,Υ,Υ], see below the formula (27 ), as an additional LQG 
contribution in the right part of certain generalized Friedmann equations with a nonlinear re-

definition of scalar field effective density ρ3 → ρ
3 (1 − ρ

ρc
).

2.6.  Nonholonomic Friedmann eqs in anamorphic cosmology with LQG corrections

The cosmological models with generic off-diagonal metrics parameterized in N-adapted form 
with respect to bases (15) are characterized by two dimensionless quantities (being Weyl-
invariant if the homogeneity conditions are imposed),

mΘ :=(Ĥ + H +
m̌∗

m̌
)M̌−1

P =
α̌∗

m

α̌mM̌P
for α̌m := âm̌/M0

P;

PlΘ :=(Ĥ + H +
M̌∗

P

M̌P
)M̌−1

P =
α̌∗

Pl

α̌PlM̌Pl
for α̌Pl := âM̌P/M0

P

�

(22)

for M0
P being the value of the reduced Planck mass in the frame where it does not depend on 

time. These values distinguish respectively such cosmological models (see details in [1, 2] but 
for holonomic structures):

anamorphosis inflation ekpyrosis

mΘ (background) < 0 (contracts) > 0 (expands) < 0 (contracts)
PlΘ (curvaturepert.) > 0 (grow) > 0 (grow) > 0 (decay).

�

(23)

Here we note that the priority of the AFDM is that we can consider any cosmological 
solution in a MGT or GR and than to write it in N-adapted form with ε-deformations. This 
allows us to compute all physical important values like mΘ and PlΘ and analyse if and 
when an anamporhic phase is possible. We note that mΘ is negative, for instance, as in 
modified ekpyrotic models, but PlΘ is positive as in locally anisotropic inflationary mod-
els. In such theories, the effective m̌  and M̌P are determined by certain QC and/or LQC 
configurations.

Reproducing in N-adapted frames for d-metrics of type (14) the calculus presented 
in appendix A (with Einstein and Jordan nonholonomic frame representations) of [1], we 
obtain respectively such a version of locally anisotropic and inhomogeneous first and second 
Friedmann equations,
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3( mΘ)2 =

[ Aρ+ mρ+ Aρ/
√
ρc

M̌4
P

− (
m̌

M̌P
)2 κ

α̌2
m
+ (

m̌
M̌P

)6 σ
2

α̌6
m

] [
1 − ∂(

m̌
M̌P

)/∂ ln α̌m

]−2

,

( PlΘ)∗ = −( Aρ+ mρ+ Aρ/
√
ρc)/2M̌3

P.
�

(24)

In these formulas, K(φ) := [ 3
2 ( f,φ)2) + κ(φ) f (φ)]/f 2(φ) and the values (energy density, 

pressure)

2(M0
P)

4 ( Aρ) := K(φ)(φ∗)2 + M̌4
P

JV(φ)/f 2(φ), 2(M0
P)

4 ( Ap) := K(φ)(φ∗)2 − M̌4
P

JV(φ)/f 2(φ),

are determined by coefficients in (8), for κ = (+1, 0,−1) being the spacial curvature, and 
the constant σ2 should be considered if we try to limit the background cosmology to that 
described by a homogeneous and anisotropic Kasner-like metric (see formula (A.5) in [1]). 
For simplicity, we shall consider in this work σ2 = 1 even MGTs can contain certain locally 
anisotropic configurations.

Finally, we note that we can identify Aρ with ρ  (19) for F-modified gravity theories.

3.  Off-diagonal anamorphic cosmology in MGT and LQG

Applying the anholonomic frame deformation method, AFDM, we can construct various classes 
of off-diagonal and diagonal cosmological solutions of (modified) gravitational field equa-
tions (9). After the metric, frame and connection structure, and the effective sources (10), have been  
parameterized in N-adapted form, we can select necessary type diagonal or off-diagonal 
configurations, consider small parameter decompositions, and approximate the generating/
integration functions to some constant values compatible with observational data. We do not 
repeat that geometric formalism and refer readers to [49, 52, 72, 75, 76] for details on AFDM 
and applications in modern cosmology. The purpose of this section is to state the conditions 
for the generating functions and (effective) sources and quantum corrections which describe 
quasiperiodic/aperiodic quasicrystal, QC, like cosmological structures. There are used neces-
sary type quadratic line elements for general solutions found in in the mentioned references 
and the partner papers [18–20].

3.1.  Generating functions encoding QC like MGT and LQG corrections

The metrics for off-diagonal locally anisotropic and inhomogeneous cosmological spacetimes 
are defined as solutions, with nonholonomically induced torsion and Killing symmetry on 
∂/∂y314. Via nonholonomic frame transforms, such metrics can be always written in a coordi-
nate basis, g = gαβ(xk, t)duα ⊗ duβ, and/or in N-adapted form (1),

ds2 = gijdxidx j + {h3[dy3 + ( 1nk + 2nk

∫
dt

(∂tΨ)2

Υ2|h3|5/2 )dxk]2 − (
∂tΨ

2Υ|h3|1/2 )
2 [dt +

∂iΨ

∂tΨ
dxi]2},

� (25)

h3 = −∂t(Ψ
2)/Υ2

(
h[0]

3 (xk)−
∫

dt∂t(Ψ
2)/4Υ

)
.� (26)

14 For simplicity, in this work we do not consider more general classes of solutions with generic dependence on all 
spacetime coordinates and do analyze the details how Levi–Civita, LC, configurations can be extracted by solving 
additional nonholonomic constraints, see [49, 52, 72, 75, 76] and references therein.
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In this formula, gij = δije ψ(xk) and 1nk(xi), 2nk(xi) and h[0]
a (xk) are integration functions, 

see details in appendix. The coefficient h3, or Ψ(xi, t), is the generating function15 and the 
generating h- and v-sources (see (10) and (13)) are given by terms of effective gravity modifi-
cations, matter field and LQG contributions,

hΥ(xi) = F
hΥ(xi) + m

h Υ(xi) + hΥ(xi) and Υ(xi, t) = FΥ(xi, t) + mΥ(xi, t) + Υ(xi, t).
� (27)

Off-diagonal metrics of type (25) posses an important nonlinear symmetry, which allows 
us to re-define the generating function and generating source

(Ψ, Υ) ↔ (Φ,Λ = const), when Υ(xk, t) → Λ, for

Φ2 = Λ

∫
dtΥ−1∂t(Ψ

2) and Ψ2 = Λ−1
∫

dtΥ∂t(Φ
2),

�

(28)

by introducing an effective cosmological constant Λ as a source and the functional 
Φ(Λ,Ψ, Υ) as a new generating function. This property can be proven by considering the 
relation Λ∂t(Ψ

2) = Υ∂t(Φ
2) in above formulas for the d-metric. We can consider that non-

linear generic off-diagonal interactions on MGTs may induce an effective cosmological con-
stant with splitting, Λ = FΛ + mΛ + Λ . The terms of this sum are determined respectively 
by modifications of GR resulting in FΛ; by nonlinear interactions of matter (i.e. scalar field 
φ) resulting in mΛ; and by an effective Λ associated to holonomy modifications from LQG. 
Technically, it is more convenient to work with some data (Φ,Λ) for generating solutions and 
then to redefine the formulas in terms of generating function and generalized source (Ψ, Υ). 
We can also extract torsionless cosmological configurations16.

