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1. Introduction

The extension of Chiral Perturbation Theory (CHPT) [1 – 3] to the one baryon sector is

not straightforward, since, employing dimensional regularization, higher order loops con-

tribute to lower order calculations. This is a consequence of the fact that the nucleon

mass does not vanish in the chiral limit [4], therefore the correspondence between loop and

chiral expansion is lost. This shortcoming was overcome within the formalism of heavy

baryon CHPT [5, 6], where most of the higher order calculations in baryon CHPT have

been performed (for reviews, see e.g. [7, 8]). More recently, it was realized that chiral

power counting and loop expansion can be reconciled with a Lorentz invariant formulation

of baryon CHPT employing the so called infrared regularization [9, 10]. In the literature

have appeared many one loop calculations realized employing this scheme, especially in

SU(2) baryon CHPT [11 – 15]. This method has also the advantage of correctly keeping

the analytical properties of physical amplitudes, that in some cases are lost in heavy baryon

CHPT in the low energy region. On the other hand, the chiral pion-nucleon SU(2) La-

grangian is completely known up to O(q4) [16], both the relativistic and the heavy baryon

projected.

In baryon CHPT, the two flavour effective field theory is more developed than the

three flavour one. Actually, a priori it is not clear whether the three flavour meson-baryon
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system can be treated perturbatively due to the relatively large kaon mass. Furthermore

in this sector one has also to face the presence of resonances close to or even below the

pertinent thresholds, e.g. the Λ(1405).1 Most of the calculations in SU(3) baryon CHPT

have been performed within the heavy baryon approximation [28 – 33]. In [34] the complete

renormalization of the generating functional for Green functions of quark currents between

one baryon states in three flavour heavy baryon CHPT is performed up to O(q3). Some

calculations have been already done within the infrared regularization scheme [35, 10, 36 –

39] or within the extended on-mass-shell renormalization scheme [40, 41].

An important aspect of this relative lack of development of SU(3) baryon CHPT is the

unsatisfactory way the O(q2) and, particularly, the O(q3) meson-baryon Lorentz invariant

chiral Lagrangians are given in the literature. The main purpose of this work consists in

filling this gap. Since its publication, Krause’s work [42] has been employed as a standard

reference for the effective Lorentz invariant chiral meson-baryon Lagrangian with three

flavours up to O(q3). However, the number of monomials appearing there can be further

reduced, as shown below in section 5. Furthermore, the presentation of the monomials

given in [42] can be certainly improved allowing for a much easier manipulation. At O(q2)

part of the meson-baryon effective chiral Lagrangian is given without derivation in [35].

Again, we find that this Lagrangian can be further reduced and given in more compact

form.

The content of the paper is organized as follows. In section 2 we present the building

blocks that will be used in the construction of the effective meson-baryon Lagrangian and

then we discuss their symmetry properties in section 3. In this section we also establish

the conditions to be obeyed by the monomials written with the building blocks, in order

to obtain a Lagrangian invariant under the strong interaction symmetries. All the general

relations employed to reduce the number of independent monomials are listed in section 4.

More specific manipulations are given in appendix A. Our final expressions for the O(q2)

and O(q3) Lagrangians are displayed in section 5. Finally, in section 6 we summarize our

main conclusions.

2. General framework and building blocks

The procedure for constructing non-linear effective chiral symmetric Lagrangians is stan-

dard [43]. We briefly sketch this procedure below.

QCD with three massless quarks, u, d, and s, exhibits a global SU(3)L⊗SU(3)R chiral

symmetry, which is spontaneously broken to the subgroup SU(3)V , with V = L + R. In

order to write down the chiral invariant effective Lagrangian, it is convenient to promote

the chiral symmetry to a local one introducing external hermitian 3× 3 matrix fields s(x),

p(x), vµ(x) and aµ(x) which couple to scalar, pseudoscalar, vector and axial quark currents,

respectively, as follows

L = L0
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q. (2.1)

1The implementation of non-perturbative resummation methods within the chiral expansion has allowed

the successful use of chiral Lagrangians for the study of scattering and production processes in SU(3) baryon

