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Abstract: We consider a holographic model of QCD from string theory, à la Sakai

and Sugimoto, and study baryons. In this model, mesons are collectively realized as a five-

dimensional U(NF ) = U(1)×SU(NF ) Yang-Mills field and baryons are classically identified

as SU(NF ) solitons with a unit Pontryagin number and Nc electric charges. The soliton

is shown to be very small in the large ’t Hooft coupling limit, allowing us to introduce

an effective field B. Its coupling to the mesons are dictated by the soliton structure, and

consists of a direct magnetic coupling to the SU(NF ) field strength as well as a minimal

coupling to the U(NF ) gauge field. Upon the dimensional reduction, this effective action

reproduces all interaction terms between nucleons and an infinite tower of mesons in a

manner consistent with the large Nc expansion. We further find that all electromagnetic

interactions, as inferred from the same effective action via a holographic prescription, are

mediated by an infinite tower of vector mesons, rendering the baryon electromagnetic form

factors completely vector-dominated as well. We estimate nucleon-meson couplings and

also the anomalous magnetic moments, which compare well with nature.
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1. Introduction

The recent development in applying the concept and the methodology of AdS/CFT dual-

ity [1] to low-energy hadron dynamics, referred to as the holographic QCD or AdS/QCD,

brings out two related issues from opposite directions, one top-down from string the-

ory [2, 3] and the other bottom-up from low-energy chiral effective field theory of mesons

and baryons [4 – 6].

From the string theory point of view, what one is interested in is to assess to what

extent the gravity theory in the bulk sector in a controlled weak coupling limit can address,

via duality, the strongly coupled dynamics of QCD and if so, how well and how far. In this

respect, the aim there is to “post-dict” what is established in low-energy hadron dynamics,

and try to reproduce what has been well understood in low-energy effective theories. The

principal goal here is to establish its raison-d’être in the strong interaction sector. On the

other hand, from the low-energy effective theory perspective on which we will elaborate

in some detail below, the aim is, if it is firmly established that the holographic QCD has

definite connection to real QCD, whether it can make clear-cut and falsifiable predictions

on processes which are difficult to access by QCD proper.

A notable example of this sort is the prediction by AdS approaches of low viscosity-

entropy ratio [7] and also of low elliptic flow in matter at high temperature above the

chiral restoration point [8], which is presumed to be observed at RHIC. Given the com-

plete inability of the QCD proper to handle this regime, this development gives a hope

that the holographic approach could provide a powerful tool going beyond perturbative

QCD and elucidate strongly interacting matter under extreme conditions that are oth-

erwise inaccessible, such as the phenomenon of jet-quenching [9]. Another outstanding

immediate challenge to AdS approaches is to identify and elucidate the degrees of freedom

figuring just below (in the Nambu-Goldstone phase) and just above (in the Wigner-Weyl

phase) Tc, the chiral transition temperature presumed to have been probed at RHIC [10].

At present, however, in the paucity of better understanding, it is not clear whether the

current “explanation” of the properties of quark-gluon plasma at RHIC reflects directly

certain specific properties of nonperturbative QCD or whether they are simply in a same

universality class unspecific to dynamics. For instance, recent works suggest that the pre-

diction of viscosity-entropy ratio could be common to all AdS-based models regardless of

details [11].

Another example of this sort is the exploitation of the conformal structure of AdS/CFT

to deduce the analytic form of the frame-independent light-front wavefunctions of hadrons

which could allow the computation of various observables that are found to be difficult to

obtain in QCD itself [12].

In this paper, we would like to zero in on a more specific set of problems that are

typically of strong-coupling QCD and are very difficult to access by established QCD

techniques, namely chiral dynamics of hadrons, in particular baryons, at low energy. Unlike

pions, which are relatively well-understood from the chiral Lagrangian approach to QCD,

baryons remain more difficult to pin down. This may account for the reason why in the

chiral lagrangian approach, baryons are either put in by hand as point-like objects or

– 2 –
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built up as solitons (i.e., Skyrmions) from mesons. The former suffers from the lack of

theoretical justification as a local field when the energy scale reaches the inverse of its

Compton wavelength as evidenced in the growing number of unknown parameters, while

the latter in its simplest approximation does not fare well in phenomenology. Attempts to

marry the two pictures are often difficult, given the relatively large size of the Skyrmion.

This work was motivated by an astute modelling of chiral dynamics within the frame-

work of AdS/CFT by Sakai and Sugimoto [2] that correctly describes the spontaneous

breaking of chiral U(NF )L × U(NF )R to the diagonal subgroup U(NF )L+R. For our pur-

pose, the most salient feature of the holographic model of Sakai and Sugimoto (SS for

short) is that the entire tower of vector mesons plus the pions are built into a single U(NF )

gauge field in five-dimensions, immensely simplifying possible interaction structures among

mesons, and eventually with baryons as well. This also implies that the low-energy chiral

dynamics incorporating the “hidden local gauge symmetry” (HLS) is manifest in five di-

mensions. The U(NF ) gauge field is supported by NF D8 branes compactified on S4 while

the strongly coupled SU(Nc) dynamics is hidden in the background AdS-like geometry.

The effective chiral theory, defined at a KK scale, MKK (commensurate with the chiral

scale Λχ ∼ 4πfπ) is valid and justified in the limit of large ’t Hooft coupling constant

λ = g2YMNc and large Nc. Surprisingly even in this limit, the SS model has been shown to

possess the power to reproduce rather well most of the low-energy hadron properties in the

meson sector that are highly non-perturbative, such as, for example, soft-pion theorems,

KSRF relations, various sum rules etc. Most notable among what has been obtained is that

all hadron processes involving mesons, both normal (e.g., π-π scattering) and anomalous

(e.g., π0 → 2γ, ω → 3π etc), are vector-dominated with all the members of the infinite tower

participating non-trivially in the process, including the well-established vector dominance

of the pion EM form factor.

Now given an effective theory that captures the physics of the meson sector, one imme-

diate question is how the baryons figure in the story and how well the picture approximates

static and dynamic properties of baryons. A related question is whether or not the vector

dominance which holds naturally in the meson sector also holds with baryons. This ques-

tion has a bearing on the concept of “universality” that has played an important role in

the history of vector dominance in hadron physics. As described in detail in what follows,

a baryon in the SS model is a soliton with instanton-like configuration in a five-dimensional

Yang-Mills action, which encodes the winding number of the four-dimensional Skyrmion

made up not only of the pion field but also of an infinite tower of vector mesons.

In fact, perhaps the most appealing possibility for the holographic QCD to unravel

something truly novel in low-energy hadron dynamics is in the baryon structure — which

is the principal subject of this article. In the past, several authors [13] studied Skyrmions

with the HLS Lagrangian containing the lowest vector mesons, ρ and ω, of [14]1 as merely

an alternative or improved description of the same soliton given by the Skyrme model with

the pion hedgehog [15, 16]. The essential idea was that vector mesons, in particular the

1Some works include the a1 meson as well, but the idea is essentially the same as without it.
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ρ meson, could replace the Skyrme quartic term in the role of stabilizing the soliton.2 It

was only recently suggested that hidden local fields bring a drastically different or novel

aspect to the soliton structure of baryons [18 – 20]. Indeed what we have found is that the

instanton baryon, which is a Skyrmion with an infinite tower of hidden local fields, presents

an aspect of baryons hitherto left largely unexplored.

A major part of this paper will be devoted to understanding the simplest of static

properties, and subsequently the chiral dynamics of the baryons realized as five-dimensional

solitons. One consequence of the fully five-dimensional picture is that, in the large ’t Hooft

coupling, the instanton size is so small to be amenable to a simple effective field theory

approach. Our strategy in uncovering the dynamics of baryons relies on an effective field

theory of the small instanton in the five dimensional setting. The quantum numbers of the

small instanton are commensurate with those of the Skyrmion, except that it naturally and

minimally couples to five-dimensional U(NF ) gauge fields instead of to four-dimensional

SU(NF ) pion fields. This results in a simple five-dimensional Dirac field representing

baryons, minimally coupled to the U(NF ) gauge field. While the instanton size is small,

on the other hand, the long distance power-like tail cannot be ignored and leads to a

higher-dimensional coupling between the SU(NF ) field strength and the Dirac field whose

coupling strength is determined by the size of the instanton. It is plausible that this

picture can justify the long-standing tradition — recently given a support in terms of chiral

perturbation theory — in nuclear physics where the nucleon is considered as a point-like

object and its finite size effects are taken into account via “meson cloud.”

At the end of the day, what will have transpired is that these two simple and explicitly

computable five-dimensional interaction terms in the baryon effective action encode all the

four-dimensional meson-baryon interactions, up to quadratic order in the baryon field. This

includes the pions, the entire tower of vector mesons and axial vector mesons, once and

for all, and also incorporates iso-scalar and iso-vector mesons on equal footing. Needless

to say, this will result in a large number of predictions on various meson-baryon couplings,

and more indirectly, various electromagnetic interactions.

While the photon field is not present among the degrees of freedom in this model,

the electromagnetic current can also be extracted following the general prescription of

AdS/CFT. An interesting outcome of this investigation is that, although the effective ac-

tion approach in five dimensions predicts a minimal coupling between photon field and

the baryon, a mixing between massive vector mesons and the photon field effectively re-

places this with an infinite number of vector mesons coupling to the baryons. The resulting

electromagnetic form factors show a complete vector dominance in the sense that all electro-

magnetic interactions are mediated by exchange of vector mesons, generalizing old notion

of vector dominance by the lightest vector mesons. In particular, full vector dominance is

recovered in the electromagnetic form factors of the nucleon in the same fashion as in the

pion.

We will also discuss subleading 1/Nc corrections and compare these findings against

experimental values. Throughout the derivation of the effective action, we stay in the

2We will argue in section 8 that this idea is not correct.
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regime of large Nc and large ‘t Hooft coupling g2YMNc where the size of baryon is small

enough to justify this approach. On the other hand, the realistic regime of Nc = 3 QCD

with the pion decay constant fπ ∼ 93MeV demands g2YMNc ∼ 17, which is not large

enough. The baryon size is difficult to estimate in this regime but is clearly of the same

order as 1/MKK. To avoid the difficulties associated with the latter, we take the route of

doing most of computation in large ‘t Hooft coupling limit and extrapolate only at the end

of the day. We expect that this strategy works best when the quantities in question are not

sensitive to the ‘t Hooft coupling in the large Nc limit, such as the chiral coupling between

pions and the baryon and the anomalous magnetic moment of the nucleon.

Section 2 will review the holographic QCD model of Sakai and Sugimoto but also serve

as the reference section for many of the computations. We will in particular introduce a

conformal coordinate system which is useful for dealing with the instanton soliton, which

upon quantization will be identified with baryons. In section 3, we consider basic static

properties of baryons and include a careful derivation of the size and the energetics. The

instanton must then be quantized to become physical baryon, and when the size is small,

namely when the ’t Hooft coupling is very large, it can be treated as a point-like object

but with long range gauge field tails. The resulting five-dimensional effective action with

a novel and essential magnetic coupling is derived in section 4.

Beginning with section 5, we start to discuss the chiral dynamics of nucleons in four

dimensions. We first describe how to reduce the five-dimensional effective action of nucleons

to four dimensions, whose only nontrivial feature is a single magnetic coupling, and produce

a four-dimensional effective action of nucleons coupled to the infinite tower of mesons.

Some of the simplest predictions on Yukawa coupling constants will be given as examples

and compared to experimental values. Section 6 will delve into numerical estimates and

extrapolation to realistic regimes, and points out subtleties and potential problem in doing

so.

Beginning with section 7, we consider electromagnetic coupling of nucleons. We review

how the vector dominance in the meson sector came about and show how this generalizes

to nucleon sector rather nontrivially. While the vector dominance here involves the entire

tower of vector mesons, we will show that truncating down to the first four vector mesons,

in both iso-scalar and iso-vector sectors, respectively, provides a very good approximation

to the complete form factors of the model. As a bonus, one can also compute the magnetic

dipole moment of nucleons in section 8 which also compares favorably with experimental

values. In section 9, we perform numeric analysis of electromagnetic form factors (Sachs

form factors) and also extract various nucleon charge radii. We close with discussions.

An abbreviated version of this work has been reported elsewhere [21] with emphasis

on the derivation of the effective action. The present paper expands upon the previous

paper by including more detailed derivation leading to the effective action and exploring

the implications comprehensively.

2. A string theory model of holographic QCD

Among the holographic models of QCD proposed recently, one most interesting and realistic

– 5 –
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model is the one by Sakai and Sugimoto (SS) [2], who considered Nc (À 1) stack of D4

branes and NF D8 branes in the background of Type IIA superstring. The key point of

the model3 is that the flavor symmetries of the quark sector are embedded into a U(NF )

gauge symmetry in R1+3× I. The fifth direction is topologically an interval, and the four-

dimensional low energy physics is found by restricting to the modes that are localized near

the “origin” of this fifth direction.

The stack of D4 branes at low energy carries SU(Nc) Yang-Mills theory. In the large

Nc limit, the dynamics of D4 is dual to a closed string theory in some curved background

with flux in accordance with the general AdS/CFT idea. In the large ’t Hooft coupling

limit, λ ≡ g2YMNc À 1, and neglecting the gravitational back-reaction from the D8 branes,

the metric is [17]

ds2 =

(

U

R

)3/2
(

ηµνdx
µdxν + f(U)dτ 2

)

+

(

R

U

)3/2( dU2

f(U)
+ U2dΩ24

)

(2.1)

with R3 = πgsNcl
3
s and f(U) = 1−U3KK/U3. The coordinate τ is compactified as τ = τ+δτ

with δτ = 4πR3/2/(3U
1/2
KK).

2.1 Five-dimensional U(NF ) theory on D8-branes

The D8 branes, which share the coordinates x1, x2, x3 with the D4 branes, admit the

massless quark degrees of freedom as open strings attached to both the D4 and D8 branes.

The effective action on the D8 brane, embedded in the D4 background, is the DBI action

SD8 = −µ8
∫

d9x e−φ
√

− det (gMN + 2πα′FMN ) + µ8

∫

∑

Cp+1 ∧ Tr e2πα
′F , (2.2)

with

µp =
2π

(2πls)p+1
, (2.3)

where l2s = α′.
∑

Cp+1 is a formal sum of the antisymmetric Ramond-Ramond fields of

odd-ranks, C1, C3, C5, C7, C9. These fields couple, respectively, to D0, D2, D4, D6, and D8

branes.

The D8 brane in this set-up occupies a 5D curved spacetime times S4 whose radius is

position-dependent along 5D. The induced metric on D8 is

g8+1 =

(

U

R

)3/2

(ηµνdx
µdxν) +

(

R

U

)3/2( dU2

f(U)
+ U2dΩ24

)

. (2.4)

We transform the coordinates so that the noncompact 5D part of the metric is conformally

flat,

g4+1 = H(w)
(

dw2 + ηµνdx
µdxν

)

, (2.5)

where

w =

∫ U

UKK

R3/2dU ′
√

U ′3 − U3KK
. (2.6)

3Unless otherwise stated, we follow the notations of SS.
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Note that the parameters of dual QCD are mapped to the parameters here as

R3 =
g2YMNcl

2
s

2MKK
, UKK =

2g2YMNcMKKl
2
s

9
, (2.7)

where the KK mass MKK is the dimensionful free-parameter of the theory. Note that

MKK ≡ 3U
1/2
KK/2R

3/2 . (2.8)

Another dimensionful quantity that appears in the chiral Lagrangian formulation of QCD

is fπ which determines the scale of chiral symmetry breaking. In terms of the above, we

have [2, 22]4

f2π =
1

54π4
(g2YMNc)NcM

2
KK . (2.9)

As was shown in detail by Sakai and Sugimoto, it is MKK that enters the mass spectra

of mesons. For real QCD, MKK would be roughly MKK ∼ mN ∼ 0.94GeV, while fπ ∼
93MeV, and this requires

(g2YMNc)Nc ∼ 50 . (2.10)

For Nc = 3, this gives

g2YMNc ∼ 17. (2.11)

This certainly is not big enough for truncating at the leading order, indicating that it might

be difficult to naively apply this model to the realistic QCD regime. For this reason, the

best we can do is to look at dimensionless quantities in which the limiting constants cancel

out, such as ratio of masses of the mesons, and hope that such quantities are insensitive to

the precise values of these physical parameters.

Note that this fifth coordinate is of finite range since

wmax =

∫ ∞

0

R3/2dU
√

U3 − U3KK
=

1

MKK

3

2

∫ ∞

1

dŨ
√

Ũ3 − 1
' 3.64

MKK
<∞ . (2.12)

Thus, the 5D spacetime part of D8 brane is conformally equivalent to an interval

[−wmax, wmax] times R3+1. This makes the search for smooth instanton solution rather

subtle. This matter will be discussed later in this paper. Another choice of coordinate

convenient for us is z defined as

U3 = U3KK + UKKz
2 , (2.13)

which is related to w as

dw =
R3/2dU

√

U3 − U3KK
=

2R3/2U
1/2
KK dz

3(U3KK + UKKz2)2/3
. (2.14)

Near origin w ' 0, we have the approximate relation,

MKKw '
2

3

(

R

UKK

)3/2

× (MKKz) =
z

UKK
, (2.15)

4See section 2.2.
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which implies

U3 ' U3KK(1 +M2
KKw

2) (2.16)

for the conformally flat coordinate. This shows that the deviation of the metric from the

flat one is dictated entirely by the mass scale MKK. In fact, the same is true of the full

10-dimensional spacetime metric, and thus from this we can see thatMKK is the only mass

scale of the theory in the low energy limit.

