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1. Introduction

QCD at finite baryon density has a rich phase structure (for reviews see [1 – 3]). Naively one

would expect that at high density, like at high temperature, QCD is in a deconfined chiral-

symmetric quark-gluon plasma phase. It turns out, however, that new phases appear at

high density, in which both the chiral symmetry and the gauge symmetry are broken [2, 3].

In real QCD with Nc = 3 and three light flavors of quarks the dominant phase at high

density is a color-flavor-locking (CFL) phase [4]. With two light flavors of quarks the

dominant phase is a color-superconductor. At large Nc it is believed that these gauge-

symmetry breaking phases are suppressed, and the dominant phase at high density is a

chiral density wave [5, 6], in which the chiral symmetry (only) is broken non-uniformly. It

appears therefore that QCD (both with Nc = 3 and at large Nc) at low temperature and

high density always has broken chiral symmetry.

These results rely on perturbative calculations in QCD, and analogous models such

as the Nambu-Jona-Lasinio (NJL) model, at finite density near the Fermi surface, and are

therefore limited to values of the chemical potential for which αs(µ) ≪ 1. At present,
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lattice QCD techniques are unable to deal with a (large) baryon chemical potential (for a

review see [7]).

At large Nc, gauge/gravity duality is an alternative approach to gauge theory at strong

coupling [8]. Several recent models have incorporated flavors using probe branes in back-

grounds dual to large Nc Yang-Mills theories with various amounts of supersymmetry [9].

The Sakai-Sugimoto model in particular is quite similar to QCD at large Nc [10]. This

model builds on Witten’s model for pure Yang-Mills theory in four dimensions, which

uses 4-branes wrapped on a Scherk-Schwarz circle [11], and adds Nf probe 8-branes and

Nf probe anti-8-branes transverse to the circle. These provide massless chiral fermions

(left-handed from the 8-branes, right-handed from the anti-8-branes) in the fundamental

representation of both the gauge group U(Nc), and the flavor group U(Nf )L × U(Nf )R.

One of the most compelling features of this model is that it describes spontaneous

chiral-symmetry breaking in a simple geometrical way. Since in the near-horizon limit the

circle vanishes at a finite radial coordinate, the 8-branes and anti-8-branes are smoothly

connected into a U-shaped configuration with an asymptotic separation L at infinity. The

actual embedding of the 8-branes is determined by solving the DBI equations of motion

with this boundary condition.

The model also exhibits many other properties similar to QCD [12, 13]. In particular it

has an interesting phase structure at finite temperature [14]. At low temperature the model

is essentially the same as at zero temperature, i.e. it describes a confining gauge theory with

broken chiral symmetry. At high temperature the model deconfines and chiral symmetry

is restored, which is described geometrically by the separation of the 8-branes and anti-8-

branes. For sufficiently small L there is also an intermediate range of temperatures at which

the model is deconfined but chiral symmetry remains broken. In the deconfined phase both

the connected U-configuration and the separated parallel configuration are possible. The

dominant configuration, and therefore phase, is determined by comparing their actions.

The baryonic U(1)V symmetry corresponds in models with fundamental matter to the

diagonal U(1) gauge symmetry of the probe branes. Baryon number is therefore described

by electric charge, and baryon number density is related to the electric field, or more

precisely to the electric displacement field, of the diagonal U(1). Correspondingly, the

baryon chemical potential is described by the value of the gauge potential at infinity A0(∞).

Finite baryon density in the Sakai-Sugimoto model has been studied in [15 – 18]. However,

only part of the parameter space has been explored so far. Other models with finite baryon

density have been studied in [19 – 22].

In this paper we explore the full parameter space of the Sakai-Sugimoto model at finite

temperature and finite uniform baryon number density, in both the confined and decon-

fined phases. Other than temperature and baryon number density (or chemical potential),

this model has an additional parameter not present in QCD, namely the asymptotic 8-

brane-anti-8-brane separation L. We will assume that the value of L is such that the

intermediate phase of deconfinement with chiral symmetry breaking exists, in other words

that the deconfinement temperature is (much) smaller than the chiral-symmetry restora-

tion temperature. The confined phase is, of course, of great interest, but the deconfined

phase exhibits a much richer phase diagram. The deconfined phase is also qualitatively the
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same as the non-local NJL model [23, 24], and we expect a similar phase diagram in that

case.

There are two types of objects which carry baryon charge. The baryons themselves

correspond to 4-branes wrapped on the S4 part of the background. Due to the RR flux each

4-brane comes with Nc strings attached [25]. The other end of the strings is attached to the

8-branes, which is how the baryons get their flavor. However, in the nonsupersymmetric

4-brane background this configuration is not static. The strings pull the wrapped 4-branes

up toward the 8-branes [26]. When they reach the 8-branes, the 4-branes can also be

described as instantons in the world-volume theory of the 8-branes. In the deconfined

phase baryon charge can also be carried by strings which stretch from the 8-branes all the

way to the horizon.1 This describes a possible phase in which baryon charge is carried by

free quarks.

In both cases we will consider a uniform distribution in R
3 of baryon charge, so the

8-brane worldvolume theory reduces to a one-dimensional problem in the radial coordinate

with a source term. As the 4-branes and strings exert a force on the 8-branes, their

embedding at finite baryon number density will have a cusp.

