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Abstract: We propose, using the example of the O(4) sigma model, a general method for

solving integrable two dimensional relativistic sigma models in a finite size periodic box.

Our starting point is the so-called Y-system, which is equivalent to the thermodynamic

Bethe ansatz equations of Yang and Yang. It is derived from the Zamolodchikov scattering

theory in the cross channel, for virtual particles along the non-compact direction of the

space-time cylinder. The method is based on the integrable Hirota dynamics that follows

from the Y-system. The outcome is a nonlinear integral equation for a single complex

function, valid for an arbitrary quantum state and accompanied by the finite size analogue

of Bethe equations. It is close in spirit to the Destri-deVega (DdV) equation. We present

the numerical data for the energy of various states as a function of the size, and derive

the general Lüscher-type formulas for the finite size corrections. We also re-derive by our

method the DdV equation for the SU(2) chiral Gross-Neveu model.
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1 Introduction and summary

The study of the properties of Quantum Field Theories (QFT’s) in finite volume, or at finite

temperature, has a long history and numerous applications. Matsubara description [1] of

finite temperature T thermodynamics, by considering the system in the periodic imaginary

time t, has lead to the extensive study of the Euclidean QFT’s with one compactified

dimension with numerous physical applications [2].

Lüscher found the leading finite size corrections to the mass gap in relativistic two

dimensional QFT’s [3, 4]. These corrections depend solely on the asymptotic S-matrix of

the theory. Recently, Lüscher corrections to various multi-particle states in integrable 2D

QFT were conjectured [5].

For the integrable 2D QFT’s, as understood during the last two decades, the ambitions

can be much higher: these systems are usually solvable at any finite size though a systematic

approach to such solutions, as well as a good understanding of the working prescriptions,

are still missing.

There are two main schemes to address the finite size calculations. The first, pioneered

by Destry and deVega (DdV) [6], is based on the integrable discretization. Once such

discretization is at hand, the system can be studied by the well established methods based

on the transfer matrix approach and the resulting non-linear integral equation (NLIE),

often called the DdV equation, calculates not only the ground state energy but also the

spectrum of excited states. The method appeared to be very powerful when applied to the

Sine-Gordon model [7, 9, 11–13], or to more general RSOS models [14], Toda theories [15],

hard hexagon models [16], etc.

However, for generic integrable QFT it is far from easy to find the corresponding

integrable lattice regularization and for many models such discretization is not known.

Nevertheless, the problem can be usually tackled by using a computation scheme alterna-

tive to the DdV approach. As explained in the seminal work of Al.Zamolodchikov [17] this

is achieved by the double Wick rotation trick: using the Matsubara imaginary time formu-

lation we can first find the free energy in the infinite volume but finite temperature. Next

we flip the meaning of euclidian time and space directions on the cylinder: τ → σ, σ → τ ,

and interpret the free energy as the ground state of the system in finite volume L = 1
T

(see figure 1). In this way we can obtain the exact finite volume ground state energy. This

computational scheme is known by the name of Thermodynamic Bethe Ansatz (TBA).

The TBA equations, whose number is infinite in many interesting models, can be usu-

ally concisely casted into the so called Y-system functional equations [18, 19]. Often the

latter one can be rewritten in the form of DdV equations or some similar set of integral

equations for a finite set of functions. The method was successfully used for many relativis-

tic models [20–24]. As explained in the previous paragraph the computation of the exact

ground state energy by means of this method is a relatively straightforward task with solid

theoretical foundations.

To obtain the exact spectrum comprising all excited states of the theory is, on the other

hand, a much more involved — and a very interesting — task. A possibility to describe

the excited states within the TBA approach, by modifying the analytical properties of

– 2 –
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Figure 1. Physical channel, cross-channel and finite volume vs finite temperature.

the thermodynamic functions, was first suggested in [24]. Another possible way to obtain

the spectrum of the theory, proposed around the same time, is based on the analytic

continuation of the ground state energy with respect to the parameters of the model,

such as the mass or the chemical potential, in order to find the excited states [25]. If

the integrable lattice regularization is absent, it is not well understood why these methods

work. Nevertheless, the results are usually in the excellent agreement with the perturbation

theory, Lüscher finite size corrections and the direct Monte-Carlo study for a wide range

of sizes L (see for example [26–30] for O(n) and related σ-models).

For models with diagonal scattering, like the Sinh-Gordon theory [31], the whole clas-

sification of excited states is possible [32]. The situation is much more complex when we

deal with the non-diagonal scattering. The nested structure of the corresponding Bethe

ansatz equations leads to complicated magnon-type excitations and bound states. Little

is known about the excited states in such finite size systems. The only models where the

polarized excited states were investigated, using the DdV equations, are the Sine-Gordon

model [7] and its supersymmetric version [11] as well as the tricritical Ising model [10]. By

the existing methods only the sectors with diagonal scattering can be studied efficiently, as

was done for example for the O(4) sigma model in [30]. A general and unified description

of all excited states of the σ-models like O(n) or the SU(N) principal chiral field (PCF),

and similar ones, having a “geometric” target space, is still absent.

The main goal of the present paper is to give a method of a general and systematic

description of all the states of integrable QFT’s in finite volume. We will explain how to

go beyond the asymptotic spectrum and compute the full finite size spectrum comprising

all excited states of integrable sigma models. We do it here on the example of O(4) sigma

model and also for the SU(2) chiral Gross-Neveu model but our formalism is certainly

more general and is most probably applicable to any integrable 1+1 dimensional σ-models.

The main ingredients of the method are:

• The two-particles S-matrix for integrable system allows us to write the periodicity

condition quantizing the momenta of the physical particles on a large circle of length

R. The equations following from the periodicity condition are so called asymptotic

– 3 –
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Bethe ansatz (ABA) equations describing all states of the model. The details of this

computation for the SO(4) sigma model are given in appendix A.1 They are, however,

valid only in a sufficiently big volume compared to the typical interaction distance,

Rm ≫ 1 where m is the infinite volume mass gap.

• For the ground state, the double Wick rotation (σ, τ) → (τ, σ) allows to reduce the

problem to the thermodynamics. One can put the euclidian theory on the torus with

one radius, R, very large and another one, L, arbitrary (see the figure 1). The ground

state energy for a finite radius is related to the thermodynamic partition function.

The exact equations for it can be found using the asymptotic spectrum given in the

cross channel by the asymptotic Bethe equations. The resulting infinite series of

integral equations, thermodynamic Bethe ansatz (TBA) equations, are casted into

a functional form called Y-system. Here is the main assumption: we assume that

different solutions of the Y-system describe not only the ground state but all the

excited states. One should furthermore restrict the class of solutions by assuming

certain analytic properties which will in particular identify the quantum numbers of

the states we are considering.

• Classical integrability of the Y-system, as a finite difference equation equivalent to

the Hirota difference equation [19, 34], allows us to express explicitly the infinite

number of the unknown functions through a finite number of the basic ones [35, 36].

• The Baker-Akhiezer function of the Lax pair associated with the Hirota equation can

be interpreted as the Baxter function encoding the “magnon” Bethe roots, respon-

sible for the SU(2)R and SU(2)L polarizations of states. The analyticity properties

important for the full formulation of the resulting non-linear integral equation, are

also suggested by the Lax equations. The gauge symmetry of Hirota equations al-

lows to explicitly fix the final nonlinear integral equation (NLIE) for each state of

the theory.

The resulting equation can be studied in various limits (such as Lüscher finite size

corrections or small volume, conformal limit) or solved numerically in a rather efficient

way. The figure 2 shows some of our numerical results obtained from the new equation,

plotting the energy of various states as functions of the volume. When the similar results

are available in the literature the agrement is perfect.

The general scheme elaborated in this paper on the example of the O(4) sigma-model

should be applicable to all integrable relativistically symmetric 2D QFT’s. It should be also

useful for the study of finite size effects when the system does not look explicitly relativistic

but allows the S-matrix description and this S-matrix obeys the crossing symmetry, like the

AdS/CFT S-matrix [37, 38]. Y-system and Hirota equations give a unified and powerful

point of view at all this subject since they solve in an almost trivial way the “kinematic”

part of the problem related to the representation theory, whatever is the symmetry or

supersymmetry of the model [35, 39].

1We are unaware of the existence of such derivation of the Y-system for the PCF in the literature
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Figure 2. Plots of energies E of a few excited states of O(4) model on a circle of a circumference L.

The vertical axis corresponds to the values of L
2π

E, the horizontal axis — to the values of L in the

logarithmic scale. The lowest curve depicts the vacuum energy. The next one, labeled as θ0, shows

the mass gap energy. The corresponding state is in the U(1) sector, with a single particle at rest,

hence with the mode number = 0. The next states in the U(1) sector are denoted by θn1n2n3,···,

according to the mode numbers n1, n2, n3, . . . excited for the 1-st, 2-nd, 3-rd, etc., particles. For

all these states the SU(2)L and SU(2)R spins of the several particles are pointing in the same

direction, say they are spin “up”. The dashed line represents a state having a polarization out of

the U(1) sector, with left and right “magnons” excited — it corresponds to the quantum state of

two particles where both SU(2)L and SU(2)R spins are in the singlet s = 0 state. The qualitative

explanation of these graphs will be given in subsection 5.2.

Our method based on Hirota equation, being exact for any finite size L of the system,

reproduces well various limiting cases (see the figure 3). For the large L, the energies of

the states are well described by the Lüscher corrections [3–5].2 We derive them here for

a general state with arbitrary polarization, which is also a new result, extending some

hypothesis existing in the literature [5]. For small L, our results are well described by the

theory of three free bosons, as will be discussed in the paper. The results for various low-

lying levels, including the cases of non-diagonal scattering which are new, are summarized

in the figure 2.

Our resulting NLIE can be brought sometimes to a form similar to the DdV equation.

In the cases when the latter is available it can even coincide with DdV equation (an

2Actually, as we will see from our numerics, Lüscher corrections work surprisingly well all the way until

Lm ∼ 1.
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Figure 3. Domains of applicability of different descriptions of an integrable field theory at a finite

volume L. In the ultra-violet regime, for small volume measured in units of a dynamically generated

mass, the theory could be described by a conformal theory. In the infrared, at large volume, one

can use the asymptotic Bethe equations. The leading order finite size corrections are governed by

the (generalized) Lüscher corrections. At any volume but for the ground state energy only one can

use Thermodynamical Bethe ansatz. Hirota equation, equivalent to Y-system but more efficient

when it comes to imposing appropriate analyticity properties, is a universal tool covering the whole

diagram.

example of the chiral Gross-Neveu model is considered in our paper). It would be extremely

interesting to understand the relation between the solution based on the integrable lattice

discretization of [40] and our proposed integral equations. Nevertheless we should stress

that the real power of our method should be in its universality: it should work in all

situations when the TBA equations in the form of the Y-system are available.

2 TBA and Y-system for O(4) sigma model, or SU(2) Principal Chiral

Field

The method we are proposing it quite general and we hope that a wide range of models

could be solved using it. However for the sake of simplicity we will exemplify it on the

SU(2) Principal Chiral Field (PCF), equivalent to the O(4) sigma model. In section 4 we

will also consider the SU(2) Chiral Gross-Neveu model.

2.1 The model

The action of the PCF is given by the usual expression

Sσ =
1

e2
0

∫

dt dx (∂αXa)
2,

4∑

a=1

(Xa)
2 = 1 , (2.1)

whose target space is S3. It is equivalent to the SU(2)⊗SU(2) principal chiral field (PCF)

whose infinite volume solution was given in [41–43]. Indeed, by packing the fields Xi into

– 6 –
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an SU(2) group element h = X4 + i
∑3

j=1 Xjσj with σj being the usual Pauli matrices, we

can re-write the action as3

SPCF = −
1

2e2
0

∫

dt dx tr(h−1∂αh)2 . (2.2)

The spectrum of this asymptotically free theory in the infinite volume consists of

a single physical particle of mass m = Λe
− 2π

e20 , where Λ is a cut-off. Its wave function

transforms in the fundamental representation under each of the SU(2) subgroups. Al. and

A.Zamolodchikov [33] proposed the exact elastic scattering matrix for such particles:

Ŝ12(θ) = S0(θ)
R̂(θ)

θ − i
⊗ S0(θ)

R̂(θ)

θ − i
, S0(θ) = i

Γ
(

1
2 − iθ

2

)
Γ
(
+ iθ

2

)

Γ
(

1
2 + iθ

2

)
Γ
(
− iθ

2

) , (2.3)

where R̂(θ) is the usual SU(2) R-matrix in the fundamental representation given by R̂(θ) =

θ + iP̂ and P̂ is the permutation operator exchanging the spins of the particles being

scattered. This S-matrix was established due to: (i) analyticity, (ii) unitarity, (iii) absence

of bound states, (iv) crossing. In particular, (ii) and (iv) lead to the following identity

S0(θ + i/2)S0(θ − i/2) =
θ − i/2

θ + i/2
(2.4)

on the scalar (dressing) factor. We can use this S-matrix to study the spectrum of N

particles in a periodic space circle of a sufficiently big circumference L ≫ m−1. The

spectrum can be defined from the wave function periodicity condition

N∏

j=k+1

Ŝ(θk − θj)

k−1∏

j=1

Ŝ(θk − θj)|Ψ〉 = e−imL sinh(πθk)|Ψ〉 , (2.5)

which quantizes the momenta of the physical particles. The asymptotic spectrum of the

theory put on a large circle of length L is then given by

E =
N∑

j=1

m cosh(πθj) (2.6)

where θj are solutions to the Bethe equation (see appendix A for more details). In what

follows we will measure all dimensional quantities in the units of m. Diagonalizing the

periodicity condition (2.5) in the physical space by the usual methods (see an appendix

in [39] for this model) we get the main Bethe equation

e−iL sinh(πθj) = −
∏

k

S2
0(θj − θk)

Qu(θj + i/2)

Qu(θj − i/2)

Qv(θj + i/2)

Qv(θj − i/2)
. (2.7)

The magnon rapidities uj and vj are fixed by the auxiliary Bethe equations

−
Qu(uj + i)

Qu(uj − i)
=

φ(uj + i/2)

φ(uj − i/2)
, −

Qv(vj + i)

Qv(vj − i)
=

φ(vj + i/2)

φ(vj − i/2)
, (2.8)

3In the AdS/CFT literature one usually uses
√

λ = 4π

e2
0

.
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where

Qw(x) =
∏

j

(x − wj) , for w = u, v, (2.9)

and φ(x) =
∏

j(x − θj).