CHPT [17 – 27].
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Here, L0
QCD is the QCD Lagrangian with massless u, d and s quarks and current quark

masses appear in the scalar source as s(x) =M + · · · , where M = diag(mu, md, ms) is a

3×3 matrix collecting the light quark masses. For the construction of the SU(3)L⊗SU(3)R

chiral invariant Lagrangian we impose the constraints 〈aµ〉 = 〈vµ〉 = 0.2 Electromagnetic

interactions are introduced through the external vector field vµ = |e|QAµ, where Q =

diag(2,−1,−1)/3 is the quark electrical charge matrix and Aµ the photon field — notice

that 〈vµ〉 = 0 in this case.

The SU(3) effective chiral Lagrangian describing the interactions of the lightest pseu-

doscalar meson and baryon octets and external sources (photons, . . . ) is obtained by con-

structing the most general Lagrangian which is invariant under SU(3)L⊗SU(3)R transfor-

mations and satisfies strong interaction symmetries.

The relevant degrees of freedom in the effective meson-baryon Lagrangian are the

spontaneous chiral symmetry breaking Goldstone bosons and the octet of JP = 1
2

+
baryons.

Goldstone bosons are represented by a matrix field u(Φ) which transforms under a general

chiral rotation g = (gL, gR) ∈ SU(3)L ⊗ SU(3)R as

u −→ u′ = gR u h†(g, u) = h(g, u)u g†L (2.2)

according to the standard non-linear realization [43], with h(g, u) ∈ SU(3)V .

The octet of JP = 1
2

+
baryons is arranged in a 3× 3 traceless matrix B,

B =




Σ0

√
2

+ Λ√
6

Σ+ p

Σ− −Σ0

√
2

+ Λ√
6

n

Ξ− Ξ0 − 2Λ√
6


 (2.3)

and corresponds to massive fields in the adjoint SU(3)V representation transforming as

B −→ B′ = h(g, u)Bh†(g, u) (2.4)

under chiral transformations [43].

The basic building blocks we use to construct the effective chiral Lagrangian are

uµ = i{u†(∂µ − irµ)u− u(∂µ − ilµ)u†} ,

χ± = u†χu† ± uχ†u,

fµν
± = uFµν

L u† ± u†Fµν
R u ,

(2.5)

where χ = 2B0 (s + ip) and B0 = −〈0|q̄q|0〉/F 2, with 〈0|q̄q|0〉 the SU(3) quark condensate

and F the pion weak decay constant, both in the chiral limit. Here,

Fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ], rµ = vµ + aµ ,

Fµν
L = ∂µlν − ∂ν lµ − i[lµ, lν ], lµ = vµ − aµ , (2.6)

are the external field strength tensors. The matrices uµ, and fµν
± are traceless since we

impose 〈vµ〉 = 〈aµ〉 = 0.

2Here and in the rest of the paper, 〈X〉 stands for the flavour trace of X.
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The operators in (2.5) or any product thereof transform under SU(3)L⊗SU(3)R trans-

formations as X → hX h† and their covariant derivative reads

DµX = ∂µX + [Γµ, X], (2.7)

where Γµ is the chiral connection,

Γµ =
1

2
{u†(∂µ − irµ)u + u(∂µ − ilµ)u†}. (2.8)

We collectively call the operators in (2.5) and their covariant derivatives “chiral fields”.

For the construction of the effective Lagrangian the two relations

[Dµ, Dν ]X =
1

4
[[uµ, uν ], X]−

i

2
[f+

µν , X] , (2.9)

Dνuµ −Dµuν = f−
µν , (2.10)

turn out to be very useful. The first relation allows to consider only symmetric products of

covariant derivatives while the second one to take just symmetrized covariant derivatives

acting on uµ,

hµν = Dµuν + Dνuµ . (2.11)

3. Construction of allowed monomials

The chiral dimension of the building blocks in (2.5) is

uµ ∼ O(q) ,

χ±, f±
µν ∼ O(q2).

