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1. Introduction

Symmetry algebra always plays an important role in physics. The AdS/CFT correspon-

dence is no exception, which relates the anomalous dimension of operators in N = 4 super

Yang-Mills theory with Hamiltonian of string states on the AdS5 × S5 spacetime. On the

super Yang-Mills theory side, whose description is valid in the weak ’t Hooft coupling re-

gion λ = g2
YMN ≪ 1, the perturbative dilatation operator was mapped to the Hamiltonian

of an integrable spin chain model [1] where infinite conserved charges lead to solvability.

On the string sigma model side, valid in the strong coupling region λ≫ 1, flat connection

which implies infinite symmetries was also constructed [2]. It was then expected that we

can interpolate these two regions by integrability and solve the theory completely. See

reviews [3] for a summary of current progress and a list of references.

This expectation was made more concrete in the subsequent analysis. The N = 4 super

Yang-Mills theory has a global symmetry of the Lie superalgebra psu(2, 2|4), which is broken

down to two copies of su(2|2) algebra once we fix a vacuum. The spin chain model with

this su(2|2) symmetry, which interpolates the two coupling regions, was constructed in [4].

To take care of the off-shell trace operators, the centrally extended su(2|2) superalgebra

was considered, which contains not only the center of su(2|2), C, whose eigenvalue is the

energy of the spin chain, but also two additional centers, P and K, whose eigenvalues

correspond to the momentum and should vanish on the on-shell trace operators where

the total momentum vanishes. In other words, this spin chain has the psu(2|2) ⋉ R
3

symmetry. A remarkable property is that the S-matrix S on the fundamental representation
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is determined uniquely by the Lie algebraic symmetry up to an overall phase factor. It was

also checked that this S-matrix satisfies the Yang-Baxter equation as the S-matrix of an

integrable spin chain model is expected to.

In order to clarify the full symmetry structure, it is an important subject to study the

universal R-matrix S = Π◦R that does not depend on the representation. Here Π denotes

the graded permutation operator. The first step to investigate the universal R-matrix is

to study its classical limit R12 = 1 + ~r12 + O(~2). It is known that a canonical form of

the classical r-matrix

r12 =
T g

12

i(u1 − u2)
, (1.1)

is a solution to the classical Yang-Baxter equation, where T g
12 is the two-site Casimir op-

erator of the Lie algebra g and u is the spectral parameter. This fact is the starting point

for the classification of solutions of the classical Yang-Baxter equation, as well as for the

study of the symmetry structure [5, 6].

In the case of the AdS/CFT spin chain, however, the relevant Killing form of the cen-

trally extended Lie superalgebra psu(2|2)⋉R
3 is degenerate. Hence, the quadratic Casimir

operator T g commuting with all generators (and the corresponding two-site Casimir op-

erator T g
12) does not exist in the strict sense. To cure the degeneracy of the Killing form,

several different regularizations were proposed. The first one [4] is to consider the excep-

tional superalgebra d(2, 1; ε) which recovers psu(2|2) ⋉ R
3 when the parameter ε is taken

to zero. In the exceptional algebra d(2, 1; ε), the generators C, P and K are not central but

form the usual su(2) algebra. The second one [7] is to couple the central charges to the

su(2) outer automorphism, which has a similar origin as the above case. In [8], to find an

expression for the classical r-matrix similar to (1.1), another regularization was adopted by

introducing a new generator I which complements the original superalgebra su(2|2) into

u(2|2) and couples to the center of su(2|2). Subsequently, the corresponding coproduct and

antipode of this new generator I at level-1 were proposed [9]

∆Î = Î ⊗ 1 + 1 ⊗ Î +
~

2

(
Qα

aU−1 ⊗ Sa
α + Sa

αU+1 ⊗ Qα
a

)
, S(Î) = −Î + 2~C , (1.2)

(with ~ related to the ’t Hooft coupling λ by 1/~ = g =
√
λ/4π) and found to be a

symmetry of the fundamental S-matrix. However, it is still mysterious what the origin of

this novel symmetry is.

Though the original proposal of the classical r-matrix is complicated, an elegant ex-

pression was found by [10]

r12 =
T psu

12 − T psuD−1 ⊗ D − D ⊗ T psuD−1

i(u1 − u2)

=
T psu

12 − (u1/u2)T psuC−1 ⊗ C − (u2/u1)C ⊗ T psuC−1

i(u1 − u2)
, (1.3)

where T psu is the quadratic Casimir-like operator of psu(2|2) and T psu
12 is the corresponding

two-site operator. In the above expression D comes from the classical limit of the centers
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P and K and relates to C by D = 2u−1C. The Casimir-like operator T psu takes the opposite

sign on bosons and fermions

T psu|φa〉 = −1

4
|φa〉 , T psu|ψα〉 = +

1

4
|ψα〉 , (1.4)

and serves the same role as I. Interestingly, it was further noted that the eigenvalue of

the new generator I and the composite operator T psuC−1 coincides and that both the

composite operator T psuC−1 and the Cartan generator of the su(2) outer automorphism

2B = B1
1 − B2

2 satisfy similar commutation relations.

The above classical r-matrix (1.3) implies a beautiful Lie bialgebraic structure. Es-

pecially, the classical cobrackets of all the generators, including the new one I, were con-

structed. This analysis indicates, among others, the Yangian symmetries of the generator

I of all levels. However, unfortunately, aside from the level-1 Yangian symmetry (1.2),

we cannot show that they are exact quantum symmetries of the fundamental S-matrix.

We believe that this unsatisfactory fact stems from the non-canonical form of the classical

r-matrix (1.3), or in other words, the degeneracy of the Killing form of psu(2|2) ⋉ R
3.