The generating functions and/or sources can be chosen in such forms that the cosmological 
spacetime solutions encode nontrivial gravitational and/or matter field quasicrystal like, QC, 
configurations and possible additional LQG effects. We use an additional 3  +  1 decomposi-
tion with spacelike coordinates xı̀ (for ̀ı = 1, 2, 3), time like coordinate y4 = t, being adapted 
to another 2  +  2 decomposition with a fibration by 3d hypersurfaces Ξ̂t, see details in [73, 74]. 
For such configurations, we can consider a canonical nonholonomically deformed Laplace 

15 We note that such solutions are defined in explicit form by coefficients of (1) computed in this form (see sketch of 
proofs in appendix):

gi = e ψ(xk) is a solution of ψ•• + ψ′′ = 2 hΥ;

g3 = h3 = −∂t(Ψ
2)/Υ2

(
h[0]

3 (xk)−
∫

dt∂t(Ψ
2)/4Υ

)
; g4 = h[0]4 (xk)−

∫
dt∂t(Ψ

2)/ 4Υ;

N3
k = nk(xi, t) = 1nk(xi) + 2nk(xi)

∫
dt(∂tΨ)2/Υ2

∣∣∣∣h[0]3 (xi)−
∫

dt ∂t(Ψ
2)/4Υ

∣∣∣∣
5
2

; N4
i = wi(xk, t) =

∂i Ψ

∂tΨ
.

16 The nonholonomically induced torsion of solutions (25) can be constrained to be zero by choosing certain 
subclasses of generating functions and sources. We have to consider a subclass of generating functions and sources 
when for Ψ = Ψ̌(xi, t), ∂t(∂iΨ̌) = ∂i(∂tΨ̌) and Υ(xi, t) = Υ[Ψ̌] = Υ̌, or Υ = const. Then, we can introduce 
functions Ǎ(xi, t) and n(xk) subjected to the conditions that wi = w̌i = ∂iΨ̌/∂tΨ̌ = ∂iǍ and nk = ňk = ∂kn(xi). 
Such assumptions are considered in order to simplify the formulas for cosmological solutions (see details in [49, 
52, 72, 75, 76], where the AFDM is applied for generating more general classes of solutions depending on all 
spacetime coordinates. We obtain a quadratic line element defining generic off-diagonal LC-configurations (a proof 
is sketched at the end of appendix),

ds2 = gijdxidx j + {h3[dy3 + (∂kn)dxk]2 − 1
4h3

[
∂tΨ̌

Υ̌

]2

[dt + (∂iǍ)dxi]2}.
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operator b∆̂ := ( bD̂)2 = bı̀̀jD̂ı̀D̂j̀ (determined by the 3d part of d-metric) as a distortion of 
b∆ := ( b∇)2. Such a value can be defined and computed on any Ξ̂t using a d-metric (1) and 
respective 3d space like projections/ restrictions of D̂. We chose a subclass of generating 
functions Ψ = Π subjected to the condition that it is a solution of an evolution equation (with 
conserved dynamics) of type

∂Π

∂t
= b∆̂

[
δF
δΠ

]
= − b∆̂(ΘΠ + QΠ2 −Π3).� (29)

Such a nonlinear PDE can be derived for a functional defining an effective free energy

F [Π] =

∫ [
−1

2
ΠΘΠ− Q

3
Π3 +

1
4
Π4

]√
bdx1dx2δy3,� (30)

where b = det |bı̀̀j| is the determinant of the 3d spacelike metric, δy3 = e3 and the operator 
Θ and parameter Q are defined in the partner works [18, 19]. Different choices of Θ and Q 
induce different classes of quasiperiodic, aperiodic and/or QC order of corresponding classes 
of gravitational solutions. We note that the functional (30) is of Lyapunov type considered in 
quasicrystal physics, see [30, 31, 38] and references therein, and for applications of geometric 
flows in modern cosmology and astrophysics, with generalized Lyapunov–Perelman func-
tionals [73, 76, 77]. In this paper, we do not enter into details how certain QC structures and 
their quasiperiodic/aperiodic deformations can be reproduced in explicit form but consider 
that such configurations can always be modelled by some evolution equations derived for a 
respective free energy. The generating/integration functions and parameters should be chosen 
in certain forms which are compatible with experimental data.

Let us explain how the quadratic element (25) defines exact solutions of MGT field equa-
tion (9). We prescribe the generating function and sources with respective associated constants, 
i.e. certain data for Φ(xi, t); FΛ, mΛ, Λ (defining their sum Λ); F

hΥ(xi), m
h Υ(xi), hΥ(xi) 

and FΥ(xi, t), mΥ(xi, t), Υ(xi, t) (defining respective sums hΥ and Υ). Using formulas (28), 
we compute the parametric functional dependence Π = Ψ[Φ; FΛ, mΛ, Λ; FΥ, mΥ, Υ] 
from

Π2 = ( FΛ + mΛ + Λ)−1
∫

dt( FΥ+ mΥ+ Υ)∂t(Φ
2).

As a result, we can find, in explicit form, the coefficients of d-metric (1) parameterized in the 
form (17), for the class of generic off-diagonal solutions with Killing symmetry on ∂3,

gi = ǎ2ηi = e ψ(xk) is a solution of ψ•• + ψ′′ = 2 ( F
hΥ+ m

h Υ+ hΥ);

g3 = h3(xi, t) = ǎ2ȟ3(xk, ť) = − ∂t(Π
2)

( FΥ+ mΥ+ Υ)2
(

h[0]
3 (xk)−

∫
dt ∂t(Π2)

4( FΥ+ mΥ+ Υ)

) ;

g4 = h4(xi, t) = −ǎ2 = h[0]4 (xk)−
∫

dt
∂t(Π

2)

4( FΥ+ mΥ+ Υ)
;

N3
k = nk(xi, t) = 1nk(xi) + 2nk(xi)

∫
dt

(∂tΠ)2

( FΥ+ mΥ+ Υ)2|h[0]3 (xi)−
∫

dt ∂t(Π2)

4( FΥ+ mΥ+ Υ)
| 5

2

;

N4
i = wi(xk, t) = ∂i Π/∂tΠ.

� (31)
We emphasize that these formulas allow, for instance, to ‘switch off’ the contributions from 
LQG if we fix Λ = 0 and Υ but consider nontrivial values for FΛ + mΛ and F

hΥ+ m
h Υ.
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The values ( hΥ,Υ) define certain nonholonomic constraints on the sources and dynamics of 
(effective) matter fields and quantum corrections which allows us to integrate a system of nonlin-
ear PDEs in explicit form and with decoupled h- v-cosmological evolution in certain N-adapted 
systems of reference. In explicit form, we compute using coefficients of D̂ for a class of solutions 
(25). At the next step, it is possible to compute FΥµν  (11),mΥµν(12) and Υµν (21) for arbitrary 
physically motivated values of F-modifications and solutions for scalar field φ. For instance, we 
generate physically motivated solutions by considering ε-parametric deformations (14) of some 
well defined cosmological solutions in GR or other type MGT, see examples [49, 52, 72]. For 
such small off diagonal locally anisotropic deformations, we have to chose â2(xk, t) and χa

j (x
k, t) 

to be compatible with experimental gravity and observation cosmology data.
Other important examples with redefinition and/or prescription of the generating function 

and source are those when the integration functions in a class of metrics (25) are stated to be 
some constants and, for instance, Φ(xi, t) � Φ(t), which results in some data (Π(t), Υ(t)) 
following formulas (28). It is also possible to work with ε-parametric data (Φ(ε, xi, t),Λ), 
and respective (Π(ε, xi, t), Υ(ε, xi, t)), resulting formulas (15) for quasi-FLRW metrics (14). 
Here, it should be emphasized that even some further diagonal approximations with â2(xk, t) 
� â2(t) will be considered, we shall generate FLRW metrics encoding partially some data 
on nonlinear and/or off-diagonal interactions, MGT terms and LQG corrections. Such solu-
tions can not be found if we introduce diagonal homogeneous cosmological ansatz which 
transform, from the very beginning, the nonlinear systems of PDEs into some ODEs (related 
to gravitational and matter field equations in respective theories of gravity and cosmology).