(3.1)

The action of n covariant derivatives on any of the fields in (2.5) increases of n units the

chiral order. We cannot extend this chiral counting rule to the field B as the covariant

derivative, when applied to a baryon field, counts as a quantity of O(q0), since the baryon

mass does not vanish in the chiral limit. However, the combination (i 6D −M0)B, where

M0 is the octet baryon mass in the chiral limit, can be considered a small quantity [42] of

the order of the soft momenta associated with pseudoscalar and external fields. Then we

have the chiral counting rules

B, B̄, DµB ∼ O(q0),

(i 6D −M0)B ∼ O(q) .
(3.2)

The elements of the Clifford algebra basis have the following chiral dimensions

111, γµ, γ5γµ, σµν ∼ O(q0) ,

γ5 ∼ O(q) ,
(3.3)

as γ5 couples the small and the large components of the baryon spinor. We refer to the

assignment of chiral dimensions in the baryonic sector given in eqs. (3.2) and (3.3) as the

covariant chiral counting.
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P C h.c. χdim p c h

uµ −P ν
µ uν uT

µ uµ 1 1 0 0

f+
µν P λ

µ P σ
ν f+

λσ −f+T
µν f+

µν 2 0 1 0

f−
µν −P λ

µ P σ
ν f−

λσ f−T
µν f−

µν 2 1 0 0

χ+ χ+ χT
+ χ+ 2 0 0 0

χ− −χ− χT
− −χ− 2 1 0 1

−→
Dµ P ν

µ

−→
Dν

←−
DT

µ

←−
Dµ 1 0 0 0

Table 1: Parity (P), charge conjugation (C) and hermitic conjugation (h.c.) transforma-

tion properties and chiral dimension of the building blocks and of their covariant derivative.

P ν

µ
≡ diag(+1,−1,−1,−1) is the matrix associated with the parity operator. See (3.5), (3.7)

and (3.8) for the definition of p, c and h.

χdim p c h

111 0 0 0 0

γ5 1 1 0 1

γµ 0 0 1 0

γ5γµ 0 1 0 0

σµν 0 0 1 0

Table 2: Parity (P), charge conjugation (C) and hermitic conjugation (h.c.) transformation prop-

erties and chiral dimension of the Clifford algebra elements. See (3.5), (3.7) and (3.8) for the

definition of p, c and h.

The transformation properties under parity (P), charge conjugation (C) and hermitic

conjugation (h.c.) of the building blocks in (2.5) can be found in table 1, while in table 2,

we give the corresponding properties of the matrices Γ in (3.3) when appearing in the

baryon bilinear 〈B̄ΓB〉.

We start by writing down all possible chiral symmetric monomials fulfilling strong

interaction symmetries, that is, which are invariant under Lorentz and parity transforma-

tions and charge and hermitic conjugation. A generic term is a bilinear in baryon fields

and can contain more than one trace in flavour space. For every term in the Lagrangian

being a Lorentz scalar, the space-time indices coming from chiral fields, covariant deriva-

tives, Clifford algebra basis elements and tensors gµν and/or pseudotensors εµναβ, must be

suitably contracted.

We first consider monomials composed by one trace and afterwards we discuss the

case with two traces. Since matrix fields do not commute, we have to take into account all

possible orderings. To this end and to have terms whose transformation properties under

charge and hermitic conjugation are easily obtained, it is convenient to employ the form:

X = 〈B̄(A1, . . . , (An, ΘDmB) . . . )〉. (3.4)

The fields A1, A2, . . . , An can be single chiral fields or a combination of (anti)commutators

thereof and (Ai, Aj) denotes either the commutator, [Ai, Aj ], or the anticommutator,

– 5 –
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{Ai, Aj}, of Ai and Aj . The symbol Θ indicates the product of an element of the Clifford

algebra basis, Γ, times metric tensors and/or Levi-Civita pseudotensors while Dm is a set

of m ≥ 0 covariant derivatives acting on B in a totally symmetrized way. In the previ-

ous equation, for the sake of simplicity in the notation, we have not shown explicitly the

space-time indices attached to Ai, Θ and Dm.