We will make the following approximations. First, we will assume that the wrapped

4-branes are pointlike in the transverse coordinates and uniformly distributed in R
3. The

precise description would be in terms of instantons in the 8-brane worldvolume theory.

However, instanton solutions in DBI are not known. Analysis in the Yang-Mills (plus

Chern-Simons) approximation shows that an instanton has a finite size on the order of

the string length [13]. Using pointlike instantons, or equivalently pointlike 4-branes, is

therefore a good approximation. We will also neglect any direct interactions between the

4-branes themselves or between the strings.

Our results are summarized in the phase diagram in figure 1. At low temperatures

the theory confines, and there is a second order phase transition at finite µ to a phase of

nuclear matter. At high temperature the theory deconfines and chiral symmetry is restored.

At intermediate temperatures chiral symmetry is broken for all µ (as in QCD). We find

a second order phase transition also in the intermediate temperature range between the

vacuum and nuclear matter phases. This is similar to QCD, but in QCD it is a first-order

transition due to the attractive interaction between the baryons (which we have neglected).

In section 2 we begin by describing the possible 8-brane configurations corresponding

to the Sakai-Sugimoto model at finite baryon number density. In section 3 we discuss the

thermodynamics of the gauge theory which are implied by these configurations and derive

the full phase diagram in the grand canonical ensemble. We consider both the confined

and deconfined phases, and both 4-branes and strings as sources of baryon charge in the

deconfined phase. It will turn out that 4-branes are always preferred to strings, and that

the stringy “quark matter” phase is actually unstable to density fluctuations. We conclude

and offer suggestions for future work in section 4.

1We can think of these strings as ending on massless, wrapped 4-branes at the horizon.
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Figure 1: The phases of holographic QCD at finite temperature and baryon chemical potential.

A particular deconfinement temperature (0.025) was chosen for illustration purpose only.

2. Finite density brane configurations

The basic brane configuration consists of Nf 8-branes and Nf anti-8-branes in the near

horizon background of Nc 4-branes wrapped on a Scherk-Schwarz circle with Nc ≫ Nf . At

zero temperature the background is capped and the circle is topologically trivial, so the

8-branes and anti-8-branes connect into a U-shaped configuration. The dual gauge theory

is confining, and chiral symmetry is broken. At finite temperature this continues to be the

only possible configuration until one reaches a critical temperature, at which the dominant

background switches to the black hole, and both U-shaped 8-branes and separated parallel

8-branes and anti-8-branes are allowed. At first the U-shaped configuration dominates, so

chiral symmetry remains broken even though the gauge theory deconfines. Chiral symmetry

restoration occurs at a second critical temperature, which for L small enough, is above the

first critical temperature (otherwise they are equal). At this temperature the separated

8-brane-anti-8-brane configuration begins to dominate.

The baryon number current is related holographically to the diagonal U(1) part of the

8-brane gauge field. To study finite baryon number density configurations we therefore

need to include this gauge field in the 8-brane action. The first place it enters is in the

DBI action:

SD8 = −µ8

∫

d9X e−φ Tr
√

−det(gMN + 2πα′FMN ) (2.1)

where F is the U(Nf ) field strength

F = dA + iA ∧A . (2.2)
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We decompose the U(Nf ) gauge field into an SU(Nf ) part and a U(1) part as follows2

A = A +
1

√

2Nf

Â . (2.3)

The U(1) gauge field will also appear in the CS action, which will be important below. Let’s

study the effect of turning on this gauge field on the brane configuration in the different

phases.

2.1 Confined phase

In the confined phase the background (at finite temperature) is given by

ds2 =

(

U

R

)
3

2
(

(dXE
0 )2 + (dX)2 + f(U)dX2

4

)

+

(

R

U

)
3

2
(

dU2

f(U)
+ U2dΩ2

4

)

(2.4)

eΦ = gs

(

U

R

)3/4

(2.5)

F4 =
(2π)3(α′)3/2Nc

Ω4
ǫ4 (2.6)

where XE
0 ∼ XE

0 + β, X4 ∼ X4 + β4, and

f(U) = 1 − U3
KK

U3
, UKK =

(

4π

3

)2 R3

β2
4

, R3 = πgsNc(α
′)3/2 . (2.7)

It is convenient to express everything in terms of dimensionless quanitities, so we define

u =
U

R
, x4 =

X4

R
, τ =

XE
0

R
, â =

2πα′Â
√

2NfR
. (2.8)

The 8-brane action with the U(1) gauge field is then given by3

SD8 = N
∫

duu4

[

f(u)(x′
4(u))2 +

1

u3

(

1

f(u)
− (â′0(u))2

)]
1

2

, (2.9)

where we have defined the overall normalization as

N ≡ µ8NfΩ4V3βR5

gs
, (2.10)

where Ω4 is the volume of a unit S4, and V3 is the volume of space (R3). Note that the

action scales as NfNc.

As will become clear in the next section it is convenient to also define the Legendre-

transformed action

S̃D8 = SD8 + N
∫

du d(u)â′0(u) (2.11)

2We are using the convention Tr TaTb = 1

2
δab.

