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1. Introduction and summary

Black holes can have non-spherical horizons in more than four spacetime dimensions. In

five dimensions, one encounters the first example of a non-spherical horizon, S2 × S1, a

black ring.1 Emparan and Reall constructed the first black ring solution as a solution

to vacuum gravity [1]. Solutions in five dimensions can have two independent rotation

parameters, call them Jψ and Jφ. The Emparan-Reall ring rotates only along the direction

of the ring, Jφ = 0. Subsequently, black-ring solutions with Jψ = 0 but Jφ 6= 0 were

discovered [2], again in vacuum gravity. A black ring solution to Einstein-Maxwell theory

was constructed in [3].

Asymptotically flat supersymmetric black rings were constructed first in Elvang et

al [5], though they had been conjectured to exist earlier in [4]. We will refer to this

1For a review, see [9].
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solution as the flat susic ring. The flat susic ring has both the rotation parameters turned

on, Jψ 6= 0, Jφ 6= 0. This solution fits into the classification scheme for supersymmetric

solutions to five dimensional minimal supergravity, discovered by Gauntlett et. al. [6].

According to this classification, there are two classes of solutions, corresponding to whether

the Killing spinor bilinear ǫ γµ ǫ, which is always a Killing vector, is time-like or null. In

this paper we will only be interested in the time-like class; choosing the time co-ordinate,

τ , along the orbits of the time-like Killing vector, the metric takes the following stationary

form:

ds2 = −f2 (dτ + ω)2 +
1

f
ds2

M4
(1.1)

where f is a function, ω is a one-form and ds2
M4

is a four-metric on the space transverse

to the orbits of the Killing vector. M4 will be referred to as the base-space. It was shown

in [6] that supersymmetry requires f to be a function on M4, ω to be a one-form on M4

and that the base-space be a hyper-Kähler manifold. These quantities must also satisfy

the following p.d.e’s.

dG + = 0, ∆ (1/f) =
4

9
|G +|2, (1.2)

where

G± =
f

2
(dω ± ∗ dω) (1.3)

and ∆ is the Laplacian for functions on the base-space. For the susic flat ring solution of [5],

the base-space is just flat-space; however, Euclidean coordinates are not so useful here and

one writes the flat-space metric in special co-ordinates that will be referred to as C-metric

co-ordinates. In these coordinates, the above equations become simple to solve [12]. There

are other supersymmetric black ring solutions which involve more non-trivial hyper-Kähler

base-spaces: the Gauntlett-Gutowski rings [7, 8] that have a Gibbons-Hawking base-space.

An interesting question is the existence of supersymmetric black ring solutions in AdS

space, i.e. ring solutions to gauged supergravity theories. The theory of supersymmetric

solutions to gauged supergravity was first worked out by Gauntlett and Gutowski in [10],

henceforth referred to as the Gauntlett-Gutowski theory, for the minimal case and sub-

sequently for the U(1)3 case in [17]. Again there is a time-like class of solutions, whose

metric takes the form (1.1) and as in the asymptotically flat case, f is a function on the

base-space and ω is a one-form on the base-space. But now supersymmetry requires, both

in the minimal and U(1)3 cases, that the base-space M4 be a Kähler manifold.

We will import a class of U(1)2 invariant Kähler metrics from the mathematics litera-

ture [11]. The metrics are given in Darboux or symplectic co-ordinates; in these co-ordinates

all the metrics in the class have the same Kähler form, whilst the complex structures can

be different. We find in this class two important metrics: 1. the base-space metric for

the susic flat ring and 2. the base-space metric for AdS5, i.e. the Bergmann metric. The

parameter that deforms the first to the second is precisely the cosmological constant.

1. For the flat-space metric, we find that the Darboux co-ordinates are “ring-like”: the

co-ordinate ranges of the Darboux co-ordinates in the co-ordinate directions orthog-

onal to the U(1)2 directions are identical to the corresponding C-metric co-ordinates
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and the flat-space metric in Darboux co-ordinates is isometric to the flat-space metric

in C-metric co-ordinates. We give the explicit co-ordinate transformations.

2. We show that a certain metric in the class of metrics [11] is the Bergmann metric. The

co-ordinate region in which this form of the Bergmann metric is defined is exactly

the same as the co-ordinate region in which the flat-space metric is defined. We

thus obtain the Bergmann metric and hence AdS5 in ring-like co-ordinates. We give

the explicit co-ordinate transformation between the polar co-ordinates in which the

Bergmann metric is usually expressed and the “ring-like” Darboux co-ordinates.

Since in the Darboux co-ordinates, the Kähler form takes such a simple form, the

underlying Kähler structure of susic flat solutions becomes prominent when we express

them in these co-ordinates. We find that the one-form ω of the susic flat ring takes the

following simple form:

ω = ρ dψ + k Ω(1), (1.4)

where Ω(1) is a one-form whose exterior derivative is the Kähler form, ψ is the co-ordinate

along the ring and ρ, k are functions. Apart from the susic flat ring, there are other

U(1)2 invariant asymptotically flat supersymmetric solutions known. These describe a

supersymmetric black hole placed in the centre of a susic flat ring [7, 8, 12, 13]. We

describe these solutions in ring-like coordinates and show that the one-form ω also takes

the form (1.4).

Recent work [24] suggests that supersymmetric black rings do not exist in AdS5. Our

ansatz provides a framework for addressing this interesting question further.

This paper is organized as follows. In section two, we reproduce all the necessary

definitions, theorems from the math papers that we will need for our work. In section three,

we consider flat-space in Darboux co-ordinates, describe in what sense they are “ring-like”

and describe the relation between Darboux and C-metric coordinates. In section four, we

elaborate on the properties of a certain U(1)2 invariant metric that allows us to conclude

that it is the Bergmann metric, and obtain AdS5 in “ring-like” co-ordinates. In section five,

we co-ordinate transform various flat supersymmetric solutions from C-metric co-ordinates

to the Darboux co-ordinates to find the form (1.4) for the one-form ω. In section six, we

make Ansätze for the metric and the one-form of the AdS ring and conclude with directions

for future work.