In the low energy limit, the worldvolume dynamics of the D8 brane is well-described

in terms of a derivative expansion of the full stringy effective action, and the result of

this gives the Yang-Mills action with a Chern-Simons term. The Yang-Mills part of this

effective action is

1

4

∫

8+1

√−g8+1
e−Φ

2π(2πls)5
trFMNF

MN =
1

4

∫

4+1

√−g4+1
e−ΦVS4

2π(2πls)5
trFm̂n̂F

m̂n̂ . (2.17)

Here VS4 is the position-dependent volume of the compact part with

VS4 =
8π2

3
R3U , (2.18)

while the dilaton is

e−Φ =
1

gs

(

R

U

)3/4

. (2.19)

The Chern-Simons coupling arises from the second set of terms because
∫

S4 dC3 6= 0 takes

a quantized value, and was worked out by Sakai and Sugimoto in some detail. The answer

after integration over the four-sphere is

Nc

24π2

∫

4+1
ω5(A) (2.20)

with dω5(A) = trF 3.

2.2 Chiral lagrangian and Hidden Local Symmetry (HLS)

The main point of this model is that the D8 comes with two asymptotic regions (corre-

sponding to UV) at w → ±wmax which are continuously connected via the infrared region

near w = 0. The usual chiral symmetry U(NF )L × U(NF )R is implicitly embedded into

the U(NF ) gauge symmetry of D8 branes [2]. The U(NF )L,R are the remnant of the five-

dimensional gauge symmetry; those on the left-end and the right-end are each interpreted

as U(NF )L,R, respectively. While the gauge symmetry is broken, its global counterpart

survives as U(NF )L+R.

The five-dimensional gauge field has three polarizations. Thus the generic KK modes

become massive vector fields in four dimensions, namely massive vector mesons whose

parity is decided by the shape of the KK eigenfunction, while there is a single massless

adjoint multiplet which arises from the Wilson line degrees of freedom, which are the

pions. This can be seen more clearly when one expands Aµ in terms of eigenmodes along w

directions, decomposing it into infinite towers of KK states as seen by 4D observers. The

– 8 –
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lowest modes are then interpreted as the low-lying vector mesons of the chiral Lagrangian

formulation. In the gauge A5 = 0, this expansion was worked out by Sakai and Sugimoto.

Introducing a gauge function ξ(x) at w = 0, which is related to the pion field in unitary

gauge as

ξ2(x) = U(x), U(x) = e2iπ(x)/fπ , (2.21)

we have the following expansion,5

Aµ(x;w) = iαµ(x)ψ0(w) + iβµ(x) +
∑

n

a(n)µ (x)ψ(n)(w) (2.22)

with

αµ(x) ≡ {ξ−1, ∂µξ} '
2i

fπ
∂µπ, βµ(x) ≡

1

2
[ξ−1, ∂µξ] '

1

2f2π
[π, ∂µπ] , (2.23)

where ψ0(w) = ψ0(w(z)) =
1
π arctan

(

z
UKK

)

. Inserting this into the DBI-action (2.17), we

can obtain a low-energy Lagrangian for the pions as well as massive vector/axial-vector

mesons.

As for the pions, this reproduces the Skyrme Lagrangian6

Lpion =
f2π
4
tr
(

U−1∂µU
)2

+
1

32e2Skyrme
tr
[

U−1∂µU,U
−1∂νU

]2
(2.24)

with

f2π =
1

54π4
(g2YMNc)M

2
KKNc , e2Skyrme '

54π7

61

1

(g2YMNc)Nc
. (2.25)

For the massive tower of (axial) vector mesons, we have the standard kinetic term

Lmassive =
∑

n

{

1

4
F (n)µν F

µν(n) +
1

2
m2
na
(n)
µ aµ(n)

}

, (2.26)

with F
(n)
µν = ∂µa

(n)
ν − ∂νa(n)µ , plus various interactions between them as well as with pions.

The interesting point in this theory is that the gauge symmetry localized in the fifth

direction can be identified as an infinite number of “hidden local symmetries” (HLS) in

four dimensions, and each massive vector meson plays a role as a gauge field for some part

of them. A hidden gauge symmetry theory with the (ρ, ω), the lowest members of the

tower, was introduced into hadron physics two decades ago by Bando et al [14] and revived

recently by Harada and Yamawaki [23]. The key observation that led to the formulation

of [14] was that the chiral field U which figures in the low-energy dynamics of the Goldstone

5Our gauge field is defined by D = ∂ − iA, which differs from D = ∂ +ASS of SS.
6After this paper has appeared, we learned of a factor two error in ref. [2]. We thank S. Sugimoto for

informing us [22]. In the present paper, all quantities are derived from the D-brane physics and did not

rely on the computations in ref. [2]. The only exception is the chiral Lagrangian here, which affects the

two coefficients f2
π for the kinetic term and 1/e

2
Skyrme for the Skyrme term. This enters physical quantities

considered only indirectly via the determination of λ ∼ 17 for the realistic QCD regime, which can be seen
to affect slightly the subleading corrections for quantities we consider.
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pions possesses a hidden local symmetry that can be exploited to bring the energy scale

to ∼ 4πmV /g (where mV is the vector meson mass and g is the hidden gauge coupling).

In the modern terminology, one can consider the hidden gauge field so obtained as an

emergent field as in other areas of physics [24, 25]. (See section 8 for more on this.) In

the current holographic model, this idea finds a natural home simply because HLS arises

automatically from the five dimensional description which incorporates not only (ρ, ω) but

the entire tower of vector mesons. In our formulation we took a definite gauge choice (i.e.,

unitary gauge) so that ξ = ξR = ξ†L. One can think of the SS model descending top-down

from string theory to the hidden local symmetry of QCD. Indeed when restricted to the

lowest member of the tower, the SS action reduces to the HLS action of [14] with a = 4/3.

3. Baryons as small and hairy instantons

Conventional chiral Lagrangian approaches realize baryons as Skyrmions, usually made of

the pion field U only. As we couple higher massive vector mesons to the Skyrme action,

the size-stabilizing mechanism for topological solitons is significantly affected by massive

vector mesons. If we approach this problem from the above five-dimensional viewpoint,

however, it is natural to consider the problem as a five-dimensional one. It has been known

for some time that what replaces the Skyrmion is the instanton soliton since the two share

the same topological winding number [26]. However, what has not been clear is whether

and how much of the instanton is born out of the Skyrmion. As we will begin to see from

this section, the instanton interpretation of the baryon will give a very different route to

the low energy effective dynamics of the baryons.

We know that a D4 brane wrapping the compact S4 will correspond to a baryon vertex

on the 5D spacetime, which follows from an argument originally given by Witten [27]. On

the D4-brane we have a Chern-Simons coupling of the form,

µ4

∫

C3 ∧ 2πα′dÃ = 2πα′µ4

∫

dC3 ∧ Ã (3.1)

for D4 gauge field Ã. Since D4 wraps the S4 which has a quantized Nc flux of dC3, one finds

that this term induces Nc unit of electric charge on the wrapped D4. The Gauss constraint

for Ã demands that the net charge should be zero, however, and the D4 can exist only if

Nc fundamental strings end on it. In turn, the other end of fundamental strings must go

somewhere, and the only place it can go is D8 branes. Thus a D4 wrapping S4 looks like

an object with electric charge with respect to the gauge field on D8. With respect to the

overall U(1) of the latter, whose charge is the baryon number, the electric charge is Nc.

Thus, we may identify the baryon as wrapped D4 with Nc fundamental strings sticking

onto it.

Of course, things are more complicated than this since D4 can dissolve into D8 branes

and become an instanton soliton on the latter. From D8’s viewpoint, a D4 wrapped on S4

once is interchangeable with the unit instanton

1

8π2

∫

R3×I
trF ∧ F = 1 , (3.2)
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as far as the conserved charge goes. This follows from a Chern-Simons term on D8,7

µ8

∫

R3+1×I×S4

C5 ∧ 2π2(α′)2trF ∧ F = µ4

∫

R0+1×S4

C5 ∧
1

8π2

∫

R3×I
trF ∧ F , (3.3)

which shows that a unit instanton couples to C5 minimally, and carries exactly one unit

of D4 charge. When the size of the instanton becomes infinitesimal, it can be freed from

D8’s, and this is precisely D4. From the viewpoint of D4, this corresponds to going from

the Higgs phase into the Coulomb phase.

In flat background geometry and no flux, the moduli space of D4 contains both the

Coulomb branch where D4 maintains its identity separated from D8, and the Higgs branch

where D4 is turned into a finite size Yang-Mills instanton on D8. With the present curved

geometry, this is no longer a matter of choice. The energy of the D4 will differ depending on

the configurations. As we will see shortly, to the leading approximation, the D4 will settle

at the border of the two branches, both of which disappear apart from basic translational

degrees of freedom along R3+1. The reason for why D4 cannot dissociate away from D8

is obvious. The D4 has Nc fundamental strings attached, whose other ends are tied to

D8. Moving away from D8 by distance L means acquiring extra mass of order NcL/l
2
s

due to the increased length of the strings, so the D4 would stay on top of D8 for a simple

energetics reason. The question is then how small or big will a D4 spread inside D8 as

an instanton. Consider the kinetic part of D8 brane action, compactified on S4, in the

Yang-Mills approximation,

−1

4

∫ √−g4+1
e−ΦVS4

2π(2πls)5
trFm̂n̂F

m̂n̂ . (3.4)

After taking the volume of S4, the dilaton, and the conformally flat metric, this reduces to

−
∫

dx4dw
1

4e2(w)
trFmnF

mn , (3.5)

where the contraction is with respect to the flat metric dxµdx
µ + dw2 and the position-

dependent electric coupling e(w) of this five dimensional Yang-Mills is such that

1

e2(w)
≡ 8π2R3U(w)

3(2πls)5(2πgs)
. (3.6)

In the SS model, the string coupling gs is related to the dimensionful parameters and

four-dimensional Yang-Mills coupling of the QCD as,

2πgs =
g2YM
MKKls

, (3.7)

so we find
1

e2(w)
=

(g2YMNc)Nc

108π3
MKK

U(w)

UKK
(3.8)

7Recently, this term was shown to play an interesting role in a different aspect of baryonic physics with

finite baryon density [28].
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Since an instanton has
∫

trFmnF
mn = 2

∫

trF ∧ F = 16π2 , (3.9)

a point-like instanton that is localized at w = 0 would have the energy

m
(0)
B ≡

4π2

e2(0)
=

(g2YMNc)Nc

27π
MKK . (3.10)

This mass also equals that of an S4 wrapped D4 located at w = 0, in accordance with the

string theory picture of the instanton [2]. If the instanton gets bigger, on the other hand,

the configuration costs more and more energy, since 1/e2(w) is an increasing function of

|w|, thus the leading behavior of the instanton is to collapse to a point-like instanton.

However, the Nc fundamental strings attached to D4 manifest themselves as Nc units

of electric charge on D8’s. There will be in general Coulomb repulsion among these electric

charges, and this would favor spreading of instanton to a finite size. So it is the competition

of the two effects, mass of instanton vs. Coulomb energy of fundamental strings. For very

small instanton of size ρ, the energy picks up a size-dependent piece from the action of

Yang-Mills field which goes as

∼ 1

6
m
(0)
B M2

KKρ
2 , (3.11)

while the five dimensional Coulomb energy goes as

∼ 1

2
× e(0)2N2

c

10π2ρ2
, (3.12)

provided that ρMKK ¿ 1. The estimate of energy here takes into account the spread of

the instanton density D(xi, w) ∼ ρ4/(r2 + w2 + ρ2)4, but ignores the deviation from the

flat geometry along the four spatial directions.

We kept an overall factor of 1/2 in the Coulomb energy separated from the rest because

it deserves a further explanation. The rest of the term is the five dimensional U(1) (with

electric coupling constant e(0)) Coulomb energy for charge Nc whose distribution follows

the instanton density D(xi, w). To see the origin of the additional factor of 1/2, recall that

the Chern-Simons term responsible for this charge is

Nc

24π2

∫

tr (A ∧ F ∧ F + · · · ) , (3.13)

from which we obtain the coupling between instanton F̄ and the rest of the gauge field as

Nc

8π2

∫

tr
(

A ∧ F̄ ∧ F̄
)

. (3.14)

Gauge rotating a single instanton into the form

Nc

8π2
F̄ ∧ F̄ =

NcD(xi, w)

2















1 0 0 · · · 0

0 1 0 · · · 0

0 0 0 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 0















dx3 ∧ dw , (3.15)
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we have a minimal coupling to the instanton worldline

Nc

∑

a

∫

Aa tr (T aI2/2) , (3.16)

where I2 denotes the matrix in eq. (3.15).

For NF = 2, only the trace part of A can couple to I2, and AU(1) in

A = AU(1)

(

1 0

0 1

)

(3.17)

sees charge Nc on top of a single instanton. However, the kinetic term for AU(1) would

have the coefficient 1/2e2 instead of 1/4e2, which changes the effective electric coupling

constant and introduces a factor of 1/2 to the Coulomb energy. For NF > 2, the same

factor of 1/2 arises for more complicated reasons. There are now NF − 2 vector fields in

SU(NF ), as well as the U(1) vector field from the trace part, that couple to this charge

under the above Chern-Simons term. Each of them contributes some fraction of the above

U(1) Coulomb energy. But the sum can be seen to be always 1/2.

More simply, this reduction can be seen from the fact that the total electric charge Nc

on the instanton is shared, evenly split, by a pair of mutually orthogonal U(1)’s of U(NF ),

which is evident in the form of I2. In each sector the electric charge generates the Coulomb

energy, proportional to (Nc/2)
2. Since the total Coulomb energy is obtained by a sum, we

find 2× (Nc/2)
2 = N2

c /2 in place of N2
c .

The size of the small instanton is determined where the combined energy is mini-

mized [21, 29]8

ρ2baryon '
1

MKK

√

3e(0)2N2
c

10 · π2m(0)
B

=

√

2 · 37 · π2/5
M2
KK(g

2
YMNc)

, (3.18)

and

ρbaryon ∼
9.6

MKK

√

g2YMN
. (3.19)

For an arbitrarily large ’t Hooft coupling limit, the size of baryon is then significantly

smaller than the scale of the dual QCD. Subsequently the mass correction to the baryon

due to its 5-dimensional electric coupling

me
0 '

1

3
m
(0)
B (MKKρbaryon)

2 ' 31

g2YMNc
m
(0)
B ¿ m

(0)
B (3.20)

is also small if the ’t Hooft coupling is arbitrarily large.

In the next section, we will thus assume a point-like baryon as a leading approximation

and incorporate baryons into the chiral Lagrangian formulation. While this is a meaningful

computation in holographic QCD setting, matching the scales and couplings to the realistic

QCD requires a further refinement, since as mentioned, the scalesMKK and fπ are actually

too low to insist on very large value of g2YMNc.

8The derivation of soliton size in this paper is an expanded version of that in ref. [21]. Note that an

independent derivation was given in ref. [29] which appeared simultaneously with the former.
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In making the estimate above, we ignored so far details of the geometry away from the

origin. For instance, the spatial part of the geometry is conformally equivalent to R3 × I,
instead of R4. It is unlikely that the lowest energy configuration is a self-dual instanton

solution based on R4, yet we use it as a trial configuration to estimate the potential. We

believe that this will not affect the asymptotic estimate in this section, when the size of

the instanton is very small compared to the effective length of the fifth direction ∼ 1/MKK.

This subtlety would be more important for larger instanton size, as we will discuss in

section. 6.

4. A 5D effective field theory of the baryon

We saw in the previous section that in the large ’t Hooft coupling limit, the underlying

instanton configuration for the baryon is rather small. Since the instanton is a small object

in 5D sense, we may treat it as a point-like quantum field in 5D in a natural way. Upon

quantizing the collective coordinates of the solitonic configuration, there are a variety of

baryonic excitations with different spins and flavor charges. From the gauge theory point of

view, baryons are composed of Nc elementary quarks forming a color singlet through a total

anti-symmetrization of their color indices. The remaining spin and flavor indices together

must then form a totally symmetric combination. It is always possible to have one such

combination via totally anti-symmetrizing both spin and flavors, giving us the minimal

spin and flavor quantum numbers. For even Nc we would have a spin 0 baryon, while a

fermionic spin 1
2 baryon would occur when Nc is odd. Having in mind an extrapolation

to the real QCD, we restrict ourselves to the case of fermionic baryons, and the effective

field B would mean a 5D Dirac spinor field. For simplicity we will consider NF = 2 and

consider the lowest baryons which form the proton-neutron doublet under SU(NF = 2).

We are thus lead to introduce an isospin 1/2 Dirac field B for the five-dimensional baryon.