In this paper we would like to pursue the origin of this novel generator in the exceptional

superalgebra d(2, 1; ε) and interpret the symmetry I as the ε-correction of the generators

C, P and K. We first investigate the Yangian coproducts of C, P and K in the exceptional

superalgebra d(2, 1; ε) and show that the non-trivial coproduct of I (1.2) coincides with the

ε-correction of the coproduct of C. Secondly, we shall reproduce the classical r-matrix (1.3)

by taking the ε→ 0 limit in the canonical classical r-matrix of the exceptional superalgebra

d(2, 1; ε):

r12 =
T d

12

i(u1 − u2)

∣∣∣
ε→0

, (1.5)

where T d
12 is the two-site quadratic Casimir operator of d(2, 1; ε). Since the generators C,

P and K in d(2, 1; ε) are not central, the action on bosons and fermions is slightly different.

As we shall see later, this is the origin of I in the exceptional algebra d(2, 1; ε).

In the next section we first review the exceptional superalgebra d(2, 1; ε) and the su(2|2)
spin chain model. In section 3, We proceed to studying the Yangian coproducts of all the

psu(2|2) ⋉ R
3 generators from the superalgebra d(2, 1; ε) and find that the non-trivial co-

product of the symmetry I coincides with the ε-correction of that of C. Then we reproduce

the non-canonical AdS/CFT classical r-matrix from the canonical one of d(2, 1; ε) in section

4. Finally in section 5, we conclude with some discussions.

2. Review of the exceptional Lie superalgebra

In this section we would like to review the exceptional Lie superalgebra d(2, 1; ε), the

limit which recovers the symmetry psu(2|2) ⋉ R
3 and the AdS/CFT spin chain with this

symmetry [4].
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2.1 Exceptional superalgebra d(2, 1; ε)

The exceptional Lie superalgebra d(2, 1; ε) is given by three orthogonal sets of su(2) triplet

bosonic generators Ra
b, Lα

β, Ca
b and an octet of fermionic generators Faαa. The non-trivial

commutation relations between the su(2) bosonic generators are given by

[Ra
b,R

c
d] = δc

bR
a
d − δa

dRc
b , [Lα

β ,L
γ
δ] = δγ

βLα
δ − δα

δ Lγ
β , [Ca

b,C
c
d] = δc

bC
a
d − δa

dC
c
b ,

(2.1)

while the fermionic generators transform in the fundamental representation of each su(2)

as

[Ra
b,F

cγc] = δc
bF

aγc− 1

2
δa
b Fcγc, [Lα

β,F
cγc] = δγ

βFcαc− 1

2
δα
β Fcγc,

[Ca
b,F

cγc] = δc
bF

cγa− 1

2
δa
bF

cγc. (2.2)

Also, the anti-commutation relation between the fermionic generators is

{Faαa,Fbβb} = αǫakǫαβǫabRb
k + βǫabǫακǫabLβ

κ + γǫabǫαβǫakCb
k , (2.3)

where the constants α, β, γ have to satisfy α+ β+ γ = 0 due to the Jacobi identity. Since

the overall rescaling does not change the algebraic structure, the only one parameter which

characterizes d(2, 1; ε) is ε = −γ/α. The Killing form of this algebra is non-degenerate,

and therefore, this algebra has a well-defined quadratic Casimir operator,

T d =
1

2

(
−αRa

bR
b
a − βLα

βLβ
α − γCa

bC
b
a − ǫabǫαβǫabF

aαaFbβb
)
. (2.4)

To reproduce the centrally extended superalgebra psu(2|2) ⋉ R
3, let us choose

α = −1 , β = 1 − ε , γ = ε , (2.5)

and take the limit ε → 0. To avoid the singular behavior and match the convention with

the usual one used in psu(2|2) ⋉ R
3, let us further rewrite the last bosonic su(2) generator

Ca
b and the fermionic generator Faαa as

(C)ab =
1

ε

(
C P

−K −C

)

, (Faα)a =

(
ǫakQα

k

ǫακSa
κ

)

. (2.6)

In the new convention, the anti-commutation relations between the fermionic generators

become

{Qα
a,Q

β
b} = ǫαβǫabP ,

{Sa
α,S

b
β} = ǫabǫαβK ,

{Qα
a,S

b
β} = δα

β Rb
a + (1 − ε)δb

aL
α

β + δα
β δ

b
aC , (2.7)

while the commutation relations involving the last bosonic su(2) generators are

[C,P] = εP , [C,K] = −εK , [P,K] = −2εC ,

[C,Qα
a] = +(ε/2)Qα

a , [P,Qα
a] = 0 , [K,Qα

a] = εǫαβǫabS
b
β ,

[C,Sa
α] = −(ε/2)Sa

α , [P,Sa
α] = −εǫabǫαβQβ

b , [K,Sa
α] = 0 . (2.8)
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1

L
L1

2

L2
1

C

P

K

Q1
2

S1
2

Q2
2

S1
1

Q1
1

S2
2

Q2
1

S2
1

C

R

L

ε→ 0

Figure 1: Root lattice of d(2, 1; ε) and the limit to reproduce psu(2|2) ⋉ R
3. Here we have defined

R = (R1
1 − R2

2)/2 and L = (L1
1 − L2

2)/2.

The rest commutation relations involving the other two su(2) generators Ra
b and Lα

β do

not contain the parameter ε. These commutation relations are easily identified with those

of psu(2|2) ⋉ R
3 in the limit ε→ 0. Note that, among others, C, P and K become central

in this limit.