2. Toric Kähler metrics in Darboux co-ordinates

The expectation that a supersymmetric AdS ring should have a U(1)2 isometry, similar to

the susic flat ring, leads us to look for Kähler metrics preserving a U(1)2 isometry. Such

metrics have appeared before in both the math and physics literature and are referred

to as toric Kähler metrics. More precisely, a toric Kähler metric is a Kähler metric

admitting commuting holomorphic Killing vector fields which are independent. There exists

a description of such metrics in local co-ordinates in the symplectic geometry literature.

One thinks of the Kähler form as a symplectic form; in symplectic geometry, one uses
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local co-ordinates, called symplectic or Darboux co-ordinates, in which the symplectic

form takes a standard form while the metric and the complex structure are described by

non-trivial tensors. The study of Kähler metrics in symplectic co-ordinates is attributed to

the mathematicians, Guillemin [14] and Abreu [15]. Symplectic co-ordinates also appear

naturally in the context of the gauged linear sigma model [16]. Here, we reproduce the

relevant proposition from [11].

Proposition 1. Let Gij be a positive definite 2 × 2 symmetric matrix of functions of

2-variables x1 and x2 with inverse Gij . Then the metric

∑

i,j

(

Gijdxidxj + Gijdtidtj
)

(2.1)

is almost-Kähler with Kähler form

Ω = dx1 ∧ dt1 + dx2 ∧ dt2 (2.2)

and has independent hamiltonian Killing vector fields ∂/∂t1, ∂/∂t2 with Poisson-commuting

momentum maps x1 and x2. Any almost-Kähler structure with such a pair of Killing vector

fields is of this form (where the ti are locally defined up to an additive constant), and is

Kähler if and only if Gij is the Hessian of a function of x1 and x2.

The function of two variables is known as the symplectic potential. The Kähler metric

that appears in the above proposition is still quite generic, being specified by an arbitrary

function of two variables. Note that the two-form Ω takes a simple form in symplectic

co-ordinates while the metric (and complex structure) are non-trivial. The authors of [11]

define a sub-class of toric Kähler metrics viz. ortho-toric Kähler metrics.

Definition 2. A Kähler metric is ortho-toric if it admits two independent hamiltonian

Killing vector fields with Poisson-commuting moment maps (ξ + η) and ξ η such that dξ

and dη are orthogonal.

In other words, an ortho-toric Kähler metric is a toric Kähler metric, which when

expressed in the ξ-η co-ordinates does not contain cross-terms (g ξη = 0.)

x1 = ξ + η, x2 = ξ η. (2.3)

One of the virtues of the ξ-η co-ordinates is that there is a symmetry under the exchange

ξ ↔ η, which simplifies computations and allows for compact expressions. This feature is

shared by the x-y part of the C-metric coordinates, about which we will elaborate later.

We will henceforth refer to the {ξ, t, η, z} co-ordinates as the Darboux coordinates, even

if that term strictly should mean the {x1, t, x2, z} co-ordinates. We will now quote the

following proposition from [14], which provides a local form of ortho-toric Kähler metrics

in the ξ-η coordinates.

– 4 –



J
H
E
P
1
1
(
2
0
0
7
)
0
6
0

Proposition 3. The almost-Hermitian structure (g, J,Ω) defined by

g = (ξ − η)

(

dξ2

F (ξ)
− dη2

G(η)

)

+
1

ξ − η

(

F (ξ)(dt + η dz)2 − G(η)(dt + ξ dz)2
)

, (2.4)

Jdξ =
F (ξ)

ξ − η
(dt + η dz), Jdt = − ξ dξ

F (ξ)
− η dη

G(η)
,

Jdη =
G(η)

η − ξ
(dt + ξ dz), Jdz =

dξ

F (ξ)
+

dη

G(η)
, (2.5)

Ω = d(ξ + η) ∧ dt + d(ξ η) ∧ dz (2.6)

is an ortho-toric Kähler structure for any functions F,G of one variable. Every ortho-toric

Kähler structure is of this form, where t, z are locally defined up to an additive constant.

The following one-form Ω(1) whose exterior derivative gives the Kähler form (2.6) will

appear later.

d Ω(1) = Ω, Ω(1) ≡ (ξ + η) dt + (1 + ξη) dz (2.7)

It is worth re-emphasizing that all the Kähler metrics in (2.4) and (2.1) have the same Ω

and Ω(1) as given in (2.6) and (2.7).

We will refer to the metrics (2.4) as the ACG metrics. The authors of [11] derive

their motivation to consider co-ordinates (2.3) and to focus on the ortho-toric sub-class of

toric Kähler metrics from their study of what are called weakly self-dual Kähler metrics.

A weakly self-dual Kähler metric is a Kähler metric whose anti-self-dual part of the Weyl

tensor is harmonic, (after having fixed the underlying orientation to make the Kähler form

self-dual.) A weakly self-dual Kähler metric has many important properties, one of which is

that two particular functions built out of the metric are Poisson-commuting holomorphic

potentials (a holomorphic potential is the moment map of a hamiltonian Killing vector

field.) Poisson-commutation ensures that the corresponding hamiltonian Killing vector

fields commute, though they need not be independent. The two functions in question

are the normalized Ricci scalar,2 s, and the pfaffian of the normalized Ricci form,3 p.

Furthermore, when expressed in coordinates related to the holomorphic potentials,

s = ξ + η, p = ξ η, (2.8)

it turns out that a weakly self-dual Kähler metric does not contain cross-terms, i.e. g ξη = 0.

One can consider a ortho-toric weakly-self dual Kähler metric, i.e. a weakly self-dual

Kähler metric for which the two Killing vector fields (whose moment maps are s and p)

are independent and commuting. From the fact that they are ortho-toric, they should take

the form (2.4) and the weak self-duality condition should pick out specific forms for F (ξ)

and G(η). It turns out that for the following choices of F (ξ) and G(η),

F (x) = k x4 + l x3 + Ax2 + B x + C1, G(x) = k x4 + l x3 + Ax2 + B x + C2, (2.9)

2This turns out to be 1
6

of the Ricci scalar. The numerical factor is important while defining the

co-ordinate transformation (2.8).
3The normalized Ricci form is the two-form 1

2
ρ0+

s

4
Ω, where ρ0 is the traceless Ricci form; and the pfaffian

of a two-form ψ, pf(ψ), is the function that multiplies the volume form to give ψ∧ψ, i.e. ψ∧ψ = pf(ψ) vol.