From the invariance under local coordinate as well as local gauge symmetries on the D8

branes reduced along internal S4, the leading 5D kinetic term for B is simply the standard

Dirac kinetic term in the curved space in addition to a position dependent mass term that

we will specify shortly,

−
∫

dz

∫

dx4
[

iB̄Γm̂Dm̂B + imb(z)B̄B
]

, (4.1)

where Dm = ∂m̂+ 1
4Γn̂p̂ω

n̂p̂
m̂ + iAam̂T

a with T a a representation matrix for B. To determine

mb(z), it is convenient to work in the conformally flat coordinate (w, xµ) where the spin

connection piece can be removed upon suitable rescaling of the B field [6]. Thus we have

−
∫

dw

∫

d4x
[

iB̄γµ(∂µ − iAaµT a)B + iB̄γ5∂wB + imb(w)B̄B
]

, (4.2)

in the conformal coordinate system and with the A5 = 0 gauge. Here, γµ and γ5 are the

standard gamma matrices in the flat space.

The position-dependent mass term requires a further clarification. An elementary

excitation approximately localized at the position w would have an energy mb(w), which
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must be identified as the energy of an S4-wrapped D4 brane localized at the position w.

From the DBI action of D4 brane, this mass is found to be

m
(0)
B ·

(

U

UKK

)

, (4.3)

where U should be considered as an implicit function of w upon the coordinate change

from U to w, and

m
(0)
B =

(g2YMNc) ·Nc

27π
·MKK =

λNc

27π
·MKK , (4.4)

with MKK = 3
2

(

UKK
R

) 3
2
U−1KK. In addition, there is a self-energy me

0 coming from the 5D

U(1) field which stabilizes the instanton at some small but finite size. Since this self-energy

is a local effect as the baryon size is negligible, this effect should be, at least approximately,

independent of the position w and the resulting mb(w) will be

mb(w) = m
(0)
B ·

(

U

UKK

)

+me
0 . (4.5)

In large ’t Hooft coupling limit, the estimate (3.20) shows that the Coulomb energy me
0 is

negligible compared to the first piece. But, we will keep it in our later numerical analysis

for completeness.9

However, this cannot be the complete form of the baryon action. As we saw above the

baryon is represented by a small instanton soliton, which comes with a long range tail of

the gauge field of type F ∼ ρ2baryon/r
4. Since we are effectively replacing the baryon by a

point-like field B, there should be a coupling between a B bilinear and the five-dimensional

gauge field such that each B-particle generates such a long range tail on F .10 The minimal

coupling originates from fundamental strings attached to D4, and reflects the fact that the

instanton carries additional electric charge. This coupling cannot generate a self-dual or

anti-self-dual configuration.

As we will see shortly, there is only one vertex that can reproduce the right long-range

tail. In our conformal coordinate (xµ, w), the action including the gauge field and the

baryon field must read as11

∫

d4xdw

[

−iB̄γmDmB − imb(w)B̄B + g5(w)
ρ2baryon
e2(w)

B̄γmnFmnB
]

−
∫

d4xdw
1

4e2(w)
trFmnF

mn , (4.6)

where ρbaryon is the stabilized size of the 5D instanton representing baryon, and g5(w) is

an unknown function whose value at w = 0 can be determined as follows. Throughout this

9One may also worry about self-energy from SU(NF = 2) gauge field on D4 branes. However, m
e
0 scales

linearly with Nc because the baryon has charge Nc with respect to U(1)V , while there is no such scaling

for SU(NF = 2). In the present model, m
e
0 is suppressed due to the further requirement of large ’t Hooft

coupling.
10The same type of consideration was employed by Adkins, Nappi and Witten (ANW) [16] to compute

gπNN which is related to gA by Goldberger-Treiman relationship.
11As usual, we define γmn = [γm, γn]/2.
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article we will refer to the last term in the first line as the magnetic coupling. Its coefficient

function is displayed in a particular form with the known function ρ2baryon/e(w)
2 factored

out. This is done for the sake of later convenience, where we compute g5(0) which turns

out to be of a purely geometrical origin.

The uniqueness of the operator can be seen from the long range behavior of the in-

stanton. The field strength decays as 1/r4, which in five dimensions is one power higher

than the Coulomb field. This requires dimension six operators (i.e. one dimension higher

than the kinetic term) which contain a cubic term with a baryon bilinear current and the

SU(NF ) gauge field. These requirements, together with the approximate Lorentz sym-

metry, pick out the above form of the operator uniquely. The only other choice would be

B̄(∗F )mnkγmnkB, but this is actually equivalent to the above, thanks to the five-dimensional

Clifford algebra. Given that this operator is the unique possibility, the remaining question

is whether this operator is really capable of the task in hand and if so how to derive the

coupling strength g5, to which we devote the rest of the section.

The instanton must be located at w = 0 along the fifth direction, and generates a

source term to Yang-Mills field FMN . Provided that the instanton size, ρbaryon is small

enough, we only need to consider the immediate vicinity of w = 0 where the geometry is

R4+1 approximately. Take the 5-dimensional Dirac matrices of the form

γ0 =

(

0 −1
1 0

)

, γi =

(

0 σi
σi 0

)

, γ5 =

(

1 0

0 −1

)

. (4.7)

The on-shell condition of the baryon field is then

(

i∂5 −i∂t + iσi∂i
i∂t + iσi∂i −i∂5

)

B = −imbB , (4.8)

which can be solved by writing the upper 2-component part of B as U e−iEt+i~p·~x, and

approximating mb by its central value,

B =

(

U
E−σ·p
−imb−p5

U

)

e−iEt+i~p·~x → B =

(

U
±iU

)

e∓imbt (4.9)

for general plane-wave and for the p = 0 limit. The two signs originate from the sign of

E/mb and thus correspond to the baryon and the anti-baryon, respectively.

This spinor configuration sources the Yang-Mills field since12

B̄γmnFmnB → ±F a
jk

[

U†τaεjkiσiU
]

+ 2F a
5i

[

U†τaσiU
]

, (4.11)

where we assumed a gauge-doublet under SU(NF = 2) with 2 × 2 generators (τ a/2)AB.

Terms linear in F0M vanish identically when p = 0 = p5, thanks to the on-shell condition.

12Note that

γ0γjk =

 

0 −iεjkiσi
iεjkiσi 0

!

, γ0γ5i =

 

σi 0

0 σi

!

, γ0γ0m = −γm . (4.10)
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Note that the proper normalization of Dirac spinor demands 2U ∗αAUαA = 1. Defining

the bilinear

〈σiτa〉B = 2
[

U†σiτaU
]

, (4.12)

we thus find

B̄γmnFmnB → ±1

2
F a
jkε

jki〈σiτa〉B + F a
5i〈σiτa〉B . (4.13)

Clearly the spinor bilinear couples to self-dual or an anti-self-dual part of the gauge field

strength, regardless of the detailed values of 〈σiτa〉B. Thus, if we relate the effect of the

latter to the smearing of the classical long-range field due to quantization of the instanton,

identification of B as the effective field for isospin 1/2 baryons would be complete and this

would give information on the coupling strength g5.

However, for clarity, let us first try to search for an instanton-like long-range field. For

instance, one choice for U that generates instanton-like field is a spin-isospin locked state

of the form,

UαA =
i

2
εαA , (4.14)

in which case 〈σiτa〉B = −δai so that the source term (with the upper sign) is −F a
mnη̄

a
mn/2

with the anti-self-dual ’t Hooft symbol η̄ (m,n = 1, 2, 3, 5 and a = 1, 2, 3) [30]. Now assume

that such a source appears in a localized form at the origin. The gauge field far away from

the source obeys (in an appropriate gauge)

∇2Aam = 2g5(0)ρ
2
baryonη̄

a
mn∂nδ

(4)(x) , (4.15)

whose solution goes as

Aam = −
g5(0)ρ

2
baryon

2π2
η̄amn∂n

1

r2 + w2
. (4.16)

The general shape of the long-range field is consistent with the identification of the baryon

as the instanton. Since the actual instanton solution in ’t Hooft ansatz has [31]

Aam = −η̄amn∂n log
(

1 +
ρ2

r2 + w2

)

' −ρ2η̄amn∂n
1

r2 + w2
, (4.17)

one may be tempted to fix g5(0) as 2π
2.

However, the right prescription is to match the states in B with quantized instanton. An

SU(2) instanton of a fixed size has three gauge collective coordinates, spanning SU(2)/Z2,

which can be represented by a special unitary matrix S of size 2 × 2. Quantization of S

can lead to spin 1/2 and isospin 1/2 states with proper choice of boundary condition on

S3/Z2 = SU(2)/Z2. This part of story proceeds identically with that of Skyrmions in 4

dimensions, which was explained in much detail by Adkins, Nappi and Witten [16].

One consequence of this quantization procedure is that the long range field of the

instanton is modified due to quantum fluctuation of instanton along different global gauge

directions. While the classical solution has

S†AaM
τa

2
S =

∑

b

AaM
τ b

2

(

tr

[

S†
τa

2
Sτ b

])

(4.18)
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for some arbitrary but fixed choice of the unitary matrix S, the quantum consideration

replaces the classical coefficients by expectation values

(

tr

[

S†
τa

2
Sτ b

])

⇒
〈

tr

[

S†
τa

2
Sτ b

]〉

, (4.19)

which effectively lessen the strength of long-range gauge field. We may identify the states

contained in B as spin 1/2 and isospin 1/2 wavefunctions of the instanton, in which case

there is an identity,
〈

tr

[

S†
τa

2
Sτ b

]〉

B

= −1

3
〈σbτa〉B . (4.20)

This can be seen by an explicit quantization, which is mathematically identical to the one

used by ANW [16] on the Skyrmion case.

Specializing back to the case of U = iε, where 〈σiτa〉B = −δai , note that the classical

counterpart would have corresponded to the choice S = 1 so that

(

tr

[

S†
τa

2
Sτ b

])∣

∣

∣

∣

S=1

= δba , (4.21)

while the actual comparison has to be made with its quantum counterpart

〈

tr

[

S†
τa

2
Sτ b

]〉

B

= −1

3
〈σbτa〉B =

1

3
δba . (4.22)

This tells us that when making comparison between the long range part of quantized

instanton solution, and the long range field generated by the baryon source, we must

include a factor of 1/3 on the instanton size. Thus, we conclude that

g5(0) =
2π2

3
. (4.23)

This fixes the value of g5(w) at origin of the fifth direction. Finding the form of the function

g5(w) for general value of w seems very difficult from the present approach. However, for

very small size of baryon/instanton, which is guaranteed by a large ’t Hooft coupling,

λ = g2YMNc, only the central value will enter the physics and corrections are suppressed by

inverse powers of λ.

In the above, we have extracted g5(0) by comparing the quantized instanton and the

spinor state for a particular spin-isospin locked state. For a complete check, we must

consider more general states with spin 1/2 and isospin 1/2, for which it suffices to rewrite

eq. (4.13), say, with the upper sign choice, as

1

2
F a
jkε

jki〈σiτa〉B + F a
5i〈σiτa〉B =

1

2
F a
jkη̄

b
jk〈σbτa〉B + F a

5kη̄
b
5k〈σbτa〉B

=
1

2
F a
mnη̄

b
mn〈σbτa〉B

= −3

2
F a
mnη̄

b
mn

〈

tr

[

S†
τa

2
Sτ b

]〉

B

, (4.24)
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where the last step used the identity eq. (4.20) between expectation values in two different

description. Since S represents SU(NF = 2) rotation on the soliton side of the picture,

the long range field generated by such a source would mimic that of the instanton field

expectation value, evaluated on arbitrary quantized instanton state with spin 1/2 and

isospin 1/2. We can follow a similar procedure above for the spin-isospin locked state,

which shows that the on-shell degrees of freedom of B can be matched with the spin 1/2

isospin 1/2 sector states of the quantized instanton, given the effective action for B and

g5(0) = 2π2/3.

5. The chiral dynamics of the nucleons in four dimensions

In the current effective theory approach, the physical 4D nucleons would arise as the lowest

eigenmodes of this 5D baryon along w coordinate, which should be a mode localized near

w = 0. From the string theory picture where the solitonic configuration for a baryon comes

from a melted D4 brane inside NF = 2 D8 branes, there are Nc fundamental strings ending

on the D8 branes out of the D4 brane, which are nothing but the elementary quarks in the

gauge theory view point. In the limit of large λ, this consideration leads us to treat the five-

dimensional baryon as a point-like object in the doublet representation under SU(NF = 2)

with the effective action in (4.6). While the generalization to excited baryons, such as ∆’s,

should be straightforward, we will consider isospin doublets in this work. In particular, the

lowest-mass eigenstates in 4D sense are nothing but the nucleons (protons and neutrons),

whose low energy dynamics will be explored for the rest of the paper.

What we need now is to reduce this five-dimensional action down to four dimensions

and extract the couplings between the nucleon and the infinite tower of mesons. In the

usual chiral Lagrangian approach of QCD, the nucleon is often treated as a point-like

Dirac field B, just as in our five-dimensional approach. In doing so, the form factors of the

nucleons would be then encoded in how the nucleons couples to pions and all the massive

vector mesons. The leading quadratic part of the nucleon effective action one usually writes

down is ∫

dtdx3 L4 = −
∫

dtdx3 B̄(iγµDµ + imB + gAγ
µγ5Aµ)B + · · · , (5.1)

where the covariant derivative

Dµ = ∂µ − iVµ (5.2)

encodes the coupling to the massive vector meson vµ

Vµ = vµ + iβµ(x) = vµ +
i

2
[ξ−1, ∂µξ] (5.3)

in a manner consistent with the hidden local gauge symmetry. The axial coupling provides

the simplest vertex of this theory whereby nucleon emits a single pion. In terms of ξ, we

have

Aµ =
i

2
αµ ' −

1

fπ
∂µπ +O(π3) . (5.4)

The goal of this section is to reproduce this structure and more from our five-dimensional

effective action.
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5.1 4D nucleons and dimensional reduction

To make the preceding discussion concrete, let us perform KK-mode expansion for the

action (4.2) to obtain the spectrum of spin- 12 baryons in the large λNc = (g2YMNc)Nc limit.

The lowest state is identified as the nucleon. The gauge field Aµ on the NF = 2 D8 branes

also has a mode expansion, including pions and ρ mesons, that is discussed in the preceding

sections. From these we can read off the couplings of nucleons to mesons via numerical

analysis.

We mode expand BL,R(xµ, w) = BL,R(x
µ)fL,R(w) where γ5BL,R = ±BL,R are 4D

chiral components, with the profile functions fL,R(w) satisfying

∂wfL(w) +mb(w)fL(w) = mBfR(w) ,

−∂wfR(w) +mb(w)fR(w) = mBfL(w) , (5.5)

in the range w ∈ [−wmax, wmax]. The 4D Dirac field for the nucleon is then reconstructed

as

B =

(

BL
BR

)

, (5.6)

and the eigenvalue mB is the mass of the nucleon mode B(x).

The eigenfunctions fL,R(w) are also normalized to unit norm
∫ wmax

−wmax

dw |fL(w)|2 =
∫ wmax

−wmax

dw |fR(w)|2 = 1 , (5.7)

for B(x) to have the standard 4D kinetic term. As we approach w → ±wmax, mb(w)

diverges as,

mb(w) ∼
1

(w ∓ wmax)2
(5.8)

and the above equations have normalizable eigen-functions with a discrete spectrum ofmB.

It is more convenient to consider a second-order equation for fL,R(w)
[

−∂2w − ∂wmb(w) + (mb(w))
2
]

fL(w) = m2
BfL(w) ,

[

−∂2w + ∂wmb(w) + (mb(w))
2
]

fR(w) = m2
BfR(w) . (5.9)

Note that there is a 1-1 mapping of eigenmodes with fR(w) = ±fL(−w). Due to the

asymmetry under w → −w in the term −∂wmb(w) above, fL(w) tends to shift to the

positive w side, and the opposite happens for fR(w). This will then give us a non-vanishing

contribution to the axial coupling of the nucleon to the pions, as we will see shortly.

The gauge field Aµ, in the A5 = 0 gauge, has a mode expansion

Aµ(x,w) = iαµ(x)ψ0(w) + iβµ(x) +
∑

n

a(n)µ (x)ψ(n)(w) , (5.10)

where Ψ̂0(z) ≡ ψ0(w(z)) = 1
π arctan

(

z
UKK

)

which is odd under w → −w, and

αµ = {ξ−1, ∂µξ} =
2i

fπ
∂µπ + · · · ,

βµ =
1

2
[ξ−1, ∂µξ] =

1

2f2π
[π, ∂µπ] + · · · . (5.11)
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We recall from the previous eigenmode analysis by SS that ψ(2k+1)(w) is even, while

ψ(2k)(w) is odd under w → −w, corresponding to vector and axial-vector mesons respec-

tively.

Inserting this expansion into the action (4.6), and using the properties fL(w) =

±fR(−w) as well as the properties of Ψ̂0 and ψ(n) under w → −w, we obtain a 4D nucleon

action

L4 = −iB̄γµ∂µB − imBB̄B + Lvector + Laxial , (5.12)

with the four-dimensional nucleon mass mB. This nucleon mass will generally differ from

the five-dimensional mass, due to spread of the wavefunction fL,R along the fifth direction.

However, this difference arises only as a subleading correction in large Nc and large λ.

Writing out the interaction terms explicitly, we have

Lvector = −iB̄γµβµB −
∑

k≥0

g
(k)
V B̄γµa(2k+1)µ B , (5.13)

and the nucleon couplings to axial mesons, including pions, as

Laxial = −
igA
2
B̄γµγ5αµB −

∑

k≥1

g
(k)
A B̄γµγ5a(2k)µ B , (5.14)

where various couplings constants g
(k)
V,A as well as the pion-nucleon axial coupling gA are

calculated by suitable wave-function overlap integrals. In the above expression, the meson

fields should be understood as being written in the nucleon isospin representation.