3.2.  N-adapted Weyl-invariant quantities for anamorphic phases

For any generic off-diagonal solution (25), we can compute with respect to N-adapted the 
α̌-coefficients and values mΘ and PlΘ in (22). Re-writing such solutions in the form (17), 
with re-defined time like and space coordinates and scaling factor â = ǎ. Here, we note that 
we can model nonlinear off-diagonal interactions of gravitational and (effective) matter field 
interactions in terms of conventional polarization functions of fundamental physical constants 
(such values are introduced by analogy with electromagnetic interactions in certain classical 
or quantum media). Let us denote

m̌ = m0η̌(xi, t) and M̌Pl = M0
Pl

√
f (φ) = M0

PlηPl(xi, t),� (32)

where η̌(xi, t) and ηPl(xi, t) are respective polarization of a particle mass m0 and 
Planck constant M0

Pl. The α̌-coefficients in off-diagonal backgrounds are expressed 
α̌m := âη̌m0/M0

P and α̌Pl := âηPl.
The values for analyzing the conditions for anamorphic phases of (25) are computed

mΘ[Π] M0
PlηPl := Ĥ + H + η̌∗ = (ln |âη̌|)∗ and PlΘ[Π] M0

PlηPl := Ĥ + H + η∗Pl = (ln |âηPl|)∗,
�

(33)

where the Hubble functions, Ĥ  (16) and H  (20) are considered for (31) with h4 = −ǎ2 and 
ρ  (19),

Ĥ = (ln â)∗ =
1
2

(
ln

∣∣∣∣h[0]4 (xk)−
∫

dt
∂t(Π

2)

4( FΥ+ mΥ+ Υ)

∣∣∣∣
)∗

and H =

√∣∣∣∣
ρ

3
(1 − ρ

ρc
)

∣∣∣∣.

A generating function Π = Ψ[Φ; FΛ, mΛ, Λ;F Υ, mΥ, Υ] may induce anamorphic 
cosmological phases following the conditions (23) determined by the data for the integra-

tion function h[0]
4 (xk); effective sources FΥ, mΥ, Υ and ρ  contained in the sum Ĥ + H. 
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The polarizations η̌(xi, t) and ηPl(xi, t) modify mΘ[Π] and PlΘ[Π] as follow from  (33). Such 
values can be used for characterizing locally anisotropic cosmological models, even the ana-
logs of generalized Friedmann equations  (24) for all types of generating functions17. We 
compute

anamorphosis inflation ekpyrosis

M0
Pl

mΘ[Π] = (ln |
√
|h4[Π]|η̌|)∗/ηPl < 0 (contracts) > 0 (expands) < 0 (contracts)

M0
Pl

PlΘ[Π] = (ln |
√
|h4[Π]|ηPl|)∗/ηPl > 0 (grow) > 0 (grow) > 0 (decay).

Such conditions impose additional nonholonomic constraints on generating functions, sources 
and integration functions and constants which induce QC structures as follow from (30).

3.3.  Cosmological QCs for (effective) matter fields and LQG

Quasiperiodic cosmological structures can be induced by nonholonomic distributions of 
(effective) matter fields sources and quantum corrections.

3.3.1.  Effective QC matter fields from MGT.  Let us consider an effective scalar field  

φ :=
√

3
2 ln |

1F(R̂)| with nonlinear scalar potential V(φ) = 1
2 [R̂/ 1F(R̂)− F(R̂)/ (

1F(R̂)
)2
] determined by a modification of GR, see (18). This results in an effective matter 

density ρ := 1
2 (∂φ)

2 + V(φ) and respective EFL. Considering that V(φ) is chosen in a form 
that φ = qcφ (the label qc emphasises modeling a QC structure) is a solution of

∂( qcφ)

∂t
= b∆̂

[
δ( qcF)

δ( qcφ)

]
= − b∆̂[Θ qcφ+ Q( qcφ)2 − ( qcφ)3]

with effective free energy qcF [ qcφ] =
∫ [

− 1
2 (

qcφ)Θ( qcφ)− Q
3 (

qcφ)3 + 1
4 (

qcφ)4
]
 √

bdx1dx2δy3. This induces an effective matter source of type (11), when 
qcΥµν = FΥµν [

qcφ] = diag( qc
h Υ, qcΥ) is taken for an energy momentum tensor FTµν 

computed in standard form for a QC-field qcφ.
We conclude that F-modifications of GR can induce QC locally anisotropic configurations 

via effective matter field sources if the scalar potential is determined by a corresponding class 
of nonlinear interactions and associated free energy qcF . Such cosmologies for QC-modified 
gravity are described by N-adapted coefficients

gi = ǎ2ηi = e ψ(xk) is a solution of ψ•• + ψ′′ = 2 qc
h Υ;

g3 = h3(xi, t) = ǎ2ȟ3(xk, ť) = − ∂t[Ψ
2( qcφ)]

( qcΥ)2
(

h[0]
3 (xk)−

∫
dt ∂t[Ψ2( qcφ)]

4( qcΥ)

) ;

g4 = h4(xi, t) = −ǎ2 = h[0]4 (xk)−
∫

dt
∂t[Ψ

2( qcφ)]

4( qcΥ)
;

N3
k = nk(xi, t) = 1nk(xi) + 2nk(xi)

∫
dt

[∂tΨ( qcφ)]2

( qcΥ)2|h[0]3 (xi)−
∫

dt ∂t[Ψ2( qcφ)]
4( qcΥ) | 5

2

;

N4
i = wi(xk, t) = ∂i Ψ[ qcφ]/∂tΨ[ qcφ].

�

(34)

17 We can consider a standard interpretation as in [1, 2] for small ε-deformations in section 4.

M M Amaral et alClass. Quantum Grav. 34 (2017) 185002



16

A d-metric (1) with such coefficients describes a cosmological spacetime encoding ‘pure’ 
modified gravity contributions. The functional Ψ2( qcφ) has to be prescribed in a form repro-
ducing observational data. Considering additional sources for matter fields and quantum 
corrections, we can model quasiperiodic and/or aperiodic structures of different scales and 
resulting from different sources.

The values necessary for analyzing the conditions for anamorphic phases induced by QC 
matter fields from MGT as cosmological spacetimes (34) are computed

mΘ[Ψ( qcφ)] M0
PlηPl := Ĥ + η̌∗ = (ln |âη̌|)∗ and PlΘ[Ψ( qcφ)] M0

PlηPl := Ĥ + η∗Pl = (ln |âηPl|)∗

where Ĥ =
1
2

(
ln |h[0]4 (xk)−

∫
dt
∂t[Ψ

2( qcφ)]

4( qcΥ)
|
)∗

.

A generating function Ψ[ qcφ] may induce anamorphic cosmological phases following the 
conditions

anamorphosis inflation ekpyrosis

M0
Pl

mΘ[ qcφ] = (ln |
√
|h4[ qcφ]|η̌|)∗/ηPl < 0 (contracts) > 0 (expands) < 0 (contracts)

M0
Pl

PlΘ[ qcφ] = (ln |
√
|h4[ qcφ]|ηPl|)∗/ηPl > 0 (grow) > 0 (grow) > 0 (decay).

Such conditions impose additional nonholonomic constraints on modifications of gravity via 
F-functionals and generating function Ψ[ qcφ] and source qcΥ and integration functions. We 
do not consider quantum contributions in generating QCs and the mass m0 is taken by a point 
particle.

3.3.2.  Nonhomogeneous QC like scalar fields.  For interactions of a scalar field φ = mφ 
with mass m and mΥµν = (2MP)

−2 mTαβ (12) parameterized in N-adapted form, 
qmΥµν = mΥµν [

mφ] = diag( qm
h Υ, qmΥ), we can generate QC like configurations by this 

class of solutions,

gi = ǎ2ηi = e ψ(xk) is a solution of ψ•• + ψ′′ = 2 qm
h Υ;

g3 = h3(xi, t) = ǎ2ȟ3(xk, ť) = − ∂t[Ψ
2( mφ)]

( qmΥ)2
(

h[0]
3 (xk)−

∫
dt ∂t[Ψ2( mφ)]

4Ψ( qmΥ)

) ;

g4 = h4(xi, t) = −ǎ2 = h[0]4 (xk)−
∫

dt
∂t[Ψ

2( mφ)]

4( qmΥ)
;

N3
k = nk(xi, t) = 1nk(xi) + 2nk(xi)

∫
dt

[∂tΨ( mφ)]2

( qmΥ)2|h[0]3 (xi)−
∫

dt ∂t[Ψ2( mφ)]
4Ψ( qmΥ) |

5
2

;

N4
i = wi(xk, t) = ∂i Ψ[ mφ]/∂tΨ[ mφ].

