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Abstract:We construct a model of high energy heavy ion collisions as two ultrarelativis-

tic shock waves colliding in AdS5. We point out that shock waves corresponding to physical

energy-momentum tensors of the nuclei completely stop almost immediately after the col-

lision in AdS5, which, on the field theory side, corresponds to complete nuclear stopping

due to strong coupling effects, likely leading to Landau hydrodynamics. Since in real-life

heavy ion collisions the large Bjorken x part of nuclear wave functions continues to move

along the light cone trajectories of the incoming nuclei leaving the small-x partons behind,

we conclude that a pure large coupling approach is not likely to adequately model nuclear

collisions. We show that to account for small-coupling effects one can model the colliding

nuclei by two (unphysical) ultrarelativistic shock waves with zero net energy each (but with

non-zero energy density). We use this model to study the energy density of the strongly-

coupled matter created immediately after the collision. We argue that expansion of the

energy density ε in the powers of proper time τ squared corresponds on the gravity side

to a perturbative expansion of the metric in graviton exchanges. Using such expansion we

reproduce our earlier result [1] that the energy density of produced matter at mid-rapidity

starts out as a constant (of time) in heavy ion collisions at large coupling.
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1. Introduction

There is a mounting phenomenological evidence coming from RHIC data for a strongly

coupled medium created in heavy ion collisions [2 – 19]. Ideal hydrodynamics simulations

have been extremely successful in describing data generated in heavy ion collisions at

RHIC [2 – 9]. These analyses require very small shear viscosity [10], indicating that the

medium is strongly coupled [11 – 15], and a very short thermalization time of the initially

produced system, of the order of 0.3÷0.6 fm/c [2 – 9]. At the same time, many bulk features
of heavy ion collisions at RHIC which are sensitive to the initial-time dynamics, such as the

energy, rapidity and centrality dependence of particle production are very well-described

in the weakly-coupled framework of the Color Glass Condensate (CGC) [20 – 38] (for a

review of CGC see [39 – 41]). In the CGC approach a heavy ion collision releases the small

Bjorken-x partons in the nuclear wave functions, which quickly go on mass shell and become

real: the resulting particle distribution in highly anisotropic in momentum space [42, 43].

A question then arises about how this initially weakly-coupled highly anisotropic system

becomes isotropic and equilibrates very quickly, becoming a strongly-coupled, possibly

thermal, medium.

So far, conventional perturbative descriptions of thermalization of the produced

medium [44 – 47] have not been able to account for the short thermalization time of the
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order of a fraction of a fermi required by hydrodynamic simulations to describe the data.

Perturbative thermalization in heavy ion collisions was also studied in [43, 48, 49], where

it was concluded that perturbative thermalization scenarios are not likely to be compatible

with RHIC data. This leads one to conclude that it is highly likely that non-perturbative

large-coupling QCD effects are responsible for the apparent thermalization observed in

RHIC data. While the research on perturbative thermalization scenarios along the lines

outlined in [44 – 47] is vigorously pursued in the community, we believe it probable that

the dynamics of the medium produced in a heavy ion collision at RHIC proceeds as fol-

lows. The medium starts out being weakly-coupled, being well-described by CGC. After

a very short proper time, of the order of τ >∼1/Qs ≈ 0.2 ÷ 0.3 fm/c (and possibly at
τ ≈ 1/ΛQCD ≈ 1 fm/c) the coupling becomes strong. Strong coupling effects are likely to
quickly thermalize the medium, allowing for its hydrodynamic description.

Unfortunately to date there is no consistent way to describe both the weakly-coupled

and the strongly coupled dynamics of QCD medium in a unified framework. However, as

we argued above, to understand the general physical nature of thermalization (and, more

importantly, isotropization) of the medium, and to see whether isotropization and thermal-

ization take place at all, a purely strong coupling approach seems, a priori, appropriate.

Indeed at strong coupling QCD becomes non-perturbative and no controllable dynamical

calculation appears to be possible. Instead one could use the Anti-de Sitter space/conformal

field theory (AdS/CFT) correspondence [50 – 53] to understand the same process for N = 4
super-Yang-Mills theory. This correspondence, and in particular the gauge-gravity duality

which follows from it, allows one to understand strong coupling effects in such QCD-like

theories as N = 4 super-Yang-Mills theory using super-gravity in 5 dimensions. AdS/CFT
correspondence has been useful in providing insight in the behavior of the shear viscosity

in strongly-coupled gauge theories [11 – 15] along with providing other interesting results

on the evolution of the medium created in heavy ion collisions [54 – 67, 1].

The goal of this paper is to make progress in constructing a dual geometry in AdS5

space for heavy ion collisions with the goal of understanding the onset of isotropization

and thermalization of the produced medium. The previous paper on the subject by two

of the authors [1] studied the very early time dynamics of the medium produced in the

collisions. It was shown that, assuming rapidity-independence of the produced medium and

assuming non-negativity of its energy density, one would obtain that the energy density of

the produced medium should start out as a constant of time at very early times immediately

after the collisions. This implied that the longitudinal pressure of this early-time medium is

negative and the medium is thus highly anisotropic. This behavior is similar to that of the

weakly-coupled CGC medium at early times [32, 68, 69]. The problem of isotropization

and the onset of Bjorken hydrodynamics [70] in this framework can be formulated as

the question about understanding the transition from the negative longitudinal pressure

of the medium at early times to the positive longitudinal pressure (comparable to the

transverse pressure) at late times [43]. In [54, 56, 71] it was shown that the dynamics of a

strongly-coupled rapidity-independent medium leads to Bjorken hydrodynamics behavior

at late proper times: it is therefore likely that isotropization transition takes place at

some intermediate time between the early-time dynamics of [1] and the late time dynamics
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of [54, 56, 71].

To better understand this transition one needs to find the energy-momentum tensor of

the medium at a later times than considered in [1]. Unfortunately, a consistent expansion

of the energy-momentum tensor in the powers of proper time τ requires some knowledge of

the geometry dual to the colliding nuclei. (In [1] nothing was assumed about the colliding

nuclei, except that they lead to rapidity-independent distribution of matter.) Thus in this

paper we try to construct a geometry dual to the collision of the two nuclei. We model

two nuclei as shock waves in AdS5. Modeling nuclei with shock waves has previously been

considered in [66] for AdS3 corresponding to gauge theory in two space-time dimensions

and in [61, 67] for AdS5.

The paper is organized as follows. We begin by spelling out some general formulas

used in the paper in section 2. We proceed by setting up the problem in section 3. We

start with two colliding shock waves, each given by the metric like that shown in eq. (3.1)

(see [54]). We argue that this metric corresponds to a single graviton field, as shown in

figure 2. We then argue that a consistent expansion of the metric at the time after the

collision can be constructed by considering higher order graviton exchanges between the

boundary and the bulk, as shown in figure 3. We construct a general next-to-leading order

perturbative contribution to the metric in graviton exchanges in section 4. The solution is

given by eqs. (4.8), (4.16), (4.17), (4.18), (4.19), (4.20), (4.21), (4.22), (4.23).

Using the obtained solution we study the collision of two physical shock waves in

section 5. We conclude that the shock waves, and the nuclei in the boundary theory,

completely stop very shortly after the collision, after a time of the order of inverse typical

transverse momentum scale in the problem, as given in eq. (5.19). We interpret this

result as creation of a black hole, similar to what is suggested for collisions of particles

at transplanckian energies [72 – 74], though our black hole would be created in the bulk.

On the gauge theory side this implies that strong coupling effects would completely stop

the nuclei shortly after the collision, on the time scale less than or equal to 1 fm/c. Such

strong coupling effects are likely to thermalize the system soon after the stopping, leading

to Landau hydrodynamic description of the system [75]. This thermalization scenario is

very different from the onset of Bjorken hydrodynamics outlined above. It is possible in

principle and has been advocated in the literature [76].

However, we believe that the Landau hydrodynamic scenario is not likely to be relevant

for heavy ion collisions. This claim is supported by the following observations. On the one

hand, the ideal Bjorken hydrodynamics has been extremely successful in describing the par-

ticle spectra and elliptic flow [2 – 9]. On the other hand, the agreement with experimental

data of the predictions based on the weakly-coupled CGC approaches to description of par-

ticle multiplicities in nuclear collisions [33 – 35] indicates that the complete nuclear stopping

does not happen in the actual collisions. Indeed, in high-energy scattering at small cou-

pling the hard (large Bjorken-x) parts of the nuclear wave functions simply go through each

other without recoil. In the quasi-classical CGC limit this leads to rapidity-independent,

Bjorken-like picture of particle production in heavy ion collisions [26, 77, 27, 78, 79]. Thus

it appears that weak coupling effects are a key ingredient for a proper description of the

space-time structure of heavy ion collisions, even in the medium becomes strongly coupled
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shortly after the collision.