The nucleon-meson interaction terms arise from two sources, namely the magnetic-type

direct coupling to the 5D gauge field strength and the more conventional minimal coupling

in the kinetic term. The former comes with a coefficient ρ2baryon/e
2 in five dimensions,

which scales linearly with Nc.

The minimal coupling contributions are summarized as

g
(k)
V,min =

∫ wmax

−wmax

dw |fL(w)|2 ψ(2k+1)(w) ,

g
(k)
A,min =

∫ wmax

−wmax

dw |fL(w)|2 ψ(2k)(w) ,

gA,min = 2

∫ wmax

−wmax

dw |fL(w)|2 ψ0(w) . (5.15)

Since in the large λNc-limit, the nucleon wave-function fL(w) tends to be symmetric under

w → −w, we see that gA and g
(k)
A receive small contributions from the minimal 5D gauge

interaction, in the large λNc limit. On the contrary, due to the even nature of ψ(2k+1), the

vector couplings g
(k)
V receive an order one contribution from the minimal interaction.

To isolate similar interaction terms from the 5D magnetic coupling, we take the case

of (m,n) = (5, µ), which becomes

−λNc(ρbaryonMKK)
2

108π3

∫

d4x

∫

dw

[(

2g5(w)U(w)

UKKMKK

)

B̄γµγ5(∂wAµ)B
]

, (5.16)
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where we have used
1

e2(w)
=

λNc

108π3
MKK

U(w)

UKK
. (5.17)

Defining the dimensionless number C =
(

2π2/3
)

λNc(ρbaryonMKK)
2/108π3, we have con-

tributions to g
(k)
V,A and gA as follows,

g
(k)
V,mag = 2C

∫ wmax

−wmax

dw

(

g5(w)U(w)

g5(0)UKKMKK

)

|fL(w)|2 ∂wψ(2k+1)(w) ,

g
(k)
A,mag = 2C

∫ wmax

−wmax

dw

(

g5(w)U(w)

g5(0)UKKMKK

)

|fL(w)|2 ∂wψ(2k)(w) ,

gA,mag = 4C

∫ wmax

−wmax

dw

(

g5(w)U(w)

g5(0)UKKMKK

)

|fL(w)|2 ∂wψ0(w) . (5.18)

Note that the sizes of this integral behave oppositely when compared to the similar overlap

integrals for the minimal coupling term. Again since in the large λNc-limit, the nucleon

wave-function fL(w) tends to be symmetric under w → −w, and since ψ(2k+1) (ψ(2k)) is an

even (odd) function of w, the vector coupling contributions become relatively suppressed

in the large λNc-limit, while the axial couplings remain order one times the large constant

C. Using the estimate of ρbaryon in eq. (3.18), we find

C ' 0.18Nc . (5.19)

With the present 5D effective theory approach, we have all mesons encoded in a single

U(NF = 2) gauge field in five dimensions. In particular, the iso-scalar mesons and iso-

vector mesons arise from a single 2×2 gauge field. However, of these, only the traceless part

appears in the magnetic coupling since instanton carries only non-Abelian field strength.

Therefore, the iso-scalar mesons and iso-vector mesons couple to nucleons differently. For

the iso-scalar mesons, such as for instance the ω meson in the vector channel, only the

minimal term contributes

g
(k)
A

∣

∣

∣

∣

iso−scalar

= g
(k)
A,min

∣

∣

∣

∣

iso−scalar

,

g
(k)
V

∣

∣

∣

∣

iso−scalar

= g
(k)
V,min

∣

∣

∣

∣

iso−scalar

. (5.20)

But, for iso-vectors, we have contributions from both minimal and magnetic terms. Thus,

we must add

gA = gA,mag + gA,min . (5.21)

and similarly for the vector and the axial vector in the iso-vector

g
(k)
A

∣

∣

∣

∣

iso−vector

=
[

g
(k)
A,mag + g

(k)
A,min

]

∣

∣

∣

∣

iso−vector

,

g
(k)
V

∣

∣

∣

∣

iso−vector

=
[

g
(k)
V,mag + g

(k)
V,min

]

∣

∣

∣

∣

iso−vector

. (5.22)

Naively, since the coefficient for the magnetic term grows linearly with Nc, one might

be tempted to throw away the minimal coupling contribution. However, the vector-like
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couplings and axial-vector-like couplings behave quite differently. Note that the part of the

5D magnetic term we employed above has an explicit γ5 while the minimal term (in the

gauge A5 = 0) cannot, yet both axial and vector-like coupling arise from each. It is only

because of the asymmetry between fL and fR that we can find the axial interaction terms

from the minimal coupling and the vector-like terms from the magnetic coupling. This

asymmetry is strong when λNc is small but diminishes as λNc → ∞. In other words, the

wavefunction overlap integral would be suppressed by 1/λNc for these interactions with

the “wrong” number of γ5.

For this reason, all axial couplings, gA and g
(k)
A are dominated, as expected, by the

contribution from the magnetic terms, whereas all vector-like couplings, g
(k)
V , will be dom-

inated by the contribution from the minimal couplings: at least in the large λ limit,

g
(k)
V

∣

∣

∣

∣

iso−vector

' g(k)V,min

∣

∣

∣

∣

iso−vector

; g
(k)
A

∣

∣

∣

∣

iso−vector

' g(k)A,mag

∣

∣

∣

∣

iso−vector

, gA ' gA,mag. (5.23)

Finally let us note that we have neglected part of the magnetic coupling in our dis-

cussion of the four-dimensional effective action, namely those with two 4D indices on the

Dirac matrices,

B̄γµνFµνB . (5.24)

When we reduce this dimensionally, we will find more couplings between the nucleons and

the infinite tower of mesons but with one more derivative than the above Yukawa terms.

Although they are higher power in usual power counting, the suppressing mass scale would

be at most MKK, so we expect these couplings to be very relevant to physical processes

which are measured up to several GeV. We hope to come back to this aspect of holographic

QCD in a later work.

5.2 Vector couplings: iso-scalar vs. iso-vector

As we mentioned earlier, the couplings between massive vectors a
(2k+1)
µ and nucleons arise

primarily from the minimal coupling in the large λ limit. The leading coupling is then,

−
∑

k≥0

g
(k)
V B̄γµa(2k+1)µ B , (5.25)

where

g
(k)
V = g

(k)
V,min =

∫ wmax

−wmax

dw |fL(w)|2 ψ(2k+1)(w) (5.26)

for a
(2k+1)
µ in the iso-scalar, while

g
(k)
V ' g(k)V,min (5.27)

for a
(2k+1)
µ in the iso-vector in the large λ approximation.

Since the iso-scalar and iso-vector couplings here have the same origin in the five-

dimensional dynamics, this immediately implies a simple algebraic relations between the

two classes of couplings. Let us decompose the massive vectors as

a(2k+1)µ =

(

1/2 0

0 1/2

)

ω(k)µ + ρ(k)µ (5.28)
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into the trace part and the rest, where we wrote the gauge field in the fundamental rep-

resentation. This is how individual massless quark doublet would see the vector mesons.

However the baryon is made out of Nc product quark doublets, and we are considering the

case of the doublet as the smallest irreducible representation under SU(NF = 2). In the

process, while the SU(2) representation is kept small as such, the trace part of the charge

are simply added so that the above decomposition actually appears for nucleons as

a(2k+1)µ =

(

Nc/2 0

0 Nc/2

)

ω(k)µ + ρ(k)µ . (5.29)

We have been using the normalization of SU(2) generators consistently as tr T aT b = δab/2,

so the eigenvalues for doublets are ±1/2. Therefore, between the iso-scalar and the iso-

vector, there is an overall factor of Nc. In other words, we have the universal relation,

again in the large λ limit

|gω(k)NN | ' Nc × |gρ(k)NN | (5.30)

between the Yukawa couplings involving iso-scalar and iso-vector vector mesons. Here

gvNN denotes the Yukawa coupling between the nucleon vector current and the canonically

normalized vector field v. Note that the relation (5.30) is the same as what one obtains in

CQM. We will see how the relation (5.30) fares with nature in section 6.1 below.

5.3 Pseudo-vector couplings

An important observation to keep in mind here is that the normalization condition of the

eigenmode ψ(n) for n ≥ 1 contains a factor of fπ, so that of all quantities above, only gA,mag
grows linearly with Nc. Despite large C value for large Nc, all other g’s are order (Nc)

0

at most, and in fact suppressed further by 1/λ. Nevertheless, it remains true that the

contribution from the magnetic coupling is dominant whenever present. Thus, depending

on whether the pseudo-vector is in the iso-scalar or in the iso-vector, we have the following

coupling

−
∑

k≥1

g
(k)
A B̄γµγ5a(2k)µ B , (5.31)

where

g
(k)
A = g

(k)
A,min =

∫ wmax

−wmax

dw |fL(w)|2 ψ(2k)(w) (5.32)

for iso-scalar part of the pseudo-vector a
(2k)
µ while

g
(k)
A ' g(k)A,mag = 2C

∫ wmax

−wmax

dw

(

U(w)

UKKMKK

)

|fL(w)|2 ∂wψ(2k)(w) (5.33)

for iso-vector part of the pseudo-vector a
(2k)
µ .

5.4 Axial coupling to pions and an O(1) correction

5.4.1 The leading O(NC) term

For gA, the leading contribution is gA,mag, for which the corresponding integral can be done

exactly by using the explicit form of ψ0(w) and also by approximating g5(w) ' g5(0). The
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latter approximation is harmless if λNc is sufficiently large. Since

(

U(w)

UKKMKK

)

∂wψ0(w) =
1

π
, (5.34)

we have

gA,mag =
4C

π
' 0.7× Nc

3
. (5.35)

While this depends on the substitution of g5(w) → g5(0), the result is robust as long as

fL(w) is sufficiently localized at w = 0. In turn, this is guaranteed by arbitrarily large

λNc.

The subleading contribution, gA,min is at most order 1/λNc, and thus is negligible in

the present AdS/CFT limit.

5.4.2 The O(1) correction

As mentioned in section 4, the collective quantization that led to (5.35) was based on

the mathematical manipulation of ANW that consisted of performing the isospin rotation

A = a4 + iaiτi (with
∑

i a
2
i = 1) of the soliton and evaluating the corresponding element

of the orthogonal space rotation group given by

Rij =
1

2
TrτiAτjA

†. (5.36)

We can exploit the equivalence of the constituent quark model (CQM) and the Skyrmion

in the large Nc limit [32] to obtain an 1/NC correction to the leading term while fermion

loops are kept suppressed. Briefly, the reasoning goes as follows.

(i) We first note that the collective quantization of the instanton we are dealing with

involves, among various collective coordinates, the same isospin rotation (5.36) as in

the Skyrme model. This can be seen in the collective quantization of the instanton

by Hata et al. [29]. Now the ANW quantization is known to give the O(Nc) term to

gA which is identical to what is obtained in the large Nc limit of CQM [32].

(ii) A general large-Nc QCD analysis shows that gA has the large Nc expansion [33]

gA = α

(

Nc + β

3

)

+ γ
1

Nc
+ · · · (5.37)

where α, β and γ are constants independent of Nc and the ellipsis stands for higher

1/Nc terms. An important point to note here is that fermion (quark) loop corrections

first appear at O(1/Nc) and not at O(1). This means that the constant β survives

“quenching,” that is, it has no dynamical loop effects.

(iii) While general considerations leave the coefficient β undetermined, the CQM, however,

gives a simple result coming from a simple (group-theoretic) book-keeping,

β = 2. (5.38)
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One might a priori think that the Skyrmion model needs not give the same value.

However it has been shown by a detailed group structure of the spin-isospin oper-

ator involved in the Skyrmion – and likewise in the instanton baryon — that the

result (5.38) does hold [34].13 Exactly the same argument holds for the iso-vector

dipole magnetic moment operator and will be applied later in the next section.

If one shifts Nc to Nc+2 as argued above, we can include the O(1) correction to (5.35)

and obtain

gA ≈ 0.7

(

Nc + 2

3

)

≈ 1.17 , (5.39)

which is expected to be reliable up to O(1/N 2
c ) ≈ 10%. An interesting observation to make

at this point is that the instanton baryon predicts α ≈ 0.7 in (5.37) which is close to the

chiral perturbation theory prediction αχPT ≈ 0.75 [35]. Another observation is that the

“probe approximation” involved in the SS model appears to be equivalent to the quenched

approximation in lattice calculations. The quenched lattice calculation contains no fermion

loops while containing all orders of λ and 1/Nc pertaining to gluons. We conjecture that

the quenched lattice result differs from the instanton result (5.39) only at the next order,

i.e., O(1/N2
c ) relative to the leading order. This conjecture is numerically supported in that

the quenched lattice result [36, 37] is quite close to (5.39), and furthermore the unquenched

calculation [37] with dynamical quarks agrees closely with the quenched result indicating

that the higher order 1/Nc corrections are not big.

6. Numerical estimates and extrapolations

6.1 Numerics and subleading corrections

In this effective theory approach, we consider the five-dimensional baryon as point-like,

which is justified by the large ’t Hooft coupling λ = g2YMNc. However, if we wish to

extrapolate the result to finite λ ∼ 17 regime, we cannot neglect the size of the instanton.

Thus, we cannot say that the above can be extrapolated to a realistic QCD regime with

justification. We will come back to the size issue in the last part of this section. However,

with this caveat in mind, we wish to extrapolate the effective theory to the realistic regime

and try to see how leading corrections would behave qualitatively. Typical quantities we

must know to compare with nature are the trilinear couplings, namely g
(k)
V,min, g

(k)
V,mag,

g
(k)
A,min, g

(k)
A,mag, as well as gA,mag and gA,min. In the previous section, we outlined the large

Nc and large λ behavior of these couplings which must be corrected as we approach realistic

regimes.

13Briefly the argument is as follows [34]. The spin-isospin structure of the hedgehog ansatz adopted for

the instanton (Skyrmion) suggests that the soliton is a U(4) coherent state in the large Nc limit. By realizing

the soliton algebra in terms of N “interacting bosons” (with N = Nc) familiar in nuclear and molecular

physics, projecting out the good spin and isospin of the nucleon in the matrix element of the axial-current

operator is made both direct and simple. This permits us to calculate the leading 1/Nc correction based

solely on symmetry consideration without involving any dynamical calculations.
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λNc mB/MKK mB/fπ gA,min g
(0)
V,min g

(1)
V,min g

(0)
V,mag(Nc = 3) g

(1)
V,mag(Nc = 3)

10 1.37 22.2 0.171 8.21 2.74 -1.28 -1.95

20 1.52 17.5 0.161 6.15 2.55 -0.95 -1.80

30 1.66 15.6 0.152 5.20 2.44 -0.78 -1.66

40 1.80 14.6 0.143 4.61 2.35 -0.66 -1.53

50 1.93 14.0 0.135 4.19 2.28 -0.58 -1.40

60 2.06 13.7 0.129 3.88 2.21 -0.51 -1.32

80 2.32 13.3 0.117 3.43 2.11 -0.42 -1.15

120 2.82 13.2 0.099 2.88 1.94 -0.30 -0.90

160 3.30 13.4 0.086 2.54 1.81 -0.23 -0.73

200 3.79 13.7 0.076 2.29 1.70 -0.19 -0.61

Table 1: Numerical result for gA,min, the axial pion-nucleon-nucleon coupling, and the couplings

to the lowest two vector mesons. Here we used C ' 0.18Nc with Nc = 3 for the evaluation in

the last two column. The realistic regime should be chosen so that fπ/MKK =
√

λNc/54π4 fits

with experimental values for these two scales. The resulting λNc lies somewhere around 50. For

gV,mag’s, we approximated g5(w)/e(w)
2 = g5(0)/e(0)

2 which may not be justifiable in the present

range of λNc values.

The main object we need to understand in order to compute these couplings is the

wavefunction of the nucleon fL,R(w). For efficient numerical estimates, we scale out di-

mensionful parameters from the spinor equations by introducing dimensionless variables

w̃ =MKKw, Ũ = U/UKK, and z̃ = z/UKK. These are related as

w̃ =

∫ z̃

0

dz̃

[1 + z̃2]
2
3

=
3

2

∫ Ũ

1

dŨ
√

Ũ3 − 1
. (6.1)

In terms of these variables, we have

mb(z) = m
(0)
B · Ũ +me

0 =MKK ·
(

λNc

27π
Ũ(w̃) + εNc

)

(6.2)

with ε ≡
√

2/15 ' 0.37. After dividing the eigenvalue equation (5.9) by M 2
KK, we arrive at

[

−∂2w̃ −
λNc

27π
∂w̃Ũ(w̃) +

(

λNc

27π
Ũ(w̃) + εNc

)2
]

fL(w̃) =

(

mB

MKK

)2

fL(w̃) , (6.3)

and the wave-function fL(w̃) does not depend on the scales. Since ψ0(w) is also a universal

function in terms of our dimensionless variables, the two axial coupling contributions,

gA,min and gA,mag, are indeed functions of λNc and Nc. Specifically, the previous formula

tells us that gA,min is a function of λNc and gA,mag depends on Nc only.

