This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Close this notification
sissa.gif

Click here to close this overlay, or press the "Escape" key on your keyboard.

The International School for Advanced Studies (SISSA) was founded in 1978 and was the first institution in Italy to promote post-graduate courses leading to a Doctor Philosophiae (or PhD) degree. A centre of excellence among Italian and international universities, the school has around 65 teachers, 100 post docs and 245 PhD students, and is located in Trieste, in a campus of more than 10 hectares with wonderful views over the Gulf of Trieste.

SISSA hosts a very high-ranking, large and multidisciplinary scientific research output. The scientific papers produced by its researchers are published in high impact factor, well-known international journals, and in many cases in the world's most prestigious scientific journals such as Nature and Science. Over 900 students have so far started their careers in the field of mathematics, physics and neuroscience research at SISSA.

Visit www.sissa.it

.

Symmetry reduction in twisted noncommutative gravity with applications to cosmology and black holes

and

Published 30 January 2009 , ,

1126-6708/2009/01/084

Abstract

As a preparation for a mathematically consistent study of the physics of symmetric spacetimes in a noncommutative setting, we study symmetry reductions in deformed gravity. We focus on deformations that are given by a twist of a Lie algebra acting on the spacetime manifold. We derive conditions on those twists that allow a given symmetry reduction. A complete classification of admissible deformations is possible in a class of twists generated by commuting vector fields. As examples, we explicitly construct the families of vector fields that generate twists which are compatible with Friedmann-Robertson-Walker cosmologies and Schwarzschild black holes, respectively. We find nontrivial isotropic twists of FRW cosmologies and nontrivial twists that are compatible with all classical symmetries of black hole solutions.

Export citation and abstract BibTeX RIS

References

  • [1]
    S. Doplicher, K. Fredenhagen and J.E. Roberts, Space-time quantization induced by classical gravity 1994 Phys. Lett. B 331 39

    CrossrefGoogle Scholar

  •  
    S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of space-time at the Planck scale and quantum fields 1995 Comm. Math. Phys. 172 187 [hep-th/0303037]

    CrossrefPreprintGoogle Scholar

  • [2]
    R.J. Szabo, Quantum field theory on noncommutative spaces 2003 Phys. Rep. 378 207 [hep-th/0109162]

    CrossrefPreprintGoogle Scholar

  •  
    R.J. Szabo, Symmetry, gravity and noncommutativity 2006 Class. Quantum Grav. 23 R199 [hep-th/0606233]

    IOPsciencePreprintGoogle Scholar

  • [3]
    F. Muller-Hoissen, Noncommutative geometries and gravity 2008 AIP Conf. Proc. 977 12 [0710.4418]

    CrossrefPreprintGoogle Scholar

  • [4]
    X. Calmet, B. Jurco, P. Schupp, J. Wess and M. Wohlgenannt, The standard model on non-commutative space-time 2002 Eur. Phys. J. C 23 363 [hep-ph/0111115]

    CrossrefPreprintGoogle Scholar

  •  
    B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp and M. Wohlgenannt, The standard model on non-commutative space-time: electroweak currents and Higgs sector 2005 Eur. Phys. J. C 42 483 [hep-ph/0502249]

    CrossrefPreprintGoogle Scholar

  •  
    B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp and M. Wohlgenannt, The standard model on non-commutative space-time: strong interactions included 2005 Eur. Phys. J. C 42 499 [hep-ph/0503064]

    CrossrefPreprintGoogle Scholar

  • [5]
    W. Behr et al., The Z&to;γγ, g g decays in the noncommutative standard model 2003 Eur. Phys. J. C 29 441 [hep-ph/0202121]

    CrossrefPreprintGoogle Scholar

  •  
    G. Duplancic, P. Schupp and J. Trampetic, Comment on triple gauge boson interactions in the non-commutative electroweak sector 2003 Eur. Phys. J. C 32 141 [hep-ph/0309138]

    CrossrefPreprintGoogle Scholar

  •  
    P. Schupp, J. Trampetic, J. Wess and G. Raffelt, The photon neutrino interaction in non-commutative gauge field theory and astrophysical bounds 2004 Eur. Phys. J. C 36 405 [hep-ph/0212292]

    CrossrefPreprintGoogle Scholar

  •  
    P. Minkowski, P. Schupp and J. Trampetic, Neutrino dipole moments and charge radii in non-commutative space-time 2004 Eur. Phys. J. C 37 123 [hep-th/0302175]

    CrossrefPreprintGoogle Scholar

  •  
    B. Melic, K. Passek-Kumericki and J. Trampetic, Quarkonia decays into two photons induced by the space-time non-commutativity 2005 Phys. Rev. D 72 054004 [hep-ph/0503133]

    CrossrefPreprintGoogle Scholar

  •  
    B. Melic, K. Passek-Kumericki and J. Trampetic, K&to;πγ decay and space-time noncommutativity 2005 Phys. Rev. D 72 057502 [hep-ph/0507231]

    CrossrefPreprintGoogle Scholar

  •  
    M. Burić, D. Latas, V. Radovanović and J. Trampetic, Nonzero Z&to;γγ decays in the renormalizable gauge sector of the noncommutative standard model 2007 Phys. Rev. D 75 097701

    CrossrefGoogle Scholar

  •  
    T. Ohl and J. Reuter, Testing the noncommutative standard model at a future photon collider 2004 Phys. Rev. D 70 076007 [hep-ph/0406098]

    CrossrefPreprintGoogle Scholar

  •  
    A. Alboteanu, T. Ohl and R. Ruckl, Probing the noncommutative standard model at hadron colliders 2006 Phys. Rev. D 74 096004 [hep-ph/0608155]