The invariance of a candidate monomial X under P is easily checked taking into account

the following transformation properties under parity

〈B̄(A1, . . . , (An, ΘDmB) . . . )〉P

= (−1)p1+···+pn+pΓ+nε〈B̄(A1, . . . , (An, ΘDmB) . . . )〉,
(3.5)

where nε is the number of Levi-Civita pseudotensors present in (3.4) and the values of the

exponents follow from tables 1 and 2. The subscript in pΓ refers to the Clifford algebra

matrix Γ contained in Θ, as explained above. From (3.5), it follows that a candidate term

can occur in LMB only if

(−1)p1+···+pn+pΓ+nε = 1 . (3.6)

We next examine how X transforms under charge and hermitic conjugation. Here we

essentially follow the lines of the analysis in ref. [42]. We first consider the case without

covariant derivatives acting on the baryon fields. Under charge conjugation the mono-

mial (3.4) transforms as

〈B̄(A1, . . . , (An, ΘB) . . . )〉C

= (−1)c1+...cn+cΓ〈B̄(An, . . . , (A1, ΘB) . . . )〉,
(3.7)

where ci and cΓ are determined from tables 1 and 2, respectively. Analogously, under

hermitic conjugation, we have

〈B̄(A1, . . . , (An, ΘB) . . . )〉†

= (−1)h1+...hn+hΓ〈B̄(An, . . . , (A1, ΘB) . . . )〉,
(3.8)

with hi and hΓ determined again from tables 1 and 2, respectively. Using the identities

[A, [C, B]] = [C, [A, B]] + [[A, C], B]

[A, {C, B}] = {C, [A, B]}+ {[A, C], B}

{A, {C, B}} = {C, {A, B}}+ [[A, C], B],

(3.9)

we can bring the terms in the r.h.s. of eqs. (3.7) and (3.8) to a form in which the operators

Ai appear in the same order as in the original monomial, plus additional pieces:

〈B̄(An, . . . , (A2, (A1, ΘB) . . . ))〉

= 〈B̄(A1, (A2, . . . , (An, ΘB) . . . ))〉+ 〈B̄(Ã1, . . . , (Ã2, (Ãm, ΘB)) . . . )〉,
(3.10)

where Ãi are (anti)commutators of the fields Ai, with m < n. To guarantee charge conju-

gation invariance of the effective interaction constructed from the monomial X, the com-

bination (X + XC)/2 must be taken. From this consideration and eqs. (3.7) and (3.10),

we conclude that a term X as defined in (3.4) will appear in LMB only if

(−1)c1+···+cn+cΓ = 1. (3.11)

– 6 –
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Using (3.7) and (3.8), it is easy to show that charge conjugation symmetric terms are

either hermitian or anti-hermitian.

We now consider the possibility that type (3.4) monomials contain m covariant deriva-

tives acting on the baryon field B. In this case under charge conjugation the monomial X

transforms as

XC = (−1)c1+···+cn+cΓ〈B̄
←−
Dm(An, . . . , (A1, ΓB))〉. (3.12)

After performing an integration by parts and eliminating a total derivative, we can apply

Leibniz rule and obtain a term with the covariant derivatives acting again on B together

with a sum of terms in which additional covariant derivatives operate on the chiral fields.

According to the chiral counting in the mesonic sector, the latter are, at least, of one order

higher, so that we end up with

XC = (−1)c1+···+cn+cΓ+m〈B̄(An, . . . , (A1, ΘDmB))〉+ h.o. , (3.13)

where h.o. denotes higher order terms with covariant derivatives acting on the chiral fields

Ai. Up to the order considered, these higher orders contributions can be neglected and the

monomial X will appear in LMB only if

(−1)c1+···+cn+cΓ+m = 1 . (3.14)

This condition also explains why the covariant derivative acting on the baryon field is

considered odd under charge and hermitic conjugation. However, the resulting effective

interaction (X + XC)/2, where XC is given in (3.13) by removing the higher order terms,

is not always exactly invariant under charge conjugation, but only up to the considered

chiral order. Importantly, in the effective meson-baryon chiral Lagrangian we choose to

have terms that are exactly invariant under charge conjugation, i.e., to keep also the higher

order contributions in (3.13), thus the exact XC as given in eq. (3.12) is used. In this way,

the amplitudes calculated with LMB will obey exact crossing symmetry under the exchange

of meson fields. This is, of course, a fundamental property of physical amplitudes and is

well worth keeping it exactly.