3This is the action for just the 8-branes, i.e. for 1/2 of the full configuration. The lower limit of the

integral is the lowest radial position of the 8-brane configuration, and the upper limit is infinity.
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where d(u) is the electric displacement field defined by

d(u) ≡ − 1

N
δSD8

δâ′0(u)
=

uâ′0(u)
[

f(u)(x′
4(u))2 + u−3

(

1
f(u) − (â′0(u))2

)]
1

2

. (2.12)

This gives

S̃D8 = N
∫

duu4

[

f(u)(x′
4(u))2 +

1

u3f(u)

]
1

2
[

1 +
(d(u))2

u5

]

1

2

. (2.13)

The equations of motion for x4(u) and d(u) can be integrated once yielding two constants:

d(u) = d

(x′
4(u))2 =

1

u3(f(u))2

[

f(u)(u8 + u3d2)

f(u0)(u8
0 + u3

0d
2)

− 1

]−1

, (2.14)

where u0 is defined as the position where x′
4(u) diverges.

For d = 0 the solution is a U-shaped 8-brane in the (x4, u) plane, with u0 as its lowest

radial position (figure 2) [10]. However, a non-trivial electric displacement d requires

a source at u = uc, which is possibly different from u0, which will change the 8-brane

configuration. This is essentially a one-dimensional electrostatics problem in the coordinate

u, except that the 8-brane covers the region [uc,∞] twice. Each part carries an electric

displacement d.

The only possible sources for d in the confined phase are instantons, or equivalently 4-

branes wrapped on the S4, in the 8-branes. For a uniform d we need a uniform distribution

in R
3 of 4-branes. The source term comes from the 8-brane CS action:

SCS =
µ8

6

∫

R4×R+×S4

C3Tr (2πα′F)3 =
Nc

24π2

∫

R4×R+

ω5(A) . (2.15)

The relevant term is the one that couples the U(1) to the SU(Nf ):

Nc

24π2

∫

R4×R+

3
√

2Nf

Â0Tr F 2 . (2.16)

We will assume a uniform distribution of 4-branes in R
3 at u = uc:

1

8π2
Tr F 2 = n4δ(u − uc)d

3x du , (2.17)

where n4 is the (dimensionless) density of 4-branes wrapped on S4. The equation of motion

for the U(1) gauge field then gives

d′(u) =
βV3Nc

2πα′R2N n4 δ(u − uc) , (2.18)

and therefore4

n4 =
2πα′R2N

βV3Nc
d . (2.19)

4This is the density of 4-branes on one half of the 8-brane configuration. The total 4-brane density is

twice this much.
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x4

u

uKK

u0

l

uc

uKK

l

u
′

0D4s

Figure 2: The 8-brane configuration with d = 0 and d 6= 0 in the confined phase.

One might worry at this point about the validity of the assumption of smeared point-

like instantons in (2.17). Since derivatives of the fields involved are large in this case, it is

possible that higher-derivative (stringy) corrections to the DBI action are important, and

cannot be ignored. The two relevant fields are the non-abelian (SU(2)) instanton gauge

field F , and the abelian electric potential Â0. In our analysis we actually replace the

F -dependence of the action with the action of a wrapped 4-brane at a point in u. This

takes care of all the higher-derivative corrections to the non-abelian part of the point-like

instanton. The abelian electric field sourced by the instanton, on the other hand, is incor-

porated into the 8-brane DBI action, and we ignore other higher-derivative corrections. In

our idealized setting d′(u) ∼ δ(u− uc), which makes these corrections dangerous. However

when we smear the instantons over a string length in u (as suggested by the computation

in [13]), it becomes clear that higher-derivative corrections are suppressed by powers of

α′. For example a correction to the DBI action of the form
∫

du (
√

α′ d′(u))2 scales as
√

α′

relative to the DBI action.

The instanton distribution (2.17) also sources the equation of motion for x4(u) and

will therefore deform the shape of the 8-brane. Physically, the 4-branes pull down on the

8-branes. Since the 4-brane distribution has a finite energy density per unit 7-volume (the

S4 they wrap plus the R
3), it will form a cusp in the 8-brane (like a bead on a string).

Away from the cusp the 8-brane will follow two opposite pieces of a U-shaped solution,

which are truncated at some radial position uc above u0 (figure 2).

The value of uc can determined by the zero-force condition in the (x4, u) plane. The

proper tension of the 8-brane is given by varying the Legendre-transformed action (2.13)

(which is the same as the Hamiltonian once we substitute in for the solution of x4(u)) with

repsect to the proper distance along the 8-brane. The result is

fD8 = Nu13/4
c

(

1 +
d2

u5
c

)1/2

. (2.20)

The force due to the 4-branes is given simply by varying their action with respect to their

position uc, again taking care to vary with respect to the proper distance. The 4-brane

– 7 –
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action is

SD4 =
n4V3µ4

R3

∫

dΩ4dτ e−Φ
√

detgMN

=
1

3
Nucd , (2.21)

and the force is therefore

fD4 =
∂SD4

∂uc

1√
guu

∣

∣

∣

∣

u=uc

=
1

3
Ndu3/4

c

√

f(uc) . (2.22)

The condition for equilibrium is then

fD8 cos θ = fD4 , (2.23)

where θ is the proper angle of the 8-brane at uc,

cos θ =

[

1 − f(u0)
(

u8
0 + u3

0d
2
)

f(uc) (u8
c + u3

cd
2)

]1/2

. (2.24)

An elegant alternative derivation of this result is given in the appendix.