– 5 –
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where k, l, A,B,C1, C2 are constants, the ortho-toric metric (2.4) is weakly self-dual [11].

The two cases of interest to us are when we have a quadratic polynomial for which the

weakly self-dual metric is just flat space and when we have a cubic polynomial for which

the weakly self-dual metric is a Kähler Einstein space. The former is the base-space for

the full solution of a supersymmetric flat ring (more on this in section three) and the latter

is the base-space for AdS5 (more on this in section four). Therefore we see that these

coordinates will be useful in the description of several known, important examples.

3. Flat space metric in Darboux co-ordinates

In this section, we will first gather various facts about the C-metric co-ordinates {x, φ, y, ψ},
which will be relevant for the discussion on and comparison with the flat space metric in

Darboux co-ordinates in the later subsection.

3.1 Flat space metric in C-metric co-ordinates

Following is the flat-space metric in C-metric co-ordinates,

ds2 =
1

(x − y)2

[

dx2

1 − x2
+ (1 − x2)dφ2 +

dy2

y2 − 1
+ (y2 − 1)dψ2

]

. (3.1)

The co-ordinate ranges for the x and y co-ordinates can be inferred from (3.1) by requiring

that the metric be positive definite:

−1 ≤ x ≤ 1, −∞ < y ≤ −1. (3.2)

The metric (3.1) is thus defined in the region of the x − y plane, shown in figure 1. The

following nice physical interpretation of the C-metric co-ordinates was given in [9]. In flat

space, given in the usual polar co-ordinates,

ds2 = dr2
1 + r2

1dφ2 + dr2
2 + r2

2dψ2, (3.3)

a circular string of unit radius stretched along the ψ direction, i.e. at r1 = 0, r2 = 1, acting

as an electric source for the three-form field strength H = dB, produces a field with only

the following non-zero two-form potential:

Btψ = −1

2

(

1 − 1 + r2
1 + r2

2

Σ

)

, (3.4)

where

Σ =
√

(1 + r2
1 + r2

2 )2 − 4 r2
2 (3.5)

and the two-form field strength dual to H has a one-form potential (∗H = F = dA) whose

only non-zero component is

Aφ = −1

2

(

1 +
1 − r2

1 − r2
2

Σ

)

. (3.6)

– 6 –
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Figure 1: The region in the x-y and ξ-η planes, where the metrics (3.1), (3.10) and (4.2) are

defined. Thus the supersymmetric flat ring and AdS5 are defined in this co-ordinate region.

If one were to define new co-ordinates

x =
1 − r2

1 − r2
2

Σ
, y = −1 + r2

1 + r2
2

Σ
, (3.7)

then constant Aφ surfaces would be constant x surfaces and constant Btψ surfaces would

be constant y surfaces. These new co-ordinates {x, φ, y, ψ} are nothing but the C-metric

co-ordinates. The metrics (3.3) and (3.1) are isometric which can be explicitly verified

with (3.7) and it’s inverse:

r1 =

√
1 − x2

x − y
, r2 =

√

y2 − 1

x − y
. (3.8)

We thus see that the C-metric co-ordinates are “ring co-ordinates,” adapted to describe

the fields set up by a charged ring source.

3.2 ACG-quadratic metric

Choosing the same quadratic polynomial for F (ξ) and G(η) in the most general ortho-toric

metric given by (2.4),

F (z) = G(z) = 1 − z2, (3.9)

we get the following flat metric on R4, which we will refer to as the ACG-quadratic metric:

ds2 = (ξ − η)

[

dξ2

1 − ξ2
+

dη2

η2 − 1

]

+
1

ξ − η

[

(1 − ξ2)(dt + η dz)2 + (η2 − 1)(dt + ξ dz)2
]

.

(3.10)

– 7 –
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Requiring that the metric (3.10) be positive definite constrains the ranges of the ξ-η co-

ordinates to:4

−1 ≤ ξ ≤ 1, −∞ < η ≤ −1, (3.11)

which is exactly the same region in the ξ−η plane as the one occupied by the C-metric co-

ordinates, see figure 1. We can work out the explicit co-ordinate transformations between

the polar {r1, φ, r2, ψ} co-ordinates and the {ξ, t, η, z} co-ordinates.

r1 =
√

−2(1 + ξ η + ξ + η), φ =
t + z

2
,

r2 =
√

2(1 + ξ η − ξ − η), ψ =
t − z

2
. (3.12)

The inverse of the above are:

ξ =
Ξ − r2

1 − r2
2

8
, t = φ + ψ,

η = −Ξ + r2
1 + r2

2

8
, z = φ − ψ. (3.13)

where

Ξ =
√

(8 + r2
1 + r2

2)
2 − 32 r2

2. (3.14)

3.3 C-metric co-ordinates ⇆ Darboux co-ordinates

From (3.11) and (3.2), it is clear that both the metrics (3.1) and (3.10) are defined in the

same region (figure 1) of the x-y/ξ-η plane. Furthermore, the two metrics (3.1) and (3.10)

are isometric to each other, which can be checked using the following explicit co-ordinate

transformations between the {ξ, t, η, z} co-ordinates and the {x, φ, y, ψ} co-ordinates, which

can be worked out from (3.8) and (3.12):

x =
4(ξ + η) + 1

Λ
, φ =

t + z

2

y =
4(ξ + η) − 1

Λ
, ψ =

t − z

2
, (3.15)

where

Λ =
√

1 − 8(1 + ξ η) + 16(ξ + η)2. (3.16)

The inverse of the above are:

ξ =
x + y + Υ

8 (x − y)
, t = φ + ψ,

η =
x + y − Υ

8 (x − y)
, z = φ − ψ, (3.17)

where

Υ =
√

4 + 28 (1 − x y) + 7 (x − y)2. (3.18)

4We have made the choice ξ ≥ η; the other choice ξ ≤ η just interchanges ξ and η.

– 8 –



J
H
E
P
1
1
(
2
0
0
7
)
0
6
0

We will need the above in section five to co-ordinate transform various asymptotically flat

solutions known in C-metric co-ordinates to the Darboux co-ordinates.