The root lattice should be helpful in understanding the ε → 0 limit intuitively. (See

figure 1.) As we will see in subsection 4.2, the additional dimension of the d(2, 1; ε) root

lattice plays an important role in constructing the representation of d(2, 1; ε). In the next

subsection let us recapitulate the representation of psu(2|2) ⋉ R
3 first.

2.2 Fundamental representation of psu(2|2) ⋉ R
3

The algebra psu(2|2) ⋉ R
3 has a 2|2-dimensional representation, which is called the fun-

damental representation. The states in the representation space are labeled by two bosons

|φa〉 and two fermions |ψα〉.
This representation has a physical meaning in the su(2|2) spin chain model motivated

by super Yang-Mills theory. In the model, the vacuum state is identified with the infinitely

long trace operator

|0〉 = |ZZ · · · Z〉 ⇔ Tr(ZZ · · · Z) , (2.9)

where Z corresponds to one of the complex scalar fields in super Yang-Mills theory. This

identification of the vacuum state breaks the original global psu(2, 2|4) symmetry into

two copies of the su(2|2) symmetry. Hence, the excitation of the original super Yang-

Mills theory is expressed by two excitations in each su(2|2) spin chain. The excitation

χ ∈ {φ1, φ2|ψ1, ψ2} in the su(2|2) spin chain form the fundamental representation of su(2|2).
We shall consider the K-magnon asymptotic state where the excitations are well-separated:

|χ1χ
′
2 · · ·χ′′

K〉 =
∑

n1≪n2≪···≪nK

eip1n1eip2n2 · · · eipKnK |Z · · · Zχ1Z · · · Zχ′
2Z · · · Zχ′′

KZ · · · Z〉 ,

(2.10)

– 5 –
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R
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|φ1〉|φ2〉

|ψ1〉

|ψ2〉

Figure 2: Weight lattice of the fundamental representation of psu(2|2).

with nk denoting the site of the k-th excitation χk. Here, the excitation χk carries the

momentum pk on the spin chain.

The two sets of su(2) bosonic generators Ra
b and Lα

β act kinematically on the states:

Ra
b|φc

k〉 = δc
b |φa

k〉 −
1

2
δa
b |φc

k〉 , Lα
β |ψγ

k 〉 = δγ
β |ψα

k 〉 −
1

2
δα
β |ψγ

k 〉 . (2.11)

Let us postulate the generic action of the fermionic generators Qα
a and Sa

α as

Qα
a|φb

k〉 = ak δ
b
a|Z+1/2ψα

k 〉 , Qα
a|ψβ

k 〉 = bk ǫ
αβǫab|Z+1/2φb

k〉 ,
Sa

α|φb
k〉 = ck ǫ

abǫαβ|Z−1/2ψβ
k 〉 , Sa

α|ψβ
k 〉 = dk δ

β
α|Z−1/2φa

k〉 . (2.12)

(See figure 2.) Here Z±1(/2) stands for insertion or removal of (half of) the Z field. This

is important when we consider the action on the multi-magnon state. If we stick to the

convention of placing the extra Z fields on the most left, a braiding factor Uk = eipk/2

will emerge in moving the Z field to the left as in |χkZn〉 = U2n
k |Znχk〉. This effect can

alternatively be interpreted as the inclusion of a braiding factor Uk = eipk/2 in the tensor

product such as coproducts and two-site Casimir operators [11]. The power of the Z field

n, which depends on the generators, is called grading and corresponds to the eigenvalues

of C in the adjoint representation (2.8) (in the unit of ε).

The consistency condition with the algebra, especially (2.7) in the limit ε→ 0, requires

the coefficients ak, bk, ck and dk to satisfy the relation

akdk − bkck = 1 , (2.13)

as well as determines the action of centers C, P and K

C|χk〉 =
1

2
(akdk + bkck)|χk〉 , P|χk〉 = akbk|Z+1χk〉 , K|χk〉 = ckdk|Z−1χk〉 , (2.14)

where χk is an arbitrary k-th excitation. The coefficients ak, bk, ck and dk are expressed

by parameters x±k , γk and a constant α:

ak =
√
gγk , bk =

√
g
α

γk

(
1 − x+

k

x−k

)
, ck =

√
g
iγk

αx+
k

, dk =
√
g
x+

k

iγk

(
1 − x−k

x+
k

)
, (2.15)
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where the parameters x±k relate to the momentum of the k-th excitation by

x+
k

x−k
= eipk(= U2

k ) , (2.16)

and obey the constraint

x+
k +

1

x+
k

− x−k − 1

x−k
=
i

g
. (2.17)

Note that we have required the extra central charges P and K to vanish on the on-shell

states where the total momentum vanishes. This is why the parameter α has to be a

constant independent of the excitations.

The constraint (2.17) can be solved explicitly [12]

x±k = xk

(√
1 − 1

[2g(xk − x−1
k )]2

± i

2g(xk − x−1
k )

)
. (2.18)

In the classical limit g → ∞, the coefficients ak, bk, ck and dk can be expressed as [13]

ak =
√
gγk , bk =

α

i
√
gγk

1

xk − x−1
k

, ck =
i
√
gγk

α
x−1

k , dk =
1√
gγk

xk

xk − x−1
k

. (2.19)

To keep all the variables finite in the classical limit, we assume that γk scales as 1/
√
g.

Note that in the classical limit, the braiding factor reduces to Uk = 1.

3. Yangian coproducts from d(2, 1; ε)

After reviewing the superalgebra d(2, 1; ε) and the limit leading to the symmetry psu(2|2)⋉

R
3, let us turn to the subject of this paper. We shall reproduce the coproducts of the

generators in psu(2|2) ⋉ R
3 from those in d(2, 1; ε). In the derivation, we will see the first

sign that the novel generator I [8 – 10] can be interpreted as the ε-correction of the last

su(2) generators Ca
b.