�

(35)

We can consider additional constraints for zero torsion configurations which results in 
cosmological solutions in GR. Such off-diagonal metrics are determined by QC like matter 
distributions if

∂( mφ)

∂t
= b∆̂

[
δ( qmF)

δ( mφ)

]
= − b∆̂[Θ mφ+ Q( mφ)2 − ( mφ)3]

with effective free energy qmF [ mφ] =
∫ [

− 1
2 (

mφ)Θ( mφ)− Q
3 (

mφ)3 + 1
4 (

mφ)4
]√

bdx1dx2δy3.
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It is possible to model double QC configurations with φ = qcφ+ mφ, for instance, consid-
ering mφ as a small modification of qcφ and effective F � qcF [ qcφ] + qmF [ mφ]. In general, 
we do not have an additive law of QC free energies for nonlinear MGT and matter field inter-
actions. The functional Ψ[ mφ] is different from Ψ[ qcφ].

The values for anamorphic phases induced by QC matter fields from MGT as cosmological 
spacetimes (35) are computed

mΘ[Ψ( qcφ), qmΥ] M0
PlηPl := Ĥ + η̌∗ = (ln |âη̌|)∗ and

PlΘ[Ψ( qcφ), qmΥ] M0
PlηPl := Ĥ + η∗Pl = (ln |âηPl|)∗

where Ĥ = Ĥ = 1
2

(
h[0]4 (xk)−

∫
dt ∂t[Ψ

2( mφ)]
4( qmΥ)

)∗
. A generating function Ψ[ qcφ] may induce 

anamorphic cosmological phases following the conditions

anamorphosis inflation ekpyrosis

M0
Pl

mΘ[Ψ( qcφ), qmΥ] = (ln |
√

|h4|η̌|)∗/ηPl < 0 (contracts) > 0 (expands) < 0 (contracts)
M0

Pl
PlΘ[Ψ( qcφ), qmΥ] = (ln |

√
|h4|ηPl|)∗/ηPl > 0 (grow) > 0 (grow) > 0 (decay).

These conditions impose additional nonholonomic constraints on generating function Ψ[ qcφ] 
and source qmΥ and integration functions. Quantum contributions are not considered and the 
scalar field with QC configurations is with polarization of mass m0.

3.3.3.  QC configurations induced by LQG corrections.  Quantum corrections may also result 
in quasiperiodic/aperiodic QC like structures, for instance, if LQG sources of type Υ̌ = 
Υ = −ρ2[ qφ]/3ρc (21) are considered for generating cosmological solutions. This defines 
an effective scalar field φ = qφ (the label q emphasizes the quantum nature of such a field).  
For LQG and GR, such solutions are of type (see footnote 16)

ds2 = gijdxidx j + {h3[dy3 + (∂kn)dxk]2 − 9(ρc)
2

4h3

[
∂tΨ̌( qφ)

]2
[dt + (∂iǍ)dxi]2},

h3 = −9(ρc)
2∂t(Ψ̌

2)/ρ4[ qφ]

(
h[0]

3 (xk) + 3ρc

∫
dt∂t[Ψ̌

2( qφ)]/4ρ2[ qφ]

)
.

�

(36)

The QC structure is generated if qφ is subjected by the conditions

∂( qφ)

∂t
= b∆̂

[
δ( qF)

δ( qφ)

]
= − b∆̂[Θ qφ+ Q( qφ)2 − ( qφ)3]

for effective free energy qF [ qφ] =
∫ [

− 1
2 (

qφ)Θ( qφ)− Q
3 (

qφ)3 + 1
4 (

qφ)4
]√

bdx1dx2δy3. 
This type of loop QC configurations can be generated from vacuum gravitational fields.

The values for anamorphic phases for QC structures determined by LQG corrections of 
matter fields from MGT as cosmological spacetimes (36) are computed

mΘ[Ψ̌( qφ)] M0
PlηPl := Ĥ + η̌∗ = (ln |âη̌|)∗ and

PlΘ[Ψ̌( qφ)] M0
PlηPl := Ĥ + η∗Pl = (ln |âηPl|)∗

where Ĥ = ln â = ln | 3ρc
2h3

∂tΨ̌( qφ)| is computed for

h4 = ρ4[ qφ]
∂tΨ̌( qφ)

8Ψ̌

(
h[0]3 (xk) +

3ρc

4

∫
dt
∂t[Ψ̌

2( qφ)]

ρ2[ qφ]
/

)
.
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Anamorphic cosmological phases are determined following the conditions

anamorphosis inflation ekpyrosis

M0
Pl

mΘ[Ψ̌( qφ)] = (ln |
√
|h4|η̌|)∗/ηPl < 0 (contracts) > 0 (expands) < 0 (contracts)

M0
Pl

PlΘ[Ψ̌( qφ)] = (ln |
√
|h4|ηPl|)∗/ηPl > 0 (grow) > 0 (grow) > 0 (decay).

These conditions impose nonholonomic constraints on generating function Ψ̌( qφ) for 
quantum contributions computed in LQG and for polarization of mass m0 of a point particle.

3.4.  Anamorphic off-diagonal cosmology with QC and LQG structures

Generic off-diagonal solutions (25) encoding parameterized form QC structures generated by 
different type sources considered in (34)–(36) can be written in the form similar to (17) with 
redefined time coordinate and scaling factor â = ǎ. We obtain

ds2 = â2(xi, ť)[ηi(xk, ť)(dxi)2 + ȟ3(xk, ť)(e3)2 − (ě4)2],

where ηi = ǎ−2eψ , e3 = dy3 + ∂kn(xi) dxk, ě4 = ďt +
√

|h4|(∂it + wi),
�

(37)

for ȟ3 = −∂t(Ψ
2)/ǎ2( qcΥ+ qmΥ− ρ2[ qφ]/3ρc)

2(h[0]3 (xk)−
∫

dt
∂t(Ψ

2)

4( qcΥ+ qmΥ− ρ2[ qφ]/3ρc)
)

h4 = −â2(xi, t) = h[0]4 (xk)−
∫

dt∂t(Ψ
2)/4( qcΥ+ qmΥ− ρ2[ qφ]/3ρc),

wi = ∂i Ψ/∂tΨ,

for a functional Ψ = Ψ[ qcφ, mφ, qφ]. For a hierarchy of coupled three QC cosmological 
structures, we can subject such a functional of effective sources to conditions of type

∂Ψ

∂t
= b∆̂

[
δF
δΨ

]
= − b∆̂(ΘΨ + QΨ2 −Ψ3),

with a functional for effective free energy F [Ψ] =
∫ [

− 1
2ΨΘΨ− Q

3 Ψ
3 + 1

4Ψ
4
]√

bdx1dx2δy3, 
written in conventional integro-functional forms.

The values characterizing anamorphic phases in QC cosmological spacetimes are 
computed

mΘ M0
PlηPl := Ĥ + H + η̌∗ = (ln |âη̌|)∗ and PlΘ M0

PlηPl := Ĥ + H + η∗Pl = (ln |âηPl|)∗

where the polarized Hubble functions, Ĥ  (16) and H  (20), are taken for the quadratic element 
(37)

Ĥ = (ln â)∗ =
1
2

(
ln

∣∣∣∣h[0]4 (xk)−
∫

dt
∂t(Ψ

2)

4( qcΥ+ qmΥ− ρ2[ qφ]/3ρc)

∣∣∣∣
)∗

and H =

√∣∣∣∣
ρ

3
(1 − ρ

ρc
)

∣∣∣∣.