As we do not know how to model weak coupling effects in AdS/CFT, we try in section 6

to mimic them by introducing unphysical shock waves with non-positive-definite energy

density. Such shock waves are indeed unphysical and can not follow from the underlying

string theory. Even for the gravity in the bulk these shock waves can only serve as sources

external to the theory. An example of the energy-momentum tensor of such shock wave

is given in eq. (6.3). Using the general solution of section 4, we construct the early time

energy density and pressures of the medium produced in the “collision” of two of such

shock waves, which are shown in eq. (6.7). As can be seen from eq. (6.7), the energy

density starts out as a constant in time. We have thus reproduced the results of [1], but

now in a more dynamical setting. The problem of thermalization formulated with the help

of these unphysical shock waves is probably that of isotropization of the produced medium

to achieve Bjorken hydrodynamics [70], as described above and considered in [43, 1].

We discuss possible higher order corrections to the result of eq. (6.7) in section 7 and

observe that a dilaton field may need to be introduced at higher orders to account for initial

non-equilibrium between chromo-electric and chromo-magnetic modes in the medium (see

eq. (7.6)). We conclude in section 8 by restating our main results.

Our solution found in section 4 is general and is valid for any shock wave profile,

unlike the solution found in [67] which works only for delta-function shock waves. In the

particular case of the delta-function shock waves, our solution reduces to that found in [67].

The general nature of our solution allowed us in section 5 to reach a more general physical

conclusion that the collision of any two physical shock waves (with positive definite energy

density) leads to complete stopping of the shock waves after the collision, probably leading

to the formation of a black hole. In particular this conclusion applies to the delta-function

shock waves used in [67]. Our solution also allows us to tackle unphysical shock waves in

section 6, which are impossible to handle in the formalism of [67]. We should also note that

the stopping of physical shock waves found here does not happen in AdS3 (see [66]), since

in 1+1 dimensional gauge theory the nuclei are point particles and stopping for them is

impossible, as there is no transverse directions in which the momentum could be channeled.

2. Some generalities

Throughout this paper we will work with the metric of AdS5 written in terms of Fefferman-

Graham coordinates [80]

ds2 =
L2

z2

{

g̃µν(x, z) dx
µ dxν + dz2

}

(2.1)

where µ, ν run from 0 to 3 and z is the coordinate describing the 5th dimension. The

boundary of the AdS space is at z = 0 and L is the curvature radius of the AdS space.

According to holographic renormalization [81], if one expands the 4-dimensional metric

g̃µν(x, z) near the boundary of the AdS space

g̃µν(x, z) = g̃(0)
µν (x) + z2 g̃(2)

µν (x) + z4 g̃(4)
µν (x) + . . . , (2.2)
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then, for Minkowski metric g̃
(0)
µν (x) = ηµν , one gets g̃

(2)
µν (x) = 0 and the expectation value

of the energy-momentum tensor of the gauge theory is

〈Tµν〉 =
N2

c

2π2
g̃(4)
µν (x). (2.3)

Below we will use the light cone coordinates

x± =
x0 ± x3

√
2

(2.4)

where x3 is the collision axis of the two colliding nuclei. In these coordinates the empty

AdS5 metric is

ds2 =
L2

z2

{

−2 dx+ dx− + dx2
⊥ + dz2

}

, (2.5)

where dx2
⊥ = (dx

1)2+(dx2)2 with x1 and x2 the transverse dimensions which we will denote

using Latin indices, e.g. xi. To describe nuclear collisions we will also use the proper time

τ =
√
2x+ x− (2.6)

and space-time rapidity

η =
1

2
ln

x+

x−
. (2.7)

Einstein equations in AdS5 are

Rµν −
1

2
gµν R+ Λc gµν = 0 (2.8)

where gµν is the full 5-dimensional metric of the AdS5 space, R is the scalar curvature and

Λc is the cosmological constant. For AdS5 we have

Λc = −
6

L2
. (2.9)

and eq. (2.8) gives

R = − 20
L2

. (2.10)

Eqs. (2.9), (2.10) yield

Rµν +
4

L2
gµν = 0. (2.11)

Later in the paper we will also discuss the dynamics of a dilaton field ϕ coupled to

gravity in AdS5. In the presence of dilaton eq. (2.8) is modified to (see e.g. [82, 83, 71])

Rµν −
1

2
gµν R+ Λc gµν =

1

2
∂µϕ∂νϕ−

1

4
gµν ∂ρϕ∂ρϕ. (2.12)

eq. (2.12) can be simplified to give

Rµν +
4

L2
gµν =

1

2
∂µϕ∂νϕ. (2.13)

The dilaton itself obeys the Klein-Gordon equation in curved space-time

∂µ
[√−g gµν ∂ν ϕ

]

= 0. (2.14)

– 5 –
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Figure 1: The space-time picture of the ultrarelativistic heavy ion collision in the center-of-mass

frame. The collision axis is labeled x3, the time is x0.

3. Setting up the problem

Out goal is to construct a metric in AdS5 which is dual to an ultrarelativistic heavy ion

collision as pictured in figure 1. Throughout the discussion we will use Bjorken approxi-

mation of the nuclei having an infinite transverse extent [70] and being homogeneous (on

the average) in the transverse direction, such that nothing in our problem would depend

on the transverse coordinates x1, x2.

We start with a metric for a single ultrarelativistic nucleus moving along a light cone.

As was noted by Janik and Peschanski [54] the following metric gives a solution of Einstein

equations in AdS5 in Fefferman-Graham coordinates [80]

ds2 =
L2

z2

{

−2 dx+ dx− +
2π2

N2
c

〈T−−(x−)〉 z4 dx− 2 + dx2
⊥ + dz2

}

. (3.1)

eq. (3.1) is a solution of Einstein equations (2.11) for any expectation value of the energy-

momentum tensor of the nucleus in four dimensions 〈T−−(x−)〉, as long as it is a function of
x− only [54]. The factor of 2π2/N2

c is due to Newton’s constant [81]. For an ultrarelativistic

nucleus with infinite transverse extent moving along the x+ axis (see figure 1) the leading

components of the energy momentum tensor depend only on x−. Hence the metric in

eq. (3.1) adequately describes such a nucleus, though does not restrict the dependence of

〈T−−(x−)〉 on x−.

– 6 –
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1

2
c

−−~        <T   >

Figure 2: A representation of the metric (3.1) as a graviton (wavy line) exchange between the

nucleus at the boundary of AdS space (the solid line) and the point in the bulk where the metric

is measured (denoted by a cross).

While the metric (3.1) is an exact solution of the non-linear Einstein equations (2.11),

it can also be represented perturbatively as a single graviton exchange between the source

nucleus at the AdS boundary and the location in the bulk where we measure the met-

ric/graviton field. This is shown in figure 2, where the solid line represents the nucleus

and the wavy line is the graviton propagator. Incidentally a single graviton exchange,

while being a first-order perturbation of the empty AdS space, is also an exact solution of

Einstein equations. This means higher order tree-level graviton diagrams are zero. It is

interesting to note that a similar property has been observed for gauge theories in covariant

gauge [24, 84], where the exact solution of Yang-Mills equations with a single ultrarela-

tivistic nucleus as a source is given by a single gluon exchange.

As one can see comparing the metric (3.1) with the diagram in figure 2, each graviton-

nucleus vertex gives a factor

∼ 1

N2
c

〈T−−(x−)〉. (3.2)

If the nuclear energy-momentum tensor is Nc-independent, then in the large-Nc limit the

factor in eq. (3.2) would be small and one could envision perturbative expansion in this

parameter for the problem of collision of two nuclei. On the other hand, gauge-gravity

duality is valid only in the large-Nc limit: hence we need 〈T−−(x−)〉 ∼ N2
c to avoid having

Nc-suppression for higher-order graviton exchanges. This could be achieved by imagining

a nucleus with nucleons made out of N 2
c − 1 “valence” gluons each. Then 〈T−−(x−)〉 ∼ N2

c

and multiple graviton exchanges will not be Nc-suppressed.

However, one may then worry that the expansion parameter also ceases to be small.

Nevertheless it makes sense to expand in powers of 〈T−−(x−)〉, as usually 〈T−−(x−)〉 con-
tains some momentum scale characterizing the nucleus such that one can keep track of the

powers of this scale. Hence even if the expansion parameter is not small, the expansion is

still well-defined and can be kept track of.