A model is solvable if it has an equal number of conserved charges and degrees of

freedom. For a solvable field-theoretical model with infinite degrees of freedom, we expect

infinite conserved charges. In the field-theoretical model the scattering process between

incoming and outgoing states is described by the S-matrix. For the solvable model, it is

often the case that multi-body S-matrix factorizes into the product of two-body S-matrix.

To see the symmetry of the S-matrix, we have to specify how the symmetries JA act on

two-body states, which can be non-local. The mathematical words for this action is called

coproduct ∆JA. The R-matrix R = Π ◦ S of the rational type has a symmetry called

the Yangian algebra [∆ĴA,S] = 0, besides the Lie algebraic symmetries [∆JA,S] = 0. In

general, the Yangian algebra Y (g), associated with Lie algebra g, is a kind of the universal

enveloping algebra U(g[u, u−1]) of the loop algebra g[u, u−1].

– 7 –
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In [14], the level-1 Yangian symmetry ĴA = iuJA (on the evaluation representation)

associated with psu(2|2) ⋉ R
3 is obtained from the standard formula [6]

∆ĴA = ĴA ⊗ 1 + U [A] ⊗ ĴA +
~

2
fA

BCJBU [C] ⊗ JC , S(ĴA) = −U−[A]
(
ĴA − ~

4
fA

BCf
BC
D JD

)
,

(3.1)

where [A] is the grading charge and the abelian generator U is the braiding factor (2.16).

The first formula of the coproduct can be reexpressed as

∆ĴA = ĴA ⊗ 1 + U [A] ⊗ ĴA +
~

4
[T g

12,U [A] ⊗ JA − JA ⊗ 1] , (3.2)

which is very useful in calculation.

The two-site Casimir operator of the superalgebra d(2, 1; ε) can be read off directly

from (2.4) as

T d
12 = Ra

b ⊗ Rb
a − (1 − ε)Lα

β ⊗ Lβ
α + Qα

bU−1 ⊗ Sb
α − Sa

βU+1 ⊗ Qβ
a −

1

ε
T C

12 , (3.3)

with T C
12 being the Casimir operator of the last su(2) generators

T C
12 = −PU−2 ⊗ K + 2C ⊗ C − KU+2 ⊗ P . (3.4)

Using this two-site Casimir operator (3.3), we find without difficulty that

∆R̂a
b =R̂a

b ⊗ 1 + 1 ⊗ R̂a
b +

~

2

[
Ra

c ⊗ Rc
b − Rc

b ⊗ Ra
c

− Sa
γU ⊗ Qγ

b − Qγ
bU−1 ⊗ Sa

γ +
1

2
δa
b

(
Sc

γU ⊗ Qγ
c + Qγ

cU−1 ⊗ Sc
γ

)]
,

∆L̂α
β =L̂α

β ⊗ 1 + 1 ⊗ L̂α
β +

~

2

[
− (1 − ε)

(
Lα

γ ⊗ Lγ
β − Lγ

β ⊗ Lα
γ

)

+ Qα
cU−1 ⊗ Sc

β + Sc
βU ⊗ Qα

c −
1

2
δα
β

(
Qγ

cU−1 ⊗ Sc
γ + Sc

γU ⊗ Qγ
c

)]
,

∆Q̂α
a =Q̂α

a ⊗ 1 + U ⊗ Q̂α
a +

~

2

[
ǫαβǫab

(
PU−1 ⊗ Sb

β − Sb
βU2 ⊗ P

)

−
(
δα
β Rb

a+(1−ε)δb
aLα

β+δb
aδ

α
β C
)
U ⊗ Qβ

b+Qβ
b⊗
(
δα
β Rb

a+(1−ε)δb
aL

α
β+δb

aδ
α
β C
)]
,

∆Ŝa
α =Ŝa

α ⊗ 1 + U−1 ⊗ Ŝa
α +

~

2

[
− ǫabǫαβ

(
KU ⊗ Qβ

b − Qβ
bU−2 ⊗ K

)

+
(
δβ
αRa

b+(1−ε)δa
b Lβ

α+δa
b δ

β
αC
)
U−1⊗Sb

β−Sb
β⊗
(
δβ
αRa

b+(1−ε)δa
b Lβ

α+δa
b δ

β
αC
)]
,

∆Ĉ =Ĉ ⊗ 1 + 1 ⊗ Ĉ +
~

2

[
PU−2 ⊗ K − KU2 ⊗ P +

ε

2

(
Qα

aU−1 ⊗ Sa
α + Sa

αU ⊗ Qα
a

) ]
,

∆P̂ =P̂ ⊗ 1 + U2 ⊗ P̂ + ~

[
− CU2 ⊗ P + P ⊗ C +

ε

2
ǫabǫαβQα

aU ⊗ Qβ
b

]
,

∆K̂ =K̂ ⊗ 1 + U−2 ⊗ K̂ + ~

[
CU−2 ⊗ K − K ⊗ C +

ε

2
ǫαβǫabS

a
αU−1 ⊗ Sb

β

]
. (3.5)
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The antipode is also recovered, S(ĴA) = −U−[A]ĴA, if we assume the counit vanishes,

ǫ(ĴA) = 0.