2.2 TBA and Y-system

As we mentioned in the introduction, the ground state energy E0(L) for arbitrary L can

be computed starting from asymptotical Bethe ansatz in the cross-channel. For SU(2)

principal chiral field this is described in detail in the appendix A. The output is that the

ground state energy is given by

E0(L) = −
1

2

∫

dθ cosh(πθ) log(1 + Y0) , (2.10)

where Y0 is one out of an infinite number of Y -functions Yn with n ∈ Z obeying the

TBA-type equations

log Yn + L cosh(πx)δn0 = s ∗ log(1 + Yn+1)(1 + Yn−1) , n = 0 ± 1,±2, . . . (2.11)

with s = 1
2 cosh(πx) and the sign ∗ denoting the convolution. If log(Yn(x)) for any n have no

singularities inside the physical strip −1/2 < Im x < 1/2 we can easily invert the operator

s∗ to get simply s−1 = e
i
2
∂x + e−

i
2
∂x and these integral equations can be rewritten in a

functional, Y -system form

Y +
n Y −

n = (1 + Yn+1)(1 + Yn−1) , (2.12)

supplemented with the asymptotic boundary conditions for large x

Yn ∼ e−L cosh(πx)δn0 × constn . (2.13)

The superscripts ± stand for shifts of the argument by ±i/2,4

f± ≡ f(x ± i/2) . (2.14)

Eq. (2.12) has however many solutions and only one of them really leads to the ground

state energy. It is commonly believed that certain other solutions there describe the excited

states [25, 44]. The energy of the N -particle excited states is again given in terms of Y0

but is modified

E(L) = −
1

2

∫

dθ cosh(πθ) log(1 + Y0) +

N∑

j=1

m cosh(πθj) , (2.15)

where the extra terms are inspired by the analytic continuation in L and the points θj [25]

are singularities of the integrand in the first term

Y0(θj ± i/2) = −1 , j = 1, 2, . . . , N . (2.16)

4We will often use even a more general notation, like f

k

z }| {

+ + . . . + = f(x + ik/2) or f

k

z }| {

−− . . .− =

f(x − ik/2).
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Figure 4. Dynkin diagram (three central nodes) and its extension for the magnon bound states

(grey nodes) reflecting the structure of the Y-system. The central, black node corresponds to

the U(1) sector excitations of the model (θ-roots), the upper and lower nodes correspond to the

more general states for magnon excitations for the SU(2)L wing (u-roots) and the SU(2)R wing

(v-roots).

As we shell see, the last equation is nothing but the Bethe ansatz equation for physical

rapidities modified at the finite volume. The last term in (2.15) is generated from the

integral (2.10) by picking up the logarithmic poles (2.16).

Our goal in this section is to make use of the integrability of the Y-system rewriting

it in the form of classical integrable discrete Hirota dynamics. This allows us to write

down explicitly a solution for all Yn in terms of a finite number of functions. Then we will

restrict ourself to a certain sub-class of physically relevant solutions with particular analytic

properties. The analyticity will allow us to fix the functions completely and parameterize all

the physical solutions for the excited N particle states in terms of a finite set of complex

parameters, Bethe roots, restricted by supplementary Bethe equations reducing in the

infinite volume to the usual Bethe equation.

2.3 Hirota equations

The Y -system equations eq. (2.12) can be seen as a gauge invariant version of the so called

Hirota equation or T -system

Tk(x + i/2)Tk(x − i/2) − Tk−1(x)Tk+1(x) = Φ

(

x + i
k

2

)

Φ̄

(

x − i
k

2

)

. (2.17)

It can be easily checked [19] that Hirota equation is equivalent to the Y -system eq. (2.12)

if we denote

Yk(x) =
Tk+1(x)Tk−1(x)

Φ
(
x + ik

2

)
Φ̄
(
x − ik

2

) . (2.18)

At first sight, this is just another trivial rewriting of the TBA equations, however the

Hirota form appears to be particulary useful. Using Hirota equation we can also write

1 + Yk(x) =
Tk(x + i/2)Tk(x − i/2)

Φ
(
x + ik

2

)
Φ̄
(
x − ik

2

) . (2.19)

Let us point out here an important fact. By evaluating the above equation for k = 0 at

θj ± i/2 where θj is a zero of T0 we observe that

T0(θj) = 0 ⇒ Y0(θj ± i/2) = −1 (2.20)

which is the Bethe ansatz eq. (2.16). We will use this fact to associate zeroes of T0 with

physical rapidities.

– 9 –
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Since Yk(x) are real functions by their physical meaning (for ground state they are

ratios of densities of complexes and of their holes, see appendix A) we can restrict ourself

to the case when Tk are real functions and Φ and Φ̄ are complex conjugated functions.

Hirota equation (2.17) is integrable and has a Lax representation through the auxiliary

problem [35]

Tk+1(x)Q

(

x + i
k

2

)

− Tk

(

x −
i

2

)

Q

(

x + i
k

2
+ i

)

= +Φ

(

x + i
k

2

)

Q̄

(

x − i
k

2
− i

)

Tk−1 (x) Q̄

(

x − i
k

2
− i

)

− Tk

(

x −
i

2

)

Q̄

(

x − i
k

2

)

= −Φ̄

(

x − i
k

2

)

Q

(

x + i
k

2

)

.(2.21)

The compatibility of these two equations for the bi-vector of functions {Q(x), Q̄(x)} leads

to the initial Hirota equation. Here Q̄ is the complex conjugate function to Q. Note that

if Tk(x) are real functions then the second equation is simply the complex conjugate of the

first one after shifting k → k + 1 and x → x + i/2. Two particularly useful relations from

this Lax representation are

T1(x) = T0(x − i/2)
Q(x + i)

Q(x)
+ Φ(x)

Q̄(x − i)

Q(x)
,

T−1(x) = T0(x + i/2)
Q(x)

Q(x + i)
− Φ(x)

Q̄(x)

Q(x + i)
, (2.22)

Note that the first relation in (2.22) is a generalization of the famous Baxter equation

usually written for the spin chains. We will see that in the infinite volume limit Φ(x) =

T0(x + i/2) and that these equations reduce to the usual Baxter equation for spin chains,

where T1 plays the role of the transfer matrix in fundamental representation for the

magnons of the SUR(2) wing of the theory, whereas the second equation plays a simi-

lar role for the SUL(2) wing (see figure 4).

The main advantage of the Lax equations (2.21) is that they are linear in Tk and we

can easily express any Tk in terms of T0,Φ and Q in the explicit form [35]

Tk(x) =
Q
(
x + ik+1

2

)

Q
(
x − ik−1

2

)T0(x − ik/2) (2.23)

+Q

(

x + i
k + 1

2

)

Q̄

(

x − i
k + 1

2

) k∑

j=1

Φ
(
x − ik+1

2 + ij
)

Q
(
x − ik−1

2 + ij
)
Q
(
x − ik+1

2 + ij
) .

This leads to a quite general and explicit solution of the Y -system via eq. (2.18). A nice

feature of this form is that one can efficiently analyze the L → ∞ limit and reproduce the

asymptotic spectrum described by BAE eqs. (2.7), (2.8). This will be the goal of the next

section.

Hirota and Lax equations exhibit several important symmetries. First of all a discrete

symmetry exchanging the u-wing and the v-wing (right and left SU(2)): Yk ↔ Y−k is

induced by

Tk ↔ T−k , Φ ↔ −Φ̄ , Q ↔ Q̄−− , Q̄ ↔ Q++ , (2.24)
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which will be quite useful for our further constructions. Moreover, both equations (2.17)

and (2.21) are invariant under the gauge transformation

Tk(x) → g

(

x + i
k

2

)

ḡ

(

x − i
k

2

)

Tk(x),

Φ(x) → g(x − i/2)g(x + i/2)Φ(x),

Φ̄(x) → ḡ(x − i/2)ḡ(x + i/2)Φ̄(x),

Q(x) → g(x − i/2)Q(x). (2.25)

To preserve the reality of Tk we should assume that ḡ is the complex conjugated

function to g. These transformations leave Yk(x) invariant.

The general solution of Hirota equation (2.17) can be also presented in a determinant

form [35]

Tk(x) = h(x + ik/2)

∣
∣
∣
∣
∣

Q(x + ik+1
2 ) R(x + ik+1

2 )

Q̄(x − ik+1
2 ) R̄(x − ik+1

2 )

∣
∣
∣
∣
∣

(2.26)

where h(x) is a periodic function: h++ ≡ h(x + i) = h(x) and Q,R are two linearly

independent solutions of the Lax equations (2.21) related by the Wronskian relation

Φ(x) = h(x + i/2)

∣
∣
∣
∣
∣

R(x) Q(x)

R(x + i) Q(x + i)

∣
∣
∣
∣
∣
. (2.27)

This determinant form will be very useful when we will formulate the general solution of

the finite size PCF system for any state. It is not absolutely necessary to use it, but it

simplifies some derivations.

2.4 Asymptotic Bethe Ansatz and Classification of the Solutions

The main problem in computing the exact spectrum of the SU(2) PCF is to find the

physical solutions to the Y -system (2.12) or, alternatively, to the Hirota equation (2.17),

i.e., obeying the right asymptotic properties (2.13). Their classification is a complicated

task, especially when we want to take into account not only the excitations of U(1) sector

but also the “magnon” type excitations of SU(2)L and SU(2)R sectors. The goal of this

section is thus to identify the large L solutions to the Y -system (2.12). The discussion

in this section is not completely rigorous since our only goal is to get an idea of how

asymptotic Bethe ansatz (ABA) eqs. (2.7), (2.8) appears from the Y -system. Together

with the expression (2.6) the ABA equations must appear from the large L asymptotic of

exact solutions, as yielding the leading order value of the full spectrum.

The main simplification in the large L limit is that Y0 → 0. From eq. (2.13) we see

that Y0 → 2e−L cosh(πx) and we are left with two decoupled chains of equations for k > 0

and k < 0 [13]. For each wing we can introduce two sets of Tk describing the corresponding

solutions of the whole T -system: T u
k and T v

k such that Yk>0 (Yk<0 )can be expressed in

terms of T u
k (T v

k ) by the formula (2.18). Then Y0 = 0 implies

T u
−1 = 0 , T v

1 = 0 . (2.28)
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Let us focus on T u
k since we can always use the wing exchange symmetry (2.24) to describe

T v
k .

We have to identify the solutions which will lead to the asymptotic spectrum described

by the ABA. It turns out that in terms of Hirota potentials Tk it is enough in this limit to

make very simple assumptions, namely:

• All T u
k>0(x) are polynomials at L → ∞. We denote in this limit T u

0 (x) ≈
∏

j(x−θj) ≡

φ(x).

• Qu(x) is a polynomial with real roots which we denote Qu(x) =
∏

j(x − uj).

Then from eq. (2.22) we see that

Φu(x) = T u
0 (x + i/2) and T u

1 (x) =
T u

0 (x + i/2)Qu(x − i) + T u
0 (x − i/2)Qu(x + i)

Qu(x)
.

(2.29)

From the polynomiality condition for T u
k (x) and T v

k (x) we get precisely the auxiliary Bethe

equations eq. (2.8).

Finally, we should note that eq. (2.7) for the physical rapidities θj is also satisfied. This

follows from imposing Y0(θj ± i/2) = −1 for all zeros θj of T u
0 , see (2.20). At first sight,

this seems to be impossible to satisfy since, as we noticed, Y0(x) is small. However this

smallness appears because Y0 is proportional to e−L cosh(πx) which is indeed small inside

the physical strip −1/2 < Im x < 1/2 but is of order 1 on the boundary of this strip. To

impose this condition we must first compute Y0 to the next order.

From (2.12) at n = 0 we get

Y +
0 Y −

0 =
T u+

1 T v+
−1 T u−

1 T v−
−1

(φ++φ−−)2
. (2.30)

Defining S(x) =
∏N

j=1 S0(x− θj) we have, from the crossing relation (2.4), S++S = φ/φ++

, so that

Y +
0 Y −

0 =

(
T u

1 (x)T v
−1(x)S2(x + i/2)

φ2(x − i/2)

)+ (
T u

1 (x)T v
−1(x)S2(x + i/2)

φ2(x − i/2)

)−
, (2.31)

from which we can identify Y0 up to a zero mode factor of y0 = e−L cosh πx which obeys

y+
0 y−0 = 1. Such factor should be included into Y0 to ensure the proper asymptotic (2.13).

Thus we find

Y0(x) ≃ e−L cosh(πx)T u
1 (x)T v

−1(x)
S2(x + i/2)

φ2(x − i/2)
. (2.32)

Evaluating it at x = θk − i/2 and using eq. (2.29) we get

− 1 ≃ eiL sinh(πθk)Qu(θk + i/2)Qv(θk + i/2)

Qu(θk − i/2)Qv(θk − i/2)

∏

j

S2
0(θk − θj) , (2.33)

which is nothing but the main ABA equation (2.7) for the middle node in figure 4. We use

here the notations

Qv(x) = Q̄v(x − i) , Qu(x) = Qu(x) , (2.34)
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to make the u- and v-wings more symmetric. The advantage of these notations is that the

wing exchange symmetry eq. (2.24) simply exchanges Qv and Qu and in the large L limit

they are real polynomials.

Finally, since Y0(x) is exponentially suppressed for real x we can drop the integral

contribution in (2.15) which leaves us with the energy as a sum of energies of individual

particles, precisely as expected from (2.6).

Notice that the Zamolodchikov asymptotic scattering theory is implicitly contained

in the Y -system, as we see from the appearance of the scalar scattering factor S2 in the

formula (2.32).

2.5 Probing the finite volume

Now, having established the solution at infinite volume, we need an insight into the analytic

properties of T -functions in a finite, though large, volume. Let us find perturbatively the

finite L corrections for the simplest vacuum solution which for large L corresponds to

Qu = Qv = 1, φ = 1. From eq. (2.23) one can see that for this case, to the leading order,

T u
k ≃ k+1 which implies for Yk ≃ |k|2 +2|k|. Thus we are looking for a solution in the form

Yk = |k|2 + 2|k| + yk , k = −∞, . . . ,∞ (2.35)

where the first two terms in the r.h.s. are the trivial solution at L = ∞, where as yk ∼ Y0

are small. We will see that the solution for the perturbation is unique under the assumption

that when k → ∞ the perturbation goes to zero yk → 0. The linearized Y -system in the

Fourier form is
k

k + 2
s̃ ỹk+1 − ỹk +

k + 2

k
s̃ ỹk−1 = 0 , k ≥ 0 (2.36)

where ỹk is the Fourier transform of yk and s̃ = 1
2 cosh(ω/2) is the Fourier transform of

the kernel s = 1
2 cosh(πθ) . ỹ0 = Ỹ0 is a fixed function. We see that this is a second order

recurrence equation which in general has two linear independent solutions. Fortunately it

can be solved explicitly.5 The general solution reads

ỹk =
k(k + 1)(k + 2)

2

([

e−
k|ω|
2

k
−

e−
(k+2)|ω|

2

k + 2

]

C1(ω) +

[

e
k|ω|

2

k
−

e
(k+2)|ω|

2

k + 2

]

C2(ω)

)

.

The needed solution satisfying ỹ0 = Ỹ0 , ỹ∞ = 0 corresponds to C1 = Ỹ0, C2 = 0. Making

the inverse fourier transformation we get

yk =
k(k + 1)(k + 2)

π

(
1

4x2 + k2
−

1

4x2 + (k + 2)2

)

∗ Y0 . (2.37)

It can be easily checked that the approximate Tk yielding this solution through (2.18) are

T u
k−1 = T v

1−k ≃ k +
k/π

4x2 + k2
∗ Y0 , k ≥ 0 . (2.38)

5One can use RSolve function in Mathematica to find the solution.
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and

Φ(x) = 1 +
1/π

4(x + i/2 + i0)2 + 1
∗ Y0 . (2.39)

The i0 in this expression can be dropped when computing Yk>0 from (2.18) but is in-

cluded in this expression so that (2.18) can also be used for k = 0, for more details see the

discussion in the next subsection.