Both the C-metric and the Darboux co-ordinates share an exchange symmetry x ↔ y,

ξ ↔ η, which simplifies computations and allows for compact expressions. We want to

think of the Darboux co-ordinates as “ring-like” co-ordinates because they are so closely

related to the C-metric “ring co-ordinates.” A compelling reason to consider flat space

in these Darboux co-ordinates is that we can simply deform the metric and the complex

structure while keeping the Kähler form fixed to arrive at the base-space of AdS5, as we

will show in the next section.

4. AdS5 in ring-like co-ordinates

4.1 The ACG-cubic Metric

Choosing the same cubic polynomial for F (ξ) and G(η) in the most general ortho-toric

metric given by (2.4),

F (z) = G(z) = (1 − z2) (1 + a p − z p), (4.1)

with a > (p − 1)/p and p > 0 real constants, we get the following Kähler metric which we

will refer to as the ACG-cubic metric:

ds2
ACG−cubic = (ξ − η)

[

dξ2

(1 − ξ2) (1 + a p − ξ p)
− dη2

(1 − η2) (1 + a p − η p)

]

(4.2)

+
1

ξ − η

[

(1 − ξ2) (1 + a p − ξ p) (dt + η dz)2

−(1 − η2) (1 + a p − η p) (dt + ξ dz)2
]

.

We find that for the co-ordinate ranges (3.11), the ACG-cubic metric is positive defi-

nite. Thus the ACG-cubic metric is defined in the same region of the ξ − η plane as the

ACG-quadratic metric (figure 1). Furthermore, setting p → 0 gives us back the ACG-

quadratic metric. Some properties of the ACG-cubic metric are:

(i) The ACG-cubic metric is a Kähler-Einsten metric. When one chooses a cubic poly-

nomial as above, we are assured (by a consequence of propositions 4 and 11 of [11])

to get a Kähler-Einstein metric. One can compute and verify that the ACG-cubic

metric is a Kähler-Einstein metric with −6 p for it’s Ricci scalar,

Rµν = −3 p

2
gµν . (4.3)

(ii) The ACG-cubic metric has constant holomorphic sectional curvature. A Kähler met-

ric with a constant holomorphic sectional curvature is the Kähler geometry equivalent

of a maximally symmetric metric in Riemannian geometry. The Riemann tensor can

be decomposed into three pieces: the fully traceless Weyl tensor (W ), a partially

– 9 –
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traceless part that can be written in terms of the metric and the traceless Ricci ten-

sor (call it P ) and a trace that involves only the Ricci scalar (call it S). A metric

with constant sectional curvature corresponds to having W = P = 0, which leads to

the usual expression for a maximally symmetric metric:

Rijkl = Sijkl =
R

d(d − 1)
(gik gjl − gil gjk) . (4.4)

In Kähler geometry, employing the extra symmetries of the Riemann tensor, one can

similarly decompose again into three pieces (section 2.63 of [20]): a fully traceless

part (called B0 in [20]), a partially traceless part that can be written in terms of the

Kähler form and the traceless Ricci form (call it P ′) and a piece that involves only the

scalar curvature (call it S′.) A metric with constant holomorphic sectional curvature

corresponds to having B0 = P ′ = 0, which leads to the following expression for the

Riemann tensor:

Rijkl = S′
ijkl =

R

4d
2(d

2 + 1)
(gik gjl − gil gjk + 2Ωij Ωkl − Ωil Ωjk + Ωjl Ωik) . (4.5)

One can see that a metric with constant holomorphic sectional curvature is not max-

imally symmetric. The ACG-cubic metric (4.2) satisfies equation (4.5), which we can

verify explicitly.5

(iii) The ACG-cubic metric is holomorphically isometric to the Bergmann metric. The

Bergmann metric is a Kähler metric defined for the unit ball B4 ⊂ C2 (section 3.2

of [10]) in complex co-ordinates

z1 = r cos
θ

2
e

i(φ+ψ)
2 , z2 = r sin

θ

2
e

i(φ−ψ)
2 . (4.6)

using the Kähler potential:

K = −2

p
log(1 − |z1|2 − |z2|2), (4.7)

where the real co-ordinates in (4.6) are the radius r and the Euler angles. The explict

form of the metric is:

ds2
Bergmann =

4

p

[

dr2

(1−r2)2
+

r2

4(1−r2)
(dθ2+sin θ2dφ2)+

r2

4(1−r2)2
(dψ+cos θ dφ)2

]

(4.8)

The Bergmann metric has a constant holomorphic sectional curvature. There is

a theorem in Kähler geometry that says that any two simply-connected complete

Kähler manifolds with constant holomorphic sectional curvature are holomorphically

isometric to each other (see for example [21], page 179.) We can invoke this theorem

to conclude that the ACG-cubic metric is holomorphically isometric to the Bergmann

metric.

5We were informed by Harvey Reall that he and his collaborators were able to arrive at a closely related

version of the ACG-cubic metric by imposing constant holomorphic sectional curvature on a certain class

of Plebanski-Demianski metrics.
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(iv) The ACG-cubic metric has a constant Kretschmann scalar, i.e.

RijklR
ijkl|ACG−cubic = 12 p2. (4.9)

This is an indication that the metric is a homogeneous metric.6 Given that the

Bergmann metric is known to be a homogeneous metric, it being the metric on the

coset space SU(2,1)
U(2) , this adds further weight to the conclusion that the ACG-cubic

metric and the Bergmann metric are holomorphically isometric to each other.

So far we have given various arguments towards concluding that the ACG-cubic metric

is isometric to the Bergmann metric. In appendix A, we provide an explicit co-ordinate

transformation between the polar co-ordinates and the ring-like Darboux co-ordinates.