We solve fL(w̃) and its eigenvalue mB/MKK numerically for a given value of λNc using

shooting method. As mentioned before, the Coulomb energy part, C0Nc, is subleading and

negligible in the ’t Hooft limit. For large λNc, the effective potential in (6.3) is very

steep and the wave-function would tend to localize at the minimum point which scales as

w̃min ∼ O((λNc)
−1).
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Figure 1: Plot of gA,min versus λNc.

For instance, we can see that gA,min (and g
(k)
A,min) are proportional to the asymmetry

of |fL(w̃)|2 in w̃ for small w̃min, we conclude that gA,min also scales as O((λNc)
−1) for

large λNc. Our numerical result is shown in table 1, and the values of gA,min for large λNc

confirm this expectation. The same is true of g
(k)
V,mag, relative to g

(k)
V,min. Table 1 provides

some numerical values for gA,min, g
(k)
V,min, and g

(k)
V,mag. The first represents a subleading

correction to the axial coupling between pions and nucleons, whereas g
(k)
V are quantities

which are also well-measured via scattering processes of nucleons.

Before proceeding further, however, we must warn the readers of another approxi-

mation we took which goes beyond the usual large Nc and large λ limit. Note that our

computation in section 4 revealed the value of coupling g5 at w = 0. Extending this to a

bona-fide function of g5(w) has so far proven very difficult. While some quantities, such

as gA,mag, is insensitive to the detailed form of this function, generic numerical estimate

requires its precise form. Roughly speaking, this problem will become more and more se-

vere for large values of k since its wavefunction would be spread more and more away from

the origin w = 0. Also the smaller the value of λNc, the less reliable will be our estimate

since fL,R(w) will be also spread more and more away from the origin. This is a technical

problem that affects all terms arising from the magnetic terms. For numerical estimates of

g
(k)
V,mag here and later in section 7, we chose to sidestep the issue by replacing g5(w)/e(w)

2

by its value at the origin g5(0)/e(0)
2.

Using table 1, in conjunction with the results of previous section on leading large Nc

behaviors, we can make semi-quantitative estimates of gA and gV NN for V = ρ, ω and

compare with nature. To do this, we adopt the parameters MKK and λNc fixed by the

pion decay constant fπ ≈ 86 ∼ 93MeV,14 and the ρ-meson mass in the meson sector [2]

i.e., MKK ≈ .94GeV and λNc = 50.

14fπ is 86MeV for mπ = 0 and 93MeV for mπ ≈ 140MeV.
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• The axial coupling constant:

Adding the subleading contribution gA,min of table 1 to the leading term (5.39), we

have for λNc = 50,

gA ≈ 1.30− 1.31 (6.4)

which compares well with the experimental value gexpA = 1.2670±0.0035. As discussed

in section 5.4.1, there are indications from lattice calculations that higher-order 1/Nc

corrections or “unquenching” are suppressed. The same suppression seems to be

taking place in our calculation.

• The ρNN and ωNN coupling constants:

Consider the lowest members of the tower V = ρ, ω that correspond to k = 0 in

eq. (5.13). The leading order relation (5.30) will be spoiled at the subleading order

since the magnetic term contributes only to the ρNN coupling. From table 1, we

have for λNc = 50

gρNN ≈ 3.6

gωNN ≈ 12.6 (6.5)

Thus the relation (5.30) is modified to

R ≡ gωNN
3gρNN

≈ 1.2 (6.6)

roughly independently of λNc. We should stress that while the sign of gV,mag is

robust, the approximation that goes into the estimate of gV,mag is uncertain, so we

cannot take the numerical values too seriously. However considering that there are

no theoretical estimates — instead of fits to experiments — of the above quantities,

we offer (6.5) and (6.6) as the first theoretical prediction of those quantities.

There are no direct experimental determinations of these constants. However indirect

“empirical” values have been extracted from various sources including precision fits to

nucleon-nucleon scattering phase shifts up to lab energy ∼ 350MeV using one-boson-

exchange potentials. In addition, purely phenomenological potentials parameterized

with a large number of parameters fit to phase shifts can be translated into the form

of boson-exchange potentials and provide information on the effective constants [38].

Unfortunately since no direct determination from experimental data are feasible, the

numbers extracted from such analysis are far from unique and in fact they can vary

quite widely.15 With this caveat in mind, let us quote the ranges of values found in

the literature. They are

gempρNN ≈ 4.2− 6.5, R ≈ 1.1− 1.5. (6.7)

15Over the three decades from the early efforts in 1970’s [39] through extensive studies in 1980’s and

1990’s [40] to the most recent ones [41, 42], there seems to be little convergence on both gρNN and gωNN
except that gωNN > 3gρNN .
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Although the individual values for gV NN extracted empirically, e.g., (6.7), are sub-

ject to uncertainties mentioned above, it has been a mystery why NN phase shifts

invariably required that gωNN be larger than the CQM prediction 3gρNN . Remark-

ably, this observation is naturally explained in the holographic QCD model as one

can see in (6.6) although the quantitative comparison may not be meaningful as

mentioned above. One should also note that (6.5) violates what is referred to as

“universality,” namely, gρππ = gρNN , as empirically gρππ ≈ 6 which is closer to gρ,min
in table 1 for the relevant range of λNc. The source for this violation is in the mag-

netic contribution gρ,mag which is also responsible for the ratio R to deviate from

1.

6.2 An issue with extrapolation: size of the baryon

So far, we studied static and dynamical behaviors of baryons by starting with small instan-

tons with fundamental string hairs, in the very large ’t Hooft coupling limit. However, for

intermediate values of ’t Hooft coupling, the story has to change qualitatively. Recall that

the size of the instanton
9.6

MKK

√
λ

(6.8)

can be fairly large for the ’t Hooft coupling of order 10. As we consider larger and larger

instanton size, however, the computation leading to this estimate loses the validity. In

particular, the instanton energy from Yang-Mills action is affected drastically. The effective

mass from the instanton density scales with 1/e2(w) ∝ (U/UKK). While we used the

leading behavior U/UKK ∼ 1 + 1
3M

2
KKw

2 for small w, 1/e2(w) is in fact divergent as

w → ±wmax ' 3.64/MKK. With λ ∼ 17, the diameter of the instanton according to the

above estimate is about 2/MKK , which immediately shows that we are well out of region

of validity. The extra energy in eq. (3.11) is a gross underestimate.

Also the Coulomb energy eq. (3.12) can be seen to be modified. It treats the five-

dimensional gauge field as a massless gauge field living in flat R4+1. In reality, for con-

figurations of size comparable to 1/MKK, this is not the right picture. In particular, the

increasing value of 1/e(w)2 outward along w effectively makes the physics four-dimensional,

where the five-dimensional vector field should be replaced by an infinite tower of massive

vector mesons. The lightest has the mass ∼ 0.8MKK, so the Coulomb energy estimated

in section. 3 must be augmented by an exponential suppression as well, changing to the

power-exponent,

∼ MKKe(0)
2N2

c

ρ
e−0.8ρMKK . (6.9)

Thus, eq. (3.12) is a bit of overestimate for large sizes.

Making these estimates more precise requires further effort. The main difficulty comes

from the fact that we cannot use the usual self-dual instanton on R4 to estimate the po-

tential which is to be minimized. The problem is that the latter does not satisfy physical

boundary condition at w = ±wmax and that, even if we wish to use the usual instanton

only as an approximate trial configuration, the divergent 1/e2(w) at the boundary makes
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the energy of such configuration always infinite. What we need is a reasonable trial con-

figuration whose gauge field strength vanishes very fast as w → ±wmax. These difficulties

were in fact also present in the estimate of section. 3 as well, which we ignored without

justification, but it is unlikely that this detail would change the large ’t Hooft coupling

behaviors since the instanton involved is very small. Here we need to correct it since we

are now talking about instantons whose size is comparable to the length scale of the fifth

direction and since the order one factors are more important.

At the end of the day, however, the combined effect has to be that the instanton

gets stabilized at much smaller size than predicted by the naive extrapolation of the size

estimate we used. We anticipate that the size would be stabilized to be no larger than

1/MKK. Once we are in this regime, on the other hand, the strategy we followed loses

all of its validity, and it would be misleading to proceed in the same manner, only with

the size of the instanton modified. As long as we are interested in interactions of the

baryons with other fields in this theory, we propose that the right thing to do is to set

up the effective field theory in the large λ limit, where all computations we carried out

are well-justified, and extrapolate only at the end of the day when comparing scattering

amplitudes. When we consider four-dimensional processes which are not very sensitive to

the ‘t Hooft coupling in the large Nc expansion, this strategy is most likely to be successful.

We believe this is the reason why our approach produced reasonable numbers even when

compared to experimental values.

7. Electromagnetic interaction and vector dominance

A prominent feature of the holographic dual QCD is that its interaction with electromag-

netic field is vector dominated. Let us first consider the situation with pions in the SS

holographic model of QCD. There, the electromagnetic form factor of the pion is given by

the entire tower of the vector mesons [2],

F π
1 (q

2) =
∞
∑

k=0

gv(k)gv(k)ππ
q2 +m2

v(k)

. (7.1)

The quantities gv(k)ππ are the trilinear couplings between pions and the vector mesons. The

vector meson v(k) are defined as linear combinations of a(2k+1) and V, as will be shown

explicitly below. Accordingly its mass mv(k) is m2k+1 in our notation. The parameters

ζk ≡ gv(k)/m
2
2k+1, which will be introduced shortly, encode how the photon field mixes

with the massive vector mesons.

This form factor shows that there is no direct contact charge and arises because all

electromagnetic interaction of pions necessarily goes through intermediate vector mesons.

The charge form factor evaluated at p2 = 0 is the charge of the particle, and thus we must

have the normalization

F π
1 (0) =

∞
∑

k=0

gv(k)gv(k)ππ
m2
v(k)

= 1 . (7.2)

In the SS model of QCD, this sum rule is a mathematical consequence of the completeness of

the normalizable eigenmodes along the fifth direction. This sum rule has been also checked
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numerically, and for pions, it has been shown that the sum rule (7.2) is saturated within

less than 1% by the first four low-lying vector mesons in the ρ quantum number. However

the lowest member ρ exceeds the sum rule by ∼ 30%, so the next three are important in

the sum rule.

In the following we will sketch how this vector dominance arises for pions and how this

generalizes naturally to nucleons in our current effective action approach. Several analog

of the above sum rule will also appear naturally from the completeness of eigenmodes, and

we will see that again truncation down to the first four massive modes saturates these sum

rules for nucleons within 1%.

7.1 The vector dominance for the nucleons

As we saw before, vector mesons, a
(2k+1)
µ , and axial vector mesons, a

(2k)
µ , arise as massive

KK modes and exhaust all normalizable eigenmodes of the vector field which can be used

upon dimensional reduction. Among the normalizable degrees of freedom, there is no

room for photon field. Instead, the coupling to the photon field must be read out via the

usual AdS/CFT prescription by computing an appropriate current to be matched with an

external U(1)em field, V. The latter, in our language, shows up as non-normalizable term

added to the iβµ(x) term
16

Aµ(x;w) = iαµ(x)ψ0(w) + Vµ(x) + iβµ(x) +
∑

n

a(n)µ (x)ψ(n)(w) . (7.3)

Upon integrating over the fifth direction, this generates a term of the type
∫

dx4 VµJµ (7.4)

giving us the vertex J . After specializing V to a U(1) subgroup, appropriately chosen to

be consistent with four dimensional physics, electromagnetic vertices can be read out.

For a generalization to nucleons, it is instructive to recall how the vector dominance

came about in the meson sector in the SS model. If we keep both the vector mesons and

this external vector we have the following general structure of the lagrangian,

−
∑

n

1

4
|da(n)|2 − 1

2
m2
n|a(n)|2 −

∑

k

ζk
2
〈da(2k+1), d(V + iβ)〉 (7.5)

with

ζk =

∫

dw
1

e(w)2
ψ(2k+1)(w) , (7.6)

which is related to gv(k) of Sakai and Sugimoto as

gv(k) = m2
2k+1ζk . (7.7)

The reason why only the vectors and not the axial vectors shifts by V is clear from the

form λ’s, for the eigenmodes for the axial vectors are odd functions.

16One can also introduce an axial vector Aµ(x) added to iαµ(x). This would be relevant to the coupling

of the hadrons to SU(2)weak but here we will not consider it.
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For canonical forms of the kinetic terms, then we must introduce shifted vector fields

v(k) = a(2k+1) + ζk(V + iβ) , (7.8)

where we now have
∑

k

[

−1

4
|da(2k)|2 − 1

2
m2
2k|a(2k)|2 −

1

4
|dv(k)|2 − 1

2
m2
2k+1|v(k) − ζk(V + iβ)|2

]

(7.9)

up to a term that additively renormalizes the kinetic term of V. This induces a quadratic

vertex between vector mesons and the external gauge field V, which induces in turn indirect

couplings between V and pions. After some computation, one can show for the SS model

that the cubic couplings between pions and these vectors are organized into the form

gv(k)ππ tr
(

v(k)µ [π, ∂µπ]
)

. (7.10)

These cubic couplings between pions and v(k) plus the quadratic mixing between v(k) and V
generates an effective cubic interaction of pions with V, and summing over all intermediate

vector mesons generates the form factor F π
1 . In particular, the zero momentum limit of this

form factor is the electromagnetic charge of the pion, and the sum rules ensure consistency

such as charge quantization.

Now let us see how this mixing of vector fields enters the coupling of baryons with

electromagnetic vector field V. Seemingly this case is very different from that of pions. For

one thing, we have a minimal interaction term between nucleons and the 5D gauge field,

A, and this is inherited by V without modification, since V is simply the non-normalizable

part of A. Thus it may seem that we have a point-like interaction between baryons and

V, precluding the notion of vector dominance in the form factor. However, nucleons also

couple minimally to the 4D massive vectors, a(2k+1), which mix with V in the propagator.

They show up in the baryon effective Lagrangian as
∫

dw B̄γmAmB = B̄γµVµB +
∑

k

g
(k)
V,minB̄γ

µa(2k+1)µ B + · · · , (7.11)

where the ellipsis denotes axial couplings to axial vectors as well as coupling to pions via αµ
and βµ. There should be additional contribution from the 5D magnetic coupling, shifting

gV,min, to which we will come back shortly.

Alternatively, we may use the canonically normalized vectors v(k) instead, where we

have the vector-current couplings of type

B̄γµVµB +
∑

k

g
(k)
V,minB̄γ

µ(v(k)µ − ζkVµ)B + · · · . (7.12)

On the other hand,

∑

k

g
(k)
V,minζk =

∑

k

∫

dw′ |fL(w′)|2ψ(2k+1)(w′)×
∫

dw
1

e(w)2
ψ(2k+1)(w)

=
∑

n

∫

dw′ |fL(w′)|2ψ(n)(w′)×
∫

dw
1

e(w)2
ψ(n)(w)

=

∫

dw′ |fL(w′)|2 ×
∫

dw
1

e(w)2

∑

n

ψ(n)(w)ψ(n)(w
′) , (7.13)
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where the second step makes use of the fact that 1/e(w)2 is an even function. Using the

completeness of the normalizable eigenmodes ψn, we find that

∑

k

g
(k)
V,minζk =

∫

dw′ |fL(w′)|2 ×
∫

dw δ(w − w′) =
∫

dw′ |fL(w′)|2 = 1 , (7.14)

which implies the crucial sum rule,

∑

k

g
(k)
V,minζk = 1 . (7.15)

Therefore, in this shifted basis, we have the charge form factor

B̄γµVµB +
∑

k

g
(k)
V B̄γµ(v(k)µ − ζkVµ)B + · · · =

∑

k

g
(k)
V B̄γµv(k)µ B + · · · (7.16)

As in the case of the pion, we can see that the cubic electromagnetic interaction is mediated

entirely by intermediate massive vector mesons, rendering the nucleon form factors entirely

vector-dominated. This aspect will be highlighted in section 9.

Of course, this choice of basis is only for the sake of clarity. The {V; v(k)} basis is such
that the mixing between V and massive vector meson is maximal in the zero momentum

limit, and thereby exhibits clearly how the minimal coupling to photon field is replaced by

the mediation via massive vector mesons. However, the physics should be independent of

such choices. In the following, we will compute the charge form factor and the Pauli form

factor explicitly in the original {V; a(2k+1)} basis and see how the physical quantities bear

out the notion of the vector dominance.

7.2 Charge form factor F1

To be more precise, let us compute the effective 3-point vertex of type B̄γµVµB. Let us

first put a cut-off along the fifth direction integrals, which effectively make V dynamical

with a large kinetic term
L

4
|dV|2 (7.17)

for some large number L, whose precise value will not matter. The propagator for

{V; a(2k+1)} is such that

〈V(q)V(−q)〉 ∼ i

Lq2 −∑k ζ
2
kq
4/(q2 +m2

2k+1)
,

〈a(2k+1)(q)V(−q)〉 ∼ −〈V(q)V(−q)〉 × ζkq
2

q2 +m2
2k+1

. (7.18)

The electromagnetic form factor F1 can be found from this by computing tree-level cor-

relator, 〈B̄γµVµB〉, and amputating the external lines. The resulting charge form factor

F1,min which arises from the minimal interaction term is

F1,min(q
2) = 1−

∑

k

g
(k)
V,minζkq

2

q2 +m2
2k+1

=
∑

k

g
(k)
V,minζkm

2
2k+1

q2 +m2
2k+1

=
∑

k

gv(k)g
(k)
V,min

q2 +m2
2k+1

(7.19)
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up to the electromagnetic charge operator. We used the sum rule
∑

k g
(k)
V,minζk = 1 and the

definition gv(k) = ζkm
2
2k+1. The first expression is natural in the {V; a(2k+1)} basis while

the second expression is natural in the {V; v(k)} basis. The result is, of course, independent
of the basis choice.