We want to solve this for uc, while holding fixed the asymptotic separation of the

8-branes and anti-8-branes, which is given by

l = 2

∫ ∞

uc

dux′
4(u) . (2.25)

This can be done numerically by varying u0 and d, computing uc and l using (2.23)

and (2.25), and then tabulating (d, uc) for a given value of l. The result is presented

in figure 3, where for definiteness we have set l = 1. Note that for small values of d the

cusp comes down as d increases, but beyond a certain value of d it goes up. Initially the

4-branes pull the 8-branes down, but eventually the 8-branes win this “tug-of-war”. We

will see the same behavior in the deconfined phase. The initial downward motion of the

cusp indicates that the chiral condensate of the gauge theory decreases initially as the

density increases, and the eventual upward motion indicates that the chiral condensate

eventually increases with d. As we will soon see this has an important implication for the

gauge theory thermodynamics at high density.

2.2 Deconfined phase

The background describing the deconfined phase is given by exchanging the roles of x4 and

τ :

ds2 = u
3

2

(

f(u)dτ2 + (dx)2 + dx2
4

)

+ u− 3

2

(

du2

f(u)
+ u2dΩ2

4

)

, (2.26)

with the same dilaton and RR 4-form as before, and where

f(u) = 1 − u3
T

u3
, uT =

(

4π

3

)2 R2

β2
τ

=

(

4π

3

)2

t2 , (2.27)
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Figure 3: The position of the cusp (and 4-brane) in the 8-brane as a function of the electric

displacement d for l = 1 in the confined phase. We present this as a log plot to show both the

initial decrease, as well as the limiting value at large d.

where t ≡ R/βτ = RT is the dimensionless temperature. The 8-brane action is now given

by

SD8 = N
∫

duu4
[

f(u)(x′
4(u))2 + u−3

(

1 − (â′0(u))2
)]

1

2 , (2.28)

and the Legendre-transformed action is

S̃D8 = N
∫

duu4
[

f(u)(x′
4(u))2 + u−3

]
1

2

[

1 +
(d(u))2

u5

]
1

2

, (2.29)

where d(u) is now given by

d(u) =
uâ′0(u)

[f(u)(x′
4(u))2 + u−3 (1 − (â′0(u))2)]

1

2

. (2.30)

As in the confined phase, the equation of motion for d(u) implies that it is a constant

d(u) = d. On the other hand, for x4(u) there are two types of possible configurations

(figure 4). The first corresponds to separated parallel 8-branes and anti-8-branes with

x′
4(u) = 0 , (2.31)

and the second to a connected configuration with

(x′
4(u))2 =

1

u3f(u)

[

f(u)(u8 + u3d2)

f(u0)(u8
0 + u3

0d
2)

− 1

]−1

. (2.32)

Actually, as we will soon see there are in fact two connected solutions, but only one is

(classically) stable.

2.2.1 4-brane sources

The parallel configuration can have a uniform electric displacement d without sources. In

the connected configuration, however, we need a source, as in the confined phase. One

possible source is again 4-branes inside the 8-branes. The 4-brane action is now

SD4 =
1

3
Nuc

√

f(uc) d , (2.33)

– 9 –
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uT

l

uT

l

uc

u
′

0D4s

uT

l

uc

u
′

0

strings

Figure 4: Possible 8-brane configurations with d = 0 and d 6= 0 in the deconfined phase.
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Figure 5: The position of the cusp in the 4-brane cusp configuration as a function of the electric

displacement for l = 1 in the deconfined phase.

and the force they exert is given by

fD4 =
1

3
Nd

(

f(uc) +
ucf

′(uc)

2

)

=
1

3
Nd(3 − f(uc)) , (2.34)

where in the last equality we used the form of f(u) in (2.27). The 8-brane force is computed

as before, but with the metric of the deconfined phase. This gives

fD8 = Nu13/4
c

√

f(uc)

(

1 +
d2

u5
c

)1/2

, (2.35)

and the same angle as before (2.24). The solution of the zero-force condition for a repre-

sentative temperature is shown in figure 5. The qualitative behavior is the same as in the

confined phase: initially the cusp comes down as d increases, but eventually it goes up and

approaches a fixed value.

In the deconfined phase there are actually two connected solutions in general. This

can be seen by looking at l as a function of the cusp position uc at fixed d and t (figure 6).

There are two values of uc for a given l below some lmax. At l = lmax the two solutions

coincide, and above lmax there is no connected solution. This behavior is also true for

d = 0. So in fact there are three solutions in all when l < lmax: the parallel configuration,

a “short” cusp configuration (or “short” U-configuration when d = 0), and a “long” cusp
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Figure 6: The asymptotic brane-anti-brane separation l as a function of the cusp position uc for

a fixed d = 0.5 and t = 0.1.

parallel shortlongcuspcusp parallel cusp parallel
Figure 7: A schematic of the three possible solutions: (a) l < lmax (b) l = lmax (c) l > lmax.

configuration (or “long” U-configuration when d = 0). When l > lmax only the parallel

configuration is a solution. This picture is very reasonable from the following point of view.