An important feature of this asymptotic solutions for Tk, which should persist at any

L, is that it acquires two branch cuts at x ∈ R ± ik/2 when L → ∞.6

2.6 Exact solution for the vacuum

We will now extend the solution found in the previous section to arbitrary L. First, we

notice that the solution in terms of Tk is much simpler than in terms of Yk. For the vacuum

we can use the following ansatz inspired by eq. (2.38)

Tk−1 = k +
k/π

4x2 + k2
∗ f, k = +0, 1, 2, . . . (2.40)

where f is some function which for large L becomes Y0. One can easily see from the

linear system eq. (2.21) at Q = Q̄ = 1 that this ansatz solves the Hirota equation and

can be presented in the form eq. (2.23) with Φ(x) = T0(x + i/2 + i0). Thus the Y-system

equations eq. (2.12) for |k| ≥ 2 are satisfied automatically. Notice that none of the Tk’s

has singularities on the real axis, which is of course a necessary feature of the solution: the

physical quantities Yk should not be singular there.

To check that the equation for k = 1 is also satisfied we have to define Y0 in terms

of Tk. For that we can simply analytically continue eq. (2.40) to the point k = +0 which

gives T−1(x) = f(x)/2. We also have Φ(x) = T0(x + i/2 + i0), Φ̄(x) = T0(x − i/2 − i0) as

mentioned above. These properties are supported by the second equation (2.22) which can

be viewed as yielding the spectral density in terms of a jump on any of two infinite cuts.

Then we get

Y0(x) =
T0(x + i/2 − i0)T0(x − i/2 + i0)

T0(x + i/2 + i0)T0(x − i/2 − i0)
− 1 =

T1(x)f(x)/2

T0(x + i/2 + i0)T0(x − i/2 − i0)
(2.41)

This equation relates Y0 and f . With Y0 so defined the Y-system equations at |k| = 1 are

now also satisfied. However the equation (2.11) for k = 0 is still not used. Using

(1 + Y1)(1 + Y−1) = (1 + Y1)
2 =

(
T1(x + i/2)T1(x − i/2)

T0(x + i)T0(x − i)

)2

and recalling that s is the inverse shift operator we obtain7

Y0(x) = e−L cosh(πx) T 2
1 (x)

[T0(x + i)T0(x − i)]∗2s . (2.42)

6The term “branch cut” is not very appropriate here since the infinite cut has no branch points. However,

as we shall see, a spectral representation will allow us to define Tk(x) in the whole complex plane in terms

of spectral density integrals along the cuts.
7We introduce a natural notation g∗s ≡ es∗log g.
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L Leading order Eq. (2.43) Results of [26]

L = 4 −0.015513 −0.015625736 −0.01562574(1)

L = 2 −0.153121 −0.162028968 −0.16202897(1)

L = 1 −0.555502 −0.64377457 −0.6437746(1)

L = 1/2 −1.364756 −1.74046938 −1.7404694(2)

L = 1/10 −7.494391 −11.2733646 −11.273364(1)

Table 1. We solve numerically eq. (2.43) the use Y0 from eq. (2.41) to compute the energy of the

ground state using eq. (2.10).

Combining it with eq. (2.41) we get

f(x) = 2T1(x)
T0(x + i/2 + i0)T0(x − i/2 − i0)

[T0(x + i)T0(x − i)]∗2s e−L cosh(πx) , (2.43)

which, in virtue of the eq. (2.40), gives a closed equation for f(x).

Notice that from eq. (2.43) T−1(x) = f(x)/2 is exponentially small for large L with

T−1(x) ≃ 2e−L cosh(πx). (2.44)

The finite L solution to equation (2.43) can be easily found by iterations, starting from

this large L asymptotic and gradually diminishing L. We solved this equation numerically

and get a perfect match with the existing results (see the table 1 comparing our results

with [26]).

In the next subsection, we generalize this solution to the excited states in the U(1)

sector.

2.7 Generalization to U(1) sector

In this section we will study in detail the U(1) sector of the theory where we consider the

states with N particles with the same polarization, i.e. with no magnon excitations. Hence

we can put all Q = 1. As mentioned before — see eq. (2.20) — for N particle states we

expect T0(θj) = 0 for each of N rapidities of the particles θ1, . . . , θN .

In the previous section the vacuum state, with no particles excited, was analyzed. We

saw that T0(x) inside the physical strip, Φ(x) above the strip and Φ̄(x) below the strip

could be described by a single function

F(x) = 1 +
1/π

4x2 + 1
∗ T−1 , (2.45)

such that

F (x) =







Φ(x − i/2) , Im (x) > 1/2

T0(x) , |Im (x)| < 1/2

Φ̄(x + i/2) , Im (x) < −1/2

. (2.46)

Here we build a generalization of (2.45) for the case when T0 has an arbitrary number of
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Figure 5. The function F (x) in (2.47) can be recast as a contour integral as in (2.49) with the

contours as represented in this figure.

zeroes inside the physical strip for which (2.46) holds:

F (x) = φ(x)

(

1 −

∫ ∞

−∞

(
1

φ(y − i/2)

1

x − y + i/2
−

1

φ(y + i/2)

1

x − y − i/2

)
T−1(y)dy

2πi

)

,

(2.47)

with φ(x) ≡
∏N

j=1(x − θj). The overall factor of φ(x) appears because T0(θj) = 0. The

spectral representation of F (x) as two integrals over the two infinite cuts at Im (x) = ±1/2

is inspired by (2.45) and can be also seen from the linear problem (2.21). Indeed, we have

T−1(x) = T0(x + i/2) − Φ(x) = T0(x − i/2) − Φ̄(x) (2.48)

which justifies the choice of spectral densities used in (2.47). To see that (2.46) indeed

holds we write (2.47) as

F (x) = φ(x)

(∮

γ

dy

2πi

T0(y)/φ(y)

y − x
+

∮

γ+

dy

2πi

Φ(y − i/2)/φ(y)

y − x
+

∮

γ−

dy

2πi

Φ̄(y + i/2)/φ(y)

y − x

)

.

(2.49)

The contours γ, γ+ and γ− encircle respectively the physical strip, the region above the

strip and the region below the strip, see figure 5. For this relation to be equivalent to (2.47)

we require that for large x we should have T0(x),Φ(x− i/2), Φ̄(x+ i/2) → φ(x) at |x| → ∞

along the corresponding contour. Finally, for (2.46) to hold, the ratios in (2.49) should

be analytic inside the corresponding contours. Notice that at large L the function T−1

is exponentially small and thus Φ−, T0, Φ̄
+ → φ(x) as expected from our discussion in

section 2.4, to get the ABA equations. The large x limit should be similar to the large L

limit since the source term in the Y -system e−L cosh(πx) is small in both cases.
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Let us now consider the other Hirota functions Tk. From (2.21) we have T1(x) =

T0(x + i/2) + Φ̄(x) = Φ(x) + T0(x − i/2) which in terms of the function F (x) reads

T1(x) = F (x + i/2 + i0) + F (x − i/2 + i0) = F (x + i/2 − i0) + F (x − i/2 − i0) , (2.50)

so it is indeed regular on the real axis. Notice that T1 is regular at least inside the enlarged

strip |Im (x)| < 1. In the same way we can easily see that Tk>0 is analytic inside the strip

|Im (x)| < k+1
2 .

Having expressed T0, Φ and T1 in terms of T−1 through the function F (x) we can find

a closed equation of T−1 from the Y -system equation for n = 0. The derivation is parallel

to the one in the previous section and it leads to

T−1(x) = (F (x + i/2) + F (x − i/2))
F (x + i/2 + i0)F (x − i/2 − i0)

[F (x + i)F (x − i)]∗2s e−L cosh(πx) , (2.51)

supplemented by the quantization condition Y0(θj + i/2) = −1. As before, the solution to

these equations can be easily found from iterations as is explained in the section 5. The

numerically calculated energies of a few states of this U(1) sector are presented on the

figure 2.

In the next section, we generalize these results to any excited states including the

magnon polarizations. We will use a different strategy and incorporate the gauge invariance

of Y -system to find the solutions of Y-system eq. (2.12) matching the L = ∞ asymptotic

of the section 2.4.

3 Finite size spectrum for a general state of PCF

We will now describe how to construct the solution for the most general state of the

PCF at finite volume L, having an arbitrary number of physical particles with arbitrary

polarizations in the SU(2)R and SU(2)L wings (characterized by left and right “magnons”

ui and vi). Our method is based on the following observations and steps:

• We know from eq. (2.32) the structure of the poles and zeroes of all Yk’s in the limit

L → ∞ when Y0 = 0. We assume that this structure will qualitatively persist even

for finite L, and the classification of the appropriate solutions of the Y-system will

follow the same pattern of poles and zeroes.

• We will recast the Y-system in terms of T-system (Hirota equation) since the analytic

structure of Tk’s is much simpler than of Ys as we saw from the vacuum solution (2.38)

at L → ∞.

• For any “good” solution of Y -system there is a family of solutions of Hirota equations

related by gauge transformations (2.25). Hirota equation can be solved explicitly in

terms of T0,Φ and Q as in eq. (2.23).

• For L → ∞ we have two independent solutions for Tk’s as we saw in the previous

section. For one solution T u
k are asymptotically polynomials for k > 0 and for another
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one T v
k with k < 0 are polynomials when L is large. We can then smoothly continue

these two solutions to finite L’s using the gauge freedom to preserve polynomiality

of Q’s.

• We have two global solutions of Hirota equation which can be parameterized by

T u
0 ,Φu, Qu, and by T v

0 ,Φv, Q
v. They represent however the same and unique solution

of the Y-system and thus should be related by a gauge transformation g : T v
s = g◦T u

s ,

see (2.25).

• Using certain assumptions about analyticity of T u
0 and Φu, supported by the Lax

equations (2.21), we can express them as different analytic branches of the same

analytic function Gu. The same can be done for T v
0 and −Φ̄v in terms of Gv .

• The solution will be completely fixed by the existence of such a gauge transformation

g(x) which relates its u– and the v-representations. At the end we will have one

single non-linear integral equation (NLIE) on g(x).

The final equation for g(x) is new for the Principal Chiral Field. It is different from

the system of 3 DdV type equations used for the same model in [30]. Still it resembles in

many aspects the non-linear Destri-de Vega (DdV) equation which appears when studying

other integrable models. Indeed, our method is very general and it allows to generate

DdV-like equations for large classes of sigma models in a systematic way. For the models

for which a DdV equation is known we expect our integral equation to coincide with it

after an appropriate change of variables. We check this hypothesis on the SU(2) chiral

Gross-Neveu model for which we re-derive indeed the known integral equation.

3.1 Exact equations for the finite volume spectrum

In this section, we will derive the finite volume spectral equations of the previous section in

the most general form, valid for all excited states of the model with any number of physical

particles with arbitrary polarizations (i.e. with any quantum numbers).

As we discussed below in the infinite volume, the solution of Y-system with Y0 = 0 can

be described in terms of two independent sets of Hirota potentials T u
k and T v

k . Since these

two different solutions of Hirota equation correspond to the same solution of Y-system they

are related by a gauge transformation g(x). These two solutions of Hirota equation can be

continuously and unambiguously deformed all the way from very large L, where we know

the solution (see the previous section), to any finite value of L. The gauge ambiguity for

any of the two solutions, T u
k or T v

k , can be fixed by choosing Qu and Qv to be polynomials

for any L. Of course we can no longer assume T u
k and T v

k , as well as the corresponding Φv

and Φu, to be polynomials. Instead we will assume certain analytic properties for them

and we will see their consistency with the solution we find at the end.

We introduce a polynomial φ(x) with real zeroes θj , j = 1, 2, . . . , N of T u
0 . They

correspond to the rapidities of physical particles on the circle. The gauge function g(x)

relating the two solutions of the T -system is assumed to be regular and to have no zeros
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on the physical strip, so that T v
0 = gḡT u

0 has the same zeroes as T u
0 there. We also assume

that8

• Φu(x)
φ(x+i/2) ( Φ̄u(x)

φ(x−i/2) ) is regular for Im x > −1/2 (Im x < 1/2) in the whole upper

(lower) half plane and goes to 1 for |x| → ∞ in all directions in the upper (lower)

half plane;

•
T u
0 (x)
φ(x) is regular and goes to 1 at x → ±∞ inside the physical strip −1

2 < Im x < 1
2 ;

The first property is somewhat similar to the forth property from the previous subsec-

tion: the large x asymptotics is governed by the same exponential e−L cosh πθ as the large

L asymptotics. As a consequence of the second assumption, inspired by the integral repre-

sentation (2.47) for the U(1) sector, T u
k>0(x) are regular for −(k+1)/2 < Im x < (k+1)/2.

Similarly, for another solution we assume that

• Φ̄v(x)
φ(x+i/2) ( Φv(x)

φ(x−i/2) ) is regular for Im x > −1/2 (Im x < 1/2) in the all upper (lower)

half plane and goes to 1 when |x| → ∞ in all directions in the upper (lower) half

plane

•
T v
0 (x)
φ(x) is regular and goes to 1 at x → ±∞ inside −1

2 < Im x < 1
2 strip.

Note that with these properties all Yk 6=0 are automatically analytic in the physical

strip, as we see from (2.18). Y0 is, in the strict sense, only analytic on the real axis, but

the detailed analysis of the appendix D shows that we can expect its analyticity even in a

finite strip around the real axis. As concerns the T -functions, although we use in different

circumstances T u
k or T v

k , we will get the same result for all Yk, since they are related by a

gauge transformation g(x). But analyticity will be explicit only for one wing at a time: at

k ≥ 1 for T u
k and at k ≤ 1 for T v

k .

The listed properties are enough to explicitly relate T u
k , T v

k with the corresponding Φv

and Φu using a certain integral representation for them. In appendix B we follow this line

of arguments to formulate the complete set of equations for an arbitrary state, including a

NLIE for g(x) and the associated equations for the Bethe roots. However, it appears to be

more advantageous, especially for the numerics, to use the integral representations for the

logarithms of T u
k , T v

k ,Φv,Φu. We will derive in what follows the corresponding equations

defining the energy of a general state.

Let us define two new functions analytic on a Riemann surface with two infinite cuts

at Im x = ±i/2

Gw(x) =
1

2πi

∫ ∞

−∞

ρw(y)

x − y − i/2
dy −

1

2πi

∫ ∞

−∞

ρ̄w(y)

x − y + i/2
dy, (w = u, v) (3.1)

with the following spectral densities along the infinite cuts9

ρu(x) = log

(
T u

0 (x + i/2)

Φu(x)

)

, ρv(x) = log

(
T v

0 (x + i/2)

−Φ̄v(x)

)

, (3.2)

8When x → ∞ we know that Y0(x) → e−L cosh(πx) , i.e. it is exponentially small, as in the case of

large L, and the Y-system, as well as the T-system splits in to two independent u- and v-wings with

T0(x) ∼ Φ(x) ∼ φ(x) ∼ xN .
9These spectral densities denoted by ρ should not be confused with the densities of Bethe roots ̺ used

in appendix A in the derivation of the Y-system ground state equations.
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Figure 6. The ratios indicated close to each contour are analytic inside the corresponding contour.

Thus we can obtain them in each of these regions using a single resolvent Gu(x) as in (3.1).

and their complex conjugates

ρ̄u(x) = log

(
T u

0 (x − i/2)

Φ̄u(x)

)

, ρ̄v(x) = log

(
T v

0 (x − i/2)

−Φv(x)

)

. (3.3)

Then from (2.18) we have

log(1 + Y0) = ρu + ρ̄u = ρv + ρ̄v . (3.4)

When L is large enough we know from the results of the section 2.4 that Tw
0 (x) ≃ Φw(x−

i/2) ≃ Φ̄w(x + i/2) ≃ φ(x) and thus to the leading order ρw(x)’s are exponentially small.