For instance, in the original proposal of Janik and Peschanski [54], the energy-

– 7 –
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momentum tensor due to valence quarks in the ultrarelativistic nucleus was taken to be

〈T−−(x−)〉 = µN2
c δ(x−) (3.3)

with µ a scale having dimensions of mass cubed. Starting with the energy-momentum

tensor of a single ultrarelativistic particle and performing the averaging along the lines

shown in appendix A gives

µ ∝ p+ Λ2 A1/3 (3.4)

where p+ is the large light-cone momentum of the nucleons in the nucleus, A is the atomic

number and Λ is some transverse momentum scale. In this case the expansion in powers

of 〈T−−(x−)〉 translates into the expansion in the powers of µ, which can be systematically
resummed (see e.g. [67]).

Alternatively one could argue that at strong coupling the energy-momentum tensor

is dominated not by valence quarks, but by the strong gluon fields of the nucleus. One

can argue, based on conformal invariance, that the coordinate dependence of the energy-

momentum tensor of such a strong gluon field in N = 4 SYM theory is the same as that

of weakly coupled electromagnetic fields [85 – 87]. Performing a classical electrodynamics

calculation of the energy-momentum tensor of a point charge, averaging over all transverse

coordinates and summing over all nucleons yields (see appendix A for details)

〈T−−(x−)〉 =
√
λΛ2 N2

c A1/3 δ(x− 2) (3.5)

with Λ some transverse momentum scale. At weak coupling in classical electrodynamics

〈T−−(x−)〉 ∼ g2 ∼ λ with λ the ’t Hooft coupling

λ = g2 Nc. (3.6)

Guided by the calculation of the heavy quark-antiquark potential at strong coupling in [88]

we have replaced the coupling constant λ by
√
λ in eq. (3.5). However, the exact power of

λ in eq. (3.5) does not alter the subsequent discussion.

In case of the energy-momentum tensor in eq. (3.5) one can construct an expansion in

the powers of Λ2, which is again well-defined.

Using the perturbative expansion in the powers of the energy-momentum tensor, one

can construct the metric dual to a heavy ion collision. At the lowest non-trivial order we

begin by writing the metric as

ds2 =
L2

z2

{

− 2 dx+ dx− + dx2
⊥ + dz2 +

2π2

N2
c

〈T1−−(x
−)〉 z4 dx− 2

+
2π2

N2
c

〈T2 ++(x
+)〉 z4 dx+2 + higher order graviton exchanges

}

(3.7)

where 〈T1−−(x
−)〉 and 〈T2 ++(x

+)〉 are the energy-momentum tensors of the colliding nuclei
1 and 2 as shown in figure 1. The metric in eq. (3.7) is that of two colliding shock waves in

AdS5. Higher order graviton exchanges will modify the shock waves after the collision and

– 8 –
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2
c
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N
1

2
c

++~        <T      >2 N
1

2
c

++~        <T      >2

nucleus 2

BA C

nucleus 1

Figure 3: Diagrammatic representation of the metric in eq. (3.7). Wavy lines are graviton prop-

agators between the boundary of the AdS space and the bulk. Graphs A and B correspond to the

metrics of the first and the second nucleus correspondingly. Diagram C is an example of the higher

order graviton exchange corrections. We calculate the contribution of this diagram below in section

4.

generate energy-momentum tensor of the matter produced by the collision in the forward

light cone. The metric of eq. (3.7) is our formulation of the problem of heavy ion collisions

in AdS. Similar metrics were previously considered in modeling heavy ion collisions in AdS3

in [66] and in AdS5 in [61, 67].

The metric of eq. (3.7) is illustrated in figure 3. The first two terms in figure 3

(diagrams A and B) correspond to one-graviton exchanges which constitute the individual

metrics of each of the nuclei, as shown in eq. (3.1). Our goal below is to calculate the next

order correction to these terms, which is shown in the diagram C in figure 3. Higher order

graviton exchanges would necessarily involve both nuclei: as the metric (3.1) is an exact

solution of Einstein equations, all higher order graviton exchanges with a single nucleus

are zero. Indeed, solving Einstein equations order-by-order in the graviton exchanges one

could reconstruct any higher order term in the series of figure 3. In the calculations below

we will restrict ourselves to diagram C in figure 3, which is the first correction to the sum of

the metrics of the two nuclei, and leave calculation of the higher orders for future projects.

4. General perturbative solution

Here we will calculate the diagram C in figure 3 by solving Einstein equations (2.11)

perturbatively. Define normalized light-cone components of the nuclear energy-momentum

tensors by

t1(x
−) ≡ 2π2

N2
c

〈T1−−(x
−)〉 (4.1)

– 9 –
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and

t2(x
+) ≡ 2π2

N2
c

〈T2 ++(x
+)〉. (4.2)

Using these definitions we rewrite the metric in eq. (3.7) as

ds2 =
L2

z2

{

− 2 dx+ dx− + dx2
⊥ + dz2 + t1(x

−) z4 dx− 2 + t2(x
+) z4 dx+2 + o(t1 t2)

}

.

(4.3)

Notice that there is no higher order corrections containing only powers of t1(x
−) or of

t2(x
+): they are zero since the single nucleus metric (3.1) and its analogue for nucleus 2

are exact solutions of Einstein equations.

We denote by gµν the metric in AdS5 space dual to heavy ion collisions that we are

trying to construct. Then eq. (4.3) can be written as

ds2 = gµν dxµ dxν (4.4)

with µ, ν running from 0 to 4. The order-by-order perturbative solution of Einstein equa-

tions is obtained by expanding the metric around the empty AdS5 space

gµν = g(0)
µν + g(1)

µν + g(2)
µν + . . . (4.5)

where the metric g
(n)
µν corresponds to n graviton exchanges. For the energy-momentum

tensor of eq. (3.4) the series in eq. (4.5) corresponds to expansion in the powers of µ, while

for the energy-momentum tensor of eq. (3.5) the series in eq. (4.5) is an expansion in powers

of Λ2.

Here g
(0)
µν is the metric of the empty AdS5 space with non-zero components

g
(0)
+− = g

(0)
−+ = −

L2

z2
, g

(0)
ij = δij

L2

z2
, i, j = 1, 2, g(0)

zz =
L2

z2
. (4.6)

g
(1)
µν is the first perturbation of the empty AdS5 space due to the two nuclei

g
(1)
−− = t1(x

−)L2 z2, g
(1)
++ = t2(x

+)L2 z2 (4.7)

with all the other components zero.

We want to find the next non-trivial correction g
(2)
µν . By the choice of Fefferman-

Graham coordinates one has gzµ = gµz = 0 exactly for µ 6= z and gzz = L2/z2. Hence

the non-trivial components of g
(2)
µν are those for µ, ν = 0, . . . , 3. Due to translational

and rotational invariance of the nuclei in the transverse direction g
(2)
ij ∼ δij . We thus

parametrize the unknown components of g
(2)
µν as

g
(2)
−− =

L2

z2
f(x+, x−, z), g

(2)
++ =

L2

z2
f̃(x+, x−, z),

g
(2)
+− = −

1

2

L2

z2
g(x+, x−, z), g

(2)
ij =

L2

z2
h(x+, x−, z) δij (4.8)
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with f , f̃ , g and h some unknown functions. Imposing causality we require that functions

f , f̃ , g and h are zero before the collision, i.e., that before the collision the metric is given

only by the empty AdS space and by the contributions of the two nuclei eq. (4.7). Also,

according to general properties of gµν outlined in section 2 (see [81]), we demand that f ,

f̃ , g and h go to zero as z4 when z → 0.
Using eqs. (4.6), (4.7), and (4.8) in eq. (4.5), plugging the latter into Einstein equa-

tions (2.11) and keeping only the terms up to and including the order g
(2)
µν we obtain the

following set of equations for f , f̃ , g and h labeled by the Einstein equations components:

(−−) 3

2 z
fz −

1

2
fz z − hx− x− = 0, (4.9a)

(++)
3

2 z
f̃z −

1

2
f̃z z − hx+ x+ = 0, (4.9b)

(+−) − 5
4 z

gz −
1

z
hz +

1

4
gz z −

1

2
gx+ x−

−hx+ x− −
1

2
fx+ x+ − 1

2
f̃x− x− = 4 z

6 t1(x
−) t2(x

+)− 1
4
z8 t′1(x

−) t′2(x
+),

(4.9c)

(⊥⊥) gz + 5hz − z hz z + 2 z hx+ x− = 8 z
7 t1(x

−) t2(x
+), (4.9d)

(zz) gz + 2hz − z gz z − 2 z hz z = −32 z7 t1(x
−) t2(x

+), (4.9e)

(−z) −1
2
fx+ z −

1

4
gx− z − hx− z = −z7 t′1(x

−) t2(x
+), (4.9f)

(+z) −1
2
f̃x− z −

1

4
gx+ z − hx+ z = −z7 t1(x

−) t′2(x
+). (4.9g)

The subscripts z, x+ and x− indicate partial derivatives with respect to these variables.