Imagine that we have two classically stable solutions in some theory with a potential. The

two solutions correspond to two local minima of the potential. But this necessarily implies

that there should be a third solution, corresponding to the local maximum between the

two minima (figure 7a). This solution should be unstable. Now imagine that one local

minimum is lower than the other, and that the second local minimum approaches the local

maximum as we vary some parameter. When they coincide we get a point of inflection

(figure 7b). As we continue to vary the same parameter both solutions cease to exist,

leaving only the lower minimum (figure 7c). This is precisely what happens for the 8-brane

embedding. The parallel and short cusp configurations are the stable solutions. The long

cusp configuration must therefore correspond to the unstable solution. We leave it as a

future excercise to exhibit the required negative mode. Note that this picture necessarily

implies that we don’t have to worry about the cusp solution disappearing, since in the

region of parameter space near this point the parallel solution always dominates.

2.2.2 String sources

The other possible sources of electric displacement in this phase are strings which stretch
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from the 8-branes to the horizon at uT .5 We can determine the precise relation between the

density of strings ns and the electric displacement d by looking at the B-field dependence

of the supergravity, 8-brane, and string actions:

SSUG[B] = − 1

4κ2
10

∫

d10x
√

−detg e−2Φ |∂B|2 (2.36)

SD8[B] = N
∫

duu4
[

f(u)(x′
4(u))2 + u−3 − u−3

(

B0u + â′0(u)
)2

]
1

2

(2.37)

SF1[B] = − nsV3

2πα′R

∫

dτdu
(

√

−det gMN − B0u

)

. (2.38)

Varying with respect to B0u and integrating over an 8-sphere surrounding the endpoint of

the strings in the 8-branes we find that

ns =
2πα′R2N

βV3
d . (2.39)

Note that this is consistent with what we found for 4-branes in (2.19), since each 4-brane

(away from the 8-branes) has Nc strings attached.

Evaluating the string action for the deconfined background gives

SF1 = N (uc − uT )d . (2.40)

As in the 4-brane case, we have assumed a uniform distribution of strings in R
3 × S4, so

the point on the 8-brane where they end will again be a cusp. The force downward applied

by the strings is given by

fF1 =
δSF1

δuc

1√
guu

∣

∣

∣

∣

uc

= Ndu3/4
c

√

f(uc) . (2.41)

The solution to the zero-force condition with the strings is shown in figure 8. The behavior

is different from the 4-brane case. The position of the cusp comes down monotonically

with increasing d.

It turns out, however, that the stringy cusp configuration is always subdominant to

the 4-brane cusp configuration. We can see this by comparing their actions. The total

action will have a contribution from the 8-branes S̃D8 given by (2.29), where the integral

is taken from uc to infinity, and from either the 4-brane or string sources. The integrals

are divergent, but we can regularize them by subtracting the action of the 8-branes in the

parallel configuration in both cases. The results are shown in figure 9. The action of the

cusp configuration sourced by 4-branes is smaller than that of the configuration sourced

by strings at all temperatures and for all values of d.

In the next section we will show that in fact this configuration is unstable to fluctuations

in d. This is similar to the instability found in [19]. We will comment on a possible

interpretation of this instability in the conclusions.

5Instead of ending at the horizon, the strings may also end on 4-branes which wrap the S4 and are

located below the 8-branes. This is Witten’s description of baryons [25]. Each 4-brane has Nc strings

attached to it. However this configuration is not a solution of the equations of motion. There is a net

force that pulls the 4-brane to larger u [26]. Eventually the 4-brane reaches the 8-brane and turns into an

instanton.
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Figure 8: The position of the cusp in the stringy cusp configuration as a function of the electric

displacement for l = 1.
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Figure 9: Comparing the actions (relative to the parallel configuration) of the string-sourced (red)

and 4-brane-sourced (blue) cusp configurations. The 4-brane case wins at all temperatures and all

d.

3. Thermodynamics with finite chemical potential

We now turn to the gauge theory implications of the configurations we found. Our main

goal is to understand the phase diagram of the gauge theory at finite temperature t and

finite baryon chemical potential µ. Note that this model has an additional parameter not

present in QCD corresponding to the asymptotic 8-brane-anti-8-brane separation l. We

will generally fix l = 1. We have also considered other values of l (smaller and larger) and

found no qualitative change in the results.

3.1 Baryon chemical potential

The grand canonical potential is obtained by evaluating the 8-brane action (2.9) or (2.28)

on the solution. For convenience we will normalize the potential by dividing out the

normalization constant N ,

Ω(t, µ) =
1

N SD8[t, x4(u), â0(u)]solution . (3.1)

Note however that the potential, as well as all other thermodynamic quantities associated

to the matter, scale as NfNc. The (dimensionless) baryon chemical potential µ is identified
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with the asymptotic value of the U(1) gauge potential in the solution

µ = â0(∞) . (3.2)

With our normalizations the baryon number density is given by6

nb = − ∂Ω(t, µ)

∂µ
= d . (3.3)

We will therefore use d to denote also the density.