It is also important for our analyticity assumptions listed above to hold that ρw(x) ∼

e−L cosh πx at x → ±∞ along the real axis. Together with these analyticity assumptions

the following formulae are true at any L

Gv(x) =







log
−Φ̄v(x − i/2)

φ(x)
Im x > +1/2

log
T v

0 (x)

φ(x)
|Im x| < 1/2

log
−Φv(x + i/2)

φ(x)
Im x < −1/2

, Gu(x) =







log
Φu(x − i/2)

φ(x)
Im x > +1/2

log
T u

0 (x)

φ(x)
|Im x| < 1/2

log
Φ̄u(x + i/2)

φ(x)
Im x < −1/2

.

(3.5)

These formulas are easily understood from simple contour manipulation as depicted

in figure 6. Let us consider the resolvent Gu, plug (3.2) and (3.3) into (3.1) and consider

separately the terms containing
T u
0 (x)
φ(x) , Φu(x−i/2)

φ(x) and Φ̄u(x+i/2)
φ(x) . Since T0(x)

φ(x) → 1, x → ±∞,

we can close the contour in the integrals containing log T0(x)
φ(x) around the physical strip and

contracting it around the pole y = x we obtain the middle relations in (3.5) if x lies in the

physical strip. Similarly, using the fact that in the upper half-plane Φu(x−i/2)
φ(x) → 1, x → ∞,
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we can close the contour in the integrals containing log Φu(x−i/2)
φ(x) (after the obvious shift of

integration variable) around the upper half-plane and contracting it around the pole y = x

we obtain the upper relations in (3.5) provided Im(x) > 1/2. The integrals containing

log Φ̄u(x−i/2)
φ(x) are treated similarly with the contours being closed in the lower half-plane.

For the resolvent Gv the same sort of reasonings apply.

As we mentioned above, the two solutions of Hirota equation we defined in this way,

are related by a gauge transformation T v
k = g ◦ T u

k . However, the polynomials Qu and Qv

are not necessarily related by this gauge transformation g(x). Instead, one can easily see

that Qv is mapped to another linearly independent solution of eq. (2.21) Ru = Qv

g−
. We can

use eqs. (2.26), (2.27) to express all Tk’s and Φ’s in terms of Q’s. In particular, we have

Φu = h+

(
Q++

u Q̄−−
v

g−
−

QuQ̄v

g+

)

, T u
0 = h

(
Q+

u Q
+
v

ḡ
−

Q̄−
u Q̄

−
v

g

)

. (3.6)

Similar relations for v wing can be obtained from the gauge transformation Φv = g−g+Φu

and T v
0 = ḡgT u

0 . For the densities (3.2)–(3.3) this yields

eρu = +
T u+

0

Φu
=

g+

ḡ+Q
++
u Q++

v − Q̄uQ̄v

g+

g−
Q++

u Q̄−−
v −QuQ̄v

, eρv = −
T v+

0

Φ̄v
=

g+

ḡ+Q
++
v Q++

u − Q̄vQ̄u

ḡ−

ḡ+Q++
v Q̄−−

u −QvQ̄u

. (3.7)

Note that one can get ρv from ρu by exchanging indices u ↔ v and g → 1/ḡ.

We see that the densities and thus both Gu and Gv now can be expressed solely in terms

of three polynomials Qv, Qu, φ and a function g(x), generating the gauge transformation

relating the two wings. It is left only to find a closed equation on g(x). We do it in the

following subsection.

3.1.1 Closed equation on the gauge function g(x)

In the previous subsection, we managed to express all relevant quantities in terms of three

polynomials Qv, Qu, φ and a complex function g(x). Using the condition that two solutions

of Hirota equation are related by the gauge transformation generated by g(x) we can write

a closed equation on that function. In particular, using the fact that Φv and Φu are related

by the gauge transformations (2.25) we obtain

Φv = g+g−Φu . (3.8)

It gives a closed relation on g which we can rewrite, assuming that g is regular within the

physical strip, as follows

g = ie
1
2
iL sinh(πx)

(

−
Φv

Φu

)∗s
, (3.9)

where the zero mode of the inverted operator was chosen to ensure the proper large x

asymptotic. Indeed with this choice T u
−1 =

T v
−1

g−ḡ+ ∼ e−L cosh(πx) leading to the right behavior

of Y0 (see eq. (2.18)) at large L. Using (3.1) this can be re-casted as

g = ie
1
2
iL sinh(πx)S(x) exp [s ∗ Gv(x − i/2 − i0) − s ∗ Gu(x + i/2 + i0)] (3.10)
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where we used (3.5) and the identity

(
φ−

φ+

)∗s
=
(
S+S−)∗s = S , (3.11)

following from the crossing relation (2.4). We remind that φ(x) =
∏N

j=1(x − θj) and

S(x) =
∏N

j=1 S0(x − θj).

The closed NLIE (3.10) for g(x) is our main result. Together with the expressions for

the densities in terms of g (3.2)–(3.3) it allows us to calculate (1 + Y0) and thus to obtain

the energy of a state (2.15).

In what follows in this section we will rewrite it in a little more convenient form which

will be useful for the numerical computations for particular states.

Conjugating the last equation we find

ḡ = −ie−iL/2 sinh(πx)S−1(x) exp [s ∗ Gv(x + i/2 + i0) − s ∗ Gu(x − i/2 − i0)] . (3.12)

Finally it is useful to translate these equations into an equation for the phase g/ḡ

g

ḡ
= −eiL sinh(πx)S2(x) exp

(
1

2

[
K−

0 ∗ (ρu + ρv) − K+
0 ∗ (ρ̄u + ρ̄v)

]
)

, (3.13)

where K0 = 1
2πi∂x log S2

0 and we used

Gw(x+ i/2+ i0)−Gw(x− i/2− i0) = K1(x+ i/2− i0)∗ ρ̄w −K1(x− i/2+ i0)∗ρw (3.14)

and the convolution form of the dressing kernel as K0 = 2s ∗ K1,K1(x) = 2
π(4x2+1)

. For

the squared norm gḡ we get from eq. (3.9)

gḡ =

(
Φv

Φu

Φ̄v

Φ̄u

)∗s
=

[
ΦvΦ̄v

T v+
0 T v−

0

T u+
0 T u−

0

ΦuΦ̄u

]∗s
T v

0

T u
0

= exp(Gv − Gu) , (3.15)

where we used 1
Y0

Y0 = 1 inside the square brackets to get the last equality. This equation

can be also obtained from the gauge transformation T v
0 = gḡT u

0 . As we shell see in section 5

these equations can be efficiently solved numerically, by iteration, where at each iteration

step a single convolution integral arises involving the densities ρu and ρv.

We use eq. (3.7) and eq. (3.8) together with our analyticity assumptions to constrain

g,Φu,v and T u,v
0 . In the next section we will fix the remaining finite number of complex

parameters — zeros of polynomials Qv,Qu and the real zeroes of φ. After that one can

use eq. (2.23) to construct all Tk. In appendix C we show that all Tk obtained in this way

will be real functions and thus Hirota equation for them is satisfied. This means that we

solved indeed the Y-system with the right physical analytic properties for the solutions.

3.1.2 Finite size Bethe equations and the energy

Finally it is left to explain how to fix the finite number of constants, the Bethe roots θj , uj

and vj, which are zeros of the polynomials φ ,Qu, Qv and which completely characterize
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a state. The zeros of φ are by definition the zeros of T0 which means that at these points

eρu(θj±i/2) = eρv(θj±i/2) = 0 as we can see from eq. (3.7). It can be also written as follows

Q+
u Q

+
v

Q̄−
u Q̄

−
v

g

ḡ
= 1 , at x = θj , (3.16)

which we can rewrite using eq. (3.13) as

e−iL sinh(πθj) =−S2(θj)
Q+

u Q
+
v

Q̄−
u Q̄

−
v

exp

(
1

2

[
K−

0 ∗ (ρu + ρv) − K+
0 ∗ (ρ̄u + ρ̄v)

]
)

, at x = θj .

(3.17)

Note that when L → ∞ we can neglect the last factor to get precisely the usual infinite

volume ABA eq. (2.7). The equations for the auxiliary Bethe roots uj can be derived in

many alternative ways. The most standard way is to demand analyticity of T1 at x = uj

(see eq. (2.22))

ΦuQ̄
−−
u + T u−

0 Q++
u = 0 , at x = uj . (3.18)

We see that in general there is no reason to assume uj to be real when L is finite. Using

the resolvent Gu to represent T0 and Φu appearing in this expression we get the auxiliary

Bethe equations following from (3.18) in the form

1 = −
φ−Q++

u

φ+Q̄−−
u

P (uj) , (3.19)

where P (x) is defined on the upper half plane by

P (x) = exp [K1(x − i/2) ∗ ρu − K1(x + i/2) ∗ ρ̄u] , Im x > 0 , (3.20)

In the large L limit P (x) ∼ 1 and we get the ABA eq. (2.8). A similar equation fixes the

roots vj .

The integral equation (3.10) together with the equations (3.17), (3.19) fixing the zeros

of the polynomials Qu, Qv, φ are the complete set of equations which one should solve

to find the full spectrum of the SU(2) × SU(2) principal chiral field. Once g(x) and

the positions of the zeros θj, uj , vj are found, we can compute the exact energy of the

corresponding quantum state from eqs. (2.15), (3.4) and (3.7)

E =

N∑

k=1

cosh(πθk) −
1

2

∫

cosh(πx)(ρu + ρ̄u)dx . (3.21)

where we can use due to (3.7) ρu + ρ̄u = ρv + ρ̄v = log

∣
∣
∣
∣
∣

g+

ḡ+ Q++
u Q++

v −Q̄uQ̄v

g+

g−
Q++

u Q̄−−
v −QuQ̄v

∣
∣
∣
∣
∣
.

Let us remark that our construction for a general state in this paper was based on the

assumption that in the asymptotic regime L → ∞ all the roots uj , vj become real.However,

it is well known that the complex solutions are also possible. We hope that even in this

case our equations maintain their form, although this situation deserves a special care.

In section 4 we will explain how to efficiently implement these equations for numerical

study. Before that, in the next section we will study the large L behavior of these equations

thus reproducing not only the large volume results of section 2.4 but also the subleading

corrections (Lüscher corrections).
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3.2 Large volume limit: ABA and Lüscher corrections

The SU(2) principal chiral field spectrum is given by (2.15), or (3.21). As we have seen in

the previous section, in the large L limit the Bethe roots θj are given by their asymptotic

values obtained from a solution to the asymptotic Bethe equations, and since Y0 and ρ’s

are exponentially small we can drop the integral contribution in (3.17) and (3.19) and

recover the usual asymptotic spectrum. In this section we focus on the leading finite size

corrections to this result.

Due to these corrections auxiliary roots uj and vj become complex even if they were

real asymptotically at large L. In this section we denote the real part of the roots uj, vj by

Uj and Vj while the (small) imaginary parts we denote by ∆uj and ∆vj. The positions of

the momentum carrying roots θj are also corrected, however they stay real. We will also

use the notation

Qu(x) =
∏

j

(x − Uj) , Qv(x) =
∏

j

(x − Vj) . (3.22)

We have to compute the first correction to the positions of the Bethe roots. To the leading

order we can drop the exponentially small densities ρu and ρv in eq. (3.10), to get

g(x) ≃ iS(x)eiL/2 sinh(πx) (3.23)

which we can use to compute the spectral densities from (3.2)–(3.3). We see that some

terms in the expression for ρu are exponentially suppressed and we can expand

ρu ≃
Q̄u −Qu

Qu
+ e−L cosh(πx) S

+

S−
Q++

u

φ+

Q++
v φ− + Q−−

v φ+

QvQu
≃

Q̄u −Qu

Qu
+

Q++
u T u

−1

Quφ+
. (3.24)

In the last equality we neglect the small imaginary part of the axillary roots and we

use (2.22) to the leading order together with the gauge transformation T v
−1 = g−ḡ+T u

−1

and the crossing relation S+S− = φ−

φ+ .

The poles at x = Uj should cancel, due to eq. (3.19), among the first and the second

term since the density by definition is regular. We introduce the notations ρ
(1)
u and ρ

(2)
u for

the first and the second term in (3.24). The first one can be simply written as

ρ(1)
u ≃

∑

j

2∆uj

x − Uj
. (3.25)

Since the whole density is regular we can apply the principal part prescription to the finite

integrals in (3.13) without changing the result. Having done so we are free to split the

convolutions into convolutions with ρ(1) and ρ(2). In (3.17) we should then expand the factor

[
Q+

u

Q̄−
u

exp

(

iIm −

∫

K−
0 (x − y)ρ(1)

u (y)

)]

exp

(

iIm −

∫

K−
0 (x − y)ρ(2)

u (y)

)

, (3.26)

and the similar factor for the v roots, to the next to leading order. We notice that ρ
(1)
u

is purely imaginary to the leading order, as seen from eq. (3.25), and therefore we can
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simplify the term in the square brackets

Q+
u

Q̄−
u

exp

(
1

2
(K−

0 + K+
0 ) ∗ ρ(1)

u

)

≃
Q+

u

Q̄−
u

(

1 + K1 ∗ ρ(1)
u

)

=
Q+

u

Q̄−
u

(

1 +
ρ
(1)+
u + ρ

(1)−
u

2

)

≃
Q+

u

Q
−
u

(3.27)

where the convolutions are understood in the sense of principal value. Thus in the Bethe

equations (3.16) in this approximation the imaginary parts of the axillary roots cancel

against the contribution from ρ(1) and we simply get

− eiL sinh(πx)S2 Q+
u Q+

v

Q
−
u Q

−
v

= exp
(

−iIm K−
0 ∗

[

ρ(2)
u + ρ(2)

v

])

at x = θj . (3.28)

Proceeding in the same fashion in the eq. (3.19) for the auxiliary Bethe roots we arrive

at a similar conclusion. Namely only the real parts of the auxiliary roots survive when we

separate the density into ρ(1) and ρ(2)

−
φ−

φ+

Q++
u

Q
−−
u

= exp
(

−2iIm K−
1 ∗ ρ(2)

u

)

at x = Uj . (3.29)

See appendix E for details. We see that all terms except for the convolutions with ρ(2)

have a simple effect of absorbing the imaginary parts of the Bethe roots.