A generating function Ψ = Ψ[Φ; FΛ, mΛ, Λ;F Υ, mΥ, Υ] may induce anamorphic 
cosmological phases following the conditions (23). In the case of mixed 3 type QC struc-
tures, the Weyl type anamorphic characteristics are determined also by the data for the 

integration function h[0]
4 (xk); effective sources FΥ, mΥ, Υ and ρ  contained in the sum 

Ĥ + H. We compute
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anamorphosis inflation ekpyrosis

M0
Pl

mΘ[Ψ, qcΥ, qmΥ, ρ2] = (ln |
√

|h4|η̌|)∗/ηPl < 0 (contracts) > 0 (expands) < 0 (contracts)
M0

Pl
PlΘ[Ψ, qcΥ, qmΥ, ρ2] = (ln |

√
|h4|ηPl|)∗/ηPl > 0 (grow) > 0 (grow) > 0 (decay).

Such conditions impose additional nonholonomic constraints on generating functions and all 
types of sources and integration functions and constants which induce QC structures.

4.  Small parametric anamorphic cosmological QC and LQG structures

The main goal of this paper is to prove that quasiperiodic and/or aperiodic (for instance, QC 
like) structures in MGT with LQG helicity contributions can be incorporated in a compatible 
way in the framework of the anamorphic cosmology [1–6]. For the classes of cosmological 
solutions constructed in general form in previous section, we can consider a procedure of 
small ε-deformations of d-metrics of type (25) with respective N-adapted frames and con-
nections, see details in [49, 52, 72, 73, 75–77] and section 2.3. In this section, we show how 
using ε-deformations an off-diagonal ‘prime’ metric, ̊g(xi, y3, t) (for applications in modern 
cosmolgoy, this metric can be diagonalizable under coordinate transforms18) into a ‘target’ 
metric, g(xi, y3, t).

4.1.  N-adapted ε-deformations

We suppose that a ‘prime’ pseudo–Riemannian cosmological metric ̊g = [̊gi, h̊a, N̊ j
b ] can be 

parameterized in the form

ds2 = g̊i(xk, t)(dxi)2 + h̊a(xk, t)(̊ea)2,

e̊3 = dy3 + n̊i(xk, t)dxi, e̊4 = dt + ẘi(xk, t)dxi.
�

(38)

For instance, some data (̊gi, h̊a) may define a cosmological solution in MGT or in GR like a 
FLRW, metric. The target metric g = εg for an off-diagonal deformation of the metric struc-
ture, for a small parameter 0 � ε � 1, is parameterized by N-adapted quadratic elements

ds2 = ηi(x
k, t)̊gi(xk, t)(dxi)2 + ηa(x

k, t)̊ga(xk, t)(ea)2

= ǎ2(xi, t)[ηi(xk, t)(dxi)2 + ȟ3(xk, t)(e3)2 − (ě4)2],

e3 = dy3 + nηi(xk, t)̊ni(xk, t)dxi = dy3 + ∂kn dxk,

e4 = dt + wηi(xk, t)ẘi(xk, t)dxi = ě4 = ďt +
√

|h4|(∂it + wi),

�

(39)

with possible re-definitions of coordinates ̌t = ť(xk, t) for ǎ2(xi, t) → â2(xi, t) and where, for 
instance, nηi̊nidxi = nη1̊n1dx1 + nη2̊n2dx2. The polarization functions are ε-deformed fol-
lowing rules adapted to (17) and (37), when

ηi = η̌i(xk, t)[1 + εχi(x
k, t)], ηa = 1 + εχa(x

k, t) and
nηi = 1 + ε nχi(xk, t), wηi = 1 + ε wχi(xk, t),

ηi � 1 + εχi(xk, t̂), ∂kn � εn̂i(xk),
√

|h4| wi � εŵi(xk, t̂).
�

(40)

18 We note that in general, ̊g (38) may not be a solution of gravitational field equations but it will be 
nonholonomically deformed into such solutions.
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Such ‘double’ N-adapted deformations are convenient for generating new classes of solutions 
and further physical interpretation of such solutions with limits of quasi-FLRW metrics to 
some homogenous diagonal cosmological metrics.

The target generic off-diagonal cosmological metrics

g = εg = ( εgi, εha, εN j
b) = (gα = ηαg̊α, nηini, wηiẘi) (39) → g̊ (38) for ε → 0,

define, for instance, cosmological QC configurations with parametric ε-dependence deter-
mined by a class of solutions (25) (or any variant of solutions (31), (34)–(37)). The effective 
ε-polarizations of constants (see (32)) are written

m̌ = m0η̌(xi, t) � m0(1 + εχ(xi, t)) and M̌Pl = M0
Pl

√
f (φ) = M0

PlηPl(xi, t) = M0
Pl(1 + εχPl(xi, t)),

see formulas (7), (8) and (22), where Aρ = ρ  (19) in locally anisotropic and inhomogeneous 
first and second Friedmann equation (24).

4.2.  ε-deformations to off-diagonal cosmological metrics

The deformations of h-components of the cosmological d-metrics are

εgi(xk) = g̊i(xk, t)η̌i(xk, t)[1 + εχi(xk, t)] = eψ(xk)

defined by a solution of the 2d Poisson equation. Considering ψ = 0ψ(xk) + ε 1ψ(xk) and

hΥ(xk) = 0
hΥ(xk) + ε 1

hΥ(xk) = F
hΥ(xi) + m

h Υ(xi) + hΥ(xi)

(in particular, we can take 1
hΥ), see (13), we compute the deformation polarization functions

χi = e
0
�ψ 1ψ/̊giη̌i

1
hΥ.� (41)

Let us compute ε-deformations of v-components using formulas for a source Υ =
FΥ+ mΥ+ Υ. We consider

εh3 = h[0]3 (xk)− 1
4

∫
dt
(Ψ2)∗

Υ
= (1 + εχ3)̊g3; εh4 = −1

4
( Ψ∗)2

(Υ)2

(
h[0]4 − 1

4

∫
dt
(Ψ2)∗

Υ

)−1

= (1 + ε χ4)̊g4,

� (42)
when the generation function can also be ε-deformed,

Ψ = εΨ = Ψ̊(xk, t)[1 + εχ(xk, t)].� (43)

Introducing εΨ in (42), we compute

χ3 = − 1
4̊g3

∫
dt
(Ψ̊2χ)∗

Υ
and

∫
dt
(Ψ̊2)∗

Υ
= 4(h[0]3 − g̊3).� (44)

We conclude that χ3 can be computed for any deformation χ in (43) adapted to a time like 
oriented family of 2-hypersurfaces t = t(xk). This family given in non-explicit form by 
Ψ̊ = Ψ̊(xk, t) when the integration function h[0]

3 (xk), ̊g3(xk) and (Ψ̊2)∗/ Υ satisfy the condi-
tions (44).

Using (43) and (42), we get

χ4 = 2(χ+
Ψ̊

Ψ̊∗
χ∗)− χ3 = 2(χ+

Ψ̊

Ψ̊∗
χ∗) +

1
4̊g3

∫
dt
(Ψ̊2χ)∗

Υ
.
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As a result, we can compute χ3 for any data 
(
Ψ̊, g̊3,χ

)
 and a compatible source 

Υ = ±Ψ̊∗/2
√
|̊g4h[0]

3 |. Such conditions and (44) define a time oriented family of 2d hyper-

surfaces, parameterized by t = t(xk) defined in non-explicit form from
∫

dtΨ̊ = ±(h[0]3 − g̊3)/

√
|̊g4h[0]3 |.� (45)

The final step consists of ε-deformations N-connection coefficients wi = ∂iΨ/Ψ∗ 
for nontrivial ẘi = ∂i Ψ̊/ Ψ̊∗, which are computed following formulas (43) and (40), 
wχi =

∂i(χ Ψ̊)

∂i Ψ̊
− (χ Ψ̊)�

Ψ̊� . We omit similar computations of ε-deformations of n-coefficients 

(we omit such details which are not important if we restrict our research only to 
LC-configurations).