Note that there is no contact charge in the baryon, which would have resulted in

F1(∞) 6= 0. However, since the holographic model used is defined by the mass scaleMKK ∼
1GeV, our form factor does not have the correct asymptotic behavior of perturbative QCD,

F1(q
2) ∼ 1/q4 [43]. This must be implemented by hand if one wanted to fit the experimental

data at large momentum transfers.

The actual charge form factor picks up an additional contribution from the magnetic

coupling, since the latter contributes couplings g
(k)
V,mag between nucleon current and massive

vector mesons as well. This does not induce an additional electric charge (as it should not)

given the charge quantization, and this happens as a consequence of another sum rule:
∑

k

g
(k)
V,magζk

=
∑

k

∫

dw′
(

g5(w
′)U(w′)

g5(0)UKKMKK

)

|fL(w′)|2∂w′ψ(2k+1)(w
′)×

∫

dw
1

e(w)2
ψ(2k+1)(w)

=

∫

dw′
(

g5(w
′)U(w′)

g5(0)UKKMKK

)

|fL(w′)|2 ×
∫

dw ∂w′δ(w − w′)

= −
∫

dw′ ∂w′

[(

g5(w
′)U(w′)

g5(0)UKKMKK

)

|fL(w′)|2
]

= 0 . (7.20)

The contribution to the charge form factor from the magnetic coupling is then,

F1,mag(q
2) = −

∑

k

g
(k)
V,magζkq

2

q2 +m2
2k+1

=
∑

k

g
(k)
V,magζkm

2
2k+1

q2 +m2
2k+1

=
∑

k

gv(k)g
(k)
V,mag

q2 +m2
2k+1

. (7.21)

Since the minimal term couples nucleons to U(2) gauge field and the magnetic term couples

nucleons to SU(2) gauge field, the two form factors, F1,min and F1,mag contribute differently

to the proton and neutron charge form factors.

For this, note that both iso-scalars and iso-vectors part of v(k) enter this cubic coupling,

unlike the case of pions where only the iso-vector vectors enter the story. The relative

strength between the two are determined universally by the 5D U(NF ) charge of the baryon.

For Nc = 3, v in the baryon vertex is in the representation

v(k)µ ' a(2k+1) =
(

3/2 0

0 3/2

)

ω(k)µ + ρ(k)µ . (7.22)

The mixing between v and V is computed in the representation which is appropriate for

mesons, where

v(k)µ '
(

1/2 0

0 1/2

)

ω(k)µ + ρ(k)µ (7.23)

and

V =

((

1/6 0

0 1/6

)

+

(

1/2 0

0 −1/2

))

Vem . (7.24)
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The representation of v for nucleons dictates the cubic coupling of v to the nucleon while

the latter dictates the quadratic mixing of v and V.
The electromagnetic interaction mediated by iso-scalars is thus proportional to 3/2×

(1/2 × 1/6) while its triplet counterpart is proportional to ±1/2 × (1/2 × 1/2) with the

sign choice corresponding to choosing proton or neutron. Since the two final products are

equal in size, iso-scalar vectors and iso-vector vectors contribute to the nucleon form factor

F1,min with the equal strength, adding up for the proton and cancelling each other for the

neutron. On the other hand, only the iso-vector contribute to F1,mag with an opposite sign

for proton and neutron, respectively. After taking into account the charge assignment for

protons and neutrons carefully, the electromagnetic charge form factors are found as

F proton1 = F1,min +
1

2
F1,mag ,

F neutron1 = −1

2
F1,mag . (7.25)

7.3 Pauli form factor F2

The phenomenon of complete vector dominance, that is, the absence of direct coupling of

photon to nucleons, is also seen in the Pauli form factor F2(q
2) defined as

〈B|Jµ(q)|B〉 ∼ F a
2 (q

2)

2mB
B̄γµνpνtaB . (7.26)

After inserting the mode expansion of the 5D gauge field in terms of vector mesons into

our bulk 5D magnetic coupling with purely 4D polarizations, we obtain the interactions

that are relevant for magnetic dipole coupling,

g2
4mB

B̄γµνFµνB +
∑

k

g
(k)
2

4mB
B̄γµνF (2k+1)µν B , (7.27)

where F
(2k+1)
µν = ∂µa

(2k+1)
ν − ∂νa(2k+1)µ is the ”field strength” of the vector meson a

(2k+1)
µ

and Fµν is the field strength of external source Vµ for the current. The coupling constants

are easily read off from overlap integrals,

g2 = 0.18Nc ×
4mB

MKK
×
∫ wmax

−wmax

dwf∗L(w)fR(w) ,

g
(k)
2 = 0.18Nc ×

4mB

MKK
×
∫ wmax

−wmax

dwf∗L(w)fR(w)ψ(2k+1)(w) . (7.28)

Note that contributions involving the axial vectors a
(2k)
µ are absent due to their odd profile

in the 5-th coordinate ψ(2k)(−w) = −ψ(2k)(w) and the property fL(−w) = fR(w). In fact,

the would-be terms like B̄γµνγ5F
(2k)
µν B = εµναβB̄γµνF

(2k)
αβ B is CP-violating.

Using the completeness relation for ψ(2k+1) as before, it is straightforward to check the

sum rule
∑

k

g
(k)
2 ζk = g2 , (7.29)
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which is saturated up to 99% by the lowest four vector mesons as can be seen in the table

2. Because of this sum rule, as we go to the shifted basis v(k) = a(2k+1) + ζkV, the direct

photon coupling g2
4mB

B̄γµνFµνB is exactly cancelled by the shift, and we are left with

∑

k

g
(k)
2

4mB
B̄γµν(∂µv

(k)
ν − ∂νv(k)µ )B , (7.30)

and the Pauli form factor is given as a sum over intermediate vector meson contributions,

F 32 (q
2) =

∑

k

g
(k)
2 ζkm

2
2k+1

q2 +m2
2k+1

, (7.31)

with the property due to the sum rule F 32 (0) = g2. It seems by now clear that the complete

vector dominance is a generic phenomenon in the holographic QCD, as was first noticed

in [44].

For each nucleon, we have

F proton2 =
1

2
F 32 ,

F neutron2 = −1

2
F 32 , (7.32)

since only the magnetic term contributes to F2.

7.4 Numerics and a consistent truncation

It is tantalizing that there is a complete parallel between the vector dominance in the pion

and that in the nucleon. Because the zero momentum limit of F1 is the electromagnetic

charge, which should be quantized, F1(0) of pions and nucleons must be the same, which

would imply gv(0)ππ = g
(0)
V if the sums were saturated by the lowest vector meson v(0). This

feature has been discussed much in old literatures and goes by the name of “universality.”

To see whether the form factor is actually dominated by the first vector meson or

not, we computed numbers for the first few lowest vector mesons and check the sum rules

numerically. The result is shown in table 2. We have two independent sum rules for

g
(k)
V,min and for sum g

(k)
V . Since the sum rules for g

(k)
V,min and g

(k)
V are both tied to the net

electromagnetic charge, we need to satisfy them both well, before discussing any comparison

with data. As table 2 shows clearly, the sum rules that lead to the vector dominance cannot

be satisfied with the lowest vector meson alone, indicating the truncation down to the first

vector would be a bad approximation for the form factor. Instead, if we sum up to the

fourth vector meson, both sum rules are obeyed with 0.2% accuracy, giving us a hope that

F1 may be well-approximated in the low momentum region by summing over the first four

terms. A similar result can be seen for F2, since, as also shown in the table 2, the sum rule

for g2 is saturated well within 1% accuracy.

Given this numerical data, the old ”universality” seems to have found a new reincar-

nation. The table 2 shows that the sum rules for the nucleon (as well as for pions) are

saturated within less than 5% by the four lowest vector mesons. We observe that

ζk = (−1)k/h (7.33)
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k m2
2k+1 ζk g

(k)
V,min g

(k)
V,mag g

(k)
V,minζk g

(k)
V,magζk g

(k)
2 ζk

0 0.67 0.385 4.195 -0.577 1.615 -0.222 3.323

1 2.87 -0.387 2.280 -1.406 -0.882 0.544 -1.918

2 6.59 0.385 0.892 -1.366 0.343 -0.526 0.828

3 11.8 -0.383 0.220 -0.685 -0.084 0.262 -0.243

sum - - - - 0.992 0.058 1.989(g2 = 2.028)

Table 2: Numerical results for vector meson couplings for the lowest four excitations in the case

λNc = 50. Sum rules hold to a high precision. Our convention for the vector meson fields differ by

sign from that of Sakai and Sugimoto for odd k. The vector meson mass squared is in the unit of

M2

KK
.

where h is a constant independent — within less than 1% — of the species k. Assuming

that the sum rule (7.2) is completely saturated by the four vector mesons, we arrive at the

conclusion that17
3
∑

k=0

(−1)kgv(k)ππ = h. (7.35)

Since the same relation holds with a nucleon replacing the π in (7.35), h could be identified

with the HLS∞ gauge coupling constant and that

3
∑

k=0

(−1)kgv(k)ππ '
3
∑

k=0

(−1)kgv(k)NN . (7.36)

We could consider this as a “generalized universality” relation, although we have no rigorous

argument for such a relation.

If the sum rules (7.2) and (7.15) are saturated by the first four vector mesons then an

interesting question is how the relation
∑∞

k=4 ζkgv(k)ππ =
∑∞

k=4 ζkgv(k)NN = 0 is satisfied

and what it means vis-a-vis with the short-range structure of the nucleon. We leave these

issues for later publication.

7.5 The “old” vector dominance in light of the “new” vector dominance

Now that we have the form factors of both pions and nucleons completely vector-dominated

with the infinite tower, it is interesting to review the old vector dominance involving the

lowest vector mesons only, ρ, ω and φ — and in some works including the next-lying

vector mesons [45] — in light of the new picture. This could bring light to the success and

failure of the old vector dominance. We shall do this using the Harada-Yamawaki (HY)

approach [23].

As has been suggested [46], HY’s hidden local symmetry model can be considered as

resulting from integrating out all excitations other than the pions and the lowest vector

17This is reminiscent of the nonet relation in three flavor HLS1

gρ/m
2
ρ = 3gω/m

2
ω = −(3/

√
2)gφ/m

2
φ = 1/g (7.34)

where g is the hidden gauge coupling constant.
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mesons and matching the truncated action to the SS action at a matching scale ΛM . It is

however more natural to consider it as an emergent symmetry as mentioned in section 2.2.

It is in this way via what is called “moose construction” [24] that the tower of vector

mesons emerge in a dimensionally deconstructed QCD [4] with a five-dimensional YM

action analogous to that reduced from string theory that we have been discussing.

What we would like to do here is to describe how the vector dominance and the putative

violation thereof arise in this HLS approach (that will be referred to as HLS/VM below).

In order to do so, we recall how massive vector meson degrees of freedom arise when

one approaches hadron chiral dynamics from bottom up. At very low energy, E ¿ Λχ,

i.e., the chiral scale, the chiral dynamics is given by the current algebra term with the

lowest-derivative Lagrangian

L =
f2π
4
Tr(∂µU∂

µU †) (7.37)

with the chiral field

U(x) = e2iπ/fπ . (7.38)

By writing the U field as a product field

U = ξ†LξR (7.39)

which can be done by introducing a redundant field σ as

ξL/R = e∓iπ/fπeiσ/fσ (7.40)

with fσ defined as the σ decay constant, one unearths a trivial local invariance

ξL/R → h(x)ξL/R (7.41)

with h(x) ∈ U(NF ). This local symmetry can be exploited by introducing a vector field

vµ to bring the energy scale from low, here that of the pion mass — which is zero in the

chiral limit with the Lagrangian (7.37) — to high, say, the scale set by the mass of a meson

v. This is essentially how the vector mesons (ρ, ω) were incorporated into the HLS theory

of [14]. For convenience, we shall call it HLS1.

As is well-known [47], the gauge theory so constructed does not lead to a unique

higher-energy theory. In order to direct the hidden gauge theory of [14] toward a correct

one, Harada and Yamawaki match à la Wilson the effective theory to QCD at a matching

scale ΛM ∼ 4πfπ. Specifically the vector correlator ΠV and the axial-vector correlator ΠA

calculated with the HLS Lagrangian are matched to those calculated in QCD, e.g., operator-

product expansion (OPE). This allows the bare parameters of the HLS Lagrangian, g, fπ
and fσ, to be expressed in terms of the QCD variables, αs, 〈q̄q〉, 〈G2〉 etc. Given the bare

Lagrangian, the next step is to do renormalization group analysis to see how the theory

flows as the scale is changed from the matching scale. Harada and Yamawaki find a variety

of fixed points as well as a fixed line, to which the HLS1 can flow [23]. In order to pick out

the fixed point that maps to QCD, one has to impose the condition that when the chiral

order parameter 〈q̄q〉 is set equal to zero, the correlators are equal, i.e., ΠV = ΠA. This
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condition picks out the fixed point that corresponds to the fixed point to which the system

flows when the condensate 〈q̄q〉 goes to zero. This fixed point called “vector manifestation

(VM) fixed point” (and the HLS theory with the VM fixed point called HLS/VM) [23] is

characterized by

g∗ = 0, a∗ = 1 (7.42)

where a is the ratio of the decay constants a ≡ (fσ/fπ)
2. This fixed point is reached

when a hadronic system in Nambu-Goldstone phase makes the transition to the symmetry

restored phase at high temperature Tc (as in the Early Universe) or at high density nc (as

in compact stars).

What this implies in the EM form factors of the pion and the nucleon in HLS1 is as

follows. In HLS theory with the lowest vector mesons (ρ, ω), the iso-vector photon coupling

is given by

δL = eAµEM
(

−2af2πTr[gρµQ] + 2i(1− a/2)Tr[JµQ]
)

, ) (7.43)

where Q is the quark charge matrix, ρµ is the lowest-lying iso-vector vector meson and Jµ
is the iso-vector vector current made up of the chiral field ξ (7.41). The first term of (7.43)

represents the photon coupling through a ρ and the second term the direct coupling. The

“old” vector dominance is obtained when a = 2 for which the well-known KSRF relation

for the ρ meson holds, i.e., m2
ρ = af2πg

2 = 2f2πg
2. Now it has been established empirically

that the way the vector dominance manifests itself is different between the pion and the

nucleon. Let us look at them separately.

• Pion form factor: On-shell in matter-free space, the pion form factor is very well

described by the vector dominance, hence a = 2, with no direct coupling. However in

HLS/VM, in the framework of HLS1, a = 2 is totally accidental, not even lying on a

stable trajectory of the RGE [23, 48]. A small perturbation would take a away from

the vector dominance point a = 2. Thus for instance, temperature [49] or density

would push a toward 1, inducing what is referred to as “vector dominance violation.”

It is an interesting possibility that there is a connection, albeit indirect, between the

departure from a = 2 toward a = 1 in HLS1 and the role in medium of higher-lying

vector mesons in HLS∞. This is an important issue in CERN experiments on dilepton

production in relativistic heavy ion collisions [50].

• Nucleon form factor: If one considers nucleon as a Skyrmion in HLS1, then the second

term in (7.43) corresponds to a direct photon coupling to the Skyrmion. As we will

elaborate in section 9, experimental data clearly show that there is an important

direct coupling with a ∼ 1. This observation has been taken as an indication that

vector dominance does not apply to nucleons, the reason put forward for this violation

being that nucleons are extended objects. We will see in section 9 that this picture is

drastically modified when the infinite tower of vector mesons enter in the structure

of nucleons.
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8. The anomalous magnetic dipole moment

While we can simply read out the magnetic moment from the form factors of previous

section, here we would like to show a more direct computation, which does not depend on

the structure of the vector dominance of the previous section. Since the magnetic moment

comes from form factors at zero momentum limit, it is best to work in {V; a(2k+1)} basis
and ignore the vector mesons entirely. This is because a(2k+1)’s mixes with V at the level

of kinetic term and thus with two momentum factors while v(k) mixes with V at the mass

term level. Thus, we may ask how the nonnormalizable mode V in

Aµ(x;w) = Vµ(x) + iαµ(x)ψ0(w) + · · · (8.1)

couples to the nucleons. Let us insert the non-normalizable zero mode into the effective

action for the five dimensional baryon, whereby we find the terms relevant

∫

d4x

∫

dw

[

−B̄γµV ′µB + g5(w)
ρ2baryon
e2(w)

B̄γµνFµνB
]

(8.2)

with g5(0) = 2π2/3. Here we denoted the gauge field from the minimal coupling by V ′
because its generator is different from the one in the magnetic term.

Again recall that the 5D magnetic coupling that we obtained from comparing with

long-range instanton tail must contain only the SU(2) isospin without an overall U(1),

since the instanton tail involves only non-Abelian SU(2). On the contrary, the minimal

coupling term contains U(1)Y as well as SU(2) according to the charge of nucleons made

out of Nc-quarks. As for the case Nc = 3 and NF = 2, the quark doublet (u, d) has EM

charge (2/3,−1/3), which can be decomposed to (1/6, 1/6) corresponding to U(1)Y and

(1/2,−1/2) for the diagonal part of SU(2). As nucleons are made of 3 quarks in totally

anti-symmetric fashion, the resulting U(1)Y charge becomes (1/2, 1/2) whereas the SU(2)

charge remains fundamental representation (1/2,−1/2). This tells us that we have to use

EM charge (1, 0) for (p, n) in the minimal coupling as expected, while we should instead

have (1/2,−1/2) in the term from 5D magnetic coupling.