To solve eqs. (4.9) begin by solving eq. (4.9d) for gz and substituting the result into

eq. (4.9e). This gives

−3hz + 3 z hz z − z2 hz z z + 2 z
2 hx+ x− z = 16 z

7 t1(x
−) t2(x

+). (4.10)

We look for the solution of eq. (4.10) as a series in powers of z2. Note that h(x+, x−, z)

goes to zero proportionally to z4 as z → 0: therefore the series starts at the order z4 and

reads

h(x+, x−, z) = z4
∞
∑

n=0

hn(x
+, x−) z2n. (4.11)

Substituting eq. (4.11) into eq. (4.10) and solving it order-by-order in z we can express

all the coefficients in the series in terms of the first coefficient h0(x
+, x−) and in terms of

t1(x
−) and t2(x

+) obtaining

h(x+, x−, z) = 4 z2 I2(z
√

2 ∂+ ∂−)

∂+ ∂−
h0(x

+, x−)− 32 z2

[

I2(z
√

2 ∂+ ∂−)

− 1
4
z2 ∂+ ∂− −

1

24
z4 (∂+ ∂−)

2

]

1

(∂+ ∂−)3
t1(x

−) t2(x
+). (4.12)
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(Inverse derivatives in eq. (4.12) are canceled by the positive powers of derivatives in the

numerators of the appropriate terms.)

As shown in appendix B, plugging eq. (4.12) into eq. (4.9d) one can find g(x+, x−, z),

and, using eqs. (4.9f) and (4.9g), one can find f(x+, x−, z) and f̃(x+, x−, z). Using the

obtained expressions to eliminate f(x+, x−, z), f̃(x+, x−, z) and g(x+, x−, z) in eq. (4.9c)

one can see that for the solution of Einstein equations to exist the following condition needs

to be satisfied:

(∂+ ∂−)
2 h0(x

+, x−) = 8 t1(x
−) t2(x

+). (4.13)

As can be seen from eq. (4.12) the infinite series (4.11) for h(x+, x−, z) will then terminate

at the order z6. As shown in appendix B, the solutions for f(x+, x−, z), f̃(x+, x−, z) and

g(x+, x−, z) will also reduce to finite-order polynomials in z2.

The only other non-vanishing coefficient in the series for h(x+, x−, z) in eq. (4.11) is

h1(x
+, x−) which is related to h0(x

+, x−) via

h1(x
+, x−) =

1

6
∂+ ∂− h0(x

+, x−). (4.14)

Using eq. (4.13) we obtain

∂+ ∂− h1(x
+, x−) =

4

3
t1(x

−) t2(x
+). (4.15)

Eqs. (4.13) and (4.15) allow us to determine the functions h0 and h1. Imposing causal-

ity by requiring that at time −∞, i.e. long before the collision, the shock waves are un-
modified we write

h0(x
+, x−) = 8

x−
∫

−∞

dx′−
x′−
∫

−∞

dx′′−
x+
∫

−∞

dx′+
x′+
∫

−∞

dx′′+ t1(x
′′−) t2(x

′′+) (4.16)

and

h1(x
+, x−) =

4

3

x−
∫

−∞

dx′−
x+
∫

−∞

dx′+ t1(x
′−) t2(x

′+). (4.17)

In terms of h0 and h1 from eqs. (4.16) and (4.17) we write our solution for h(x
+, x−, z) as

h(x+, x−, z) = h0(x
+, x−) z4 + h1(x

+, x−) z6. (4.18)

Plugging the solution (4.18) into eq. (4.9d) we solve for g(x+, x−, z) to obtain

g(x+, x−, z) = −2h0(x
+, x−) z4 − 2h1(x

+, x−) z6 +
2

3
t1(x

−) t2(x
+) z8. (4.19)

Substituting the solutions for h and g from eqs. (4.18) and (4.19) into eq. (4.9f) we solve

for f(x+, x−, z) to find

f(x+, x−, z) = −λ1(x
+, x−) z4 − 1

6
∂2
−h0(x

+, x−) z6 − 1

16
∂2
−h1(x

+, x−) z8 (4.20)
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with λ1(x
+, x−) given by

λ1(x
+, x−) =

x+
∫

−∞

dx′+ ∂−h0(x
′+, x−). (4.21)

Similarly eq. (4.9g) yields

f̃(x+, x−, z) = −λ2(x
+, x−) z4 − 1

6
∂2

+h0(x
+, x−) z6 − 1

16
∂2

+h1(x
+, x−) z8 (4.22)

with

λ2(x
+, x−) =

x−
∫

−∞

dx′− ∂+h0(x
+, x′−). (4.23)

Eqs. (4.18), (4.19), (4.20) and (4.22) provide us with the solution of eq. (4.9) with the

causal initial condition requiring all these functions to go to zero at infinitely early times.

Using eq. (2.3) one can obtain the contribution of g
(2)
µν to the expectation value of the

energy-momentum tensor at the boundary of the AdS space from eqs. (4.18), (4.19), (4.20)

and (4.22) and eq. (4.8):

〈T−−〉 =−
N2

c

2π2
λ1(x

+, x−), 〈T+ +〉 = −
N2

c

2π2
λ2(x

−, x+),

〈T+−〉 =
N2

c

2π2
h0(x

−, x+), 〈Ti j〉 =
N2

c

2π2
δi j h0(x

−, x+). (4.24)

Given t1(x
−) and t2(x

+), one can use eqs. (4.16), (4.21) and (4.23) to find h0, λ1 and λ2,

and then use eq. (4.24) to construct the energy-momentum tensor of the gauge theory.

5. Physical shock waves: nuclear stopping

To understand our solution given by eqs. (4.18), (4.19), (4.20) and (4.22) let us consider

a specific example of shock waves with the boundary energy-momentum tensor given by

eq. (3.3). To be able to better understand physical properties of the solution, let us

“smear” the shock waves over some finite longitudinal distance. If one imagines shock

waves representing a large nucleus, such nucleus moving in the x+-direction in a boosted

ultrarelativistic frame would have a longitudinal extent

a ∝ R
Λ

p+
∝ A1/3

p+
(5.1)

with R the nuclear radius, Λ the typical transverse momentum scale in the problem (R ∝
A1/3/Λ with A the atomic number), and p+ the large longitudinal momentum of the

nucleus. (Here Λ/p+ is the boost factor.)

Assuming that the nucleus has equal thickness a at all impact parameters, we replace

the delta-function in eq. (3.3) with two theta-functions to write

t1(x
−) = 2π2 µ

a
θ(x−) θ(a− x−) (5.2)
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for the first nucleus and

t2(x
+) = 2π2 µ

a
θ(x+) θ(a− x+) (5.3)

for the second one. For simplicity we assumed that the nuclei are identical and are scat-

tering with equal momenta p+
1 = p−2 , such that µ = µ1 = µ2 and a = a1 = a2.

Plugging eqs. (5.2) and (5.3) into eq. (4.16) we immediately obtain

h0(x
+, x−) = 8

µ2

a2
(2π2)2

[

θ(x−) θ(a− x−)
x− 2

2
+ θ(x− − a) a

(

x− − a

2

)

]

[

θ(x+) θ(a− x+)
x+ 2

2
+ θ(x+ − a) a

(

x+ − a

2

)

]

. (5.4)

eq. (4.21) then gives

λ1(x
+, x−) = 8

µ2

a2
(2π2)2

[

θ(x−) θ(a− x−)x− + θ(x− − a) a

]

[

θ(x+) θ(a− x+)
x+ 3

6
+ θ(x+ − a) a

(

a2

6
+

x+2

2
− a x+

2

)]

, (5.5)

while eq. (4.23) due to the fact that nuclei are identical leads to

λ2(x
+, x−) = λ1(x

−, x+). (5.6)

Eqs. (5.4), (5.5) and (5.6), along with eq. (4.24), give us the order µ2 energy-momentum

tensor. Let us study its properties. First of all, away from the light cone for x+, x− À a

(or in the limit of infinitely thin nuclei, which can be recovered by taking a→ 0) one has

h0(x
+, x−)

∣

∣

∣

∣

x+,x−Àa

≈ 8 (2π2)2 µ2 x+ x−, λ1(x
+, x−)