For computational purposes it is more convenient to express µ in terms of d using the

canonical ensemble. The free energy is defined as

F (t, d) = Ω(t, µ) + µd , (3.4)

and the chemical potential is given by

µ =
∂F (t, d)

∂d

∣

∣

∣

∣

t

. (3.5)

The free energy is thus related to the Legendre-transformed 8-brane action on the solution.

In the cusp configuration the total free energy includes also the contribution of the source

4-branes or strings, evaluated at the position of the cusp:

F (t, d) =
1

N
(

S̃D8[t, x4(u), d(u)]solution + Ssource(t, d, uc)
)

. (3.6)

The dependence on d comes from three places: the explicit dependence of S̃D8 and Ssource

on d, the dependence of the solution for x′
4 on d, and the dependence on d of uc. Including

all of these gives

µ =
1

N

{
∫ ∞

uc

du

(

δS̃D8

δd(u)
+

δS̃D8

δx′
4(u)

∂x′
4

∂d

)
∣

∣

∣

∣

∣

solution

t,l,uc

+
∂uc

∂d

∣

∣

∣

∣

t,l

(

∂S̃D8

∂uc
+

∂Ssource

∂uc

)∣

∣

∣

∣

∣

solution

d,t,l

+
∂Ssource

∂d

∣

∣

∣

∣

t,l,uc

}

. (3.7)

The second term vanishes since δS̃D8/δx
′
4(u) is constant by the equation of motion for x4

and the integral of ∂x′
4/∂d, at fixed uc, gives ∂l/∂d which vanishes since l is fixed. The third

and fourth terms cancel by the zero-force condition at the cusp (see appendix), leaving

µ =

∫ ∞

uc

â′0(u) +
1

N
∂Ssource

∂d

∣

∣

∣

∣

t,l,uc

, (3.8)

where â′0(u) is related to d by inverting the relation (2.12) or (2.30). The identification

of the chemical potential with the value of the gauge potential at infinity (3.2) therefore

reflects a particular choice of gauge, in which â0(uc) is identified with the mass of the

source. In the parallel configuration the source term vanishes, and the lower limit of the

integral is at the horizon u = uT . In this case the gauge choice (3.2) gives â0(uT ) = 0,

which is consistent with the fact that the source becomes massless at the horizon.

6The true baryon number density is given by (2.19).
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3.2 Confined phase

In the confined phase only a connected 8-brane configuration is possible. However for a

given µ, that is at fixed â0(∞), there are two connected solutions, a U-configuration with

d = 0 and a 4-brane sourced cusp configuration with d 6= 0. The former corresponds to

the QCD vacuum, and the latter to a phase of nuclear matter. In the vacuum phase â0

is constant, and the electric displacement d vanishes. Therefore Ω does not depend on µ

in this phase. In the nuclear matter phase â0(u) is sourced by 4-branes, and the chemical

potential is given by (3.8), which in the confined phase yields

µ =

∫ ∞

uc

du
d

√

f(u) (u5 + d2) −
(

u0

u

)3
f(u0)

(

u5
0 + d2

)

+
2

3
uc . (3.9)

Note that both uc and u0 depend on d and l. There is no temperature dependence in the

confined phase. As we are working in the grand canonical ensemble, this represents an

implicit expression for d(µ). We see that there is a critical value for the chemical potential

2uc/3 for which d = 0. Below this value there is no cusp solution and therefore no nuclear

matter phase. This is precisely the onset chemical potential µonset. For µ > µonset both the

vacuum and the nuclear matter phases exist, and we must compare their grand canonical

potentials to determine which phase is preferred. These quantities are actually divergent

at u → ∞, but the difference is finite and is given by

∆Ω(µ) = Ω(µ)nuc − Ω(µ)vac

=

∫ ∞

uc

u5/2

√

f(u)
(

1 + d2

u5

)

− u8
0n
u8 f(u0n)

(

1 + d2

u5
0n

)

− u5/2

√

f(u) − u8
0v

u8 f(u0v)

−
∫ uc

u0v

u5/2

√

f(u) − u8
0v

u8 f(u0v)

, (3.10)

where u0n and u0v are the (different) values of u0 in the nuclear and vacuum phases,

respectively. The results, for the representative value uKK = 0.5 (and l = 1), are shown

in figure 10. Since ∆Ω < 0 for all µ > µonset, the nuclear matter phase is preferred.

figure 10 also shows the baryon number density as a function of the chemical potential for

uKK = 0.5. (The value of µonset grows with uKK). Near µ = µonset the density is continuous

and behaves as d ∼ (µ − µonset)
1. This is therefore a second-order phase transition with a

critical exponent of 1. This is a reasonable result given our approximation of ignoring the

baryon interactions.

3.3 Deconfined phase

In the deconfined phase the situation becomes more interesting since there are more pos-

sible configurations at a given value of µ. In addition to the U-shaped and 4-brane-cusp

configurations, there are the parallel configuration, with vanishing or non-vanishing den-

sity, and the string-cusp configuration. The parallel configuration corresponds to a phase

in which chiral symmetry is restored. At finite density this is the quark-gluon plasma
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Figure 10: The difference in the grand canonical potential Ω between the nuclear and vacuum

state, and the resulting baryon number density, as a function of µ in the confined phase.