The above descends down to similar 4D expression as

∫

d4x

[

−B̄γµV ′µB + g5(0)
ρ2baryon
e2(0)

B̄γµνFµνB
]

, (8.3)

assuming that the eigenmode fL,R of the nucleon is sufficiently concentrated at origin

w = 0, so that the w-dependence of the coupling does not enter the physics. The previous

estimate gives us

g5(0)
ρ2baryon
e2(0)

' 0.18Nc ×
1

MKK
. (8.4)

This approximation becomes precise in the large Nc-limit. For later numerical calculations

extrapolating to Nc = 3, the precise overlap integral replaces the above coefficient with

0.18Nc ×
1

MKK
×
∫ wmax

−wmax

dw
g5(w)U(w)

g5(0)UKK
f∗L(w)fR(w) , (8.5)
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where we used fL(w) = fR(−w) for the lowest nucleon eigenmode.

Taking a non-relativistic limit, we will look for terms of type

∫

d4x
µ

eEM
S ·B (8.6)

with the magnetic field strength B and the spin S. Here we have a factor of eEM to correct

the fact that our choice of gauge field is not canonically normalized. As in section (4), we

introduce the two-component notation of B as

B =

(

u

v

)

e−iEt+ip·x , (8.7)

where the on-shell condition relates

v =
E − σ · p
−imB

u . (8.8)

Isolating the magnetic dipole coupling, we find

1

mB

∫

d4x
[

u†B′ · σu
]

+

(

4g5(0)ρ
2
baryon

e(0)2

)

∫

d4x
[

u†B · σu
]

. (8.9)

where, again, the prime on the magnetic field reminds us that the charge generator for

the minimal coupling term is different from the one for the magnetic term. Given the

normalization, tru†u = 1/2 (see section. 4), one can identify tru†σu as the spin operator S

of the nucleon. This leads to

µproton
eEM

=
1

2mB
+

[

g5(0)ρ
2
baryon

e(0)2

]

,
µneutron
eEM

= −
[

g5(0)ρ
2
baryon

e(0)2

]

. (8.10)

However, we do not have a reliable estimate of the nucleon mass mB. One way to

bypass this difficulty is to look at the anomalous part of the magnetic dipole moment. In

fact, the anomalous part is the dominant part in the large Nc limit, and thus is likely to

be more reliable. We have

µanproton
eEM

=
0.18Nc

MKK
,

µanneutron
eEM

= −0.18Nc

MKK
. (8.11)

For comparison with experiments, let us first consider the difference of the anomalous

magnetic moment ∆µan = µanproton − µanneutron,

∆µan

eEM
' 0.36Nc

MKK
. (8.12)

Experimentally, (∆µan)exp = (2.79− (−1.91)− 1)× µN = 3.7µN where µN = eEM/2mN is

the nuclear magneton. Once we take MKK = 0.94GeV as determined by the meson sector

fit, it happens to be approximately the physical nucleon mass, denoted as mN . Thus our

prediction is ∆µan ' 0.72Nc × µN = 2.16µN for Nc = 3.
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However, if we replace Nc by (Nc + 2) again guided by CQM, then it becomes

∆µan ' 3.6µN , (8.13)

which agrees with experiment value, 3.7µN , very well. With the same shift, the individual

anomalous magnetic moment are

µanproton ' 1.8µN , µanneutron ' −1.8µN :, (8.14)

which again compare quite favorably to the experimental values, 1.79µN and −1.91µN ,
respectively. Such a shift Nc → Nc + 2 was discussed in section 5.4.2 for the leading chiral

coupling between the pion and the nucleon. As mentioned there, the spin-isospin structure

is the same for the axial coupling and the iso-vector magnetic moment, so the collective

quantization leads to the same shifting for both.

A thorny issue here, and also for much of next section where we consider electromag-

netic form factors, is the matter of the nucleon mass mB. For instance, the non-anomalous

part of the proton magnetic moment would be computed to be eEM/2mB and the question

of whether the model predicts mB ' mN becomes an important issue.

In this article we did not attempt to compute mB within our model. In fact, it is

unclear if there should exist an unambiguous prediction for the ground state mass in this

approach, since the quantity is additively renormalized, since an infinitely many oscillators

around the classical soliton contribute zero-point energy. Hata et.al. [29] computed the

mass spectra of various excited baryons but, for this reason, chose to the treat the ground

state mass (mB in our notation) as a free parameter instead. For a bona fide comparison

of quantities that depends on the nucleon mass sensitively, this issue should be resolved

first.

9. Electromagnetic form factors

9.1 Two-component description

The full electromagnetic form factors are encoded in three functions, F1,2,3. Before we

compute the form factors to compare with the experimental data, we review briefly the

past theoretical status on the subject.

For qualitative illustration of what the problem is, we take the iso-vector Dirac form

factor F1 of the nucleon. This form factor will receive contributions from the vector mesons

in the tower in the ρ channel, ρ, ρ′, etc. Other channels can be discussed in a similar way.

In the literature, analysis have been made by including one [51] or two [45] lowest

vector mesons in the ρ channel, i.e., ρ(770) and ρ′(1450). Let us just take the lowest only

for the discussion, relegating the role of ρ′ to a short comment later.

It has been known since a long time that the nucleon form factors at low momentum

transfers cannot be fitted by a monopole form factor of the type ∼ 1/(1 + cq2) with c a

constant where q is Euclidean four momentum transfer. In fact, one obtains a much better

fit by a dipole form factor of the form ∼ 1/(1+ dq2)2 with d ≈ 1/(0.71 GeV)2. This meant

that the single-vector-meson mediated mechanism along the line of reasoning used for the
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Figure 2: (a) Photon coupling to the nucleon via vector meson V and (b) direct photon cou-

pling to the nucleon. The blob represents the intrinsic form factor accounting for short-distance

effects (referred to as “intrinsic core” in some circles) unaccounted for in the effective theory, e.g.,

asymptotically free QCD property.

pion form factors could not explain the process. This led to a two-component description

figure 2 which can be put in the form [52]

F1(q
2) =

1

2

[

A(q2) +B(q2)
m2
ρ

q2 +m2
ρ

]

(9.1)

with the normalization

A(0) +B(0) = 1. (9.2)

In (9.1), the momentum dependence in A and B represents a form-factor effect correspond-

ing to an intrinsic structure of the nucleon which is expected from both the confinement

and the asymptotic behavior of perturbative QCD [43]. The first term corresponds to a

direct coupling to the intrinsic component of the nucleon (“nucleon core” in short), fig-

ure 2b and the second term via one or more vector mesons in the ρ channel, figure 2a. Let

us for simplicity consider only one vector meson exchange. The same reasoning applies

to the case where more than one vector mesons are considered. Making the reasonable

assumption that the photon and the ρ meson couple to the nucleon core with a same form

factor, one can rewrite (9.1) as

F1(q
2) =

1

2
h(q2)

[

(1− βρ) + βρ
m2
ρ

q2 +m2
ρ

]

(9.3)

with the core form factor normalized as h(0) = 1. Perturbative QCD indicates that asymp-

totically h(q2) ≈ (1 + γq2)−2. The coefficient γ is not given by the model but can be fixed

by experimental data. One can make a very good fit to the data with (9.3) with the

coefficients γ ≈ 0.52 GeV−2 and βρ ≈ 0.51 [51].

Let us consider what this result means with regard to our prediction of section (7.1).

The VD prediction (7.19), as mentioned above, lacks the intrinsic short-distance form factor

but this can be implemented, albeit phenomenologically as in the two-component model,
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since it involves physics intervening at a scale above the KK scale. What is significant is

the role of the first term of (9.3). In the two-component model, this part, characterized by

a size of ∼ 0.4 fm, is to represent the short-distance physics of the microscopic degrees of

freedom of QCD that are extraneous to long-wavelength excitations — π, ρ etc. — in the

baryon. Adding the ρ′ meson and higher in the second term of (9.3) is expected to further

reduce the size of the core. One interpretation of the core component was given in terms

of a “chiral bag” in which quarks and gluons are confined with the broken chiral symmetry

of QCD suitably implemented outside of the bag [53]. The baryon charge was assumed to

be divided roughly half and half between the quark-gluon sector and the hadron sector.

This hybrid model met with a fair success in reproducing the data available up to late

1980’s [53]. Interestingly, it has been claimed that there is an (albeit indirect) evidence

for a core of ∼ 0.2 fm from the Nachtmann moment of the unpolarized proton structure

function measured at JLab [54].

Within the framework of the two-component picture, an alternative description using

the Skyrmion as an extended object to which the photon couples both directly and via the

exchange of the lowest member of the vector-meson tower has been constructed [55]. With

one parameter that represents the amount of direct coupling, the model is found to agree

quite well with the dipole form factors up to q2 ∼ 1GeV2 and can explain satisfactorily

the deviation from the dipole form for q2 ∼> 1GeV2. What this implies is that the nucleon

form factors at low momentum transfers, say, q2 ∼< 1GeV2, can be well understood given

the three basic ingredients: (a) an extended object, (b)partial coupling to vector mesons

and (c) relativistic recoil corrections.

What we have found in the holographic dual model in section 7.1 is that by a suitable

field re-definition and using a sum rule involving the spread in the fifth dimension, one can

transform away the “contact” coupling figure 2b — here to the soliton — at the expense of

saturating figure 2a with the infinite tower of the vector mesons. The novel structure of this

model is that the “intrinsic core” is largely replaced by the higher-lying vector mesons in

the infinite tower encapsulated in the instanton baryon — modulo the asymptotically free

property relevant at very high momentum transfer not captured in the model, say, physics

of ∼< 0.2 fm. We will see indeed that this small core size is needed for phenomenology.

9.2 Instanton baryon prediction for the form factors

The nucleon form factors are defined from the matrix elements of the external current

operator Jµ as
〈

p′
∣

∣ Jµ(x) |p〉 = eiqx ū(p′)Oµ(p, p′)u(p) , (9.4)

where q = p′ − p. By the Lorentz invariance and the current conservation we may expand

the operator Oµ as

Oµ(p, p′) = γµ
[

1

2
F1(q

2) + F a
1 (q

2)τa
]

+
γµν

2mB
qν
[

F2(q
2) + F a

2 (q
2)τa

]

, (9.5)

where F1 and F2 are the Dirac and Pauli form factors for iso-scalar current respectively,

and F a
1 , F

a
2 are for iso-vector currents. Our convention is τ a = σa/2.

– 45 –



J
H
E
P
0
9
(
2
0
0
7
)
0
6
3

In the AdS/CFT correspondence the matrix element is given by the overlap integral

of the normalizable modes, corresponding to the nucleon states, and a non-normalizable

mode of gauge fields Aµ(x, z), which becomes an external source for the current at the UV

boundary. By matching the correct operators from the 5D effective action in eq. (4.6), one

can read off the corresponding form factors.

We first Fourier-transform the gauge fields of the external source of currents as

Aµ(x, z) =

∫

q
Aµ(q)A(q, z) e

iqx . (9.6)

From the equation of motion for the gauge field we get
(

1 + z2
)4/3

∂2z A(q, z) + 2z
(

1 + z2
)1/3

∂z A(q, z)− q2A(q, z) = 0 (9.7)

with boundary conditions for all q

lim
z→±∞

A(z, q) = 1, lim
z→±∞

∂zA(q, z) = 0 . (9.8)

After solving this and inserting it into our 5D action, we can read off suitable form factors

at momentum q2. We note that the Dirac form factor is a sum of a term, F1min, coming

from the minimal coupling and a term, F1mag, coming from the magnetic coupling, which

are

F1min(q
2) =

∫ wmax

−wmax

dw |fL(w)|2 A(q, z(w)) , (9.9)

F1mag(q
2) = 2× 0.18Nc

∫ wmax

−wmax

dw

(

g5(w)U(w)

g5(0)UKKMKK

)

|fL(w)|2 ∂wA(q, z(w)) .

where fL,R(z) are the left(right)-handed normalizable modes, corresponding to the nucleon

state. The Pauli form factor is given as

F 32 (q
2) = 0.18Nc ×

4mB

MKK

∫ wmax

−wmax

dw
g5(w)U(w)

g5(0)UKK
f∗L(w)fR(w)A(q, z(w)) . (9.10)

One salient prediction of instanton baryons on the form factor is that the U(1) part of

the Pauli form factor F2(q
2) = 0, because the instanton does not have a U(1) tail, while

F 31min(q
2) = F1min(q

2). We also note that our expressions for the form factors are from the

AdS/CFT correspondence, for which we have to use full 5D effective action rather than

using the leading two terms in the derivative expansion. Therefore, our results cannot be

trusted for q2 ∼> M2
KK .

The experimentally measured nucleon form factors (Sachs form factors) are defined for

the space like momentum transfer, q2 > 0, as

Gp
M (q2) = F1min(q

2) +
1

2
F1mag(q

2) +
1

2
F 32 (q

2) :, (9.11)

Gp
E(q

2) = F1min(q
2) +

1

2
F1mag(q

2)− q2

4m2
B

1

2
F 32 (q

2) , (9.12)

Gn
M (q2) = −1

2
F1mag(q

2)− 1

2
F 32 (q

2) , (9.13)

Gn
E(q

2) = −1

2
F1mag(q

2) +
q2

4m2
B

1

2
F 32 (q

2) . (9.14)
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Figure 3: The Sachs form factors vs. q2 in GeV2: B=Gp
M , C=Gp

E , D=Gn
M , and E=Gn

E , where we

take mB = MKK and have shifted NC → NC + 2.

For the numerical analysis we need to know the coordinate dependence of the magnetic

coupling g5(w)/e
2(w), which is for simplicity approximated as g5(w)/e

2(w) ' g5(0)/e2(0).
Our results are plotted in figure 3. To meaningfully compare our results with ex-

periments, there are several corrections to be taken into account that are left out in our

theory. One of the most important of them that influences the iso-vector from factors at

low momentum transfer is that the lowest iso-vector vector meson ρ has a large width, ∼
150MeV, which in our treatment corresponds to higher order in 1/Nc expansion and hence

is absent. As mentioned above, the short-distance physics involving a scale higher than the

KK mass MKK given in QCD as an asymptotic scaling [12] is also missing. It is therefore

with these caveats in mind that our results for the Sachs form factors given in figure 3

should be viewed. To have an idea as to how they fare with Nature, let us look at the first

nontrivial moment of the proton form factors, namely, dGp(q2)/dq2|q2=0 corresponding to

charge (magnetic) square radius. For very low momentum transfers, q2 ¿ 1GeV2, the

form factors can be written as

Gp(q2) ≈ 1− 1

6
〈r2〉q2 + · · · , (9.15)

Our results of figure 3 give

√

〈r2〉pE ' 0.80 fm,
√

〈r2〉pM ' 0.74 fm. (9.16)

The empirical values [56] determined from experiments via dispersion relation analysis are

√

〈r2〉pE = 0.886 fm,
√

〈r2〉pM = 0.855 fm. (9.17)
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By comparing the predictions with the empirical results, we can note that the pre-

dicted sizes — both electric and magnetic — are smaller than the experimental sizes by

∼ 0.15−0.17 fm, roughly the size of the “intrinsic core” seen in inelastic electron scattering

experiments [54]. Since the radii are smaller, the form factors are expected to fall more

slowly than observed at low momentum transfers. However what is significant is that the

deviations are of the same magnitude, i.e., ∼ 0.15− 0.17 fm for both charge and magnetic

radii. That they come out to be the same can be understood by that the “core” reflects

short-distance physics more or less “blind” to flavor and spin. This suggests that the “core”

effect should cancel out in the ratio Rp ≡ µpG
p
E

GpM
. It indeed does. The predicted value at

q2 = 0.1GeV2 is

Rp(q
2 = 0.1GeV2) ≈ 0.966 (9.18)

to be compared with the empirical value

Rp(q
2 = 0.1GeV2) ≈ 0.97. (9.19)

Another way of calculating the form factors is to expand the non-normalizable mode

in terms of the normalizable modes, ψ(2k+1)(z), of vector mesons in the overlap integra-

tions (9.10) and (9.10),

A(q, z) =
∑

k

gv(k)ψ(2k+1)(z)

q2 +m2
2k+1

, (9.20)

where m2k+1 and gv(k) are the mass and the decay constant of the k-th vector mesons [44].

(Note that the axial vector mesons should enter to form a complete set when we expand

the non-normalizable mode. However, since the overlap integration for the Dirac and Pauli

form factors is parity even under the parity flip of the 5th coordinate, the axial vectors

do not contribute.) Then we will get the previously defined form factors Eq’s (7.19)

and (7.31), where the vector meson decay constant is given by

gv(k) = ζk m
2
2k+1 . (9.21)

This shows that as noted in [44], the vector dominance in the form factors for both the

pion and the nucleon is a direct consequence of AdS/CFT.