It turns out that the remaining convolutions, containing ρ(2), can be nicely written in

terms of the leading order Y0 found before in (2.32),

Y0(x) ≃ e−L cosh(πx)

(
Q++

u φ− + Q−−
u φ+

Qu

)(
Q++

v φ− + Q−−
v φ+

Qv

)
(S+)2

(φ−)2
, (3.30)

where the θj appear in φ and S while the uj (vj) auxiliary roots appear in the corresponding

Baxter polynomials Qu (Qv). Notice that this quantity is already exponentially small, so

we can take here the asymptotic values for the auxiliary roots. As explained in detail in

appendix E, the quantities inside the principal part integrals are related to the derivative

of this function with respect to θk or uk and vk which we treat in (3.30) as independent

variables. More precisely we have the remarkable identities

i Im
(

K−
0 (θi − y)

[

ρ(2)
u (y) + ρ(2)

v (y)
])

= −
∂θi

Y0(y)

2πi
, (3.31)

2i Im
(

K−
1 (uj − y)ρ(2)

u (y)
)

= +
∂ui

Y0(y)

2πi
. (3.32)

Thus we finally obtain the corrected Bethe ansatz equations in the following elegant form:

−
φ+

φ−
Q−−

u

Q
++
u

= exp

(

−

∫
∂Uj

Y0(y)

2πi
dy

)

at x = Uj ,

−eiL sinh(πx)S2 Q+
u Q+

v

Q
−
u Q

−
v

= exp

(

−

∫
∂θj

Y0(y)

2πi
dy

)

at x = θj , (3.33)

−
φ+

φ−
Q−−

v

Q
++
v

= exp

(

−

∫
∂Vj

Y0(y)

2πi
dy

)

at x = Vj .
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It is not completely surprising that we managed to express everything in terms of Y0. To the

leading order, Y0 can be expressed in terms of S-matrix only: it is the relevant eigenvalue

of the operator

e−L cosh(πx)tr
(

Ŝ01(x − θ1)Ŝ02(x − θ2) . . . Ŝ0N (x − θN)
)

. (3.34)

We see that (3.33) corresponds precisely to the conjectured equation (27) in [5] only inside

the U(1) sector. However, our result is different from outside the U(1) sector when there

are axillary roots Uj and Vj. Finally the equation for the energy of the state corrected by

the finite size effects is given by eq. (2.15) in terms of Y0 in the leading approximation and

the corrected positions of the roots θj which should be found from eq. (3.33).

The right-hand sides of the corrected Bethe equations (3.33) have a simple interpre-

tation: for the middle equation, it reflects the contribution of scattering of the “physical”

particles off the virtual ones on the cylinder, whether as the other two reflect the same

effect for the “magnons” responsible for the isotopic degrees of freedom of the particles.

Although these equations are derived here only for a particular model their form looks very

universal and can be immediately generalized to any other integrable sigma model where

the exact scattering matrix is known.

3.2.1 Single particle case

In this section we consider the single particle case for the Lüscher-type correction of the

previous subsections. This analysis was done in a more general context in [5].

When we have a single particle with momentum θ1 (3.33) yields simply

L sinh (πθ1) = 2πn −−

∫
dy

2π
∂θ1Y0(y) , (3.35)

which corrects the leading order quantization condition

L sinh(πθ0
1) = 2πn . (3.36)

Now, from (3.30) we see that the x dependence in Y0(x) comes from the exponential factor

e−Lπ cosh(πx) and also from the combinations x − θj, x − uj and x − vj appearing in the

remaining terms in this expression. Thus

∂yY0(y) = −Lπ sinh(πy)Y0(y) −
N∑

k=1

∂θk
Y0(y) −

Ju∑

k=1

∂uk
Y0(y) −

Jv∑

k=1

∂vk
Y0(y) , (3.37)

which, in the case we are considering, with N = 1 and Ju = Jv = 0, allows us to sim-

plify (3.35) to

L sinh (πθ1) = 2πn +

∫
dy

2
L sinh(πy)Y0(y) , (3.38)

so that the leading finite size correction to the energy (2.15) reads

E(L) − cosh(πθ0
1) ≃ −

1

2

∫

cosh(πy)
(
1 − tanh(πy) tanh(πθ0

1)
)
e−L cosh(πy)tr Ŝ01(y − θ0

1) ,

(3.39)

precisely as expected for the Lüscher corrections [4].
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4 SU(2) Chiral Gross-Neveu model and related models

Our NLIE resembles the Destri-deVega equation and, at least in the cases the last one is

known, can even coincide with it. In the cases when the DdV equation is not known, like

the SU(2)L×SU(2)R PCF, or O(4) model studied in this paper, we obtain a new, DdV-like

equation. In this subsection, to demonstrate our method, we show how to reproduce the

DdV equation for the chiral SU(2) Gross-Neveu model on a finite circle.

The TBA equations for this model are given by the same Y -system (2.12) with an

important difference that Ys<0 = 0 (see figure 8). In particular, since Y−1 = 0 we have

T−2 = 0 which implies due to the eqs. (2.21), (2.17)

0 = T−−
−1 Q̄ − Φ̄Q−− , T+

−1T
−
−1 = Φ−Φ̄+ . (4.1)

Then it is immediate to check that the quantity

A ≡
Q+

Q̄−
T−
−1

Φ− =
Q+

Q̄−
Φ̄+

T+
−1

(4.2)

satisfies, due to eq. (4.1), the relation

A+A− =

(
Q+

Q̄−

)+ (
Q+

Q̄−

)−
Φ̄

Φ
. (4.3)

Note that A is a pure phase on the real axe. Thus, restoring the proper zero mode

exponential, we find

A = eiL sinh(πx) Q
+

Q̄−

(
Φ̄

Φ

)∗s
. (4.4)

As before, to make this a closed equation on A we introduce the resolvent G and the

density ρ

G(x) =
1

2πi

∫
ρ(y)

x − y − i/2
dy −

1

2πi

∫
ρ̄(y)

x − y + i/2
dy , ρ = log

T+
0

Φ
. (4.5)

Again analytic properties of T0 and Φ lead to eq. (3.5). Using the linear problem (2.21)

we can write T−1Q
++ − T+

0 Q = −ΦQ̄ and we see that

ρ = log

[
Q̄

Q

(
1 + A+

)
]

. (4.6)

Thus A satisfies the closed equation for A since Φ = G(x + i/2 + i0). We see that A(x)

plays a similar role as g(x) in PCF. We can easily compute Y0 in terms of A

1 + Y0 = eρeρ̄ =
(
1 + A+

) (
1 + 1/A−) . (4.7)

We see that the factors of Q cancel from this expression. It is also possible to write

eq. (4.4) in a simpler form without factors of Q using the useful identities. First using
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eq. (3.14) and assuming that the density is regular not only on the real axes but also for

−1/2 < Im x ≤ 0 we write

(
Φ̄

Φ

)∗s
= Sθ exp

(
1

2
K−

0 ∗ ρ −
1

2
K+

0 ∗ ρ̄

)

= Sθ exp

(
1

2
K0 ∗ [ρ−+ − ρ̄+− ]

)

, (4.8)

where ρ−+ ≡ ρ(x − i/2 + i0). Using the following relation

1

2
K0 ∗ log

[
Q̄+Q̄−

Q−Q+

]

= log

[
S+

u

S+
ū

Q̄−

Q−

]

, (4.9)

where

Sθ(x) =

N∏

j=1

S0(x − θj) , Su(x) =

Ju∏

j=1

S0(x − uj) , Sū(x) =

Ju∏

j=1

S0(x − ūj) (4.10)

we can get rid of Q’s in (4.8) and finally obtain the known DdV equation

A = eiL sinh(πx) Sθ

S+
ū S−

u
exp (iIm K0 ∗ log [1 + A(x + i0)]) . (4.11)

Then for Y0 we get the standard relation which should be used to compute the exact

spectrum from

E(L) = −
1

2

∫

m cosh(πθ) log(1 + Y0) +
∑

m cosh(πθj) . (4.12)

Furthermore, both BAE — for the physical rapidities θj and for the magnon rapidities uj

— can be written

A(θj) = −1 , A+(uj) = −1 . (4.13)

We also notice that A(x) has poles at x = ūj + i/2. To see that we use

T0(θj) = 0 ⇒ 1 + A(θj) =
Q−(θj)

Q̄−(θj)

T0(θj)

Φ−(θj)
= 0 , (4.14)

Φ(uj) ∼ 1 ⇒ 1 + A+(uj) =
Q(uj)

Q̄(uj)

T+
0 (uj)

Φ(uj)
= 0 . (4.15)

Equations (4.10), (4.7), (4.12) and (4.13) are precisely the DdV equations derived

in [6, 7]!10 As shown in this section our method can be directly generalized to other

models whose TBA Y -system equations are known. It would be very interesting to make

a systematic study of such models using our formalism.

For example, a simple generalization of the case studied in this section is obtained

by considering the functions Tk, Φ as well as the Baxter functions Q to be periodic in

the imaginary directions with period iν. This amounts to considering the trigonometric

solutions of Hirota equation (2.17) and the corresponding linear problem (2.21) — this

10In these papers the sine-Gordon model was considered. The SU(2) Chiral Gross-Neveu model is a

simple limiting case of this theory, see discussion in the paragraph below.
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should correspond to the sine-Gordon model [13]. We take the Baxter polynomials Q(x)

and the large L limit of T0,Φ
−, Φ̄ ≃ φ̃ to be

Q̃(x) =

J∏

j=1

sinh π
ν (x − uj)

sinh π
ν

, φ̃(x) =

N∏

j=1

sinh π
ν (x − θj)

sinh π
ν

(4.16)

instead of polynomials. Then most of the formulae in this section go through with minor

modifications. For example, instead of the SU(2) Chiral Gross-Neveu S-matrix S0 =
(

x−i/2
x+i/2

)∗s
we will find the sine-Gordon dressing factor

S̃0 =

(
sinh π

ν (x − i/2)

sinh π
ν (x + i/2)

)∗s
= −i exp

∫ ∞

0

sin(ωx)

ω

sinh
(

ν−1
2 ω

)

cosh
(

ω
2

)
sinh

(
ν
2ω
) .

Thus it seems that our method allows to derive the sine-Gordon DdV equations of [6, 7] in

an easy way. For ν → ∞ we recover the SU(2) chiral Gross-Neveu model. For an integer

ν the Y-system can be truncated as represented in figure 8, see e.g. [13].

Another interesting class of models which one could analyze using our formalism is

represented by the so called sausage model (see e.g. [45]). This model can be considered as

a generalization of the O(4) model, or SU(2) PCF, in the same sense as the sine-Gordon

model is a generalization of the SU(2) chiral Gross-Neveu. The inhomogeneous XXX-spin

chain present in the SU(2) Gross-Neveu model and describing the isotopic degrees of free-

dom is generalized in sine-Gordon model to the XXZ chain, with the anisotropy parameter

ν introduced above. Similarly, the sausage models can be seen as two interacting inho-

mogeneous XXZ chains parameterized by the inhomogeneities θ1, . . . , θN and anisotropies

ν and ν ′. It would be very interesting to generalize our O(4) model results to this more

general class of models.

Our approach to deriving DdV like equations is strongly based on a smooth interpo-

lation starting from the IR asymptotic Bethe ansatz description; hence, by construction,

our states are very well identified. On the other hand we did not carry out a detailed

study of complex solutions such as the states represented by Bethe strings in the large L

limit; for these states some of our formulae might need to be modified. Within the DdV

approach based on descritizations of integrable models, many interesting complex solutions

were studied: e.g. holes, special objects, wide roots, self-conjugate roots etc. It would be

interesting to complete our approach to include all physical complex solutions and thus

obtain a precise dictionary between these two approaches. In particular this would teach

us which solutions to DdV NLIE correspond to physical states.

5 Numerics

In this section we explain how to efficiently solve numerically the equations derived in the

section 3.

5.1 Implementation of numerics and Mathematica code

For simplicity let us focus on the U(1) sector where we consider M -particle quantum states

with M spins pointing in the same direction in SU(2)L and SU(2)R. Then our equations
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simplify considerably as was explained in subsection 2.7. First of all, since there are no

spins excited we have trivial Baxter polynomials Qu = Qv = 1. Thus, from (3.7) we see

that ρu = ρv = ρ with

ρ = log

g+

ḡ+ − 1

g+

g− − 1
. (5.1)

We also notice that since this is a symmetric configuration where the u and v root config-

urations are the same (there are no roots at all) we have, see e.g. (3.15), gḡ = 1 and thus

g(x) is a pure phase. In particular, for real x, we can simplify the density to

ρ(x) = log
(g+)

2
− 1

|g+|2 − 1
, (5.2)

from where we see that we can express it solely in terms of g+. Since g is a pure phase we

need only to determine its argument from (3.13) which now reads

g2 = −eiL sinh(πx)S2(x) exp

(

2i Im

[

K−
0 ∗ log

(g+)
2
− 1

|g+|2 − 1

])

. (5.3)

This is almost perfect for numerical implementation but still needs to be slightly improved.

The reason is that we want to iterate this equation by evaluating the right hand side for

real x. But this will yield the updated values of g(x) in the left hand side whereas for the

next iteration we would need g+(x). To fix it, we simply shift x → x+ i/2 in this equation

and define A(x) ≡ (g+(x))
2

to get

A=−e−L cosh(πx)
M∏

j=1

S2
0(x−θj+i/2) exp

(

K0 ∗ log
A − 1

|A|−1
−K++

0 ∗ log
Ā − 1

|A|−1
−log

Ā − 1

|A|−1

)

,

(5.4)

where the convolution of K++
0 is understood in the principal part sense. We have explicitly

written S(x) to render the presence of the Bethe rapidities more explicit. These are fixed

by the main Bethe equation (3.16) which in our notations is simply

− eiL sinh(πx)
M∏

j=1

S2
0(x − θj) exp

(

2i Im

[

K−
0 ∗ log

A − 1

|A| − 1

])

= 1 , x = θi . (5.5)

For completeness let us present here the Mathematica code to solve these two equations by

iterations.11 It is a slightly simplified, and thus less efficient, version of the code we used

for the plots in figure 2.

First we introduce the S-matrix S0 and the kernel K0,

S0[x_]=I*Gamma[-(x/(2I))]Gamma[1/2+x/(2I)]/(Gamma[x/(2I)]Gamma[1/2-x/(2I)]);

K0[x_]=D[Log[S0[x]^2],x]/(2*Pi*I);

Next we specify the size L and the mode numbers n = {n1, . . . , nM}. For example, if we

want to study the system with L = 1/2 and three particles with zero mode numbers we

11One can copy the code directly to Mathematica from .pdf
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write

n = {0, 0, 0};

M = Length[n];

L = 1/2;

We will perform several integrals from −∞ to +∞ but the integrands have exponential

tails so that it is quite useful to introduce a cut-off X for all the integration intervals at

this point. A reasonable cut-off is given by e−L cosh(πX) = 10−8. Furthermore, at each

iteration step we will have to construct an updated function A(x) which we do by means

of an interpolation function,

X=ArcCosh[8Log[10]/L]/\[Pi];

F[S_]:=FunctionInterpolation[S,{x,-X,X},InterpolationPoints->30];

Next we introduce

eq[i_,v_]:=L*Sinh[Pi*x[i]]+Sum[If[i==j,0,Log[S0[x[i]-x[j]]^2]/I],{j,M}]-2n[[i]]Pi+v[[i]];

BAE[v_]:=Table[x[i],{i,M}]/.FindRoot[Table[Re[eq[j,v]],{j,M}],

Table[{x[i],2i/M-1/2},{i,M}]];

which yields the solution to Bethe equations L sinh(πθi)+
∑

j 6=i
1
i log S2

0(θi−θj)−2πni +vi

where vi is a perturbation to the equation number i. Comparing with (5.5) we see that

this perturbation at step k will be given by the convolution appearing in (5.5) evaluated

at the solution θi computed in the previous step. The leading order BAE’s correspond to

vi = 0 and are thus given by

\[Theta][0]=BAE[Table[0,{j,M}]]

Also to leading order the function A(x) will be simply given by

A[0]=F[-Exp[-L*Cosh[Pi*x]]*Product[S0[x-\[Theta][0][[j]]+I/2]^2,{j,M}]]

Then we introduce the density ρ and its conjugate ρ̄ at the k-th iteration step as

r[k_,y_]:=Log[(A[k][y]-1)/(Abs[A[k][y]]-1)];

rc[k_,y_]:=Conjugate[r[k,y]];