∣

∣

∣

∣

x+,x−Àa

≈ 8 (2π2)2 µ2 x+2

2
,

λ2(x
+, x−)

∣

∣

∣

∣

x+,x−Àa

≈ 8 (2π2)2 µ2 x− 2

2
. (5.7)

Substituting eq. (5.7) into eq. (4.24) one gets for the forward light-cone far away from the

nuclei

〈T−−〉 = − 8π2 N2
c µ2 x+2, 〈T+ +〉 = − 8π2 N2

c µ2 x− 2,

〈T+−〉 =8π2 N2
c µ2 τ2, 〈Ti j〉 =8π2 δi j N

2
c µ2 τ2. (5.8)

This is the same result as obtained in [67]. The energy-momentum tensor in eq. (5.8) is

rapidity-independent, as its components contain no rapidity dependence apart from the

trivial factors needed for Lorentz-properties of the tensor.
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For two colliding nuclei of infinite transverse extent (the Bjorken case [70]) the most

general parameterization of the rapidity-independent energy-momentum tensor is [43]

T−− = [ε(τ) + p3(τ)]

(

x+

τ

)2

,

T++ = [ε(τ) + p3(τ)]

(

x−

τ

)2

,

T+− = [ε(τ)− p3(τ)]
1

2
,

Tij = δij p(τ), (5.9)

where ε(τ), p(τ) and p3(τ) are the energy density, transverse pressure and longitudinal

pressure components of the energy-momentum tensor at mid-rapidity (x3 = 0). At x3 = 0

the tensor (5.9) looks like

Tµν =











ε(τ) 0 0 0

0 p(τ) 0 0

0 0 p(τ) 0

0 0 0 p3(τ)











. (5.10)

One can easily show that conservation of energy and momentum condition

∂µT
µν = 0 (5.11)

applied to the tensor (5.9) gives

dε

dτ
= −ε+ p3

τ
. (5.12)

The condition ∂µT
µν = 0 follows from Einstein equations if one uses gauge-gravity duality

to obtain the energy momentum tensor. For conformal field theories the energy-momentum

tensor is traceless

Tµ
µ = 0, (5.13)

which implies

ε = 2 p+ p3. (5.14)

Eqs. (5.12) and (5.14) relate ε(τ), p(τ) and p3(τ) to each other, such that knowing one of

these functions is sufficient to reconstruct the others.

Comparing eq. (5.8) with eq. (5.9) we read off the energy density at mid-rapidity

ε(τ) = 4π2 N2
c µ2 τ2. (5.15)

Such energy density at mid-rapidity is problematic. It grows with the proper time τ . One

can show that the requirement that the energy density of produced matter is positive-

definite in any frame in particular demands that [54]

ε′(τ) ≤ 0. (5.16)
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eq. (5.15) obviously violates the condition (5.16): this means our solution gives negative

energy density in some frames. Such result is clearly unphysical.

It is important to understand the origin of this negativity of the energy density. First

we note that, as one can easily see, the energy density becomes negative in the frames

with the time direction being close to the light cones (the shock waves). To investigate the

region around the shock waves further, let us concentrate on the shock wave corresponding

to the nucleus 1 after the collision. Let us study what happens to, say, the middle of the

nucleus, which is located at x− = a/2, after the collision. The important component of the

energy-momentum tensor is 〈T−−〉, since it contains the (large) momentum component of
the nucleus along its light cone. Using eq. (4.24) along with eq. (5.5) at x− = a/2 yields

for x+ À a (after the collision)

〈T−−(x+ À a, x− = a/2)〉 = N2
c

µ

a
− 4π2 N2

c µ2 x+2, (5.17)

where the first term on the right is due to the original shock wave obtained by using

eqs. (5.2) and (4.1) at x− = a/2.

eq. (5.17) shows that 〈T−−〉 of a nucleus becomes negative at light-cone times

x+ ∼ 1√
µa

. (5.18)

Indeed zero 〈T−−〉 would mean a complete stopping of the shock wave and the correspond-

ing nucleus. We therefore conclude that negativity of energy density (5.15) in fact is a

signal of complete stopping of the colliding nuclei after the collision!

Indeed at times x+ ∼ 1/
√
µa higher order corrections to the metric due to higher

graviton exchanges would become important preventing 〈T−−〉 from going negative. Nev-
ertheless, eq. (5.17) demonstrates that at rather short times x+ ∼ 1/

√
µa the nucleus

looses the amount of energy comparable to its initial incoming energy, and thus is likely to

stop.

One should also point out that eq. (5.17) gives 〈T−−〉 of the center of the nucleus
(x− = a/2): other slices of the nucleus located at different x− would also stop, but at

slightly different times x+. All stopping would happen at the same parametric time given

by eq. (5.18).

To better understand the stopping time we use eqs. (3.4) and (5.1) to re-write eq. (5.18)

as

x+ ∼ 1

ΛA1/3
. (5.19)

The stopping time appears to be energy-independent! It is given by the inverse of the

typical transverse momentum scale Λ in the problem. It also decreases with the increasing

size of the nucleus A.

Let us pause to interpret the main result of this section. It appears that two colliding

ultrarelativistic shock waves would come to a complete stop shortly after the collision.

One can understand this in terms of creation of a black hole: both shock waves carry large

energy, which functions as a mass. There is a horizon radius in AdS space corresponding
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to that mass/energy. For nuclei of infinite transverse extent under consideration the shock

waves always come closer to each other than the horizon radius corresponding to the energy

they carry. A black hole is then formed and the shock waves stop completely within the

black hole’s horizon radius. The picture is similar to black hole production in collisions at

transplanckian energies, which has been recently discussed in the literature [72 – 74].

One could picture a collision of two nuclei of finite transverse extent. If the impact

parameter of such a collision is larger than the horizon radius, no black hole will be formed

and the nuclei will not stop. However, in such case there will probably be no thermal

matter produced in the boundary theory either.

It is interesting to note that the stopping time (5.19) is independent of energy: indeed,

on one hand if one increases the momentum of the shock wave it is harder to stop it. On

the other hand, increasing the energy of the shock waves tends to reduce the radius of the

horizon, trying to make the shock waves stop faster. We interpret the result of eq. (5.19)

as the cancellation of the two effects, leading to energy-independence of the stopping time.

If the nuclei stop completely in the collision, the strong interactions between them are

almost certain to thermalize the system. Indeed if the interactions were strong enough to

stop the nuclei, they should be strong enough to thermalize the resulting medium. The

dynamics of such a rotationally-invariant thermal medium was originally described hydro-

dynamically by Landau in [75] and is commonly referred to as Landau hydrodynamics.

Hence our conclusion is that modeling a collision of two nuclei by two physical collid-

ing shock waves in AdS necessarily leads to complete nuclear stopping, and probably to

thermalization of the system and the subsequent dynamics describable by Landau hydro-

dynamics.

The fact that nuclei do not stop instantaneously, but require certain (short) time (5.19)

to stop avoids the standard counter-argument [89] against Landau hydrodynamics [75],

which suggests that it would violate the uncertainty principle if the stopping was instan-

taneous. Hence the picture is intrinsically consistent.

One may wonder whether our result of eq. (5.17) is specific to the shape of the shock

waves we have considered in eqs. (5.2) and (5.3). In fact our conclusion of complete stopping

is valid in general: as one can see from eq. (4.16), any non-negative energy-momentum

tensor of the shock wave, which is positive in a localized region of x− (x+) axis, would give

h0 ∼ x+ x− at late times. Eqs. (4.24) and (5.9) would then give

ε(τ) ∼ p(τ) ∼ −p3(τ) ∼ τ2, (5.20)

just like in our case considered above. Hence the energy density of such system would never

be non-negative in all frames, signaling the stopping of shock waves. Finally, eq. (4.21)

would give λ1 ∼ x+ 2, such that the correction to the energy-momentum tensor on the light

cone would again be

〈T−−〉 ∼ −x+ 2 (5.21)

indicating that at some large enough light-cone time x+ the nucleus would run out of its

momentum. This proves the shock waves stopping independent of the shape of the shock

waves profiles.

– 17 –



J
H
E
P
0
7
(
2
0
0
8
)
1
0
0

Let us close this section by pointing out that the result in eq. (5.15) can be easily

obtained (at the parametric level) for infinitely thin nuclei by noticing that the diagram

in figure 3C, which contributes to the metric giving the energy density in eq. (5.15), is

of the order of µ2. Hence the contribution to ε at this order should be of the order of

µ2. However, energy density has dimension of mass to the fourth power, while µ2 has

dimensions of mass to the sixth power. To make the dimensions right we use the only

other dimensionful quantity in the boundary gauge theory in the forward light cone: the

proper time τ . This gives ε ∼ µ2τ2, in agreement with eq. (5.15). We noted above that

expansion in graviton exchanges in the bulk is equivalent to expansion in the powers of µ

for the energy-momentum tensor of the shock waves in eq. (3.3). The only way to make

a dimensionless expansion parameter from µ in the boundary theory is to multiply it by

τ3. Now we see that for energy density the expansion parameter is in fact µ τ 3, which has

been noticed in [67] before. However, now we understand that each power of this expansion

parameter corresponds to a graviton exchange between the boundary and the bulk.