When we plug the Casimir operator of d(2, 1; ε) (3.3) into the coproduct formula (3.2),

the last term in (3.3) seems divergent in the limit ε → 0 at the first sight. However, the

divergence is canceled by ε on the right-hand-side of (2.8), which makes C, P and K central

in the limit ε → 0. Now it is easy to see that we recover the previous coproducts in [14]

after taking the limit ε → 0. Note that the ε-correction of ∆Ĉ in (3.5) is exactly the non-

trivial part of the symmetry ∆Î (1.2). Hence, it is natural to regard the secret symmetry

I as the ε-correction of the generator C.

In [14] the coproduct of psu(2|2) ⋉ R
3 was found from the su(2) outer automorphism.

There is an interesting way to reproduce similar commutation relations and Casimir oper-

ator used in the derivation with the su(2) outer automorphism. Let us separate the last

su(2) generators Ca
b of d(2, 1; ε) into

Ca
b =

1

ε
Ca

b + Ba
b , (3.6)

where Ca
b is interpreted as the center of psu(2|2) ⋉ R

3 and Ba
b is their difference. Then,

the whole commutation relations involving Ca
b can be reproduced by the commutation

relations1 at each order of ε:

[Ca
b,C

c
d] = 0 , [Ca

b,B
c
d] + [Ba

b,C
c
d] = δc

bC
a
d−δa

dC
c
b , [Ba

b,B
c
d] = δc

bB
a
d−δa

dB
c
b ,

[Ca
b,F

cγc] = 0 , [Ba
b,F

cγc] = δc
bF

cγa− 1

2
δa
bF

cγc . (3.7)

and the two-site Casimir operator (3.3) reduces to

T d
12 = Ra

b ⊗ Rb
a − Lα

β ⊗ Lβ
α + Qα

b ⊗ Sb
α − Sa

β ⊗ Qβ
a

− 1

ε
Ca

b ⊗ Cb
a − Ca

b ⊗ Bb
a − Ba

b ⊗ Cb
a + O(ε) , (3.8)

(where we have dropped all the braiding factors U for simplicity). Note that the second

equation of (3.7) is not conventional and in the two-site Casimir operator (3.8) we have an

extra term of (1/ε)Ca
b ⊗ Cb

a compared with [14]. The effect of these two differences adds

up to the correct coefficients of [14].

4. Non-canonical classical r-matrix from d(2, 1; ε)

In the previous section, we have seen that the coproducts of the Yangian generators can be

reproduced from the exceptional superalgebra d(2, 1; ε), which implies that the AdS/CFT

spin chain has an origin in the exceptional superalgebra d(2, 1; ε) and the symmetry I can

be regarded as the ε-correction of the last su(2) generators Ca
b. Here, we would like to

reproduce the non-canonical AdS/CFT classical r-matrix (1.3) from the canonical classical

r-matrix of this exceptional superalgebra.

1Note that the second equation is not the commutation relation of the usual Lie algebra. Therefore, the

generators Ca
b and Ba

b do not satisfy all the Jacobi identities. We are grateful to N. Beisert for pointing

this out.
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4.1 Observation

The classical r-matrix of the su(2|2) spin chain was obtained in [8, 10]

r12 =
T psu

12 − T psuD−1 ⊗ D − D ⊗ T psuD−1

i(u1 − u2)
, (4.1)

where T psu is the Casimir-like operator of psu(2|2) and T psu
12 is the corresponding two-site

operator:

T psu =
1

2

(
Ra

bR
b
a − Lα

βLβ
α + Qα

bS
b
α − Sa

βQβ
a

)
,

T psu
12 = Ra

b ⊗ Rb
a − Lα

β ⊗ Lβ
α + Qα

bU−1 ⊗ Sb
α − Sa

βU+1 ⊗ Qβ
a . (4.2)

This classical r-matrix takes, however, a non-canonical form, where the numerator of (4.1)

is not the Casimir operator of the symmetry algebra. Our goal in this section is to derive

this non-canonical classical r-matrix from the canonical r-matrix of the exceptional algebra

d(2, 1; ε) by taking ε to zero:

r12 =
T d

12

i(u1 − u2)

∣∣∣
ε→0

, (4.3)

where T d
12 is the two-site Casimir operator (3.3) of d(2, 1; ε),

T d
12 = Ra

b ⊗ Rb
a − (1 − ε)Lα

β ⊗ Lβ
α + Qα

bU−1 ⊗ Sb
α − Sa

βU+1 ⊗ Qβ
a −

1

ε
T C

12 , (4.4)

with the last su(2) part being T C
12 = −PU−2 ⊗ K + 2C ⊗ C − KU+2 ⊗ P.

The good property of the Casimir-like operator T psu, which appears in the non-

canonical r-matrix (4.1), is that it takes the opposite sign on bosons and fermions,

T psu|φa〉 = −1

4
|φa〉 , T psu|ψα〉 = +

1

4
|ψα〉 , (4.5)

and plays the role of the generator I. This property is realized in the exceptional super-

algebra d(2, 1; ε) as the difference of the action of Ca
b on bosons and fermions, since the

generators C, P and K are no longer central in d(2, 1; ε). The precise meaning of this will

be clarified when we consider the representation in the following subsection.

Note that, although it is easy to see that the first four terms of T d
12 in (4.4) reduces

to T psu
12 in the limit ε→ 0, the final term T C

12/ε looks singular and may not have a smooth

limit in ε → 0 at the first sight. This problem is solved as follows. We shall evaluate this

term on the representation of d(2, 1; ε), and expand the result in ε,

1

ε
T C

12 = O(1/ε) + O(1) + O(ε) + · · · . (4.6)

Then, we will find that the most singular term is constant which is independent of the

states in the representation space. This means that we can interpret it as an overall phase

factor of the S-matrix, which is not relevant in our present analysis. On the other hand,

the higher terms of O(ε) simply vanish after we take the limit ε → 0. Therefore the

only relevant contribution is the O(1) term. We shall see that this term reproduces the

non-canonical terms of the su(2|2) classical r-matrix (4.1).
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4.2 Representation of d(2, 1; ε)

Of course, it is better if we can show that the generator I is the ε-correction of Ca
b at the

algebraic level without referring to the representation. However, we cannot find so far a

rigorous argument for this statement. For this reason, let us construct the representation

of d(2, 1; ε) first and evaluate the contribution of the O(1) term in (4.6).