Summarizing (41)–(45), we obtain the following formulas for ε-deformations of a prime 
cosmological metric (38) into a target cosmological metric:

εgi = [1 + εχi(x
k, t)]̊giη̌i = [1 + εe

0ψ 1ψ/̊giη̌i
0
hΥ]̊gi solution of 2d Poisson equations);

εh3 = [1 + ε χ3 ]̊g3 =

[
1 − ε

1
4̊g3

∫
dt
(Ψ̊2χ)∗

Υ

]
g̊3;

εh4 = [1 + ε χ4 ]̊g4 =

[
1 + ε

(
2(χ+

Ψ̊

Ψ̊∗
χ∗) +

1
4̊g3

∫
dt
(Ψ̊2χ)∗

Υ

)]
g̊4;

εni = [1 + ε nχi ]̊ni =

[
1 + ε ñi

∫
dt

1
Υ2

(
χ+

Ψ̊

Ψ̊∗
χ∗ +

5
8

1
g̊3

(Ψ̊2χ)∗

Υ

)]
n̊i;

εwi = [1 + ε wχi]ẘi =

[
1 + ε(

∂i(χ Ψ̊)

∂i Ψ̊
− (χ Ψ̊)∗

Ψ̊∗
)

]
ẘi.

�

(46)

The factor ñi(xk) is a redefined integration function.
The quadratic element for such inhomogeneous and locally anisotropic cosmological 

spaces with coefficients (46) can be written in N-adapted form

ds2 = εgαβ(xk, t)duαduβ = εgi
(
xk) [(dx1)2 + (dx2)2]

+ εh3(xk, t) [dy3 + εnidxi]2 + εh4(xk, t)[dt + εwk (xk, t)dxk]2.
�

(47)

Further assumptions on generating and integration functions and source can be considered in 
order to find solutions of type εgαβ(xk, t) � εgαβ(t).

4.3.  Cosmological ε-deformations with anamorphic QCs and LQG

We apply the procedure of ε-deformations described in the previous section in order to gener-

ate solutions of type (37). We prescribe χ(xk, t) and 0
hΥ(xk) for any compatible 

(
Ψ̊, g̊3

)
 and 

source

Ψ̊∗ = ±2
√
|̊g4h[0]3 | ( qcΥ+ qmΥ− ρ2[ qφ]/3ρc).

The generated d-metric with coefficients (46) is of type (47) for Υ = qcΥ+ qmΥ− 
ρ2[ qφ]/3ρc,
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ds2 = [1 + εe
0ψ 1ψ/̊giη̌i

0
hΥ]̊gi[(dx1)2 + (dx2)2]

+ [1 − ε
1

4̊g3

∫
dt
(Ψ̊2χ)∗

Υ
]̊g3

[
dy3 + [1 + ε ñi

∫
dt

1
Υ2

(
χ+

Ψ̊

Ψ̊∗
χ∗ +

5
8

1
g̊3

(Ψ̊2χ)∗

Υ

)
]̊nidxi

]2

+ [1 + ε (2(χ+
Ψ̊

Ψ̊∗
χ∗) +

1
4̊g3

∫
dt
(Ψ̊2χ)∗

Υ
)]̊g4

[
dt + [1 + ε(

∂i(χ Ψ̊)

∂i Ψ̊
− (χ Ψ̊)∗

Ψ̊∗
)]ẘkdxk

]2

.

Hierarchies of coupled three QC cosmological structures are generated by a functional
χ = χ[ qcφ, mφ, qφ] subjected to conditions of type

∂χ

∂t
= b∆̂

[
δF
δΨ

]
= − b∆̂(Θχ+ Qχ2 − χ3),

with functionals for effective free energy F [χ] =
∫ [

− 1
2χΘχ− Q

3 χ
3 + 1

4χ
4
]√

bdx1dx2δy3, 
written in conventional integro-functional forms. The value

εh4 = − εâ2(xi, t) = [1 + ε (2(χ+
Ψ̊

Ψ̊∗
χ∗) +

1
4̊g3

∫
dt
(Ψ̊2χ)∗

Υ
)]̊g4,� (48)

with g̊4 = a(t), allows us to compute the Weyl type invariants characterizing anamporphic 
phases in QC cosmological spacetimes,

m
εΘ M0

Pl(1 + εχPL) := Ĥ + H + (1 + εχ)∗ = (ln | εâ(1 + εχ)|)∗ and
Pl
ε Θ M0

Pl(1 + εχPL) := Ĥ + H + (1 + εχ)∗ = (ln | εâ(1 + εχPL)|)∗,

where the ε-polarized Hubble functions, εĤ  (16) and εH  (20) are respectively computed for 
εh4

εĤ = (ln εâ)∗ =
1
2

(
ln

∣∣∣∣∣[1 + ε (2(χ+
Ψ̊

Ψ̊∗
χ∗) +

1
4̊g3

∫
dt
(Ψ̊2χ)∗

Υ
)]̊g4

∣∣∣∣∣

)∗

and εH =

√∣∣∣∣
ρ

3
(1 − ρ

ρc
)

∣∣∣∣.

The possibility to induce and preserve certain anamorphic cosmological phases following 
the conditions (23). For mixed 3 type QC structures, the Weyl type anamorphic ε-deformed 

characteristics are determined also by the data for the integration function h[0]
4 (xk); effective 

sources FΥ, mΥ, Υ and ρ  contained in the sum εĤ + εH. We compute

anamorphosis inflation ekpyrosis

M0
Pl

m
εΘ =

(ln |
√

| εh4|(1+εχ)|)∗

(1+εχPL)
< 0 (contracts) > 0 (expands) < 0 (contracts)

M0
Pl

Pl
ε Θ =

(ln |
√

| εh4|(1+εχPL)|)∗

(1+εχPL)
> 0 (grow) > 0 (grow) > 0 (decay).

In such criteria, we use the value εh4 (48) conditions imposing additional nonholonomic con-
straints on generating functions and all types of sources and integration functions and con-
stants which induce QC structures. In a similar form, we can generate ε-analogs of (34)–(36), 
(17) and analyze if respective conditions for anamorphic phases can be satisfied.

In [70, 71], detailed studies using analytical methods and numerical computations for 
holonomy corrections were performed in order to demonstrate respectively how such terms 
may prevent the Big Rip singularity in LQC and how to avoid singularities in certain MGTs. 
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It was concluded that the dynamics with holonomy corrections is very different from that 
for original R + αR2 models (for such theories, ‘the universe is singular at early times and 
never bounces’). The research in [55, 56, 69–71, 78, 79] was performed for diagonal ansatz 
constraining from the very beginning the possibility to generate quasi-periodic, pattern form-
ing, and/or 3d soliton cosmological configurations depending, in principle, on all spacetime 
coordinates. The AFDM (see a survey in appendix, and references therein) allows us to con-
struct very general classes of locally anisotropic and inhomogeneous cosmological solutions 
in varios types of MGTs [18–20, 49–52]. Such generic off-diagonal cosmological models may 
describe anamorphic phases with quasi-periodic structures, singular or nonsigular configura-
tions etc. It was not clear if the results and conclusions on holonomy corrections, for instance, 
those obtained in [70, 71] hold true for generic off-diagonal configurations. The results of this 
section prove that at least for off-diagonal ε-deformations the holonomy corrections may also 
prevent/avoid singularities (as in the cases isotropic and homogeneous configurations). Finally 
we note that the holonomy corrections H(xi, t) = sin(

√
2
√

3γβ(xi, t))/
√

2
√

3γ  considered 
section 2.5 can be computed for arbitrary classes of off-diagonal solutions. The conclusion on 
avoiding or generating singularities depends on the type of nonlinear cosmological configu-
rations we define by generating functions and/or effective sources. This should be analyzed 
in explicit form for a chosen example of cosmological metric, for instance, determined by a 
cosmological solitonic configuration, or a pattern forming structure.

5.  Concluding remarks

The Planck temperature anistoropy maps were used to probe the large-scale spacetime 
structure [16]. The observational data were completed with respective calculus for the 
Baysesian likelihood with simulations for specific topological models (in universes with 
locally flat, hyperbolic and spherical geometries). All such work found no evidence for a 
multiply-connected spacetime topology (when the assumption on the fundamental domain 
is considered within the last scattering surface). No matching circles, which would result 
from the intersection of fundamental topological domains with the surface of last scatter-
ing, were found. It is supposed that future Planck measurements of CMB polarization may 
provide more definitive conclusions on anisotropic geometries and non-trivial topologies. 
At present, the Planck data provides certain phenomenological evidence for a Bianchi VIIh  
component when parameters are decoupled from standard cosmology. There is no a well 
defined set of cosmological parameters which can produce existing patterns and observed 
anisotropies on other scales.