Finally the code

A[k_]:=A[k]=F[-Exp[-L*Cosh[Pi*x]]Product[S0[x-\[Theta][k-1][[j]]+I/2]^2,{j,M}]

Exp[NIntegrate[K0[x-y]r[k-1,y]-K0[x-y+I]*rc[k-1,y]+1,{y,-X,x,X},

Method->PrincipalValue]-2X-rc[k-1,x]]];

phase[k_][x_]:=NIntegrate[2Im[K0[x-y-I/2]r[k-1,y]]+1,{y,-X,X}]-2X;

\[Theta][k_]:=\[Theta][k]=BAE[Table[phase[k][\[Theta][k-1][[j]]],{j,M}]];

yields the k-th iteration quantities in terms of those computed at the (k − 1)-th step. The

energy of the state is then given by

En[k_]:=Sum[Cosh[Pi\[Theta][k][[j]]],{j, M}]-NIntegrate[Re[r[k,y]]Cosh[Pi*y],{y,-X,X}];

For example, to obtain the result of the first 8 iterations we simply run

Table[En[k], {k, 0, 8}]
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Figure 7. Difference between the predictions from the asymptotic Bethe ansatz and from the

generalized Lüscher formulas to the exact (numerical) results for the two particle state polarized in

both SU(2) [u, v, θ−11]. The solid (blue) line represents Eexact−EABA

Eexact
while the dashed (red) curve

depicts Eexact−ELuscher

Eexact
. It is clear that the latter approximates the exact results with excellent

accuracy, especially for large L of course.

to get {10.2414,10.2425,10.2425,10.2424,10.2424,10.2424,10.2424,10.2424} where we notice

that the iterations are clearly converging to the exact value 10.2424 up to the precision

we are working at. It is instructive to compare these results to the value predicted by the

asymptotic Bethe equations alone,

EBAE = 10.3388

and to that predicted by the generalized Luscher formulae discussed in section 3.2 which

gives

ELüscher = 10.2396

5.2 Discussion of numerical results

Now we will try to interpret the behavior of various states on the figure 1 as functions

of the volume L. Let us start from the vacuum, the lowest plot there. At very small

L, the O(4) model should become a 2d CFT of three massless bosons: if we introduce

in (5.6) a rescaled field ~Y = e−1
0 (L) (X1,X2,X3) and X4 =

√

1 − e2
0(L)(Y 2

1 + Y 2
2 + Y 2

3 ),

where e2
0(L) ≃ 2π

| log L| is the effective charge, very small in this limit (the effective radius of

the S3 sphere R(L) = e−1
0 (L) is very big), the action will be

Sσ =

∫

dt dx

3∑

a=1

(∂αYa)
2 + O

(
e4
0(L)

)
. (5.6)
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In the ground state, the Casimir effect will define the limiting energy: E0 ≃ − πc
6L +

O(1/ log4(L−1)), with the central charge c = 3, which gives E0
L
2π ≃ −1

4 , the value compat-

ible with −0.18 of the figure 1.12

The energies of excited states are

L

2π
E~n1~n2~n3···(L) ≃ −

1

4
+

N∑

k=1

3∑

α=1

|n
(α)
k | (5.7)

where ~nk = (n
(1)
k , n

(2)
k , n

(3)
k ) are the momentum numbers of particles constituting the state.

We see that the small L asymptotics of our plots are well described by this formula: The

excited states in the U(1) sector, denoted in the figure 2 by θn1,n2n3,···, according to the

mode numbers n1, n2, n3, approach the values predicted by (5.7) (up to the circumstance

described in the last footnote). In this sector they have no excited left and right magnons

(no u, v roots), and only one component is activated: L
2πEn1n2n3···(L) =

∑N
k n

(1)
k . Say, the

curves θ0, θ00, θ000, θ0000, approach −1/4 at L → 0, the curves θ1, θ01, θ001 approach 3/4,

the curve θ2 approaches 7/4, etc. The state with one left and one right magnon excited,

denoted as [u, v, θ−1,1], also approaches 7/4.

The qualitative behavior of the states θ0, θ00, θ000, θ0000,etc, at very small L’s can be

explained by the fact that the quantum fields are dominated by their zero modes.13 Since

the momentum modes are not excited the field ~Y (σ, τ) does not depend on σ. The action

and the hamiltonian become:

Sσ ≈
L

e2
0(L)

∫

dt (∂τφ)2, Ĥ =
1

4

e2
0(L)

L
Ĵ2 (5.8)

where the angle φ(τ) represents the coordinate of a material point (a top) on the main

circle of the unit sphere, and Ĵ is the corresponding angular momentum. The quantum

mechanical spectrum of this system is well known:

L

2π
(Eθ{0, 0, . . . , 0}
︸ ︷︷ ︸

m times

− E0) =
1

8π
e2
0(L)m(m + 2) ≈

m(m + 2)

4 log(ω/L)
(5.9)

where ω = γ + log
(√

e√
8

Γ(3/2)
4π

)

≃ 13.66 is a constant [46]. This formula explains well the

fact that the corresponding plots on figure 2 converge slowly, as inverse logarithm, to −1/4

and their spacing is approximately linearly growing with the number m.

The perturbative calculation of the mass gap [Eθ0(L) − E0(L)] for L ≪ 1 was done

in [46] and was compared with the numerical results following from the TBA approach

in [26] . Since our numerics is in a perfect agreement with [26], for the states for which

their method works, we will not review it here. We only recall that, in the logarithmic

approximation,
L

2π
[Eθ0(L) − E0(L)] ≈

3

4

1

| log L|
, (L ≪ 1) (5.10)

12The convergence to the limiting value is very slow at L → 0. At L = 0.1 for our calculations we are

still far from the limiting value of the energy. In [26], where the numerics reached L = 10−6, the result is

−0.226, considerably closer to the limiting value.
13We would like to thank A.Tsvelik, P.Wiegmann and K.Zarembo for the explanations on this subject.
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which is in the perfect agreement with eq. (5.9) at m=1. We also compared eq. (5.9) for

m = 2 with our numerics and found a good agreement.14 The inverse logarithm in eq. (5.9)

explains well the slight divergence of various curves with zero mode numbers at increasing L

in figure 2. Most probably, the divergence of the other plots at increasing L, corresponding

to the same value of
∑N

k=1

∑3
α=1 |n

(α)
k | can be also perturbatively described by the same

inverse log terms. It would be interesting to study the small L limit analytically to recover

analytic properties of the perturbation theory.

At large L, we enter the realm of the asymptotic Bethe ansatz with Lüscher-type

exponentially small corrections to these regime. Actually, they describe very well our

exact numerical plots for all the considered states, considerably beyond the values of L

allowed by the approximation, as seen in the plot 7.

6 Conclusions

We derived in this paper the non-linear equations yielding the energy of an arbitrary excited

state in the O(4) two-dimensional sigma-model, equivalent to the SU(2) principal chiral

field, defined on a space circle of an arbitrary length L (measured in infinite volume mass

gap units). The main formulae we found are reviewed in subsection 6.1.

Although we considered mostly the O(4) sigma model the new method which we de-

velop here is very universal and should be applicable to any integrable relativistic sigma

model, such as the SU(N) principle chiral field at any N , O(n) sigma models at any n, or

more exotic models like SS-model or supersymmetric Sine-Gordon model (see [29] for the

examples and the ground state energy and [11] for some excited states). In figure 8 the

ground state Y-system diagrams for many known models are represented — it would be

extremely interesting to perform a systematic study of such models using our formalism.

We also hope that the method will eventually allow to calculate the spectrum of finite

size operators (such as the Konishi operator) in the N=4 SYM theory, when applied to

its dual, the integrable string sigma model on AdS5 × S5 background, on a world sheet

cylinder of a finite circumference, as inspired by the works [38, 47–49]. In spite of the

last spectacular applications of the S-matrix approach for the perturbative calculation of

wrapping interactions for Konishi and other twist-2 operators [5], the problem of finding

the dimensions of such operators at any coupling is still open.

The Hirota equation, which is equivalent to Y-system, appears to be a remarkable tool

for solving the integrable sigma models in 2 space time dimensions. Not only does it help

to collapse an infinite system of equations into a few ones, but it also helps to guess the

analytic properties of the remaining unknown quantities and thus formulate the problem in

terms of a single equation for a complex function g(x).15 This function has the transparent

meaning of a gauge transformation between the T functions in two different solutions to

the Hirota equation, but solving the same Y-system. This equation reminds of the famous

Destri-deVega equation, and in the known cases, like the chiral Gross-Neveu model, even

coincides with it in certain variables, as we demonstrated in this paper. However, for many

14The discrepancy with the r.h.s. of eq. (5.9) for m = 2 and L = 1/10, 1/100, 1/1000 is 0.057, 0.034, 0.023.
15It might be a few functions for other sigma models but always a finite number of them.
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Figure 8. For several models the Y-system TBA equations for the ground state energy are known

and can be represented by the diagrams such as the ones in this figure. Using the techniques

developed in this paper it would be extremely interesting to compute their complete spectrum in a

systematic way.

– 35 –



J
H
E
P
1
2
(
2
0
0
9
)
0
6
0

interesting sigma models the Destri-deVega equation is not known — in particular for

general states in finite volume systems. Our method suggests a systematic way of deriving

such DdV-like equations. For example, in the case of SU(N) symmetry, we can expect

that the closed set of such equations should not contain more than 4 real functions (or

two complex) — the total number of the gauge functions for the general Hirota equations.

It would be interesting to apply our method to the SU(N) principal chiral field [41–43],

especially in the large N limit, which is explicitly solvable for a non-zero magnetic field [50].

There could be interesting applications of our method to conformal QFT’s in two di-

mensions if we consider them as some limiting cases of massive theories. These limiting

cases could be the ultraviolet limit of a small volume L → ∞ (see for example [14]) or ana-

lytic continuation w.r.t. the number of components of a field, like in [51], or something else.

Finally, one of the most promising grounds for the applications of our method should

be the case of supersymmetric sigma models, a quickly developing subject, which is very

useful in many physical problems ranging from AdS/CFT correspondence to disordered

systems. The method of solution of Hirota equations applied for the supersymmetric spin

chains with the symmetry algebras gl(K|M), was worked out in [39, 52–54].

6.1 Summary of the main formulae

In this subsection we summarize our final integral equations in a self-consistent set of

formulae. The main example considered in this paper was the O(4) sigma model where

the particles have two SU(2) spins as internal degrees of freedom. To compute the exact

energy of N -particle states with Ju left spins down (and thus N − Ju left spins up) and

Jv right spins down (and thus N − Jv right spins up) we should solve the single integral

equation on a complex function g(x)

g(x) = ie
i
2
L sinh(πx)S(x) exp [s ∗ Gv(x − i/2 − i0) − s ∗ Gu(x + i/2 + i0)] ,

where ∗ stands for convolution, s(x) = 1
2 cosh πx , S(x) =

∏N
j=1 S0(x − θj), S0(x) =

iΓ(1/2−ix/2)Γ(+ix/2)
Γ(1/2+ix/2)Γ(−ix/2) and the resolvents are given by

Gw(x) =

∫ +∞

−∞

dy

2πi

(
ρw(y)

x − y − i/2
−

ρ̄w(y)

x − y + i/2

)

, w = u, v ,

where the densities are parameterized in terms of g(x) as

eρu =

g+

ḡ+Q
++
u Q++

v − Q̄uQ̄v

g+

g−Q
++
u Q̄−−

v −QuQ̄v

, eρv =

g+

ḡ+Q
++
v Q++

u − Q̄vQ̄u

ḡ−

ḡ+Q
++
v Q̄−−

u −QvQ̄u

,

with Qw(x) =
∏Jw

k=1(x − wk) and Q̄w(x) =
∏Jw

k=1(x − w̄k) being the Baxter functions

encoding the Bethe roots of the left and right “magnons” (w = u, v). The superscripts

± indicate the shifts by ±i/2, so that e.g. Q++
v = Qv(x + i) and the bars indicate the

complex conjugation. Finally the constants θj, uj and vj are fixed by the finite volume

Bethe equations

Q+
u (θj)Q

+
v (θj)

Q̄−
u (θj)Q̄

−
v (θj)

g(θj)

ḡ(θj)
= 1 , −

φ−(uj)Q
++
u (uj)

φ+(uj)Q̄
−−
u (uj)

Pu(uj) = 1 , −
φ−(vj)Q

++
v (vj)

φ+(vj)Q̄
−−
v (vj)

Pv(vj) = 1 ,
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where Pw=u,v(x) is defined on the upper half plane by

Pw(x) = exp [K1(x − i/2) ∗ ρw − K1(x + i/2) ∗ ρ̄w] , K1(x) =
2

π

1

4x2 + 1
,

and by its analytic continuation in the full complex plane. The energy of the state is then

given by

E =

N∑

k=1

cosh(πθk) −
1

2

∫ +∞

−∞
cosh(πx)(ρu(x) + ρ̄u(x))dx .
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A Derivation of the (ground state) Y -system

To compute the ground state energy E0(L) of the SU(2) principal chiral field in a periodic

box of a size L we can compute its Euclidean path integral Z with the fields living on the

space-time torus of the size L × R , where the periodic imaginary “time” R is very big

Z = e−RE0(L) . (A.1)

Following Al.Zamolodchikov [17] we can compute this quantity exchanging the role of L and

R so that the latter becomes the space variable whereas the former becomes the periodic

time. Since R → ∞ the spectrum corresponding to the new Hamiltonian can be computed

from the asymptotic Bethe ansatz and the finite periodic time L means that we should

consider the system at a finite inverse temperature L. Thus we conclude that

E0(L) = f(L) . (A.2)

where f(L) is the free energy per unit length of the SU(2) PCF at the temperature 1/L

in the thermodynamical limit, when R → ∞.

To compute the free energy we will start by reviewing the asymptotic spectrum of

the theory as given by the asymptotic Bethe ansatz. Then we will recall what are the
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magnon bound states (complexes, or strings) and how they are organized in the complex

plane. We will see that the quantum states in the thermodynamic limit can be described

by the densities of these complexes and their holes. From this description we will write

the entropy formula and thus find the desired exact free energy as the result of the saddle

point approximation at R → ∞. This will give the TBA equations.

Particles in the SU(2) principal chiral field transform in the bi-fundamental represen-

tation under two SU(2) groups. The theory is integrable and thus the general scattering

process factorizes into a sequence of two-body scattering events. The S-matrix [33] de-

scribing the scattering of two particles with momenta and energies given by

pj = m sinh(πθj) , Ej = m cosh(πθj) , (A.3)

depends only on the difference of rapidities θ = θ1 − θ2

Ŝ12(θ) = S0(θ)
R̂(θ)

θ − i
⊗ S0(θ)

R̂(θ)

θ − i
, S0(θ) = i

Γ
(

1
2 − iθ

2

)
Γ
(
+ iθ

2

)

Γ
(

1
2 + iθ

2

)
Γ
(
− iθ

2

) , (A.4)

where R̂(θ) is the usual SU(2) R-matrix in the fundamental representation given by

R̂(θ) = θ + iP , (A.5)

where P is the permutation operator exchanging the spins of the scattered particles.

From now on, we will measure the length L in the units of the mass gap m, which

means that we will put m = 1.