In the case of psu(2|2)⋉R
3, the fundamental representation 2|2 consists of two bosons

and two fermions. It is surprising that in the case of d(2, 1; ε) there is a representation,

tantalizingly similar to this fundamental representation 2|2 [15].2 The only difference is

that the root lattice of d(2, 1; ε) has one additional dimension, which requires the state to

have an additional index n labeling the weight in this dimension (related to the grading).

Here, P and K raises and lowers the weight by one unit, while Qα
a and Sa

α raises and

lowers by half of it. Therefore, it is natural to assume that the representation of the

fermionic generators takes the following indices:3 (n ∈ Z)

Qα
a|φb

n〉 = an δ
b
a|ψα

n+ 1

2

〉 , Qα
a|ψβ

n− 1

2

〉 = bn ǫ
αβǫab|φb

n〉 ,

Sa
α|φb

n〉 = cn ǫ
abǫαβ |ψβ

n− 1

2

〉 , Sa
α|ψβ

n+ 1

2

〉 = dn δ
β
α|φa

n〉 . (4.7)

Note that the index n should not be confused with the previous one k in the representation

of psu(2|2)⋉ R
3 (2.12), which stands for the k-th excitation in the spin chain. For the con-

sistency with the commutation relations, especially (2.7), we have to impose the following

conditions,

1 = andn − bncn , 1 − ε = andn − bn+1cn+1 , (4.8)

as well as determine the action of bosonic generators as follows:

P|φa
n〉 = anbn+1|φa

n+1〉 , P|ψα
n+ 1

2

〉 = an+1bn+1|ψα
n+ 3

2

〉 ,

C|φa
n〉 =

1

2
(andn + bncn)|φa

n〉 , C|ψα
n+ 1

2

〉 =
1

2
(andn + bn+1cn+1)|ψα

n+ 1

2

〉 ,

K|φa
n〉 = cndn−1|φa

n−1〉 , K|ψα
n+ 1

2

〉 = cndn|ψα
n− 1

2

〉 . (4.9)

Note that the indices in the above actions of C, P and K are slightly different between

bosons and fermions. This fact already implies the appearance of the generator I.

Comparing this representation with the previous su(2|2) spin chain, we can assign a

physical interpretation to the current representation. Since the grading in the su(2|2) spin

chain denotes insertion or removal of the vacuum field Z, it is not difficult to imagine that

the index n can be interpreted as the position of the excitation on the spin chain. This

interpretation will be helpful in reproducing the non-canonical terms of the AdS/CFT

classical r-matrix later.

2We are grateful to A. Torrielli for valuable discussions on this reference. See also [16].
3In this convention, the indices of bosons are integers while those of fermions are half-integers. Also,

the index of each coefficient coincides with that of the boson. Though this convention makes the following

calculation simple, of course the final results do not depend on the convention.
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The reader may wonder how to reproduce the AdS/CFT classical r-matrix without

the position index from the representation of the exceptional superalgebra d(2, 1; ε) with

the position index n. A naive guess is to sum over the states, which makes states blind

to the position index. Actually this idea is realized in some sense.4 Speaking in a more

sophisticated way, we will diagonalize the action of (1/ε)T C
12 by Fourier-transforming the

above coordinate (site) picture into the momentum picture as in the asymptotic state (2.10).

From the first constraint in (4.8), we can solve an, bn, cn and dn by parameters γn and

xn and a constant α:

an =
√
gγn , bn =

α

i
√
gγn

Dn , cn =
i
√
gγn

α
x−1

n , dn =
1√
gγn

xnDn , (4.10)

whereDn = 1/(xn−x−1
n ) and

√
gγn scales as a constant in the limit g → ∞. This expression

is, of course, inspired by the su(2|2) spin chain (2.19). Here we have also exploited the

physical input that α is constant. The second constraints in (4.8) implies

x−1
n+1

xn+1 − x−1
n+1

− x−1
n

xn − x−1
n

= ε , (4.11)

which means the difference of xn is of O(ε). If we define δxn = xn+1 − xn, the above

relation at O(ε) reduces to

δxn = −ε
2
xnD

−2
n . (4.12)

As we will see later, the effect of O(ε) will cancel the singular coefficient 1/ε of the

Casimir operator T C
12 in (4.4) and give a finite contribution. Therefore, the difference in the

indices is very important. For this reason, although originally fermions have the indices of

half-integers, if we want to compare fermions with bosons, we have to interpolate the indices

into integers.5 Note that fermions with integral indices do not exist in the representation

space. We only introduce these states virtually for the comparison between bosons and

fermions. (See figure 3.)