4.2 AdS5

With a base space that is Kähler-Einstein, we can get a solution to the Gauntlett-Gutowski

theory i.e. a solution in the time-like class to minimal gauged supergravity by choosing

f = 1 and the one-form ω as (section 3.2 of [10],)

ωAdS5 =
√

p [(ξ + η) dt + (1 + ξ η) dz]

=
√

p Ω(1) (4.10)

where Ω(1) is the one-form that is natural to the Kähler structure given in (2.7). We can

check by an explicit computation that the metric,

ds2 = −[dτ + ωAdS5]
2 + ds2

ACG−cubic. (4.11)

is a maximally symmetric metric with Ricci scalar −5 p. To confirm that this is indeed

AdS5 space, we can invoke the following theorem proved by Gutowski and Reall in [17]: the

only maximally symmetric solution in the time-like class to minimal gauged supergravity is

AdS5 and the base space is locally isometric to the Bergmann manifold.

To reiterate, in this section, we have obtained the Bergmann metric and AdS5 in

ring-like co-ordinates in the same co-ordinate region as the susic flat ring.

5. The Kähler structure of susic flat solutions

In this section, we will first co-ordinate transform known U(1)2 invariant asymptotically

flat susic solutions to the ring-like Darboux co-ordinates.

For the supersymmetric flat-ring solution [5], the f and ω are given in C-metric co-

ordinates by
1

f
= 1 +

Q − q2

2
(x − y) − q2

4

(

x2 − y2
)

(5.1)

and ω = ωφ dφ + ωψ dψ, with

ωφ = −q

8
(1 − x2)[3Q − q2(3 + x + y)] (5.2)

ωψ =
3 q

2
(1 + y) +

q

8
(1 − y2)[3Q − q2(3 + x + y)]. (5.3)

6We thank Toby Wiseman for suggesting this test for a homogeneous metric.
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where Q is the charge of the ring and q it’s dipole charge. Using the co-ordinate trans-

formations (3.15), the flat-ring solution takes the following form in the ring-like Darboux

co-ordinates.
1

f
= 1 +

Q − q2

Λ
− 4 q2 ξ + η

Λ2
(5.4)

where Λ is given in (3.16). The one-form ω is now ω = ωt dt + ωz dz, with

ωt =
3 q

4
+

3 q

4Λ
(4ξ + 4η − 1) +

3 q
(

Q − q2
)

Λ2
(ξ + η) − 8 q3

Λ3
(ξ + η)2 (5.5)

ωz = −3 q

4
− 3 q

4Λ
(4ξ + 4η − 1) +

3 q
(

Q − q2
)

Λ2
(1 + ξη) − 8 q3

Λ3
(ξ + η)(1 + ξ η). (5.6)

It is possible to describe a supersymmetric black hole in the background of the supersym-

metric black-ring by a simple modification of the 1
f

of the solution [7, 8, 12, 13]. The

black hole by itself has a SU(2) × U(1) isometry and doesn’t disturb the U(1)2 isometry

of the ring on its own. The modification involves adding the following harmonic function,

harmonic with respect to the Laplacian on R4,

1

f
= 1 − QBH

16

(

x − y

x + y

)

+
Q − q2

2
(x − y) − q2

4

(

x2 − y2
)

, (5.7)

where QBH is the charge of the black hole. The one-form ω for this system is given by

ωφ = −q

8
(1 − x2)

[

3Q − q2(3 + x + y) − 9QBH

4

1

x + y
+ 2K

1

(x + y)2

]

(5.8)

ωψ =
3 q

2
(1 + y) +

q

8
(1 − y2)

[

3Q − q2(3 + x + y) − 9QBH

4

1

x + y
+ 2K

1

(x + y)2

]

,(5.9)

where K is a constant proportional to the rotation of the black hole. Co-ordinate trans-

forming to the ring-like Darboux co-ordinates, we have,

1

f
= 1 − QBH

64

1

ξ + η
+

Q − q2

Λ
− 4 q2 ξ + η

Λ2
(5.10)

and the one-form ω is:

ωt = ωt(0) −
9 q QBH

32Λ
+

K q

32 (ξ + η)
(5.11)

ωz = ωz(0) −
9 q QBH

32Λ

1 + ξη

ξ + η
+

K q(1 + ξη)

32 (ξ + η)2
(5.12)

where ωt(0) and ωz(0) are the expressions for pure black ring (i.e. without the black hole)

as given in formulae (5.5) and (5.6).

We first note that the ω for the supersymmetric flat ring (5.5), (5.6) can be written in

the following suggestive manner:7

ω = ρ(ξ, η)
dt − dz

2
+

κ(ξ, η)

Λ2
[(ξ + η) dt + (1 + ξη) dz]

= ρ(ξ, η) dψ +
κ(ξ, η)

Λ2
Ω(1), (5.13)

7It is perhaps not irrelevant to note that the ω for the non-supersymmetric flat ring of [1] also is of the

form (5.13) with κ(ξ, η) = 0; of course, the stationary form of the metric is not as simple as (1.1).
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Figure 2: A schematic representation of our approach to obtaining a supersymmetric AdS ring.

where Ω(1) is the one-form natural to the Kähler structure given in (2.7). For the flat ring,

the functions ρ and κ are ρ0 and κ0 given by,

ρ0(ξ, η) =
3q

2

(

1 +
4ξ + 4η − 1

Λ

)

(5.14)

κ0(ξ, η) = 3q(Q − q2) − 8 q3 ξ + η

Λ
. (5.15)

The ω for the black hole in the background of the flat ring also takes the above form (5.13),

for which the functions ρ and κ

ρ(ξ, η)BH in aRing = ρ0(ξ, η) (5.16)

κ(ξ, η)BH in aRing = κ0(ξ, η) − 9 q QBH

32

Λ

ξ + η
+

Kq

32

(

Λ

ξ + η

)2

. (5.17)

This form for ω (5.13), (1.4) seems to encode in it the fact that there is a ring (through

the dψ term), the underlying Kähler structure (through the term Ω(1)) and the U(1)2

invariance (because all known U(1)2 invariant solutions take this form.)

6. An ansatz for a supersymmetric AdS ring?

Our approach to a susic AdS ring is summarized schematically in figure 2.
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6.1 An ansatz for the AdS ring Kähler metric

As summarized in the box below, we have many classes of U(1)2 invariant Kähler metrics

from which to pick an ansatz for the AdS ring.

Weakly self-dual ortho-toric ⊂ ACG ortho-toric ⊂ Toric Kähler metrics.