To illustrate that the vector-dominance description captures the same physics as the

instanton picture, we calculate the iso-vector charge radius (ICR) of the proton by saturat-

ing the charge form factor by the four lowest vector mesons in the ρ channel. Numerically,

ζk are a constant. We take ζ = 0.27 and find from table 2

√

〈r2〉pC '
(

6ζ
3
∑

k=0

g
(k)
V

m2
vk
signζk

)1/2

' 0.63 fm. (9.22)

The “empirical value” represented by the dipole parametrization 1/(1 + Q2/m2
V )
2 with

mV = 0.84MeV is
√

〈r2〉pC = 0.81 fm, so we find the predicted charge radius is smaller

than the empirical one by ∼ 0.18 fm, about the same as what we found with the Sachs

form factors.
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10. Summary and comments

In this article, we pursued an holographic realization of baryons in the SS model of QCD.

In this model, the entire meson sector of quenched QCD is collectively realized as a five-

dimensional U(NF ) gauge field and the KK tower produced upon a dimensional reduction

gives the towers of vector mesons and axial vector mesons, while an open Wilson line corre-

sponds to the chiral field of pions, U . The string theory, in which the model is embedded,

tells us unambiguously that the baryon arises by quantizing an instanton soliton of SU(NF )

gauge field in five dimensions. We studied its static property in large λ and large Nc limit,

as demanded by the classical approximation on the bulk side to the AdS/CFT correspon-

dence, and found the soliton size scales as ∼ 1/(MKK

√
λ). The small size motivates us to set

up an effective action approach treating the soliton as a point-like object, and we explored

its consequence in detail. The picture that arises is consistent with heavy-baryon chiral

effective field theory where baryons are taken as local fields, with higher order corrections

in derivative and/or 1/Nc expansion, accounting for the finite size of the baryons.

One might wonder how this small instanton soliton is related to the usual Skyrmion in

the four dimensional chiral lagrangian approach18 in which the size of the baryon is mostly

given by the soliton size. Both objects are classified by the topological charge π3(SU(NF =

2)), and the topological relation can be made precise by the following mapping [26]: Let A

be an instanton in R3 × I with the unit Pontryagin number. Then the open Wilson line

U = Pei
R

I
A , (10.1)

as a function R3 → SU(2), carries a unit winding number in π3(SU(2)). The latter is of

course the definition of the Skyrmion winding number. Topologically this shows why the

instanton soliton is the underlying five-dimensional object which produces the Skyrmion

upon dimensional reduction to four dimensions.

However, the question of size must be addressed. The Skyrmion solution that would

have come out of the chiral lagrangian is of size ∼ 1/MKK. Yet, the instanton soliton we

found has the size ∼ 1/(MKK

√
λ), which is much smaller when compared to the expected

Skyrmion size. Upon the above map from the instanton soliton to Skyrmion, we can see

also that the size of the latter essentially is the size of the former. So what went wrong?

The answer is that the usual Skyrmion is a bad approximation to the baryon once we begin

to include massive vector and axial-vector mesons. Likewise, the truncation down to the

usual chiral Lagrangian involving only the pion field is also a bad approximation once we

begin to consider the baryonic sector of QCD as previously suspected [18, 19].

From the four dimensional viewpoint, one can understand this disparity of sizes by

incorporating more and more of massive vector and axial mesons into the chiral Lagrangian.

The Skyrme solution will source these vector mesons through various cubic couplings such

as gv(k)ππ, and in turn will backreact to these classical excitations of vector fields. It just so

happens that the net result tends to shrink the size of the Skyrmion while preserving the

18Here and in what follows, by “usual Skyrmion,” we mean the Skyrmion arising from the Skyrme

Lagrangian consisting of the pion hedgehog. This should be distinguished from the Skyrmion involving the

infinite tower of vector mesons that emerges from the 5D instanton.

– 49 –



J
H
E
P
0
9
(
2
0
0
7
)
0
6
3

winding number. This tendency was also demonstrated some time ago by incorporating

ρ meson in the chiral Lagrangian with HLS1 in the conventional field theory setting [13].

What we found here is that in the strong coupling limit with the entire tower of vector

mesons included this backreaction of the Skyrmion is rather extreme.

While we identified the instanton soliton as the carrier of baryonic quantum numbers,

we actually set up effective action for a subclass of baryons. We restricted our attention

to NF = 2 case, and considered dynamics of the iso-doublet under SU(NF = 2). These are

of course the proton-neutron pair. For these nucleons, we found a simple five-dimensional

effective action where all cubic and quartic interaction with mesons are encoded in two

interaction terms: a minimal coupling of the baryon current to U(NF = 2) gauge field

of the form, B̄AmγmB, and a magnetic coupling to SU(NF = 2) gauge field strength of

the form B̄FmnγmnB. Considering that the gauge field includes the entire tower of vector,

axial-vector mesons, and pions this universal form of the interaction is simply staggering.

Electromagnetic vertices are also extracted, more indirectly using the AdS/CFT pre-

scription relating source terms to the boundary operators and bulk fields. The most promi-

nent feature found here is the vector dominance in a generalized sense. The conventional

vector dominance refers to the assertion that photon couples to hadrons only indirectly via

mixing with the lowest lying vector mesons, namely ρ and ω. Here, instead, we showed

explicitly that the photon field couples to nucleons indirectly by mixing with the infinite

tower of vector mesons in the manner similar to the case of pions.

In contrast to the conventional vector dominance which holds poorly for the nucleons,

photon has no direct contact coupling with the nucleons (and pions). For small momentum

transfer, where our model is valid, in turns out that the first four vector mesons, respectively

in the iso-scalar and the iso-vector sectors, dominate the form factors. While the vector

dominance for pions is relatively well-established even with the lowest vector mesons, the

vector dominance for nucleons has been more controversial [51 – 53]. A remarkable result

of our findings is that while in the usual Skyrme model, the direct photon coupling to the

soliton is mandatory [55], in terms of the instanton, the direct coupling can be transformed

away and the full vector dominance, albeit with the infinite tower, is recovered. One can

think of this as a “derivation” of vector dominance model for the nucleon.

We devoted much of this article to exploring consequences of this effective action, and

made effort to match with experimental data. Qualitative predictions, such as large Nc

behaviors of chiral couplings and ratios between various vector meson couplings, seem to

match with data fairly well, and general tendencies of subleading corrections also concur

with experiments. Upon some extra assumptions on subleading corrections, motivated by

CQM, quantities like the axial coupling to pions and anomalous magnetic moment seem

to match rather well. We should however admit that so far our effort to reach out to

the experimental data is at best rudimentary. In particular, the extraction of coupling

constants are usually quite model-dependent and we must fill the gap between the model

and the data by computing actual amplitudes, which would require going beyond the large

’t Hooft and large Nc approximations. Thus a lot more work is needed before our theory

can confront the real data, e.g., the precise JLab data on nucleon form factors etc.

Also, as a theoretical model, we have various improvements that are still desired. In
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practice, the biggest hurdle in using our effective action to its full potential ability lies

with the magnetic coupling g5(w). As we emphasized earlier, we have an accurate number

for its central value g5(0) only, owing to the fact that the instanton solution exists only

when centered at w = 0. The simple procedure we adopted in section 4 cannot be used

to extract g5(w 6= 0). The uncertainty due to this ignorance can be minimized in the

large λNc limit whereby the baryon wavefunction gets squeezed near the center w = 0

along the fifth direction, and the large Nc limit of quantities like gA and the anomalous

magnetic moment are insensitive to this problem. However, the extrapolation to small

λNc will be hampered by this ignorance to various degrees, especially for quantities whose

dominant contribution arises from the magnetic term. We took a simplifying assumption,

g5(w)/e(w)
2 = g5(0)/e(0)

2, for our numerical estimates but this must be improved further.

Another immediate problem to address is the question of excited baryons. The general

approach we took should be certainly applicable to more general baryons, such as ∆, but the

precise form and the coupling constant of the magnetic term in section 4 will be modified

since the details of the latter depended on the spin and iso-spin structure of the baryon field

in question. How the magnetic term will be modified for higher iso-spin baryons remains

unaddressed at the moment.

Finally, one would like to generalize the instanton picture to hyperons. It is known that

the conventional approach with the Skyrme Lagrangian becomes inefficient when going from

U(2) to U(3). We should expect no better result with our model if we tried to consider U(3),

especially since we do not know of natural way to incorporate the strange quark mass.19

A possible approach to hyperons is the Callan-Klebanov bound-state model [58] where

the kaons are introduced as extra massive pseudo-scalars in doublets under U(NF = 2)

and bound to the SU(2) soliton. This approach was far more successful than U(3)-based

models, particularly if vector mesons were included in the Lagrangian [19, 59]. It would

be interesting to work out the effective action for hyperons as well as exotic baryon (e.g.,

pentaquark) structure with kaons bound to the instanton.
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[39] G. Höhler and E. Pietarinen, The ρNN vertex in vector dominance models, Nucl. Phys. B 95

(1975) 210.

– 54 –

http://arxiv.org/abs/hep-ph/0502049
http://arxiv.org/abs/hep-th/0701007
http://arxiv.org/abs/hep-th/0701276
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C381%2C1
http://arxiv.org/abs/hep-ph/0302103
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C305%2C96
http://arxiv.org/abs/hep-th/0210184
http://arxiv.org/abs/gr-qc/0602037
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB222%2C438
http://jhep.sissa.it/stdsearch?paper=07%281998%29006
http://arxiv.org/abs/hep-th/9805112
http://arxiv.org/abs/0704.1604
http://arxiv.org/abs/hep-th/0701280
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD14%2C3432
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD15%2C1642
http://arxiv.org/abs/hep-ph/9802419
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB315%2C438
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB315%2C438
http://arxiv.org/abs/hep-ph/9307242
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C58%2C654
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB268%2C415
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C75%2C2096
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C75%2C2096
http://arxiv.org/abs/hep-ph/9502334
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C140%2C707
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C140%2C707
http://arxiv.org/abs/hep-lat/0409164
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LAT2006)118
http://arxiv.org/abs/hep-lat/0610028
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA710%2C55
http://arxiv.org/abs/nucl-th/0204016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB95%2C210
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB95%2C210


J
H
E
P
0
9
(
2
0
0
7
)
0
6
3

[40] V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen and J.J. de Swart, Construction of high

quality N N potential models, Phys. Rev. D 49 (1994) 2950 [nucl-th/9406039].

[41] R. Machleidt, The high-precision, charge-dependent bonn nucleon-nucleon potential

(CD-Bonn), Phys. Rev. D 63 (2001) 024001 [nucl-th/0006014].

[42] F. Gross and A. Stadler, High-precision covariant one-boson-exchange potentials for NP

scattering below 350MeV, arXiv:0704.1229.

[43] G.P. Lepage and S.J. Brotsky, Exclusive processes in quantum chromodynamics: the

form-factors of baryons at large momentum transfer, Phys. Rev. Lett. 43 (1979) 545;

Exclusive processes in perturbative quantum chromodynamics, Phys. Rev. D 22 (1980) 2157.

[44] S. Hong, S. Yoon and M.J. Strassler, On the couplings of vector mesons in AdS/QCD, JHEP

04 (2006) 003 [hep-th/0409118].

[45] E.L. Lomon, Effect of recent R(p) and R(n) measurements on extended Gari-Kruempelmann

model fits to nucleon electromagnetic form factors, Phys. Rev. D 66 (2002) 045501

[nucl-th/0203081].

[46] M. Harada, S. Matsuzaki and K. Yamawaki, Implications of holographic QCD in CHPT with

hidden local symmetry, Phys. Rev. D 74 (2006) 076004 [hep-ph/0603248].

[47] S. Weinberg, Effective field theories in the large-N limit, Phys. Rev. D 56 (1997) 2303

[hep-th/9706042].

[48] M. Harada and K. Yamawaki, Fate of vector dominance in the effective field theory, Phys.

Rev. Lett. 87 (2001) 152001 [hep-ph/0105335].

[49] M. Harada and C. Sasaki, Vector manifestation and violation of vector dominance in hot

matter, Nucl. Phys. A 736 (2004) 300 [hep-ph/0304282].

[50] M. Harada and C. Sasaki, Thermal dilepton production from dropping ρ based on the vector

manifestation, Phys. Rev. D 74 (2006) 114006 [hep-ph/0608237].

[51] R. Bijker and F. Iachello, Re-analysis of the nucleon space- and time-like electromagnetic

form factors in a two-component model, Phys. Rev. D 69 (2004) 068201 [nucl-th/0405028].

[52] F. Iachello, A.D. Jackson and A. Lande, Semiphenomenological fits to nucleon

electromagnetic form- factors, Phys. Lett. B 43 (1973) 191.

[53] G.E. Brown, M. Rho and W. Weise, Phenomenological delineation of the quark-gluon

structure from nucleon electromagnetic form-factors, Nucl. Phys. A 454 (1986) 669.

[54] R. Petronzio, S. Simula and G. Ricco, Possible evidence of extended objects inside the proton,

Phys. Rev. D 67 (2003) 094004 [hep-ph/0301206].

[55] G. Holzwarth, Electro-magnetic nucleon form factors and their spectral functions in soliton

models, Z. Phys. A356 (1996) 339 [hep-ph/9606336].

[56] M.A. Belushkin, H.W. Hammer and U.G. Meissner, Dispersion analysis of the nucleon form

factors including meson continua, Phys. Rev. D 75 (2007) 035202 [hep-ph/0608337].

[57] R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon

condensation, hep-th/0702155.

[58] C.G. Callan Jr. and I.R. Klebanov, Bound state approach to strangeness in the Skyrme

model, Nucl. Phys. B 262 (1985) 365.

[59] N.N. Scoccola, D.P. Min, H. Nadeau and M. Rho, The strangeness problem: an SU(3)

skyrmion with vector mesons, Nucl. Phys. A 505 (1989) 497.

– 55 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD49%2C2950
http://arxiv.org/abs/nucl-th/9406039
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C024001
http://arxiv.org/abs/nucl-th/0006014
http://arxiv.org/abs/0704.1229
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C43%2C545
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD22%2C2157
http://jhep.sissa.it/stdsearch?paper=04%282006%29003
http://jhep.sissa.it/stdsearch?paper=04%282006%29003
http://arxiv.org/abs/hep-th/0409118
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C045501
http://arxiv.org/abs/nucl-th/0203081
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C076004
http://arxiv.org/abs/hep-ph/0603248
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD56%2C2303
http://arxiv.org/abs/hep-th/9706042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C87%2C152001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C87%2C152001
http://arxiv.org/abs/hep-ph/0105335
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA736%2C300
http://arxiv.org/abs/hep-ph/0304282
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C114006
http://arxiv.org/abs/hep-ph/0608237
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C068201
http://arxiv.org/abs/nucl-th/0405028
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB43%2C191
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA454%2C669
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C094004
http://arxiv.org/abs/hep-ph/0301206
http://arxiv.org/abs/hep-ph/9606336
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD75%2C035202
http://arxiv.org/abs/hep-ph/0608337
http://arxiv.org/abs/hep-th/0702155
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB262%2C365
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA505%2C497


J
H
E
P
0
9
(
2
0
0
7
)
0
6
3

Received: March 09, 2009

Addendum

The normalization convention for spin one mesons (vector mesons and axial-vector mesons)

used in this article needs a further clarification. In terms of the actual convention that was

used for computation, equation (2.26) should read

Lmassive = −
∑

n

tr

{

1

4
F (n)µν F

(n)µν + · · ·
}

.

with the trace explicitly put in. Equations (7.5), (7.9), and (7.17) should be similarly

clarified. This coefficient 1/4 is canonical for a U(NF ) gauge theory, especially in its

U(1)NF Coulomb phase. Upon U(NF ) → SU(NF ) × U(1) decomposition, however, the

natural SU(NF ) gauge generators and the overall U(1) generator obey tr T aT b = δab/2.

This results in a non-canonical normalization of conventional vector mesons and axial-

vector mesons. For instance, the kinetic term for the ρ-meson becomes

−1

8
(∂µρ

a
ν − ∂νρaµ)(∂µρνa − ∂νρµa)

with the iso-vector index a when NF = 2.

Although the convention was used self-consistently, it would have been more helpful

for readers if we had employed the canonical normalization. The conversion to the latter

can be performed by rescaling spin one mesons so that, for example, the coefficient of

ρ-meson kinetic term above is 1/4 instead of 1/8. This rescaling would result in an overall

multiplicative factor of
√
2 for all cubic couplings to the baryons (nucleons): all numerical

entries for g
(k)
V,min’s and g

(k)
V,mag’s in table 1 and in table 2 would be multiplied by

√
2, in

particular.

This factor of
√
2 can be alternatively traced to the modification of the normalization

condition and the completeness condition for the meson wavefunctions ψ(n)’s with n ≥ 1,

since the original five-dimensional U(NF ) gauge field is not modified. The normalization

of ψ0 is not affected. Therefore, in addition to the quadratic action (7.5) and (7.9) which

should be more explicitly put in the canonical form, equations (7.6), (7.13), and (7.20)

would also be modified by replacing 1/e(w)2 by 1/2e(w)2. This forces all numerical entries

for ζk in table 2 to be multiplied by 1/
√
2 as well. Finally, equation (7.17) would be written

as (L/2) tr |dV|2.
Physical observables in general and all quantities we explicitly compared to experi-

mental data in this article are unaffected by this convention issue. Also, the pseudo-scalar

mesons such as pions are already in the canonical form and completely unaffected. A re-

vised version of this article with the canonical normalization convention for spin one mesons

is available as an e-print arXiv:0705.2632v3.
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