In the effective Lagrangian, there can also appear terms which are the products of two

or more flavour traces. Explicitly, they can be either the product of one term of type (3.4)

times flavour traces of chiral fields or monomials where the B̄ and B matrix fields are

contained in two different flavour traces. Thus a general monomial can have one of the

following forms:

X1 = 〈B̄(A1, . . . , (Aj , ΘDmB) . . . )〉〈(Aj+1, . . . , (An−2, An−1) . . . )An〉 ; (3.15)

X2 = 〈B̄(A1, . . . , (Aj−1, Aj) . . . )〉〈(Aj+1, . . . , (Ak−1, Ak) . . . )ΘDmB〉

×〈(Ak+1, . . . , (An−2, An−1) . . . )An〉. (3.16)

One can have more traces involving chiral fields than those explicitly shown above; in these

cases the extension of the discussion below is straightforward.

For X1-type terms, parity transformation, charge and hermitic conjugation properties

can be studied analogously to the one flavour trace case and conditions (3.6) and (3.14)

– 7 –
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must be satisfied for these terms too. For X2-type terms, i.e., with B and B̄ in different

traces, one obtains that condition (3.6) has to be satisfied for transformations under parity

but condition (3.14) for transformations under charge conjugation changes. This is due to

the fact that under charge conjugation the monomial transforms as

XC
2 = (−1)c1+···+cn+cΓ+m〈B̄(Aj+1, . . . , (An−1, An) . . . )〉〈(A1, . . . , (Aj−1, Aj) . . . )ΘDmB〉

× 〈(Ak+1, . . . , (An−2, An−1) . . . )An〉+ h.o. (3.17)

The monomial X2 can always appear in LMB, even if condition (3.14) is not satisfied since

it is not possible, using the (anti)commutator identities (3.9), to reobtain the original term.

As in the case with only one trace, we will take the combination (Xi + XC
i )/2 with exact

XC
i , i = 1, 2. As in that case and both for X1 and X2, it is easy to show that charge

conjugation invariant terms are either hermitian or anti-hermitian.

4. Construction of the effective chiral meson-baryon Lagrangian

In this section, we outline the method employed to get a minimal set of effective meson-

baryon monomials up to O(q3). Listing the terms satisfying the required symmetry condi-

tions is a straightforward operation. In SUL(3)⊗SUR(3), at this order, with 〈aµ〉 = 〈vµ〉 =

0, we just need to consider monomials with one and two flavour traces. The procedure we

use to obtain a complete list of allowed monomials is as follows. For a fixed element of

the Clifford algebra basis (3.3) and number of flavour traces, we write down all possible

monomials with the smallest number of covariant derivatives acting on the baryon field B

that fulfill the symmetry requirements discussed in the previous section. The number of

covariant derivatives acting on B is then gradually increased for the same Clifford algebra

basis element and number of flavour traces. The procedure is over when the addition of

more covariant derivatives acting on B does not yield new independent monomials due to

the relations (4.4)–(4.10) given below.

Once a complete list of allowed monomials is obtained, the main task consists in

finding out a minimal set of linearly independent interaction terms. In order to minimize

the number of terms, we extensively employed several relations, like (2.9) and (2.10). A

fundamental mean to eliminate redundant monomials in LMB is the use of the equations

of motion (EOM) satisfied by mesons and baryons at lowest chiral order, O(q2) and O(q),

respectively. The lowest order EOM satisfied by the pseudoscalar mesons is [3],

Dµuµ =
i

2
χ̃− , (4.1)

where χ̃− = χ− −
1
3〈χ−〉 . In the following, we consider χ− as an independent structure.