When N particles are put on a large circle of length R the periodicity condition to be

imposed on the wave function reads

− T̂ (θj) eiR sinh(πθj)Ψ = Ψ , (A.6)

where T is the transfer matrix

T̂ (θ) ≡ tr0

(

Ŝ01 (θ − θ1) . . . Ŝ0N (θ − θN ))
)

, (A.7)

with the index 0 for an additional auxiliary particle which we scatter against all physical

particles. The trace is taken over this auxiliary space. Indeed, when the transfer matrix

is evaluated at a value of the physical rapidity θj the corresponding S-matrix Ŝ0j(θ − θj)

becomes simply −P0j ⊗ P0j which means that the auxiliary particle changes the quantum

numbers and becomes the physical particle θj. Then (A.6) becomes the periodicity con-

dition (2.5) which physically states that once we pick the particle j and carry it around

the circle the total phase acquired by the wave function — which will be given by the free

propagation Rpj plus the phase shifts do to the (factorized) scattering with each of the

other particles — must be a trivial multiple of 2π.

Using the algebraic or analytic Bethe ansatz technologies it is possible to diagonalize

T (θ) for any value of θ using the same eigenvector basis (see an appendix from [55] for the

details). Multi-particle states with Ju left spins down (and thus N − Ju left spins up) and
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Jv right spins down (and thus N − Jv right spins up) are parameterized by Ju auxiliary

Bethe roots uj and Jv roots vj and

T̂ (θ)Ψ =
S2(θ)

φ2(θ − i)
T u

1 (θ − i/2)T v
1 (θ − i/2)Ψ , (A.8)

where T
u(v)
1 is the transfer matrix in the fundamental representation associated with the

left (right) SU(2) spins,

Tw
1 (θ) ≡

Qw(θ + i)φ(θ − i/2) + Qw(θ − i)φ(θ + i/2)

Qw(θ)
, (A.9)

and

φ(θ) ≡

N∏

j=1

(θ − θj) , S(θ) =

N∏

j=1

S0(θ − θj), Qu(θ) =

Ju∏

j=1

(θ − uj), Qv(θ) =

Jv∏

j=1

(θ − vj) .

(A.10)

The rapidities θj and uj, vj are then fixed by a set of nested Bethe equations. The Bethe

equations for the physical rapidities θj are given by the periodicity condition (A.6) which

can be written as

e−imR sinh(πθj) = −
S2(θj)

φ2(θj − i)
T u

1 (θj − i/2)T v
1 (θj − i/2) , (A.11)

or simply

e−imR sinh(πθj) = −S2(θj)
Qu(θj + i/2)

Qu(θj − i/2)

Qv(θj + i/2)

Qv(θj − i/2)
. (A.12)

The magnon rapidities uj and vj are fixed by the auxiliary Bethe equations

−
Qu(uj + i)

Qu(uj − i)
=

φ(uj + i/2)

φ(uj − i/2)
, −

Qv(vj + i)

Qv(vj − i)
=

φ(vj + i/2)

φ(vj − i/2)
, (A.13)

which appear in the diagonalization of the left and right transfer matrices. Notice that

these equations ensure that the apparent poles in (A.9) drop out and render Tw
1 (θ) poly-

nomial as it ought to be. For each solution to these equations we obtain the energy of the

corresponding quantum state from

E =
N∑

j=1

cosh(πθj) . (A.14)

To be able to compute the free energy f(L) we need to understand how the solutions

to these Bethe equations organize themselves so that we can introduce the entropy density.

Let us consider the auxiliary roots u, obviously the same considerations will apply for the

v roots. These roots can take complex values. When uj has a positive imaginary part the

r.h.s of the Bethe equations in (A.13) diverges,

φ(uj + i/2)

φ(uj − i/2)

N→∞
→ ∞ , (A.15)
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which means that

Qu(uj + i)

Qu(uj − i)
(A.16)

must diverge as well. This can be achieved if there is another magnon rapidity uk such

that uj − uk ≃ i. Thus, in the thermodynamical limit the magnon rapidities will organize

themselves into a Bethe-string of n roots uj spaced by i. In particular, a single real root

corresponds to a Bethe string with n = 1. The Bethe equations can then be multiplied for

uj ’s belonging to the same string so that this gives new Bethe equations, solely for the (real)

center of each string. This is the usual fusion procedure applied at the level of the Bethe

equations. The resulting equations look as follows. Introduce the magnon bound states:

u
(n)
j,a = u

(n)
j + i

1

2
(n + 1) − ia, a = 1, . . . , n.

Multiplying the equations for a given n-bound state we get for eq. (A.13) and eq. (A.12)

e−iRp(θα) =
∏

β 6=α

S 2
0 (θα − θβ)

∏

j,n

θα − u
(n)
j + in

2

θα − u
(n)
j − in

2

,

∏

β

u
(n)
j −θβ+in

2

u
(n)
j −θβ−in

2

=
∏

(k,m) 6=(j,n)

u
(n)
j −u

(m)
k −in+m

2

u
(n)
j −u

(m)
k +in+m

2

·
u

(n)
j −u

(m)
k −i |n−m|

2

u
(n)
j −u

(m)
k +i |n−m|

2

n+m

2∏

s= |n−m|
2

(

u
(n)
j −u

(m)
k +is

u
(n)
j −u

(m)
k −is

)2

.

In the thermodynamic limit we will have a large number of each type of Bethe roots which

we can describe by a density ̺n. We use n = 0 for the density of θ particles, n ≥ 1 to

describe the density of u Bethe strings of size n and n ≤ −1 for the v Bethe strings made

out of −n roots. For each density of particles we also have the corresponding density of

holes ¯̺n. Bethe equations in the thermodynamic limit, obtained by taking the logarithmic

derivatives of both sides of these equations, read

̺n + ¯̺n =
R

2
cosh(πθ)δn0 −

∞∑

m=−∞
Kn,m ∗ ̺m , (A.17)

where ∗ stands for the usual convolution

f ∗ g =

∫ +∞

−∞
dθ′f(θ − θ′)g(θ′) , (A.18)

and Knm is the derivative of the logarithm of the effective S-matrix between the strings

of size n and m. In particular we have

− K0,0(θ) ≡ K0(θ) =
1

2πi

d

dθ
log S2

0(θ) , (A.19)

for the interaction between physical rapidities,

K0,n(θ) = −Kn,0(θ) =
1

2πi

d

dθ
log

θ − i|n|/2

θ + i|n|/2
=

1

π

2|n|

4θ2 + |n|2
≡ Kn(θ) , n 6= 0 , (A.20)
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for the interaction of θ rapidities with Bethe strings of size |n| and

Kn,m(θ) = K−n,−m(θ) =

n+m
2∑

s=
|n−m|

2
+1

2K2s(θ)−Kn+m(θ) + K|n−m|(θ)δn 6=m , n,m = 1, 2, . . . ,

(A.21)

for the interaction of two Bethe strings. Obviously Kn,m = 0 if n × m < 0.

It is interesting that even though these kernels appear as some quite complicated

functions they all exhibit very simple fourier transforms K̂n,m. More precisely we have

K̂0(ω) =
e−|ω|/2

cosh ω
2

, (A.22)

and

K̂n(ω) = e−|n|ω/2 , n = 1, 2, . . . , (A.23)

so that the sum in (A.21) can be explicitly done yielding

K̂n,m = coth

(
|ω|

2

)(

e−
|ω|
2
|m−n| − e−

|ω|
2

(m+n)
)

− δn,m , n,m = 1, 2, . . . (A.24)

A very useful formula for what follows concerns the inversion of the operator Knm

when both indices n and m are restricted to be positive (or negative). In Fourier space

(K̂nm + δnm)−1 = δmn − ŝ (δn,m+1 + δn,m−1) , (n,m > 0) , (A.25)

where the operator ŝ (and its fourier transform) has the following form

s(θ) =
1

2 cosh πθ
,

(

ŝ(ω) =
1

2 cosh
(

ω
2

)

)

. (A.26)

In particular we notice that

K0 = 2s ∗ K1. (A.27)

Having introduced all the necessary kernels we can proceed to construct the quantity

of interest, the free energy at the temperature 1/L. We have

f(L) = min̺n, ¯̺n

∫

dθ

(

̺0L cosh πθ −
∞∑

n=−∞
̺n log

(

1 +
¯̺n

̺n

)

+ ¯̺n log

(

1 +
̺n

¯̺n

))

,

(A.28)

where we should minimize the integral by varying the densities of particles and holes

keeping the Bethe equations satisfied. The first term in the integral is the energy density

multiplied by the inverse temperature (which is L) and the second term given by the sum

over n is the entropy density (see e.g. [17]). We use Bethe equations to write the variation

δ ¯̺n = −δ̺n −
∑∞

m=−∞ Knm ∗ δ̺m so that the extremum condition δf = 0 yields a set of

TBA equations

0 = −ǫn + L cosh(πθ)δn,0 +

∞∑

m=−∞
Kmn ∗ log

(
1 + e−ǫm

)
, (A.29)
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where ̺n

¯̺n
= e−ǫn . The free energy evaluated at this extremum can then be written in

terms of ǫ0 alone, so that

E0(L) = −

∫
dθ

2
cosh(πθ) log

(

1 + e−ǫ0(θ)
)

. (A.30)

The last two equations yield the finite size ground state energy of the SU(2) principal

chiral field.

Finally, we will show below that defining the incidence matrix Inm = δn,m±1, the Y

variables Ym = eǫm (m 6= 0), Y0 = e−ǫ0 and using the operator (A.25) these equations can

be transformed into a local (in the discrete variable n) set of integral equations

log (Yn) + L cosh(πθ) δn,0 =

∞∑

m=−∞
Inm s ∗ log (1 + Ym) , −∞ < n < ∞ (A.31)

and

E0(L) = −

∫
dθ

2
cosh(πθ) log (1 + Y0) . (A.32)

It is remarkable that non-local kernels Knm disappear and at the end only a very simple

kernel ŝ appears in the final set of TBA equations. It is also remarkable, and still somewhat

mysterious, that the SU(2)L and SU(2)R wings are smoothly glued into one Y-system on

a discrete set −∞ < n < ∞.

To show (A.31) we should consider (A.29) separately for n > 0, n < 0 and n = 0.

Applying the operator (A.25) to (A.29) in the first two cases (it is convenient to rear-

range them to have the combination δmn + Kmn), we easily verify (A.31), except the case

n = 0 which we should consider separately. To find n = 0 equation of the Y-system we

consider (A.29) for n = −1, 0, 1. The kernels Kn,m entering these three equations are

− K0,0 = K0 = 2s ∗ K1 , K0,±1 = K1 , K±m,0 = −Km , m > 0 (A.33)

and, most importantly,

K±m,±1 = Km+1 + Km−1δm6=1 . (A.34)

Thus if we convolute (A.29) for n = 1 with the inverse shift operator s and use that

s ∗ (Km+1 + Km−1) = Km we get

0 = −s ∗ K1 ∗ log
(
1 + e−ǫ0

)
+

∞∑

m=1

Km ∗ log
(
1 + e−ǫm

)
− s ∗ log

(
1 + e+ǫ1

)
. (A.35)

Notice that the last term is separated from the infinite sum because the m = 1 case

in (A.34) behaves slightly differently than for the other m’s. Moreover the sign of the

exponent inside this log differs from that inside the logs in the infinite sum because we

absorbed the first term in (A.29) into this last log. Similarly, for n = −1 we have

0 = −s ∗ K1 ∗ log
(
1 + e−ǫ0

)
+

−1∑

m=−∞
K|m| ∗ log

(
1 + e−ǫm

)
− s ∗ log

(
1 + e+ǫ−1

)
.(A.36)
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These two equations can then be used to simplify the n = 0 equation which reads

0 = ǫ0 − L cosh(πθ) + K0 ∗ log
(
1 + e−ǫ0

)
−
∑

m6=0

K|m| ∗ log
(
1 + e−ǫm

)
. (A.37)

Indeed if we sum all these three equations we see that (i) the infinite sums completely

cancel out, (ii) the convolutions with log (1 + e−ǫ0) drop out as well by virtue of the identity

K0 = 2s ∗K1. We are thus left with the last terms in (A.35) and (A.36) plus the first two

terms in (A.37) thus obtaining the last Y -system equation (A.31) for n = 0.

Moreover, for the functions g(θ) analytic inside the physical strip Im (θ) < 1/2 we have

s ∗ [g(θ + i/2) + g(θ − i/2)] = g(θ) (A.38)

because

∫

R

g(θ + i/2) + g(θ − i/2)

2 cosh(π(θ − x))
dθ =

1

2i

∮

PS

g(θ)

sinh(π(θ − x))
dθ = g(x) .

Therefore if Yn is non-zero inside the physical strip we can invert the s operator to find

a set of functional equations, finally rendering the Y -system for the PCF at a finite

temperature 1/L

Yn(θ + i/2)Yn(θ − i/2) = (1 + Yn−1(θ))(1 + Yn+1(θ)) (A.39)

To fix a solution, this Y -system ought to be supplemented by the large θ asymptotics

Yn ≃ e−δn0 L cosh πθ related to the relativistic dispersion relation. Notice that these

functional equations do not contain the dispersion relation explicitly: it appears only

through the asymptotics of the Y -functions.

B General solution in terms of Hirota functions

In this appendix, we will give an alternative approach to the construction of solution for

the energy of a general state of the SU(2) PCF in the periodic box. It will give a new

NLIE defining the spectrum, different from the one of the section 3. This approach is the

generalization of the approach we used in section 2.7 for the states with N particles and

non-trivial polarizations encoded in the Baxter polynomials Qu and Qv.