After interpolating the index of fermionic states into integers, the action of the bosonic

generators reduces to

P|φa
n〉 =

α

i

[
1− δγn

γn

](
Dn+

ε

2
(xn + x−1

n )

)
|φa

n+1〉 , P|ψα
n〉 =

α

i

(
Dn+

ε

4
(xn+x−1

n )
)
|ψα

n+1〉 ,

C|φa
n〉 =

1

2

(
xn + x−1

n

)
Dn|φa

n〉 , C|ψα
n〉 =

1

2

(
xn + x−1

n

)
Dn|ψα

n〉 ,

K|φa
n〉 =

i

α

[
1+

δγn

γn

](
Dn−εx−1

n

)
|φa

n−1〉 , K|ψα
n〉 =

i

α

(
Dn−

ε

4
(xn+x−1

n )
)
|ψα

n−1〉 ,
(4.13)

where we have defined δγn = γn+1 − γn.

4We are grateful to H. Kanno for discussions on this point.
5The important thing is to balance the bosonic indices with the fermionic ones. We can alternatively

interpolate the bosonic indices into half-integers as another convention.
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bosons

fermions

C

Figure 3: Virtual fermionic states with integer indices (Red). The other two dimensions of the

weight lattice in figure 2 are omitted.

If we take the unitarity condition [7] into account, the variable γn is related to xn by

√
gγn =

√
xnDn , (4.14)

which means δγn/γn = εx−1
n D−1

n /2. In this case, the action of P and K is slightly simplified:

P|φa
n〉 =

α

i

(
Dn +

ε

2
xn

)
|φa

n+1〉 , K|φa
n〉 =

i

α

(
Dn − ε

2
x−1

n

)
|φa

n−1〉 . (4.15)

4.3 Classical r-matrix

After we constructed the representation in the previous subsection, let us reproduce the

non-canonical terms of the classical r-matrix (4.1). We evaluate the singular term (4.6)

explicitly on a two-site state |χnχ
′
m〉, defined by a tensor product |χn〉1 ⊗ |χ′

m〉2:
1

ε
T C

12|χnχ
′
m〉 = rn|χn+1χ

′
m−1〉 + sn|χnχ

′
m〉 + tn|χn−1χ

′
m+1〉 , (4.16)

with rn, sn and tn being some appropriate coefficients. In general, we find the action of

T C
12 generates a linear combination of the states with different position indices. Comparing

with the asymptotic state (2.10) which is a momentum eigenstate, it is not difficult to

convince ourselves that we have to consider the eigenstate of T C
12. Therefore, let us solve the

infinite-dimensional eigenvalue problem. Note that the reality condition of the eigenvalue

is guaranteed only when the infinite-dimensional matrix (4.16) is symmetric. This is the

case if we impose the unitarity condition (4.14).

Since generally a matrix has plural eigenvalues, we have to specify which eigenvalue

or eigenstate we want to perturb from. In the classical limit g → ∞ of the su(2|2) spin

chain, (2.18) gives x+ = x− which implies the excitation has the zero momentum p = 0

from (2.16). Hence, the asymptotic state (2.10) is simply the summation of states with

excitations at each site with weight one. Motivated by this su(2|2) spin chain, we are led

to studying the perturbation theory from the eigenstate summing up all the states with

weight one,

∞∑

l=−∞

|χn−lχ
′
m+l〉 . (4.17)
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The solution to this eigenvalue problem is well-established in the perturbation theory

of quantum mechanics [17]. In a system with Hamiltonian H(0)+εH(1) where H(0) is solved

exactly to have the eigenvalue E
(0)
ℓ with the eigenstate |ϕ(0)

ℓ 〉, the first-order deviation of

the eigenvalue E
(1)
ℓ is given by a famous formula,

E
(1)
ℓ = 〈ϕ(0)

ℓ |H(1)|ϕ(0)
ℓ 〉 . (4.18)

In our present case where the eigenstate before the perturbation is a summation of

weight one, the first-order deviation is simply given by summing up the matrix elements

indiscriminately with weight one:

1

ε
T C

12|χnχ
′
m〉 ∼ (rn + sn + tn)|χnχ

′
m〉 . (4.19)

After the calculation, we find (independently of δγ/γ)

1

ε
T C

12|φa
1φ

b
2〉 =

[
1

ε
T − 1

2

(
D−1

1 D2 +D1D
−1
2

)]
|φa

1φ
b
2〉 ,

1

ε
T C

12|ψα
1ψ

β
2 〉 =

[
1

ε
T + 0

]
|ψα

1ψ
β
2 〉 ,

1

ε
T C

12|φa
1ψ

α
2 〉 =

[
1

ε
T − 1

2
D−1

1 D2

]
|φa

1ψ
α
2 〉 ,

1

ε
T C

12|ψα
1 φ

a
2〉 =

[
1

ε
T − 1

2
D1D

−1
2

]
|ψα

1 φ
a
2〉 , (4.20)

where T is a quantity of O(1),

T =
1

2
(x1 + x−1

1 )(x2 + x−1
2 )D1D2 − 2D1D2 , (4.21)

and we have dropped higher order terms of ε. Since the variables associated to the 1-st

and 2-nd excitations always have the position indices n and m, here we have used the

“wavepacket” indices 1 and 2 instead of the position indices. By subtracting the average

of the right-hand-sides, we can normalize the classical r-matrix as

1

ε
T C

12|φa
1φ

b
2〉 =

[
−1

4
D−1

1 D2 −
1

4
D1D

−1
2

]
|φa

1φ
b
2〉 ,

1

ε
T C

12|ψα
1 ψ

β
2 〉 =

[
+

1

4
D−1

1 D2 +
1

4
D1D

−1
2

]
|ψα

1ψ
β
2 〉 ,

1

ε
T C

12|φa
1ψ

α
2 〉 =

[
−1

4
D−1

1 D2 +
1

4
D1D

−1
2

]
|φa

1ψ
α
2 〉 ,

1

ε
T C

12|ψα
1 φ

a
2〉 =

[
+

1

4
D−1

1 D2 −
1

4
D1D

−1
2

]
|ψα

1 φ
a
2〉 . (4.22)

This is nothing but the non-canonical terms of the AdS/CFT classical r-matrix (4.1).