The first class, i.e. weakly-self-dual ortho-toric, has the most explicit classification; it is

completely determined by the quartic polynomials (2.9). To decide if we can make an

ansatz for the AdS ring with a weakly self-dual ortho-toric Kähler metric, we checked if

the Gutowski-Reall black hole [17, 18] Kähler metric is weakly self-dual and found that it

isn’t. The details of this can be found in the appendix. Hence, we rule out a weakly-self-dual

ansatz.

The second class i.e. the ACG metrics (2.4) admit a less explicit classification; there

are two arbitrary functions in the game. The functions are functions of one variable,

which is a simplifying feature, giving total derivatives rather than partial derivatives for

the connections and curvatures. The third class i.e the toric Kähler metrics (2.1) admit an

even less explicit classification; the metric involves functions of two variables. One could

simplify things a bit by working with a single function of two variables, the symplectic

potential. It remains to be seen which of the two classes of metrics will contain the AdS

ring. We will report further progress in this direction in future work [26]. Both classes

of metrics include the two limiting cases viz. the asymptotic ACG-cubic metric and the

p → 0 limit, i.e. the ACG-quadratic metric.

6.2 An ansatz for ω

The form (5.13) for the one-form ω seems to capture some crucial features that we desire

for a supersymmetric AdS ring, viz. Kähler structure, U(1)2 invariance etc. Since the

asymptotic AdS5 metric and the full AdS ring Kähler metric ansatz share the same Kähler

structure (i.e. both Ω and Ω(1)), we can happily make the same ansatz (5.13) for the ω of the

supersymmetric AdS ring. We also have the following information for the ansatz functions

ρ and κ. At asymptotic infinity, ρ → 0, κ → √
p Λ2. And as p → 0, ρ → ρ0, κ → κ0. The

observation that κ(ξ, η) is a function of the combination ξ+η
Λ should also be useful.

We now need to plug these Ansätze into the Gauntlett-Gutowski theory. The

Gauntlett-Gutowski theory of supersymmetric solutions works somewhat differently to the

theory of supersymmetric solutions to gauged supergravity. First, the 1
f

of the solution

gets completely determined by the Ricci scalar of the base-space Kähler metric and sec-

ond, the G+ of the solution gets completely determined by the traceless Ricci form of the

base-space Kähler metric. These two facts constrains our Ansätze above. Finally the G−

of the solution is determined by a first-order p.d.e which itself is determined fully by the

base-space Kähler metric.8 We will leave this for future work [26].

8We would also need to take care of the addition to the Gauntlet-Gutowski theory given in [27], which

ensures that the dω thus determined is indeed closed.
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7. Conclusion

Starting from the requirements of U(1)2 isometry and a Kähler base, which are natural to

supersymmetric AdS ring solutions, enabled us to get some insight into the supersymmetric

solutions. Coordinates (related to the) moment maps of the two U(1)’s turn out to be

“ring-like.” We have described AdS5 and other solutions in these ring-like co-ordinates

and have given an Ansätz for the supersymmetric AdS ring solution and a strategy for

obtaining it (figure 2). Since [24, 25] casts doubt on the existence of supersymmetric

AdS rings, our ansatz provides a context for addressing this question further. Recently

a non-supersymmetric black ring solution in de-Sitter space was constructed [28]. This

is encouraging because it suggests that non-supersymmetric black rings can exist in AdS.

The toric almost-Kähler9 metrics of (2.1) provide a metric ansatz to start with for non-

supersymmetric AdS rings.
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A. The Fubini-Study metric as an ACG-cubic metric

The ACG-cubic metric (4.2) has two parameters, a and p while the Bergmann metric has

only one parameter p. To conclude that the two metrics are isometric, we need to show

that a is a co-ordinate artifact or even better display an explicit co-ordinate transformation

that settles this issue. We do this in the context of Fubini-Study metric on CP2, which

is the compact version of the Bergmann metric. It can be simply obtained by replacing

(1 − r2) → (1 + r2) in (4.8). More precisely, it is the Kähler metric obtained from the

Kähler potential,

K =
2

p
log(1 + |z1|2 + |z2|2), (A.1)

which takes the explicit form,

ds2
FS =

4

p

[

dr2

(1 + r2)2
+

r2

4(1 + r2)
(dθ2 + sin θ2dφ2) +

r2

4(1 + r2)2
(dψ + cos θ dφ)2

]

, (A.2)

in the complex structure

z1 = r cos
θ

2
e

i(φ+ψ)
2 , z2 = r sin

θ

2
e

i(φ−ψ)
2 . (A.3)

The Fubini-Study metric is also a Kähler-Einstein metric with constant holomorphic sec-

tional curvature. In this appendix, we will show that the Fubini-Study metric can be

described as an ACG-cubic metric. First consider the following general ACG-cubic metric,

F (x) = G(x) = −p (x − b1)(x − b2)(x − b3). (A.4)

9An almost Kähler manifold is not a complex manifold and hence not Kähler.
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Either by direct computation or using the results of [11], one can ascertain that this is a

Kähler-Einstein metric of Ricci scalar 6 p. We can also directly compute and verify that

the above ACG-cubic metric has constant holomorphic sectional curvature. Under the

co-ordinate transformation

x1 = ξ + η, x2 = ξ η, (A.5)

ξ =
1

2

(

x1 +
√

x2
1 − 4x2

)

, η =
1

2

(

x1 −
√

x2
1 − 4x2

)

(A.6)

to the moment map co-ordinates, the ACG-cubic metric takes a certain form which we

won’t reproduce here. But more importantly, this metric can be derived from the following

symplectic potential,

GS(x1, x2) = − x2 − b1x1 + b2
1

p (b1 − b2)(b3 − b1)
log

[

− 2(x2 − b1x1 + b2
1)

p (b1 − b2)(b3 − b1)

]

− x2 − b2x1 + b2
2

p (b2 − b3)(b1 − b2)
log

[

− 2(x2 − b2x1 + b2
2)

p (b2 − b3)(b1 − b2)

]

− x2 − b3x1 + b2
3

p (b3 − b1)(b2 − b3)
log

[

− 2(x2 − b3x1 + b2
3)

p (b3 − b1)(b2 − b3)

]