    CrossrefPreprintGoogle Scholar

  •  
    A. Alboteanu, T. Ohl and R. Ruckl, The noncommutative standard model at the ILC 2007 eConf C 0705302 TEV05 [2007 Acta Phys. Polon. B 38 3647] [0709.2359]

    PreprintGoogle Scholar

  •  
    A. Alboteanu, T. Ohl and R. Ruckl, The noncommutative standard model at O2) 2007 Phys. Rev. D 76 105018 [0707.3595]

    CrossrefPreprintGoogle Scholar

  • [6]
    I. Hinchliffe, N. Kersting and Y.L. Ma, Review of the phenomenology of noncommutative geometry 2004 Int. J. Mod. Phys. A 19 179 [hep-ph/0205040]

    CrossrefPreprintGoogle Scholar

  • [7]
    C.-S. Chu, B.R. Greene and G. Shiu, Remarks on inflation and noncommutative geometry 2001 Mod. Phys. Lett. A 16 2231 [hep-th/0011241]

    CrossrefPreprintGoogle Scholar

  •  
    F. Lizzi, G. Mangano, G. Miele and M. Peloso, Cosmological perturbations and short distance physics from noncommutative geometry 2002 J. High Energy Phys. JHEP06(2002)049 [hep-th/0203099]

    IOPsciencePreprintGoogle Scholar

  •  
    R. Brandenberger and P.-M. Ho, Noncommutative spacetime, stringy spacetime uncertainty principle and density fluctuations 2002 Phys. Rev. D 66 023517 [2002 AAPPS Bull. 12N1 10 ] [hep-th/0203119]

    CrossrefPreprintGoogle Scholar

  •  
    Q.-G. Huang and M. Li, CMB power spectrum from noncommutative spacetime 2003 J. High Energy Phys. JHEP06(2003)014 [hep-th/0304203]

    IOPsciencePreprintGoogle Scholar

  •  
    Q.-G. Huang and M. Li, Noncommutative inflation and the CMB multipoles 2003 J. Cosmol. Astropart. Phys. JCAP11(2003)001 [astro-ph/0308458]

    IOPsciencePreprintGoogle Scholar

  •  
    S. Tsujikawa, R. Maartens and R. Brandenberger, Non-commutative inflation and the CMB 2003 Phys. Lett. B 574 141 [astro-ph/0308169]

    CrossrefPreprintGoogle Scholar

  •  
    A.H. Fatollahi and M. Hajirahimi, Noncommutative black-body radiation: implications on cosmic microwave background 2006 Europhys. Lett. 75 542 [astro-ph/0607257]

    IOPsciencePreprintGoogle Scholar

  •  
    E. Akofor, A.P. Balachandran, S.G. Jo, A. Joseph and B.A. Qureshi, Direction-dependent CMB power spectrum and statistical anisotropy from noncommutative geometry 2008 J. High Energy Phys. JHEP05(2008)092 [0710.5897]

    IOPsciencePreprintGoogle Scholar

  •  
    E. Akofor, A.P. Balachandran, A. Joseph, L. Pekowsky and B.A. Qureshi, Constraints from CMB on spacetime noncommutativity and causality violation [0806.2458]

    PreprintGoogle Scholar

  •  
    S. Fabi, B. Harms and A. Stern, Noncommutative corrections to the Robertson-Walker metric 2008 Phys. Rev. D 78 065037 [0808.0943]

    CrossrefPreprintGoogle Scholar

  • [8]
    P. Nicolini, Noncommutative black holes, the final appeal to quantum gravity: a review [0807.1939]

    PreprintGoogle Scholar

  • [9]
    P. Aschieri et al., A gravity theory on noncommutative spaces 2005 Class. Quantum Grav. 22 3511 [hep-th/0504183]

    IOPsciencePreprintGoogle Scholar

  • [10]
    P. Aschieri, M. Dimitrijević, F. Meyer and J. Wess, Noncommutative geometry and gravity 2006 Class. Quantum Grav. 23 1883 [hep-th/0510059]

    IOPsciencePreprintGoogle Scholar

  • [11]
    P. Aschieri, Noncommutative symmetries and gravity 2006 J. Phys. Conf. Ser. 53 799 [hep-th/0608172]

    IOPsciencePreprintGoogle Scholar

  • [12]
    L. Álvarez-Gaumé, F. Meyer and M.A. Vazquez-Mozo, Comments on noncommutative gravity 2006 Nucl. Phys. B 753 92 [hep-th/0605113]

    CrossrefPreprintGoogle Scholar

  • [13]
    N. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras 1990 Lett. Math. Phys. 20 331

    CrossrefGoogle Scholar

  • [14]
    C. Jambor and A. Sykora, Realization of algebras with the help of *-products [hep-th/0405268]

    PreprintGoogle Scholar

  • [15]
    T. Ohl and A. Schenkel, Cosmological and black hole solutions in twisted noncommutative gravity to be published

    Google Scholar

  •  
    T. Ohl and A. Schenkel, Classical and quantum field fluctuations on noncommutative backgrounds in preparation

    Google Scholar

  • [16]
    P. Aschieri, F. Lizzi and P. Vitale, Twisting all the way: from classical mechanics to quantum fields 2008 Phys. Rev. D 77 025037 [0708.3002]

    CrossrefPreprintGoogle Scholar

  • [17]
    P. Aschieri, L. Castellani and M. Dimitrijević, Dynamical noncommutativity and Nöther theorem in twisted φ*4 theory, 2008 Lett. Math. Phys. 85 39 [0803.4325]

    CrossrefPreprintGoogle Scholar

Export references: BibTeX RIS