6. Unphysical shock waves: energy density of the produced medium

In the above section we came to the conclusion that at very strong coupling colliding

nuclei completely stop in a collision (for central collisions), forming a medium described

by Landau hydrodynamics. However, due to asymptotic freedom of QCD, we know that

small-coupling effects play an important role in heavy ion collisions and in high energy

collisions in general. The success of Color Glass Condensate [39 – 41] based models in

describing RHIC data (see e.g. [90] and references therein) suggests that weakly coupled

effects are present in the actual heavy ion collisions at RHIC, at least at very early times

during and after the collision. While a comprehensive description of both weakly-coupled

initial dynamics and strongly-coupled dynamics of the produced medium is not feasible

at this point, here we will suggest a model capturing some of the feature of the weakly

coupled collisions.

We begin by noting that, in the weak coupling limit, the colliding nuclei do not stop, as

we observed in the previous section for the strong coupling case. Instead the valence quarks

and other large Bjorken-x (hard) partons are usually assumed to go through each other

without deflection, shedding off the softer (small-x) virtual partons, which are left behind

and quickly go on mass shell, i.e., become real [77, 26, 27, 78, 79, 30, 29, 42, 31, 44]. The

medium made out of these small-x partons after the collision has a non-negative energy

density in any frame [32, 68, 42, 79, 30]. We will then proceed by requiring that the energy

density of the produced strongly coupled medium should also be non-negative.

We want to model the heavy ion collisions by colliding two shock waves. The conclusion

of the previous section was that any localized non-negative 〈T1−−〉 of a shock wave, such
that

∞
∫

−∞

dx−〈T1−−(x
−)〉 > 0 (6.1)
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(with an analogous condition imposed on the 〈T2 + +(x
+)〉 component of the energy momen-

tum tensor of the other shock wave) leads to the energy density scaling of eq. (5.20). This

violates the condition (5.16) derived in [54] and results in the negative energy density of

the produced matter in some frames. The only way around such an unphysical conclusion

appears to be to require that

∞
∫

−∞

dx−〈T1−−(x
−)〉 = 0,

∞
∫

−∞

dx+〈T2 ++(x
+)〉 = 0. (6.2)

Indeed the conditions (6.2) can only be satisfied in a physical world if there is no shock

waves, in which case their energy would be zero. Such a trivial scenario is not what we

have in mind.

Instead, we propose using unphysical not positive-definite quantities for 〈T1−−(x
−)〉

and

〈T2 ++(x
+)〉, which integrate out to zero satisfying eq. (6.2). Indeed such objects would

be completely unphysical, as they would contain regions of negative energy density. They

can not be obtained from an underlying string theory either. However, we intend to use

them in gauge-gravity duality only. On both sides of the gauge-gravity duality our non-

positive energy momentum tensors should be regarded as external sources to the theory.

The conclusion we have reached is that to have non-negative energy density in the forward

light cone one needs unphysical negative energy shock waves on the light cone itself.

Indeed our proposal of zero-energy shock waves may not be a unique way of modeling

weak coupling effects in heavy ion collisions in the AdS/CFT framework. One may also try

to construct a metric with the CGC-inspired energy-momentum tensor for the gauge theory

at early proper time and evolve it in time using Einstein equations. However, constructing

a metric which is a valid initial condition for Einstein equations at early times and accounts

for perturbative features of the collision appears to be difficult. If one insists on modeling

the heavy ion collisions by two colliding shock waves, our zero-energy shock wave proposal

is the only way to mimic the weak coupling effects at initial stages of the collision.

Inspired by eqs. (3.3) and (3.5), which contain two factors of transverse momenta

times some function of longitudinal coordinates and momenta, we suggest describing the

energy-momentum tensors of the colliding nuclei by

〈T1−−(x
−)〉 = N2

c

2π2
Λ2

1 δ
′(x−)

〈T2 + +(x
+)〉 = N2

c

2π2
Λ2

2 δ
′(x+) (6.3)

corresponding to

t1(x
−) =Λ2

1 δ
′(x−)

t2(x
+) =Λ2

2 δ
′(x+) (6.4)

in the shock waves metric in eq. (4.3). δ′(x) denotes the derivative of a delta-function.

Clearly the energy-momentum tensors in eq. (6.3) satisfy eq. (6.2). What we loose in this
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description is the relation between the transverse momentum scales Λ2
1 and Λ

2
2 describing

the two nuclei in eq. (6.3) and the actual physical parameters describing the real nuclei,

since our energy-momentum tensors in eq. (6.3) are not physical and we can not relate

them to the energy-momentum tensors of the two nuclei.

Before we perform any calculations we can already guess the answer using the dimen-

sional analysis outlined in section 5. This time each vertex in figure 3C brings in a factor

of Λ2
1 and Λ

2
2, such that the diagram is proportional to Λ

2
1 Λ

2
2. Hence the resulting energy

density of the boundary theory is proportional to ε ∼ Λ2
1 Λ

2
2. Since the dimensions of ε

and Λ2
1 Λ

2
2 match, no powers of τ are needed this time. Hence we conclude that the energy

density of the matter produced by the two shock waves (6.4) at the lowest order in graviton

exchanges is ε ∼ Λ2
1 Λ

2
2, i.e. a constant of time, as was suggested in [1]. ε ∼ Λ2

1 Λ
2
2 immedi-

ately satisfies the condition (5.16) derived in [54]: hence the energy density is non-negative

in any reference frame. Finally, now the graviton exchanges between the boundary and the

bulk should correspond to powers of Λ2
1 τ

2 or Λ2
2 τ

2 in the gauge theory. Thus the early-time

expansion for the energy density should contain powers of Λ2
1 τ

2 and Λ2
2 τ

2. Therefore, while

we do not know how to relate Λ2
1 and Λ

2
2 to the physical observables, we still can systemat-

ically construct the dual geometry to the collision by expanding the metric in the powers of

Λ2
1 τ

2 and Λ2
2 τ

2, and hopefully would be able to arrive at the thermalization/isotropization

transition in the Bjorken sense [70, 43].

The actual calculations are performed easily. Plugging eq. (6.4) into eq. (4.16) yields

h0(x
+, x−) = 8Λ2

1 Λ
2
2 θ(x

−) θ(x+). (6.5)

Using eqs. (4.17), (4.18), (4.19), (4.20), (4.21), (4.22), (4.23), and (4.8) we find the second

order correction to the metric (4.3)

g
(2)
−− =

L2

z2
Λ2

1 Λ
2
2

[

−8 δ(x−)x+ θ(x+) z4 − 4
3
δ′(x−) θ(x+) z6 − 1

12
δ′′(x−) δ(x+) z8

]

,

g
(2)
++ =

L2

z2
Λ2

1 Λ
2
2

[

−8x− θ(x−) δ(x+) z4 − 4
3
θ(x−) δ′(x+) z6 − 1

12
δ(x−) δ′′(x+) z8

]

,

g
(2)
+− =−

1

2

L2

z2
Λ2

1 Λ
2
2

[

−16 θ(x−) θ(x+) z4 − 8
3
δ(x−) δ(x+) z6 +

2

3
δ′(x−) δ′(x+) z8

]

,

g
(2)
ij =

L2

z2
δij Λ

2
1 Λ

2
2

[

8 θ(x−) θ(x+) z4 +
4

3
δ(x−) δ(x+) z6

]

, (6.6)

where the double prime denotes the second derivative.

One might be concerned with the fact that order-z4 components of g
(2)
−− and g

(2)
++

contain a negative contributions localized to the light cone and growing with time. They

may be interpreted, just like eq. (5.17) above, as a signal of stopping of the shock waves.

However, our shock waves start out carrying negative energy and momentum densities.