(A.7)

using the formula (2.1). We will not go into the details of how we obtained (A.7) from the

ACG data (A.4). For the complete theory of symplectic potentials for the ACG metrics

and every other consideration in this appendix, we refer the reader to [29]. From the

work of Guillemin [14], it is known that the above symplectic potential (A.7) encodes in it

the co-ordinate singularities of a toric manifold whose moment polytope is the convex set

enclosed within the lines,

li ≡ x2 − bi x1 + b2
i = 0, i = 1, 2, 3. (A.8)

In the x1 − x2 plane, li = 0 is a line with slope bi and x2-intercept equalling −b2
i . The

intersection of the lines are:

l1 ∩ l2 : (b1 + b2, b1 b2), l2 ∩ l3 : (b2 + b3, b2 b3), l3 ∩ l1 : (b3 + b1, b3 b1). (A.9)

We thus have that the moment polytope of the ACG-cubic metric (A.4) is a triangle with

vertices (A.9) and edges (A.8).

At this stage, we have used up all the local properties of the Fubini-Study metric,

namely Kähler-Einstein and constant holomorphic sectional curvature, and we still have

three undetermined constants in the ACG-cubic metric (A.3) viz. b1, b2, b3. The Fubini-

Study metric (A.2) has no free parameters apart from the Ricci-scalar (∼ p). We will

have to use the global features of the Fubini-Study metric and CP2 to fix the parameters

bi. Global considerations specify the size and shape of the triangle which in turn fixed

the bi’s. Before we do this, we give the co-ordinate transformation between the Darboux
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co-ordinates and the polar co-ordinates:

r2 =
b1 (b2 − b3) − b2b3 + (ξ + η) b3 − ξη

b2
3 − (ξ + η)b3 + ξη

,

tan2 θ/2 =
(b2

2 − (ξ + η) b2 + ξη)(b3 − b1)

(b2
1 − (ξ + η) b1 + ξη)(b2 − b3)

,

φ = −p

2
(b1 − b2) (t + b3z) ,

ψ =
p

2
[(2b3 − b1 − b2)t − (2b1b2 − b1b3 − b2b3)z] , (A.10)

and the inverse,

ξ + η =
2(b1 + b2) + (b1 + b2 + 2b3)r

2 − (b1 − b2)r
2 cos θ

2(1 + r2)
,

ξ η =
2b1b2 + (b1 + b2)b3 r2 − (b1 − b2)b3 r2 cos θ

2(1 + r2)
,

t =
(2b1b2 − b2b3 − b3b1)φ + (b2b3 − b3b1)ψ

p (b1 − b2) (b2 − b3) (b3 − b1)
,

z =
(2b3 − b1 − b2)φ + (b1 − b2)ψ

p (b1 − b2) (b2 − b3) (b3 − b1)
. (A.11)

To get the above, one first goes from symplectic co-ordinates to complex co-ordinates by a

Legendre transform [14, 15]. The Legendre transform also provides the Kähler potential.

Then one matches with (A.1) and (A.3). It is clear, especially from (A.10), that the

parameters bi appear only in the co-ordinate transformation, and hence do not carry any

local co-ordinate invariant information.

Global considerations. Now, we can fix the parameters bi by the following two facts

that carry global information of the Fubini-Study metric and CP2.

(i) The moment polytope of CP2 is a right-angled isosceles triangle.

(ii) The volume of CP2 is fixed once one specifies the Ricci-scalar. For (A.2), it is 8 π2

p2

The easiest way of seeing (i) is to note that in the GLSM description of CP2, there is one

D-term constraint, |φ1|2 + |φ2|2| + |φ3|2 = 2
p
, which is solved by

|φ1|2 = x1, |φ2|2 = x2, |φ3|2 =
2

p
− x1 − x2. (A.12)

The moment polytope is then given by the region

|φ1|2 > 0, |φ2|2 > 0, |φ3|2 > 0, (A.13)

which is clearly a right-angled isosceles triangle of area 2
p2 .

Let us choose the right angle to be at the intersection of l1 = 0 and l2 = 0. We then

have the following (two independent) constraints:

b1 b2 = −1,
b1 − b3

1 + b1 b3
= 1,

b3 − b2

1 + b3 b2
= 1. (A.14)
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This allows us to fix two of the parameters in terms of one free parameter, say b3:

b1 =
1 + b3

1 − b3
, b2 = −1 − b3

1 + b3
. (A.15)

Now we will impose the volume constraint. In the symplectic co-ordinates, by virtue of the

fact that the four-metric is of a block-diagonal form (2.1) with two 2 × 2 matrices which

are inverses of each other, the determinant of the metric is just 1. Hence, the volume of

the manifold is just the product of the Euclidean volumes of the moment polytope and the

angular torus. From (A.9) and from (A.15), we can compute the Euclidean volume of the

moment polytope in terms of b3. To compute the volume of the angular torus, we need the

co-ordinate transformation (A.11). Using the ranges of the angles 0 < φ < 2π, 0 < ψ < 4π

and the second two equations in (A.11), we can compute the Euclidean volume of the

angular torus. Putting everything together, we have

VolACG−cubic =
4π2

p2

(2 − b3)(1 + 2b3)

1 + b2
3

. (A.16)

Now, requiring VolACG−cubic = Vol
CP

2 = 8π2

p2 , we get a quadratic equation for b3 with two

roots b3 = 0, 3
4 . The two roots suggest that we have two different ways of realizing the

Fubini-Study metric as an ortho-toric ACG metric. One of the solutions, b3 = 0 gives us

co-ordinate singularities which are “ring-like.” Using (A.15), we then have,

b1 = 1, b2 = −1, b3 = 0, (A.17)

so that the polynomials occuring in the ACG-cubic metric are

F (z) = G(z) = (1 − z2) (p z). (A.18)

The explicit co-ordinate transformation is now much simpler:

r2 = −1 + ξη

ξη
, tan2 θ/2 =

1 + ξη + (ξ + η)

1 + ξη − (ξ + η)
, φ = −p t, ψ = p z;

ξ + η = −r2 cos θ

1 + r2
, ξ η = − 1

1 + r2
, t = −φ

p
, z =

ψ

p
. (A.19)

In this appendix, we have been able to show the explicit isometry between the Fubini-

Study metric and a compact ACG-cubic metric by deriving an explicit co-ordinate trans-

formation between the polar co-ordinates of the form and the “ring-like” co-ordinates of

the latter. A similar co-ordinate transformation relates the Bergmann metric to the ACG-

cubic metric; the co-efficient of the cubic has the opposite sign reflecting the sign of the

scalar curvature. However, one free parameter remains as Bergmann space is non-compact.