As explained in the beginning of the section 3, for each solution to the Y-system

equations, there are two natural solutions to Hirota equation which yield the same Y ’s and

are related by a gauge transformation. The expected analytic properties of these functions

are described in this section. In particular we have

T v
+1 = g+ḡ−T u

+1

T u
−1 =

1

g−ḡ+
T v
−1

Φv = g+g−Φu (B.1)
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which we will now use to completely solve our problem. First, as in the section 3, we find

the gauge function g from the last relation,

g = ieiL sinh(πx)/2

(
Φv

Φu

)∗s
, ḡ = −ie−iL sinh(πx)/2

(
Φ̄v

Φ̄u

)∗s
. (B.2)

and plug it in the first two to find

T v
+1 = e−L cosh(πx) ΦvΦ̄vT

u
+1

(Φ+
u Φ−

v Φ̄+
v Φ̄−

u )∗s
,

T u
−1 = e−L cosh(πx) ΦuΦ̄uT v

−1

(Φ+
u Φ−

v Φ̄+
v Φ̄−

u )∗s
. (B.3)

As in the section 3, we still have to relate T u,v
0 and Φu,v, but we do it here by a different

relation. For that, let us define in the whole complex plane x the functions

Fu(x) = φ(x) −
φ(x)

2πi

∫
T u
−1(y)Qu(y + i)/Qu(y)

(y − x + i/2)φ(y + i/2)
dy +

φ(x)

2πi

∫
T u
−1(y)Q̄u(y − i)/Q̄u(y)

(y − x − i/2)φ(y − i/2)
dy

(B.4)

and

Fv(x) = φ(x) −
φ(x)

2πi

∫
T v

+1(y)Qv(y + i)/Qv(y)

(y − x + i/2)φ(y + i/2)
dy +

φ(x)

2πi

∫
T v

+1(y)Q̄v(y − i)/Q̄v(y)

(y − x − i/2)φ(y − i/2)
dy ,

(B.5)

where the integrals essentially go along the real axis, but we should pass the contour in such

a way that the zeroes uj , vj of Qu,v remain below the contour and the complex conjugated

zeroes ūj of Q̄u,v stay above the contour. Using eq. (2.22) we can show that T u,v
0 and

Φu,v are related to the values of the same analytic function Fu,v inside and outside of the

analyticity strip, respectively:

Fu(x) =







Q̄−
u

Q−
u

Φ−
u Imx > +1/2

T u
0 (x) |Imx| < 1/2

Q+
u

Q̄+
u
Φ̄+

u Imx < −1/2

, Fv(x) =







− Q̄−
v

Q−
v

Φ̄−
v Imx > +1/2

T v
0 (x) |Imx| < 1/2

−Q+
v

Q̄+
v
Φ+

v Imx < −1/2

. (B.6)

Indeed, substituting from (2.22) T u
−1 = (T u+

0 Qu − ΦuQ̄u)/Qu++ and the conjugate T u
−1 =

(T u−
0 Q̄u − Φ̄uQu)/Q̄u−− into the first and second terms of (B.4), respectively, we can

separate the contribution of two integrals in (B.4) containing T u
0 into a single contour

integral going around the physical strip (to realize it is useful to make shifts by ±i/2 for

the integration variable). We shall also use the fact that
T u
0

φ+ → 1 at x → ±∞. If the point

x is inside the physical strip we can contract the contour around the pole at y = x and

thus verify the middle relation in eq. (B.6). The other two integrals in (B.6), containing

Φ and Φ̄, do not contribute since we can close the contours there around the upper and

lower half-plane, respectively. The result is zero since there are no singularities inside by

our previous assumption. The poles related to zeroes of Qu,v do not contribute since they
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are outside of these contours by definition. We should ensure by hand the analyticity of

Φ(x) close to the real axis

T u+
0 Qu = T u

−1Q
u++ , x = ūj , (B.7)

which is the finite L deformation of the usual asymptotic axillary BAE for the u-roots. The

relations for Fv are found in a similar way. This equation can be shown to be equivalent

to the eq. (3.19) derived in the main text.

Notice that T u
0 and T v

0 are automatically analytic even slightly outside of the physical

strip, because we can deform the contours to open further the physical strip. We will

discuss this “extra” analyticity in the appendix D.

Finally, notice also that

T u
1 (x) =

Qu(x + i)

Qu(x)
Fu(x − i/2) +

Q̄u(x − i)

Q̄u(x)
Fu(x + i/2) ,

T v
−1(x) =

Qv(x + i)

Qv(x)
Fv(x − i/2) +

Q̄v(x − i)

Q̄v(x)
Fv(x + i/2) ,

so that (B.3) completely constrain the functions T u
−1 and T v

1 out of which all other Tk and

Yk can be written down using the resolvents Fu and Fv.

In the U(1) sector we have Qu = Qv = 1 and the two wings are obviously equivalent.

We will have in this case T v
1 = T u

−1 and Fu = Fv will be given by (2.47). Equations (B.3)

then reduce to the previously derived equation (2.51).

B.1 The main Bethe equations

The main BAE reflecting the periodicity of the wave function and constraining the real

zeroes θj is given by (2.16):

Y0(θj ± i/2) =
T u

1 (θj ± i/2)T u
−1(θj ± i/2)

Φu

(
θj ± i/2

)
Φ̄u (θj ± i/2)

= −1 . (B.8)

Using the fact that T u
1 has no zeros inside the physical strip and the denominator is regular

for real θj we conclude that T u
−1(θj ± i/2) 6= 0. This condition can be in fact interpreted

as yet another form of the main BAE. It can be further simplified: using (B.1) we get

T u+
−1 =

1

gḡ++
T v+
−1 = −

ḡ Φ̄+
u

g Φ̄+
v

T v+
−1 , (B.9)

where we can use that, due to (2.22), for the u-wing

Φ̄+
u = +T u

0

Q̄+
u

Q+
u
− T u+

−1

Q̄−
u

Q+
u

. (B.10)

Substituting it into the eq. (B.9), and evaluating at θj which is a zero of T0 we get

1 =
ḡ

g

Q̄−
u

Q+
u

T v+
−1

Φ̄+
v
|x=θj

, (B.11)
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or, using (2.22) for the v-wing, we get the simplest form of the main equation, easy to

compare with the large L limit

1 =
ḡ

g

Q̄−
u

Q+
u

Q̄−
v

Q+
v
|x=θj

. (B.12)

which was also derived in the main text eq. (3.16).

C Proof of reality of Tk

In this appendix we shall analyze the reality of the T -functions. This is an important point

to consider because the Hirota equation is solved explicitly by eq. (2.23) provided all Tk

are real. The goal of this appendix is to show that once the following equations (see (3.7))

are satisfied

T u+
0

Φu
=

g+

ḡ+Q
++
u Q++

v − Q̄uQ̄v

g+

g−
Q++

u Q̄−−
v −QuQ̄v

, (C.1)

−
T v+

0

Φ̄v
=

g+

ḡ+Q
++
v Q++

u − Q̄vQ̄u

ḡ−

ḡ+Q
++
v Q̄−−

u −QvQ̄u

, (C.2)

Φv = g+g−Φu , (C.3)

and T u
0 and T v

0 are real then all Tk are real and thus all the formulae in the main text go

through and the Y -system is indeed solved by (2.18). Before proving this statement we

recall that eq. (3.15) follows directly from eq. (C.3) under certain analyticity assumptions

and also from
T u+
0 T u−

0

ΦuΦ̄u
=

T v+
0 T v−

0

ΦvΦ̄v
, which is a consequence of eq. (C.1) and eq. (C.2). Thus

we can add the equation

T v
0 = gḡT u

0 (C.4)

to the equations at hand and proceed to the proof of the reality of the T -functions.

Equation (C.1) implies

Φu = ih+
1

(
Q++

u Q̄−−
v

g−
−

QuQ̄v

g+

)

, T u
0 = ih1

(
Q+

u Q
+
v

ḡ
−

Q̄−
u Q̄

−
v

g

)

, (C.5)

for some h1. Since T u
0 is real for real x the function h1 is a real function. Eq. (C.2) implies

Φ̄v = −ih+
2

(
ḡ−Q++

v Q̄−−
u − ḡ+QvQ̄u

)
, T v

0 = ih2

(
gQ+

u Q
+
v − ḡQ̄−

u Q̄
−
v

)
, (C.6)

where again h2 is a real function. In virtue of (C.4) we have h1 = h2 ≡ h and by conjugating

the first equation in (C.6) we find

Φv = ih− (g+Q̄−−
v Q++

u − g−Q̄vQu

)
=

h−

h+
g−g+Φu , (C.7)

which means that the real function h(x) is periodic in the imaginary direction, h(x) =

h(x + i). This in turn implies that the function h− is also a real function because

h(x − i/2) = h(x + i/2) = h(x − i/2) .
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Then it is simple to see that T u
1 is real. We simply write, from eq. (C.5),

T u
1 = T u−

0

Q++
u

Qu
+ Φu

Q̄−−
u

Qu
= ih−

(
QvQ

++
u

ḡ−
−

Q̄vQ̄
−−
u

g+

)

. (C.8)

The reality of T u
1 is now manifest because the expression inside the brackets is purely

imaginary and, as we have just shown, h− is real. Proceeding in the same way one can see

that all T u
k are real and thus the Hirota equation is satisfied by our solution.

D Proof of analyticity of T
−1 in the physical strip

D.1 Analyticity in the U(1) sector

From (2.51) together with F (x ± i/2 ± i0) = F (x ± i/2 ∓ i0) − T−1(x) we have

T−1(x) =
T1F

++F−+

[F++F−−]∗2s eL cosh(πx) + T1F++
=

T1F
+−F−−

[F++F−−]∗2s eL cosh(πx) + T1F−−
. (D.1)

Using respectively the first/second equality we can smoothly move from real x into the

upper/lower half complex plane provided T1 is analytic. In this way we can reach any x

inside the enlarged strip |Im (x)| < 1 where T1 is regular.

Notice that for large L we have

T−1(x) ≃







φ− ,+1/2 < Im (x) < +1

0 ,−1/2 < Im (x) < +1/2

φ+ ,−1 < Im (x) < −1/2

(D.2)

The denominator in the expression for T−1 at x = θj−i/2 is proportional to Bethe equations

S2eipjL + 1 = 0. This is not a pole of T−1 because the numerator at these points is

proportional to T0(θj) = 0.

However, for large volume, T−1 could have poles at the analogue of the holes of the θj

BAE, close to the boundaries of the physical strip.

D.2 General case

In this subsection we will study the analyticity of T u
−1(x) and T v

1 (x) for a general solution.

We will show that for large enough L these functions are analytic inside the physical strip

−1/2+ ǫ < Im x < 1/2− ǫ where ǫ → 0 when L → ∞. We start from eq. (B.3) and rewrite

it as

T u
−1 = +e−L cosh(πx)

(
T u−

0 Qu − T u
−1Q

++
u

)
Φ̄uT v

−1

Q̄u(Φ+
u Φ−

v Φ̄+
v Φ̄−

u )∗s
. (D.3)

and similar for T v
+1. Solving for T u

−1 we get

T u
−1 =

e−L cosh(πx)T u−
0 Qu

Q̄u(Φ+
u Φ−

v Φ̄+
v Φ̄−

u )∗s − e−L cosh(πx)Φ̄uT v
−1Q

++
u

(D.4)

Since Φ̄u is regular in the lower half plane and T v
−1 is regular in the strip −1 < Imx < 1

where (Φ+
u Φ−

v Φ̄+
v Φ̄−

u )∗s is also regular the singularities of T u
−1 for −1 < Im x < 0 could be

only due to zeros of the denominator.
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As far as L or x are large for −1/2 < Im x < 0, the second term in the denominator is

exponentially suppressed and to get a zero of the denominator we should be close to a zero

of Q̄u. The points close to ūj where the denominator vanishes are in fact x = uj as follows

from the auxiliary finite volume BAE eq. (3.19). However these poles cancel with zeroes of

the numerator rendering T−1 regular at these points, a result we were familiar with already.

Thus, we see that for large L the only poles that could appear must lie close to the border

of the physical strip Imx = −1/2 where the exponent is oscillating. It oscillates faster for

large x and we thus have poles condensing at infinity along the borders of the physical strip.

We conclude that for the general solution — at least for large L’s — the function

T u
−1(x) is analytic inside almost the whole physical strip and could have poles only very

close to the border. For small L it can probably happen that the singularities approach the

real axe. That could indicate some singular behavior of the energy levels as functions of L

such as the one observed in [56] (see e.g. figure 10 in this work). It would be interesting to

investigate these points in greater detail.

E Details on Lüscher formulae derivation

If this section we shall present some details of the computation of the first finite volume

correction to the asymptotic auxiliary Bethe equations, obtained by expanding (3.19) to

the leading order (see section 3.2 for notation). We start by writing

P (Uj) = exp [K1(Uj − i/2 + i0) ∗ ρu − K1(Uj + i/2 + i0) ∗ ρ̄u] . (E.1)

Notice that we introduced the i0’s because P (x) was originally defined in (3.20) for x in the

upper-half-plane. Removing the i0’s by the use the Sokhatsky-Weierstrass formula we get

P (Uj) = exp
[
K−

1 ∗ ρu − K+
1 ∗ ρ̄u + Y0/2

]

x=Uj
, (E.2)

where the convolutions are understood in the principal part sense and ρu + ρ̄u =

log(1 + Y0) ≃ Y0 was used. Next we split the density ρu into ρ
(1)
u and ρ

(2)
u as explained in

section (3.2). The former contribution is purely imaginary and therefore it contributes to

the exponent as

K−
1 ∗ ρ(1)

u − K+
1 ∗ (−ρ(1)

u ) = K2 ∗ ρ(1)
u . (E.3)

Hence we finally obtain

P (Uj) = exp

(

K2 ∗ ρ(1) + (K−
1 ∗ ρ(2) − c.c.) +

Y0

2

)

x=Uj

, (E.4)

with all convolutions understood as principal part integrals. It turns out that the first

and the last terms in this exponent simply convert the Bethe roots uj in (3.19) into their

real parts, namely,

Q++
u (ui)

Q̄−−
u (ui)

exp
(

K2 ∗ ρ(1)(ui)
)

=
Q++

u (ui)

Q
−−
u (ui)

(E.5)

φ−(ui)

φ+(ui)

Q++
u (ui)

Q
−−
u (ui)

exp

(
Y0(Ui)

2

)

=
φ−(Ui)

φ+(Ui)

Q++
u (Ui)

Q
−−
u (Ui)

. (E.6)
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The check of the first equality goes exactly as in (3.27) and we will therefore not consider

it here. Let us explain how to check the second equality. Notice that this expression is

equivalent to

∆uj ∂x log

(
φ−(x)

φ+(x)

Q++
u (x)

Q−−
u (x)

)

x=Uj

= −
Y0(Uj)

2
. (E.7)

Next, we write the right hand side containing Y0 ≃ T−1T1/φ
+φ− as

−
Y0(Uj)

2
=

(

−
Q++

u (Uj)T
u
−1(Uj)

2φ+(Uj)Q′
u(Uj)

)(
T u

1 (Uj)Q
′
u(Uj)

Q++
u (Uj)φ−(Uj)

)

. (E.8)

The first factor in the r.h.s. is precisely ∆uj. This can be seen from expanding the second

equation from (2.22) at x = ūj = uj − 2∆uj to leading order in ∆uj. Alternatively we

can find the imaginary part of uj by imposing regularity on the density (3.24) at x = uj .

To simplify the second factor in (E.8) we write

T u
1 (Uj) =

(Q++
u φ− + Q−−

u φ+)
′

Q′
u

∣
∣
∣
∣
∣
x=Uj

(E.9)

Evaluating the derivative of the numerator and using the leading order auxiliary Bethe

equations Q−−
u (Uj)φ

+(Uj) + Q++
u (Uj)φ

−(Uj) ≃ 0 we find

T u
1 (Uj)Q

′
u(Uj)

Q++
u (Uj)φ−(Uj)

= ∂x log

(
φ−(x)

φ+(x)

Q++
u (x)

Q−−
u (x)

)

x=Uj

(E.10)

thus identifying the second factor in the left hand side of (E.7) and completing our proof.

Therefore the expansion of the auxiliary Bethe equation (3.19) simply reduces to (3.29),

as announced in the main text.

To simplify the Bethe equations (3.28) and (3.29) further we shall relate the convolu-

tions in these expressions to particular derivatives of the Y -function Y0. To compute these

derivatives it is useful to notice that we can write Y0 in terms of two simple pure phase

functions au and av,

aw(x) = S(x)
Q+

w(x)

Q−
w(x)

eiL/2 sinh(πx) (E.11)

as

Y0 =
(
a+

u + 1/a−u
) (

a+
v + 1/a−v

)
. (E.12)

In this form, it is easy to compute the derivative of Y0 with respect to θk, uk or vk because

we can use a simple identity

∂θi
aw(x) = −πiK0(θi − x)aw(x) , ∂wi

aw(x) = 2πiK1(wi − x)aw(x) . (E.13)

Furthermore if we notice that the densities ρ(2) can also be simply expressed in terms of

these new functions as

ρ(2)
u = a+

u

(
a+

v + 1/a−v
)

, ρ(2)
v = a+

v

(
a+

u + 1/a−u
)

, (E.14)

It is then a straightforward exercise to check the identities (3.32).
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