Hence the concept of stopping is ill-defined for our shock waves, because they themselves

are ill-defined as physical objects, and are only used as some sources providing us with

realistic dynamics of the produced medium in the forward light cone.
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Using eqs. (4.24) and (5.9) along with eq. (2.3) we can read off the energy density and

the pressure components in the forward light cone from eq. (6.6)

ε(τ) =
N2

c

π2
4Λ2

1 Λ
2
2,

p(τ) =
N2

c

π2
4Λ2

1 Λ
2
2,

p3(τ) = −
N2

c

π2
4Λ2

1 Λ
2
2. (6.7)

Once again, just like in CGC [32, 68] and as was obtained in [1], the strongly-coupled

medium starts out very anisotropic, with a negative longitudinal pressure. Eqs. (6.6), com-

bined with the lower order metric (4.3) and eqs. (6.4), allow for a systematic construction

of the metric as an expansion in graviton exchanges, to be performed elsewhere [91].

Negativity of the longitudinal pressure p3 in eq. (6.7) is intimately connected with

energy conservation. One can easily see from eq. (5.12) that if the energy density scales as

ε ∼ 1/τ then p3 = 0. For the energy density which falls off slower with τ , using eq. (5.12)

one gets negative p3, in agreement with eq. (6.7). For the energy density falling off with

τ faster than 1/τ one would get positive p3: however, such behavior of energy density at

early time would violate energy conservation. The net energy of the produced medium at

early times is proportional to E ∼ ε τ . The energy density which increases faster than 1/τ

at small τ would then lead to infinite energy of the produced medium at very early times,

violating energy conservation. Hence energy density at early times can not scale faster

than 1/τ , leading to negative or zero longitudinal pressure p3.

7. The dilaton

Let us briefly touch upon one related topic which may become important at higher order

in graviton exchanges. Immediately after the collision of two heavy ions the medium is not

equilibrated yet. The magnitudes squared for the chromo-electric and chromo-magnetic

fields are not equal to each other. This means that the expectation value of the gluonic

field strength squared should not be zero. In fact, at weak coupling a CGC calculation at

the lowest non-trivial order (order α3
s) performed along the lines of [43, 27] yields

〈trF 2
µν〉 = −4α3

s CF
A2

S2
⊥

∫

d2kT
k2
T

[

J2
0 (kT τ)− J2

1 (kT τ)
]

. (7.1)

Here A and S⊥ are the atomic number and the transverse area of the two identical colliding

nuclei and CF = (N
2
c − 1)/2Nc. To obtain eq. (7.1) one should substitute the gluon field

from eq. (12) in [27] into the Abelian part of trF 2
µν and average the resulting expression in

the wave functions of both nuclei (see also [92, 43]). At early times eq. (7.1) gives

〈trF 2
µν〉
∣

∣

∣

∣

Qsτ¿1

≈ −4π α3
s CF

A2

S2
⊥

ln
1

Q2
s τ

2
(7.2)

where Q2
s = 4π α2

s A/S⊥ is the saturation scale of the nuclei which regulates the infrared

divergence in eq. (7.1) when higher order rescatterings are included. Similar to [32, 68] one
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may conclude that the scaling (7.2) is true for the all-order classical gluon field [77, 26, 27,

78, 79, 30, 29, 42, 31]. We get

〈trF 2
µν〉
∣

∣

∣

∣

Qsτ¿1

∝ −Q4
s

αs
ln

1

Q2
s τ

2
. (7.3)

As 〈trF 2
µν〉 = 2(B2−E2) with B and E the chromo-magnetic and chromo-electric fields, we

conclude that at weak coupling the medium at the early stages of the collisions is dominated

by chromo-electric fields (see also [93]).

To introduce non-zero expectation value for trF 2
µν in AdS one needs to include the

dilaton field ϕ, as [82, 83, 71]

1

4 g2
Y M

〈trF 2
µν〉 =

N2
c

2π2
lim
z→0

ϕ(x+, x−, z)

z4
. (7.4)

The dilaton couples to the metric through modified Einstein equations (2.13) and through

the Klein-Gordon equation (2.14).

The metrics of the incoming shock waves like (3.1) are solutions of Einstein equa-

tions (2.11) with zero dilaton fields. This implies that the dilaton field is zero for a single

nucleus and, using eq. (7.4), 〈trF 2
µν〉 = 0 for a single nucleus as well. This agrees with the

fact that at weak coupling 〈trF 2
µν〉 = 0 too, as the electric and magnetic fields of a single

ultrarelativistic charge are equal to each other (the equivalent photon/gluon approxima-

tion) [24, 84].

At strong coupling the dilaton field may become non-zero after the collision. As one

can see from [71], an investigation of late-time dynamics of the strongly-coupled medium

requires a dilaton field leading to non-zero 〈trF 2
µν〉. Since the dilaton field of each of the

shock waves is zero, we may only expect that the dilaton field produced in the collision

would depend on energy-momentum tensors of both shock waves. Therefore, using the

expansion in Λ2
1 and Λ

2
2 of section 6, one may expect that at the lowest non-trivial order

〈trF 2
µν〉 ∼ Λ2

1 Λ
2
2 (7.5)

corresponding to the dilaton field (see eq. (7.4))

ϕ(x+, x−, z) ∼ Λ2
1 Λ

2
2 z

4. (7.6)

However, the sign of the dilaton field and 〈trF 2
µν〉 can not be determined from these di-

mensional considerations. (In fact eqs. (2.13) and (2.14) are invariant under ϕ→ −ϕ and
do not fix the sign of the dilaton field.) Instead of the logarithmic divergence (7.3) of the

perturbation theory, we anticipate the expectation value of 〈trF 2
µν〉 to go to a constant at

early times.

The dilaton field from eq. (7.6) would affect the metric only at the order Λ4
1 Λ

4
2, as can

be seen from eq. (2.13), and therefore we could safely neglect it in the above discussion

and in [1]. It would only enter eq. (2.13) at the same order as the four-graviton exchanges.

We stress that while we do not know whether non-zero dilaton field would arise at

higher orders in our expansion in graviton exchanges, if it does come in we expect it to be

of the form shown in eq. (7.6) (at the lowest order) leading to a constant 〈trF 2
µν〉 at early

times shown in eq. (7.5).
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8. Conclusions

Let us summarize the main points of our paper. In section 5 we have demonstrated that a

collision of real and physical shock waves in AdS would lead to a full stopping of the shock

waves. It is likely that a black hole would be created in AdS space immediately afterwards.

For the gauge theory this implies that two nuclei colliding at very strong coupling would

stop almost immediately after the collision, after a time interval of the order of tstop ∼ 1/Λ
with Λ some typical transverse momentum of the problem. Thus for RHIC and LHC one

might expect tstop ≈ 1 fm. After the stop, creation of the black hole in the bulk likely
translates into thermalization and Landau hydrodynamics description of the dynamics for

the created medium. This is a possible scenario advocated in [76].

However, we consider it to be more likely that the physics of the initial stages of heavy

ion collisions is weakly coupled. This point of view is supported by the many successes of

CGC approaches to heavy ion collisions [33, 34]. In the weak coupling scenario the hard

(large-x) parts of the nuclear wave functions simply go through each other in the collisions

without deflection or recoil. At the same time the produced thermalized medium should

still be strongly-coupled. While no comprehensive single description of both the weakly-

coupled early stages and the strongly-coupled medium in the final state exists, in section 6

we constructed a model which appears to capture the main features of the weakly-coupled

initial state by allowing the energy density to be negative (only) on the light cone. The

corresponding shock waves carry both positive and negative energy density and are thus

unphysical. They need to be thought about as some external sources for the gravitational

field used in gauge-gravity duality. The energy density of the produced medium in the

forward light-cone is non-negative: in fact we recovered our earlier result of [1] that the

energy density starts out as a constant at early proper times.

We have thus arrived at the following conclusion. If the coupling constant in heavy ion

collisions is large throughout the collision this would lead to nuclear stopping followed by

Landau hydrodynamics. In the more realistic scenario, according to present phenomenolog-

ical evidence, in which both the nuclear wave functions and the primary particle production

are weakly-coupled, Bjorken hydrodynamics could be still achieved if the coupling constant

quickly becomes large. Indeed, as shown in [54], a purely strong coupling approach to the

study of late-time dynamics leads to Bjorken hydrodynamics. However, as we argued in

the paper, Bjorken hydrodynamics can not result from strong coupling dynamics only.

When this paper was in the final stages of preparation, a preprint [94] was posted on

the arXiv, where a similar conclusion about stopping of shock waves has been reached.