Following new results of Planck2015 [13–17] ( with the ratio of tensor perturbation 
amplitude r < 0.1) authors of [1–6] concluded that such observational data seem to ‘virtu-
ally eliminate all the simplest textbook inflationary models’. In order to solve this problem 
and update cosmological scenarios, theorists elaborate [7–10] on three classes of cosmo-
logical theories:

	 •	There are alternative plateau-like and multi-parameter models adjusted in such ways that 
necessary r is reproduced. This results in new challenges like ‘unlikeness’ and multiverse-
un predictiability problems with more tuning and of parameters and initial conditions.

	 •	The classic inflationary paradigm is changed into a ‘postmodern’ one and a MGT that 
allow certain flexibility to fit any combination of observations. Even a series of concep-
tual problem of initial conditions and multiverse is known and unresolved for decades, 
many theorists still advocate this direction.
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	 •	There are developed ‘bouncing’ cosmologies, for instance, certain versions of ekpyrotic 
(cyclic) cosmology and, also, anamorphic cosmology. In such models, the large scale 
structure of the universe is set via a period of slow contraction when the big bang is 
replaced by a big bounce. The anamorphic approach is also considered as a different 
scenario with a smoothing and flattening of the universe via a contracting phase. This 
way, a nearly scale-ivariant spectrum of perturbations is generated.

The ekpyrotic cosmology [4] fits quite well the Planck2015 data even in the simplest 
version with the least numbers of parameters and the least amount of tuning. It provides a 
mechanism for getting a smooth and flat cosmological background via a period of ultra slow 
contraction before the big bang. For such a model, there are not required improbable ini-
tial conditions and the multiverse problem is avoided. Realistic ekpyrotic theories [4, 80–82] 
involve two scalar fields when only one has a negative potential in such a form that a non-
canonical kinetic coupling acts as an additional friction term for a scalar field freezing the 
second one. A standard stability analysis proves that diagonal cosmological solutions for such 
a model are scale-invariant and stable.

We note that the anamorphic cosmology [1–6] was developed as an attempt to describe 
the early-universe in a form combining the advantages of the ‘old and modern’ inflation-
ary and ekpyrotic models. The main assumption is that the effective Plank mass, MPl(t), has 
a different time dependence on t, compared to the mass of a massive particle m(t) in any 
Weyl frame during the primordial genesis phase. Such cosmological models with similar, 
or different, variations of fundamental constants and masses of particles can be developed 
in the framework of various MGTs, see discussions in [1, 3]. In our works [49–52, 77], we 
proved that it is possible to construct exact solutions with effective polarization of constants 
(in general, depending on all spacetime coordinates, MPl(xi, y3, t) and m(xi, y3, t)) in GR mim-
icking time-like dependencies in MGTs if generic off-diagonal metrics and nonholonomically 
deformations of connections are considered for constructing new classes of cosmological 
solutions. Such exact/ parametric solutions can be constructed in general form using the anho-
lonomic frame deformation method, AFDM, see review of results in [75, 76] and references 
therein. Following this geometric method, we perform such nonholonomic deformations of 
the coefficients of frames, generic off-diagonal metrics and (generalized) connections when 
the (generalized) Einstein equations can be decoupled in general forms and integrated for vari-
ous classes of metrics gαβ(xi, y3, t).

Finally, we note that noholonomic anamorphic scenarios allow us to preserve the paradigm 
of Einstein’s GR theory and to produce cosmological (expanding for certain phases and con-
tracting in other cases) inflation and acceleration, if generic off-diagonal gravitational interac-
tions model equivalently modifications of diagonal configurations in MGTs. This is possible if 
more general classes of cosmological solutions encoding QC structures and LQG corrections 
are considered.
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Appendix.  Off-diagonal cosmological solutions in MGTs

We present a brief review of the anholonomic frame deformation method, AFDM, for generat-
ing off-diagonal solutions in MGTs and GR, see details in [50–52, 75] and references therein.

The N-adapted coefficients of the canonical d-connection D̂ = {Γ̂γ
αβ = (L̂i

jk, L̂a
bk, Ĉi

jc, Ĉa
bc)} 

(5) are computed following formulas

L̂i
jk =

1
2

gir (ekgjr + ejgkr − ergjk) , Ĉa
bc =

1
2

gad (ecgbd + ebgcd − edgbc) ,

Ĉi
jc =

1
2

gikecgjk, L̂a
bk = eb(Na

k ) +
1
2

gac (ekgbc − gdc ebNd
k − gdb ecNd

k

)
.

�
(A.1)

The torsion, T̂ , and the curvature, R̂, tensors of D̂ = (hD̂, vD̂) are defined in standard 
froms for any distinguished vectors, d-vectors, X and Y,

T̂ (X,Y) := D̂XY − D̂YX− [X,Y] and R(X,Y) := D̂XD̂Y − D̂YD̂X − D̂[X,Y].

Such formulas (including definitions of the Ricci d-tensor and related scalar curva-

ture) can be written and computed in N-adapted form as in footnote 10. For (A.1), we 

express the nontrivial d-torsion coefficients T̂
γ

αβ in the form T̂ i
jk = L̂i

jk − L̂i
kj, T̂ i

ja =  
Ĉi

jb, T̂a
ji = −Ωa

ji, T̂c
aj = L̂c

aj − ea(Nc
j ), T̂a

bc = Ĉa
bc − Ĉa

cb. These d-torsion coefficients 
vanish if there are satisfied the conditions

L̂c
aj = ea(Nc

j ), Ĉi
jb = 0,Ωa

ji = 0.� (A.2)

Using above formulas for (A.1) and any d-metric (1), we can compute the coefficients 

of the Riemann d-tensor, R̂
α

βγδ , the Ricci d-tensor, R̂αβ, and the Einstein d-tensor 

Êαβ := R̂αβ − 1
2gαβ R̂. Such values can be similarly computed for a LC-connection 

∇ = {Γγ
αβ}.

To generate locally anisotropic and nonhomogeneous cosmological solutions, we consider 
a d-metric g (1) which via frame and coordinate transforms can be parameterized in the form

gi = eψ(xk), ga = ω(xk, yb)ha(xk, t), N3
i = ni(xk, t), N4

i = wi(xk, t).� (A.3)

For ω = 1, such off-diagonal cosmological metrics posses a space like killing symmetry  
on ∂3 = ∂q/∂ϕ. We can use brief notations of partial derivatives ∂αq = ∂q/∂uα  
when, for any function q(xk, ya), one compute ∂1q = q• = ∂q/∂x1, ∂2q = q′ = ∂q/∂x2, ∂3q 
= ∂q/∂y3 = ∂q/∂ϕ = q�, ∂4q = ∂q/∂t = ∂tq = q∗, ∂2

33 = ∂2q/∂ϕ2 = ∂2
ϕϕq = q��, ∂2

44 =

∂2q/∂t2 = ∂2
ttq = q∗∗. The sources (10) for (effective) matter field configurations  

can be parameterized via frame transforms in respective N-adapted forms, Υµ
ν =

eµµ′e ν′

ν Υµ′

ν′ ] = [ hΥ(xi)δi
j ,Υ(xi, t)δa

b ] (13). The values hΥ(xi) and Υ(xi, t)] can be taken 

as generating functions for (effective) matter sources. They impose nonholonomic frame con-
straints on cosmological dynamics of (effective) matter fields. For simplicity, we consider gener-
ation of generic off-diagonal cosmological solutions with ∂bha �= 0 and [ hΥ(xi),Υ(xi, t)] �= 0 
(such conditions can be satisfied for certain frame/coordianate systems)19.