Since we are solving an infinite-dimensional eigenvalue problem, it is safer to present

the eigenstates as well, instead of simply applying the formula (4.18) from the perturbation

theory. For this purpose we have to know that rn, sn and tn appeared above satisfy

sn+1 − sn = −u1D1 + u2D2 , rn+1 − rn = tn+1 − tn =
1

2
(u2D1 − u1D2) , (4.23)
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with the spectral parameter u = x+x−1. This recursive relation is independent of the states

in the representation space, because it comes from the universal singular term T (4.21). If

we assume the eigenstate to be

|χ1χ
′
2〉 =

∞∑

l=−∞

(1 + εfn−l)|χn−lχ
′
m+l〉 , (4.24)

we will find a recursive relation for fn independent of bosons or fermions:

fn+1 − 2fn + fn−1 = f1 − 2f0 + f−1 + n(u2 − u1)(D
−1
1 +D−1

2 ) . (4.25)

The recursive relation can be solved by

fn =
n3

6
(u2 − u1)(D

−1
1 +D−1

2 ) , (4.26)

with suitable initial conditions. It is easy to reproduce the above eigenvalues from this

eigenvector. We thus complete our solution to the eigenvalue problem.

5. Conclusions

In this paper, we have investigated the AdS/CFT spin chain with the symmetry psu(2|2)⋉

R
3 using the exceptional Lie superalgebra d(2, 1; ε). In our analysis, we have obtained two

results. First, we have rederived the coproducts of the level-1 Yangian generators from

d(2, 1; ε). In the derivation, we find that the non-trivial part of the secret symmetry I

appears as the ε-correction of the last su(2) triplet generators Ca
b in d(2, 1; ε). Secondly we

have reproduced the non-canonical AdS/CFT classical r-matrix (1.3) from the canonical

r-matrix of d(2, 1; ε). The non-canonical terms of the classical r-matrix come from the

differences of the action of Ca
b on bosons and fermions.

Originally, as we explained in the introduction, three regularizations were adopted to

cure the degeneracy of the Killing form: superalgebra d(2, 1; ε), su(2) outer automorphism

and superalgebra u(2|2). The su(2) outer automorphism does not look intrinsic to the

su(2|2) spin chain model. In our analysis, we have given an interpretation to all these

regularizations in d(2, 1; ε) and made the outer su(2) automorphism look more intrinsic to

the model.

Let us conclude by listing several further directions.

• The super Yang-Mills theory does not have the symmetry d(2, 1; ε). At this stage,

pursuing the Yangian symmetries in d(2, 1; ε) is a purely technical tool to access

various results of the Yangian algebra with the non-degenerating Killing form and to

study the secret symmetry as the ε-correction. However, considering the success of

the off-shell formalism with the centrally extended su(2|2) algebra and the naturalness

of reproduction of this algebra from d(2, 1; ε) in the limit ε→ 0, it may be eventually

possible to assign a physical meaning to the exceptional superalgebra d(2, 1; ε) in the

super Yang-Mills theory (or its deformation).
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• Although our derivation of the AdS/CFT classical r-matrix from the exceptional

superalgebra d(2, 1; ε) fully makes sense from the viewpoint of the representation

theory, it is not easy to assign a physical interpretation to the d(2, 1; ε) spin chain.

Especially, it is not very clear whether the mathematical tensor product of the single-

excitation states really corresponds to the physical picture of a spin chain state with

multi-excitations. Since the representation of d(2, 1; ε) has the position index, mak-

ing full sense of the d(2, 1; ε) spin chain may be helpful in understanding the finite

size effects [18]. Also, since we have subtracted the overall shift to derive the non-

canonical expression of the classical r-matrix, we expect the d(2, 1; ε) spin chain gives

an implication to the overall phase factor [19].

• In section 3 we have reproduced the non-trivial coproduct of the symmetry I as the ε-

correction of the generator C, while the non-canonical term of the AdS/CFT classical

r-matrix seems to be reproduced directly from the ε-correction of the generators

P and K in section 4. We believe that the difference is “convention-dependent”,

though we cannot make this statement more clear. A similar question whether we can

construct a secret symmetry with the non-trivial coproduct being ǫabǫαβQα
aU+1⊗Qβ

b

or ǫαβǫabS
a
αU−1 ⊗ Sb

β [10] remains unanswered.

• Though various deformations are introduced to investigate the su(2|2) spin chain [20],

our work suggests that we can lift the question of the universal R-matrix of the

AdS/CFT spin chain into that of the exceptional superalgebra d(2, 1; ε). Work on

the universal R-matrix of d(2, 1; ε) [21] seems promising in finding the universal R-

matrix of the AdS/CFT spin chain.

• As we have mentioned in the introduction, two possible viewpoints can be assigned

to the secret symmetry I: as the su(2) automorphism and as the composite operator

T psuC−1. In lifting the AdS/CFT spin chain to the d(2, 1; ε) model, we believe we have

given both I and Ba
b a nice picture as the ε-correction of the last su(2) generators

Ca
b. However, it is still unclear how the interpretation as a composite operator is

consistent from the d(2, 1; ε) viewpoint. Understanding the meaning of the composite

operator interpretation may help us in deriving the non-canonical classical r-matrix

from d(2, 1; ε) at the algebraic level without mentioning to the representation.

• It is always interesting to study various aspects of this spin chain model from the

string worldsheet theory. Recent works [22] may give a clue in this direction.
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