The lowest order EOM satisfied by the baryon matrix field is

iγµDµB −M0B +
F

2
γµγ5[uµ, B] +

D

2
γµγ5

(
{uµ, B} −

1

3
〈{uµ, B}〉

)
= 0 , (4.2)

so that, iγµDµB −M0B = O(q), as already reported in (3.2). The constants D and F are

the axial-vector couplings.

– 8 –
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Another important relation for reducing the O(q3) Lagrangian is

D2uµ =
1

4
[uβ , uµ]uβ −

i

2
f+

βµuβ + Dβf−
βµ +

i

2
Dµχ̃− . (4.3)

This equation is readily obtained by taking the derivative of (2.10), using (2.9) and finally

applying the pseudoscalar meson EOM (4.1). We will therefore not consider D2uµ as an

independent structure.

We have also employed SU(3) Cayley-Hamilton relations for reducing the number of

independent monomials keeping the maximum number of terms with one flavour trace.

Equations (2.9) and (4.2) allow to derive a set of relations containing different Clifford

algebra elements and different number of covariant derivatives acting on the B matrix field,

namely,

〈B̄(A1, · · · , (An, Γ[α]βDβDmB) · · · )〉Θ̃ ≃ 0 , (4.4)

〈B̄(A1, · · · , (An, DαDmB) · · · )〉Θ̃ ≃ −iM0〈B̄(A1, · · · , (An, γαDmB) · · · )〉Θ̃ , (4.5)

〈B̄(A1, · · · , (An, γ5D
αDmB) · · · )〉Θ̃ ≃ 0 , (4.6)

〈B̄(A1, · · · , (An, ΓγαDβDmB) · · · )〉Θ̃ ≃ 〈B̄(A1, · · · , (An, ΓγβDαDmB) · · · )〉Θ̃ , (4.7)

〈B̄(A1, · · · , (An, ΓσαβDλDmB) · · · )〉Θ̃ + 〈B̄(A1, · · · , (An, ΓσβλDαDmB) · · · )〉Θ̃

+ 〈B̄(A1, · · · , (An, ΓσλαDβDmB) · · · )〉Θ̃ ≃ 0 , (4.8)

εαβτρ

[
〈B̄(A1, · · · , (An, ΓσαβDλDmB) · · · )〉

+2〈B̄(A1, · · · , (An, ΓσβλDαDmB) · · · )〉
]
Θ̃ ≃ 0 , (4.9)

εαβτρ〈B̄(A1, · · · , (An, ΓσαβDτDmB) · · · )〉Θ̃ ≃ 0 (4.10)

which will be extensively used to reduce the number of covariant derivatives acting on B.

Here, Γ[α]β stands for a Clifford algebra basis element with either two Lorentz indices αβ

or one index β. In these equations we have explicitly shown the elements of the Clifford

algebra basis that appear and Γ is either 111 or γ5. The symbol Θ̃ refers to products of metric

tensors and Levi-Civita pseudotensors, while “≃” means equal up to terms of higher order

or up to terms of the same order but with less covariant derivatives acting on the matrix

field B. This definition of ≃ is sensible since those structures of the same order but with

a lower number of covariant derivatives are already taken into account according to the

procedure we follow for writing down the list of allowed monomials.

Relations analogous to (4.4)–(4.10) can also be obtained for the case with two flavour

traces, because what matters in their derivation is the Dirac algebra and the action on B of

covariant derivatives. Relations (4.9) and (4.10) are obtained from (4.8) after contracting

it with the pseudotensor εαβτρ. Another interesting result that follows from (4.4) and (4.5)

is that terms containing DµDµDmB can be discarded.