Let us prove that above introduced parameterizations of cosmological d-metrics and 
(effective) sources allows us to integrate in explicit form the MGT field equations (9). Here 

19 It is possible to construct important (non) vacuum solutions if such conditions are not satisfied with respect to 
certain systems of references. This requests more special methods.
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we note that constructing off-diagonal solutions for some nonholonomic cosmological 
configurations we can impose additional nonholonomic constraints and obtain configurations 
with gαβ(xi, t) ≈ gαβ(t) which can be related to Bianchi type, or FLRW, like cosmological 
metrics.

Considering d-metrics with data (A.3) for ω = 1, we compute D̂ = {Γ̂γ
αβ} (A.1) and 

R̂αβ . The modified Einstein equations (9) transform into a system of nonlinear PDEs,

R̂1
1 = R̂2

2 =
1

2g1g2
[
g•1 g•2
2g1

+
(g•2)

2

2g2
− g••

2 +
g′1g′

2

2g2
+

(g′1)
2

2g1
− g′′

1 ] = − hΥ,

R̂3
3 = R̂4

4 =
1

2h3h4
[
(h∗3)

2

2h3
+

h∗3 h∗
4

2h4
− h∗∗

3 ] = −Υ

R̂3k =
h3

2h4
n∗∗

k + (
h3

h4
h∗4 − 3

2
h∗3)

n∗
k

2h4
= 0,

R̂4k = − wk

2h3
[
(h∗3)

2

2h3
+

h∗
3 h∗4
2h4

− h∗∗
3 ] +

h∗
3

4h3
(
∂kh3

h3
+

∂kh4

h4
)− ∂kh∗3

2h3
= 0,

�

(A.4)

for partial derivatives ∂tq = ∂4q = q∗ and ∂iq = (∂1q = q•, ∂2q = q′). The zero torsion condi-
tions request impose for data (A.3) additional LC-conditions (A.2) which can be written in the form

∂twi = (∂i − wi∂t) ln
√
|h4|, (∂i − wi∂t) ln

√
|h3| = 0, ∂kwi = ∂iwk, ∂tni = 0, ∂ink = ∂kni.

� (A.5)
The system (A.4) can be written in the form

ψ•• + ψ′′ = 2 hΥ

�∗h∗3 = 2h3h4Υ

n∗∗i + γn∗
i = 0,

βwi − αi = 0,

�

(A.6)

where the system of reference is chosen for ∂tha �= 0 and ∂t� �= 0 and the coefficients are 
computed,

αi = (∂th3) (∂i�), β = (∂th3) (∂t�), γ = ∂t

(
ln |h3|3/2/|h4|

)
, where � = ln |∂th3/

√
|h3h4||.

� (A.7)
The system of nonlinear PDEs (A.6) reflects a decoupling property of equations for functions 
ψ, ha, n∗i  and can be integrated in general form for any generating function Ψ(xi, t) := e� and 
sources hΥ(xi) and Υ(xk, t).

The system (A.6) can be integrating in general form ‘step by step’. In result, we generate 
exact solutions of the modified Einstein equation (9) parameterized by such coefficients of a

d−metric : gi = e ψ(xk) as a solution of 2d Poisson equations. ψ•• + ψ′′ = 2 hΥ;

g3 = h3(xi, t) = −(Ψ2)∗/4Υ2h4 = −(Ψ2)∗/4Υ2(h[0]4 (xk)−
∫

dt(Ψ2)∗/4Υ)

g4 = h4(xi, t) = h[0]4 (xk)−
∫

dt(Ψ2)∗/4Υ;

N−connection : N3
k = nk(xi, t) = 1nk(xi) + 2nk(xi)

∫
dt(Ψ∗)2/Υ2|h[0]4 (xi)−

∫
dt(Ψ2)∗/4Υ|5/2;

N4
i = wi(xi, t) = ∂iΨ/Ψ∗ = ∂iΨ

2/ (Ψ2)∗.
�

(A.8)
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In these formulas, the values h[0]
4 (xk), 1nk(xi), and 2nk(xi) are integration functions. The coef-

ficients (A.8) define generic off-diagonal cosmological solutions if some anholonomy coef-

ficients Cγ
αβ(x

i, t) (3) are not zero. Such locally cosmological solutions can be with nontrivial 
nonholonomically induced d-torsion or for LC-configurations if the conditions (A.5) are satis-
fied. We generate as particular cases some well-known cosmological FLRW, or Bianchi, type 
metrics, for cerain data of type (Ψ(t),Υ(t)) with integration functions which allow frame/ 
coordinate transforms to respective (off-) diagonal configurations gαβ(t).

Introducing the coefficients (A.8) into (A.3) g (1), we construct construct a class of linear 
quadratic elements for locally anisotropic cosmological solutions,

ds2 = e ψ(xk)[(dx1)2 + (dx2)2] + (h[0]4 −
∫

dt
(Ψ

2
)∗

4Υ
)[dt +

∂i Ψ

Ψ
∗ dxi]

− (Ψ
2
)∗

4Υ2
(

h[0]
4 −

∫
dt (Ψ

2
)∗

4Υ

) [dy3 + (1nk + 2nk

∫
dt

(Ψ
∗
)2

Υ
2|h[0]

4 −
∫

dt (Ψ
2
)∗

4Υ
|5/2

)dxk].

�

(A.9)

Such solutions posses a Killing symmetry on ∂3 and can be re-written in terms of η-polarization 
function functions for target locally anisotropic cosmological metrics ĝ= [gα = ηαg̊α, ηa

i N̊a
i ] 

encoding primary cosmological data [̊gα, N̊a
i ].

We can extract cosmological spacetimes in GR (with zero torsion) if the conditions (A.5) 
are imposed and solved for a special class of generating functions and sources. For instance, 
taking a Ψ = Ψ̌(xi, t) subjected to the conditions (∂iΨ̌)∗ = ∂i(Ψ̌

∗) and Υ(xi, t) = Υ[Ψ̌] = Υ̌, 
or Υ = const, we generate LC-configurations for some functions Ǎ(xi, t) and n(xi) when the 
N-connection coefficients are computed nk = ňk = ∂kn(xi) and wi = ∂iǍ = ∂iΨ̌/Ψ̌∗. Such 
off-diagonal locally anisotropic cosmological solutions in GR are defined as subclasses of 
solutions (A.9) with zero torsion,

ds2 = e ψ(xk)[(dx1)2 + (dx2)2]− (Ψ̌2)∗

4Υ̌2(h[0]4 −
∫

dt (Ψ̌
2)∗

4Υ̌
)
[dy3 + (∂kn)dxk]

+ (h[0]4 −
∫

dt
(Ψ̌2)∗

4Υ̌
)[dt + (∂iǍ)dxi].

�

(A.10)

Quadratic linear elements for exact off-diagonal solutions (A.9) or (A.10) constructed 
above  can be parameterized in the form (39). Such parameterizations are in terms of 
polarization functions ηα = (ηi, ηa) and ηa

i  defining nonholonomic deformations of a prime 
d-metric, ̊g, into a target d-metric, ĝ = [gα = ηαg̊α, ηa

i N̊a
i ] → g̊. Such parameterizations with 

ε-deformations are useful for analyzing possible physical implications of general off-diagonal 
deformations of some physically important solutions when, for instance, g̊ is taken for a 
standard cosmological, solution in GR, or in a MGT.

Finally, we note that the AFDM allows to construct off-diagonal cosmological solutions 
in general form depending in arbitrary classes of generating functions and effective sources. 
Such functions may remove existing singularities of a prime metric, or inversely, to transform 
nonsingular configurations into singular locally anisotropic cosmological ones because of 
singular nonholonomic deformations. In general, it is not clear what physical implications 
may have some classes off-diagonal solutions. In section  3, we demonstrate that well-
defined physical interpretations can be provided for anamorphic cosmological quasi-periodic, 
pattern-forming and/or solitonic structures generated in in general off-diagonal form. For 
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ε-deformations studied in sections 2.3 and 4, such locally anisotropic cosmological structures 
can be considered for modeling dark matter and dark energy effects determined by ‘small’ off-
diagonal deformations of FLRW, or Bianchi, type metrics in standard cosmology.
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