B. The Gutowski-Reall black hole Kähler metric and weak self-duality

In the recent past, many researchers have constructed various supersymmetric AdS5 black

holes [17 – 19, 22, 23], but we will only need to consider the first ones and the simplest
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of them, the Gutowski-Reall black hole. The Kähler metric of the Gutowski-Reall black

holes [17, 18] is

ds2 = dr2 + a2((σ1
L)2 + (σ2

L)2) + (2aa′)2(σ3
L)2, (B.1)

where a(r) is

a(r) =

√

α

4
+

1

p
sinh

√
p r

2
, (B.2)

with α is a constant and σi
L are the right-invariant one-forms on SU(2), which can be

expressed in terms of the Euler angles (θ, φ, ψ) as

σ1
L = sin φ dθ − cos φ sin θ dψ,

σ2
L = cos φ dθ + sin φ sin θ dψ,

σ3
L = dφ + cos θ dψ. (B.3)

This metric (B.1) is Kähler with the Kähler form

Ω = d(a2σ3
L) = 2aa′ dr ∧ σ3

L − a2 σ1
L ∧ σ2

L (B.4)

In the orientation with Vol = 2a3a′ sin θ dr∧dθ∧dφ∧dψ, the Kähler form (B.4) is self-dual.

We can check for the weak-self-duality property of a given Kähler metric in atleast two

ways [11].

(i) The defining property of a weakly self-dual Kähler metric is that the anti-self-dual

Weyl tensor is harmonic, i.e. δW− = 0 where δ acts on W− as on a two-form with

values in anti-self-dual two-forms. On the other hand, the Weyl tensor on a Rie-

mannian four-manifold is linked with the Cotton-York tensor, δW± = C±. Hence,

vanishing of the anti-self-dual Cotton-York tensor implies the weak self-duality of a

given Kähler metric (see definition 2 in [11].)

The Cotton-York tensor is defined in [11], CX,Y (Z) := (∇Y h)(X,Z) − (∇Xh)(Y,Z),

where h is the normalized Ricci tensor given by hµν = 1
2Rµν − R

12gµν . Define it’s

components by CX,Y (Z) := CkijZ
kXiY j and we get

Ckij =
1

2
(∇jRik −∇iRjk) −

1

12
(gik∇jR − gjk∇iR) . (B.5)

The indices i, j are anti-symmetric and one is supposed to think of the Cotton-York

tensor as a co-vector-(the index k)-valued two-form, C
(2)
r , C

(2)
θ , C

(2)
φ , C

(2)
ψ . Plugging

in (B.1) into (B.5), we get

C(2)
r = 0,

C
(2)
θ = −α

√

p3

48
coth

√
p r

2
dr ∧ dθ +

α p3

256

(

1 +
α p

4

)

cosh2

√
p r

2
sin θ dφ ∧ dψ,

C
(2)
φ =

α
√

p7

384

(

1 +
αp

4

)

cosh2

√
p r

2
coth

√
p r

2
dr ∧ σ3

L

+
α

√

p3

128

(

1 +
α p

4

)

cosh2

√
p r

2
σ1

L ∧ σ2
L,

C
(2)
ψ = . . . (B.6)
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Computing the anti-self-dual parts of the above two-forms gives us,

C−
r = 0,

C−
θ = −α

√

p3

24
coth

√
p r

2
dr ∧ dθ +

αp3

384

(

1 +
α p

4

)

cosh2

√
p r

2
sin θ dφ ∧ dψ,

C−
φ =

α
√

p7

192

(

1 +
α p

4

)

cosh2

√
p r

2
coth

√
p r

2
dr ∧ σ3

L

+
α p3

192

(

1 +
αp

4

)

cosh2

√
p r

2
σ1

L ∧ σ2
L,

C−
ψ = . . . (B.7)

We thus find that the anti-self-dual part of the Cotton-York tensor is non-vanishing

for the black hole Kähler metric, thus making it not weakly self-dual. Note that

for α = 0, the Kähler metric is weakly self-dual, which is as it should be because it

corresponds to the Bergmann Kähler metric.

(ii) On a complex two-dimensional Kähler manifold (g, J,ΩJ ) with orientation chosen so

that the Kähler form, ΩJ , is self-dual, a property of the traceless Ricci form, ρ0, is that

it is anti-self-dual. Any anti-self-dual two-form can always be written as a functional

multiple of an anti-self-dual Kähler form of some other (needn’t be integrable) almost-

complex structure, ρ0 = λ ΩI , where (g, I,ΩI) is an almost-hermitian structure. One

of the many defining properties of a weakly self-dual Kähler metric is that ( g
λ2 , I, ΩI

λ2 )

is Kähler (see lemma 2 and lemma 4 of [11].)

For the Kähler metric (B.1), the traceless Ricci form is

ρ0 = b dr ∧ σ3
L +

b a

2a′
σ1

L ∧ σ2
L, (B.8)

where b(r) is

b(r) = −a′′′a2 + 3a′′a′a − 4a′3 + a′

a
. (B.9)

This ρ0 can be written as λ ΩI with

ΩI = 2aa′ dr ∧ σ3
L + a2 σ1

L ∧ σ2
L (B.10)

and

λ(r) =
b

2aa′
. (B.11)

It is easy to see that ΩI is anti-self-dual and one can construct the almost complex

structure I ∼ g−1 ΩI and verify I2 = −Id. For the Kähler metric (B.1) to be weakly

self-dual,

d

(

ΩI

λ2

)

= 0, (B.12)

which amounts to the following fourth order non-linear o.d.e:
(

a′2a6

b2

)′

+
2a′3a3

b2
= 0. (B.13)

But, the black hole Kähler metric (B.2) does not satisfy the above o.d.e, hence not

weakly self-dual.
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