(QGP). The vacuum parallel configuration is irrelevant, since it is clear from (2.28) that

a non-trivial d is always preferred in the parallel configuration. The string-cusp configura-

tion features strings stretched between the 8-branes and the horizon. We will refer to the

corresponding phase in the gauge theory as quark matter. However, as we shall soon see

this configuration is actually unstable, at least for a uniform distribution of baryon charge.

That leaves three phases to compare: the vacuum (U-configuration), nuclear matter (4-

brane-cusp) and the QGP (finite density parallel configuration). We therefore expect in

general a phase diagram in the (t, µ) plane with three phase regions.

3.3.1 Unstable quark matter

Let us first show that the quark matter phase (string-cusp configuration) is thermodynam-

ically unstable. Evaluating the chemical potential (3.8) in the deconfined phase with string

sources (2.40) yields

µ =

∫ ∞

uc

du

√

f(u) d
√

f(u) (u5 + d2) −
(

u0

u

)3
f(u0)

(

u5
0 + d2

)

+ (uc − uT ) . (3.11)

Figure 11 shows a plot of d vs. µ for this configuration. It is apparent that

∂d

∂µ
< 0 , (3.12)

(or equivalently ∂µ/∂d < 0 in the canonical ensemble) and therefore that the string-cusp

configuration is thermodynamically unstable to density fluctuations. A similar instability

was found in the D3-D7 model at finite density [19].

3.3.2 Phase diagram

We begin by comparing the vacuum phase to the QGP phase. The vacuum phase is

described by the U-configuration, and the quark-gluon plasma (QGP) phase is described

by the parallel configuration. The grand canonical potential of the vacuum can be read off

from (2.28) and (2.32) with d = 0:

Ωvac(µ) =

∫ ∞

u0

du
u5/2

√

f(u)
√

f(u) − u8
0

u8 f(u0)

. (3.13)
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Figure 11: Baryon number density vs. chemical potential in the string-cusp configuration in the

deconfined phase.

The potential of the QGP is given by (2.28) and (2.30) with x′
4(u) = 0:

Ωqgp(µ) =

∫ ∞

uT

du
u5

√
u5 + d2

. (3.14)

The density d is a function of µ which is obtained from (3.8) without sources, and (2.30).

This gives

µ =

∫ ∞

uT

du
d√

u5 + d2
, (3.15)

which can be inverted numerically to get d(µ). Both potentials are divergent at u → ∞
but the difference is finite:

∆Ω1 = Ωqgp − Ωvac . (3.16)

Figure 12 shows ∆Ω1(µ) for a few representative temperatures (and l = 1). The transition

between the two phases occurs when ∆Ω1 = 0. We find a line of transitions between these

two phases in the (t, µ) plane shown in figure 12. This result was obtained previously

in [16].

We now turn to the comparison of the vacuum phase with the nuclear matter phase.

We did this already in the confined phase, and found a second-order phase transition at

some µ = µonset. Since the Sakai-Sugimoto model exhibits chiral-symmetry breaking also

in the deconfined phase, it is reasonable to expect that nuclear matter should form also in

this case. The potential of the nuclear phase (with 4-branes) is given by

Ωnuc(µ) =

∫ ∞

uc

du
u5/2

√

f(u)
√

f(u)
(

1 + d2

u5

)

− u8
0

u8 f(u0)
(

1 + d2

u5
0

)

, (3.17)

where d is again given implicitly in terms of µ using (3.8) with 4-brane sources:

µ =

∫ ∞

uc

du

√

f(u) d
√

f(u) (u5 + d2) −
(

u0

u

)3
f(u0)

(

u5
0 + d2

)

+
2

3

√

f(uc) . (3.18)
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Figure 12: Grand canonical potential and phase diagram for the vacuum vs. QGP phases.
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Figure 13: Grand canonical potential and baryon number density in the nuclear matter phase

relative to the vacuum phase.

We are now interested in the difference between the potentials of the nuclear phase and

the vacuum phase,

∆Ω2 = Ωnuc − Ωvac . (3.19)

Figure 13 shows ∆Ω2(µ) for a representative temperature. The behavior is qualitatively

the same at all temperatures: ∆Ω2 is negative for all µ for which the nuclear phase exists.

Figure 13 also shows the density as a function of µ at the same temperature. As in the

confined phase, the critical exponent is 1 to within our numerical accuracy, so the transition

is second order. By varying the temperature we obtain the phase diagram in figure 14.

The behavior agrees qualitatively with what is expected in QCD: µonset decreases slightly

as the temperature increases.

The final part of the phase diagram comes from comparing the nuclear and QGP

phases:

∆Ω3 = Ωnuc − Ωqgp . (3.20)

Here we find an interesting temperature dependence. Figure 15 shows ∆Ω3(µ) for three

representative temperatures. At low temperature the nuclear matter phase wins for all

µ. Then there is a temperature range for which the system undergoes two transitions as

µ is increased, first from nuclear matter to QGP, and then back to nuclear matter. The
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Figure 14: Phase diagram for vacuum and nuclear matter phases.
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Figure 15: Grand canonical potential (for t = 0.1, 0.12, 0.15) and phase diagram for the nuclear

vs. QGP phases.

resulting phase diagram is shown in figure 15. The physical source of the dip in the phase

diagram is the dip that occurs in the position of the cusp uc as a function of the density d

(figure 5). There is a similar dip in the phase diagram of QCD (see for example [3]). At

high temperature (not shown) the QGP phase is preferred for all µ.