Also, very recently a new version of [67] appeared on the arXiv, where the possibility of

the shock wave energy-momentum tensor as in our eq. (6.3) was briefly mentioned.
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A. A model for the energy-momentum tensor of an ultra-relativistic nu-

cleus

We begin by considering the classical electromagnetic potential of a point-like particle of

charge g moving at speed v along the positive z direction. In the covariant gauge it is given

by

A± =
g

4π

(1∓ v)/
√
2

[

1
2 ((1 + v)x− − (1− v)x+)2 + (1− v2)x2

⊥

]1/2
, Ai = 0 (i = 1, 2). (A.1)

The energy-momentum tensor associated to this field is

Tµν = −Fµρ F
ρ

ν +
1

4
ηµν Fρ σF

ρ σ , (A.2)

where η is the Minkowski metric in four dimensions. In the limit v → 1, its only non-

vanishing component is

T−− = (∂i A−)
2 =

α

2π

(1− v2)2 x2
⊥

[

2x−2 + (1− v2)x2
⊥

]3 , (A.3)

where α = g2/4π. In the strict limit v=1, T−− is singular at x
−=0. To clarify the nature

of this singularity we consider the following integral:

∫ ∞

−∞
dx

ε4

(x2 + ε2)3
f(x) = (2π i) ε4

1

2!

d 2

d z2

f(z)

(z + i |ε|)3
∣

∣

∣

∣

z=i |ε|

ε→0
=
3π

8

f(0)

|ε| , (A.4)

where f(x) is an arbitrary analytic function that falls off at infinity rapidly enough for the

previous integral to be well defined. From eq. (A.3) and eq. (A.4) we get

T−− =
α

2π

8

3π

δ(x−)

|x−|
1

x2
⊥

(A.5)

The previous equation serves as a starting point to build up a model for the energy-

momentum tensor of an ultra-relativistic nucleus, T nucl
−− . We envisage the nucleus as con-

sisting of A nucleons, each of them containing N 2
c valence gluons. Assuming an uniform

distribution of nucleons inside the nucleus, averaging over transverse position and summing

over all nucleons, we write

〈T nucl
−− 〉 = N2

c

A

S⊥

∫

d2x⊥ T−− =
N2

c αNc

π

δ(x−)

|x−|
8

3

A

S⊥
ln

(

R

ρ

)

, (A.6)

where S⊥ is the nuclear transverse area, R is the nuclear radius and ρ is an UV cutoff

introduced to regulate the singular behavior at x⊥=0. The extra factor of Nc in eq. (A.6)

comes from calculating the color factor for non-Abelian energy-momentum tensor at the
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lowest order in the coupling. For simplicity, we consider a cylindrical nucleus such that

S⊥ ≈ π A2/3 R
2/3
N , with RN the nucleon’s radius. Introducing the dimensionful scale

Λ2 ≡ 4

3π3 R2
N

ln

(

R

ρ

)

, (A.7)

we rewrite eq. (A.6) as

〈T nucl
−− 〉 = N2

c αNc 4πΛ
2 A1/3 δ(x−)

2 |x−| . (A.8)

Defining ’t Hooft coupling λ by eq. (3.6) we rewrite eq. (A.8) as

〈T nucl
−− 〉 = N2

c λΛ2 A1/3 δ(x−)

2 |x−| , (A.9)

which is now ready to be cast in the form of eq. (3.5) at strong ’t Hooft coupling by

replacing λ →
√
λ. The singularity in δ(x−)/|x−| can be regularized by replacing 1/|x−|

with the light-cone momentum of the valence gluon p+, which would reduce eq. (A.9) to

eq. (3.3) with µ given by eq. (3.4). The energy-momentum tensor in eq. (A.9) may serve

as the source for the one-graviton exchange shock wave metric in eq. (3.1).

B. Solution of equations (4.9)

Here we complete the solutions of the Einstein equations for the second order correction

to the metric, g
(2)
µν . Analogously to what we did for h in eq. (4.12), we write the unknown

functions g, f and f̃ in eq. (4.8) in the form of a power series in z2, starting at order z4:

g(x+, x−, z) = z4
∞
∑

n=0

gn(x
+, x−) z2n

f(x+, x−, z) = z4
∞
∑

n=0

fn(x
+, x−) z2n

f̃(x+, x−, z) = z4
∞
∑

n=0

f̃n(x
+, x−) z2n . (B.1)

Inserting these expansions into eqs. (4.9e), (4.9f) and (4.9g) we find

gn + 2hn =
2

3
δn,2 t1(x

−) t2(x
+) , (B.2)

fn,x− + hn,x+ =− 1

12
δn,2 t1(x

−) t′2(x
+) , (B.3)

f̃n,x+ + hn,x− =−
1

12
δn,2 t

′
1(x
−) t2(x

+) , (B.4)

which straightforwardly lead to the following relation between the metric coefficients

g(x+, x−, z) =− 2h(x+, x−, z) +
2

3
z8 t1(x

−) t2(x
+) , (B.5)

f(x+, x−, z) =− ∂−
∂+

(

h(x+, x−, z) +
1

12
z8 t1(x

−) t2(x
+)

)

, (B.6)

f̃(x+, x−, z) =− ∂+

∂−

(

h(x+, x−, z) +
1

12
z8 t1(x

−) t2(x
+)

)

. (B.7)
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To complete our the solution of Einstein equations eqs. (4.9) we insert the relations in

eqs. (B.5)–(B.7) into the remaining Einstein equations, eqs. (4.9a)–(4.9c), which we have

not used yet. We find that, while eqs. (4.9a) and (4.9b) are trivially satisfied, eq. (4.9c)

provides the additional non-trivial constrain for h(x+, x−, z):

3hz − z hzz + 2 z hx+x− =
8

3
z7 t1(x

−) t2(x
+) , (B.8)

which, using the general solution for h(x+, x−, z) given in eq. (4.12), leads to

2

∂+∂−

(

I2(z
√

2 ∂+∂−)−
z

8

(

I1(z
√

2 ∂+∂−) + I3(z
√

2 ∂+∂−)

)

(√

2

∂+∂−
+ 2z

))

[

h0(x
+, x−)− 8

(∂+ ∂−)2
t1(x

−) t2(x
+)

]

= 0 .

(B.9)

For arbitrary z, x+ and x−, this condition is satisfied only if the common coefficient of the

different Bessel functions vanishes, i.e., if

(∂+ ∂−)
2 h0(x

+, x−) = 8 t1(x
−) t2(x

+). (B.10)

This is exactly eq. (4.13) above. This condition makes the infinite series in eqs. (4.11)

and (B.1) terminate, as previously announced. The complete solution of Einstein equa-

tions (4.9) is given by eqs. (4.18), (4.19), (4.20) and (4.22).
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Erratum

The sentence immediately before eq. (4.13) should read:

“One can argue (see appendix B) that for the solution of Einstein equations to satisfy

initial (h = g = f = f̃ = 0 before the collision) and boundary (h(x+, x−, z = 0) = 0)

conditions the following relation needs to be satisfied:”

In appendix B, the text and equations after eq. (B.7) till the end of appendix B

should read:

“To complete the solution of Einstein equations eqs. (4.9) we insert the relations in

eqs. (B.5)–(B.7) into the remaining Einstein equations, eqs. (4.9a)–(4.9c), which we have

not used yet. We find that, while eqs. (4.9a) and (4.9b) are trivially satisfied, eq. (4.9c)

provides the following equation for h(x+, x−, z):

3hz − z hzz + 2 z hx+x− =
8

3
z7 t1(x

−) t2(x
+) , (C.1)

which can be easily reduced to eq. (4.10) with the general solution given in eq. (4.12).

Finally, in order to complete the solution of the Einstein equations (4.9) we must determine

the unknown coefficient h0(x
+, x−) in eq. (4.12). We do so by imposing causality of the

solution which, as discussed in section 4, implies that all the second order corrections to

the metric in eq. (4.8) must be zero before the collision. Given the relation between the

metric coefficients in eqs. (B.5)–(B.7), it is sufficient to require causality of h(x+, x−, z).

We first note that by requiring that

(∂+ ∂−)
2 h0(x

+, x−) = 8 t1(x
−) t2(x

+) (C.2)

we satisfy the initial (h = 0 before the collision) and boundary (h(x+, x−, z = 0) = 0)

conditions on the solution of eq. (C.1). Eq. (C.2) is exactly eq. (4.13) above. This

condition makes the infinite series in eqs. (4.12) and (B1) terminate, as previously

announced, and satisfies the causal initial conditions. As the solution of eq. (C.1) for a

given set of initial and boundary conditions is unique, we conclude that the condition (C.2)

singles out the only causal solution of Einstein equations. (This implies that solutions

obtained from eq. (4.12) without terminating the infinite series are not causal.) This

proves that eq. (C.2) gives us the only solution of eq. (C.1) satisfying the needed initial

and boundary conditions. The complete solution of Einstein equations (4.9) is given by

eqs. (4.18), (4.19), (4.20) and (4.22).”
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