Finally, combining the three separate phase diagrams gives the complete phase diagram

shown in figure 1. At low temperature and chemical potential the vacuum phase dominates,

at low temperature and high chemical potential the nuclear phase dominates, and at high

temperature chiral symmetry is restored and the quark-gluon plasma phase dominates.

3.4 Entropy and equation of state

Phases of thermodynamic systems are also characterized by the their equation of state and

entropy. Let us briefly discuss these for the different phases we have encountered.

The pressure as a function of the density p(d, t) is essentially given by −Ω(µ(d), t). We

find that at low temperature the behavior in the confined and deconfined phases is very

similar.7 At small densities d ∼ (µ − µonset) and therefore8

p(d) ∼ (µ − µonset)
2 ∼ d2 . (3.21)

7The behavior at high temperature, i.e. in the QGP phase, was essentially worked out in [24].
8For a free fermi gas p(d) ∼ d5/3.
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Figure 17: Entropy vs. temperature in the deconfined phase.

At large densities d ∼ µ5/2 (figure 16) and thus

p(d) ∼ µ7/2 ∼ d7/5 . (3.22)

It is interesting that although we have not specified that the baryons are fermions (indeed

there seem to be both fermionic and bosonic components), the results for µ(d) mimic a

behavior expected for fermions. This is due to the response of the DBI action to the electric

field.

The entropy as a function of the temperature s(t) is computed from the free-energy

F (t, d). The interesting case is the deconfined phase, since there is no temperature depen-

dence in the confined phase. At low temperature, where chiral symmetry is broken, we

find (for both small and large densities)

s(t) ∼ t5 , (3.23)

and at the high temperature, where chiral symmetry is restored, we find

s(t) ∼ t6. (3.24)

4. Conclusions

In this paper we have analyzed the different phases of the Sakai-Sugimoto model at finite

temperature and baryon chemical potential and determined the phase diagram. In many
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respects our phase diagram is similar to that of QCD. In both cases chiral symmetry is

broken at low temperature and restored at high temperature, at all values of the chemical

potential. The dip in the phase diagram suggests that the chiral condensate initially

decreases with µ and then increases. This is similar to the behavior in QCD. It would be

interesting to study this directly using the holographic description of the chiral condensate

in terms of the tachyon [27].

The finite density phase is described by a gas of ”baryonic matter” 4-branes wrapped

on the S4 inside the 8-branes. At low temperatures this phase always dominates over the

quark-gluon plasma phase. The other possible description of baryon matter in terms of

strings (”quark matter”) turns out to be subdominant and unstable. If we ignore these

facts and use strings instead of 4-branes to describe baryonic matter the phase diagram

would change and chiral symmetry would be restored at high density.

We also find a phase transition between the vacuum and nuclear matter phases. In

QCD this is a first-order transition, but in our case it is second-order. We believe that that

the difference is a result of neglecting the interactions between the 4-branes.

Another difference is that QCD at high density is expected to be in a CFL phase, in

which both the chiral symmetry and the gauge symmetry are broken. However, at large Nc

QCD is expected to be dominated by a non-uniform chiral symmetry breaking phase with

unbroken gauge symmetry. We did not explore this possibility in this paper. However the

result that the “quark matter” phase, with strings stretched to the horizon, was unstable

to density fluctuations, suggests that there may exist a stable non-unifrom phase. It would

be interesting to see if it is similar to the chiral density wave in large Nc QCD.

A. Zero-force condition from the action

The force balance condition for the cusp configurations can alternately be obtained directly

by varying the total action with respect to the cusp position uc. The total action is given

by

S̃ = S̃D8 + Ssource(uc) =

∫ ∞

uc

L̃(x′
4(u), d, t)du + Ssource(uc, d, t) . (A.1)

We want to vary the action with respect to uc, while keeping the physical varaibles l, t and

d fixed. To do this we need to vary x′
4 (and therefore u0) accordingly. This gives

∂S̃

∂uc

∣

∣

∣

∣

∣

d,t,l

= −L̃(uc) +

∫ ∞

uc

du
δS̃D8

δx′
4

∂x′
4

∂uc

∣

∣

∣

∣

∣

d,t,l

+
∂Ssource

∂uc

∣

∣

∣

∣

d,t,l

. (A.2)

However since l is given by

l = 2

∫ ∞

uc

dux′
4(u) (A.3)

we get

−x′
4(uc) +

∫ ∞

uc

du
∂x

′

4

∂uc

∣

∣

∣

∣

∣

d,t,l

= 0 . (A.4)
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Furthermore, the equation of motion sets δS̃D8/δx
′
4 to a constant independent of u. Re-

quiring the total action to be stationary with respect to the varaition of uc one gets

L̃(uc) − x′
4(uc)

δS̃D8

δx′
4

=
∂Ssource

∂uc
. (A.5)

Substituting in the expressions for L̃ and Ssource then reproduces the force balance condi-

tions in the various cases (confined, deconfined, 4-branes, strings).
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