Further reduction of monomials is reached by performing more specific manipulations

–see appendix A for details. We finally arrive to a minimal set of linearly independent

terms to O(q3) which we present in the next section.
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5. The effective Lorentz invariant chiral meson-baryon Lagrangians to or-

der q
3

5.1 The order q2 Lorentz invariant effective chiral meson-baryon Lagrangian

Following the procedure detailed in the previous sections, we write down the relativistic

effective meson-baryon chiral Lagrangian with three flavours at O(q2),

L
(2)
MB = bD〈B̄{χ+, B}〉+ bF 〈B̄[χ+, B]〉+ b0〈B̄B〉〈χ+〉+

b1〈B̄[uµ, [uµ, B]]〉+ b2〈B̄{u
µ, {uµ, B}}〉+

b3〈B̄{u
µ, [uµ, B]}〉+ b4〈B̄B〉〈uµuµ〉+

ib5

(
〈B̄[uµ, [uν , γµDνB]]〉 − 〈B̄

←−
Dν [u

ν , [uµ, γµB]]〉
)

+

ib6

(
〈B̄[uµ, {uν , γµDνB]]〉 − 〈B̄

←−
Dν{u

ν , [uµ, γµ, B]}〉
)

+

ib7

(
〈B̄{uµ, {uν , γµDνB}}〉 − 〈B̄

←−
Dν{u

ν , {uµ, γµB}}〉
)

+

ib8

(
〈B̄γµDνB〉 − 〈B̄

←−
DνγµB〉

)
〈uµuν〉+ id1〈B̄{[u

µ, uν ], σµνB}〉+

id2〈B̄[[uµ, uν ], σµνB]〉+ id3〈B̄uµ〉〈uνσµνB〉+ d4〈B̄{f
µν
+ , σµνB}〉+

d5〈B̄[fµν
+ , σµνB]〉 .

(5.1)

We compared this Lagrangian with that of ref. [42]. We found that 3 of the structures

given in that paper3 are redundant and can be expressed in terms of the others using

Cayley-Hamilton equation and the relation (4.5). In ref. [35] part of the O(q2) Lagrangian

is given, the one interesting for the authors’ investigation, but the term with coefficient

b9 is also redundant and using Cayley-Hamilton equation can be written in terms of the

monomials proportional to b5 − b8 in eq. (5.1) or in ref. [35].

The SU(2) version of L
(2)
MB is obtained by reducing u in (2.2) to a SU(2) matrix,

containing just the pion fields, and the matrix field B in (2.3) to a column vector Ψ

collecting the proton and the neutron fields.4 The external matrix fields s(x), p(x), vµ(x)

and aµ(x) introduced in section 2 are also reduced to hermitian 2 × 2 traceless matrices.

In particular electromagnetic interactions are introduced through the external vector field

vµ = |e|QAµ, where Q = diag(2,−1)/3 is the quark electrical charge matrix and Aµ the

photon field. Notice that in this case 〈vµ〉 6= 0 and flavour traces of f+
µν can appear in

the SU(2) Lagrangian. We fully agree with the O(q2) relativistic SU(2) meson-baryon

Lagrangian given in [44].

5.2 The order q3 effective chiral meson-baryon Lagrangian

The meson-baryon SU(3) chiral Lagrangian at O(q3) contains 84 terms that can be gener-

ally written as

L
(3)
MB =

84∑

i=1

hi Oi . (5.2)

3Every structure usually involves several monomials in the reduced notation of ref. [42].
4Of course, we have now to employ Cayley-Hamilton relations for 2 × 2 matrices.
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The monomials Oi are shown in table 3, where we also display the vertex with the lowest

number of particles to which each interaction term gives contribution.

i Oi Contributes to vertex

1 i
(
〈B̄γµDνρB[uµ, hνρ]〉+ 〈B̄

←−
DνργµB[uµ, hνρ]〉

)
M1B1 →M2B2

2 i
(
〈B̄[uµ, hνρ]γµDνρB〉+ 〈B̄

←−
Dνρ[u

µ, hνρ]γµB〉
)

M1B1 →M2B2

3 i
(
〈B̄uµ〉〈hνργµDνρB〉 − 〈B̄

←−
Dνρh

νρ〉〈uµγµB〉
)

M1B1 →M2B2

4 i〈B̄[uµ, hµν ]γνB〉 M1B1 →M2B2

5 i〈B̄γνB[uµ, hµν ]〉 M1B1 →M2B2

6 i
(
〈B̄uµ〉〈h

µνγνB〉 − 〈B̄hµν〉〈uµγνB〉
)

M1B1 →M2B2

7 i〈B̄σµνDρB{u
µ, hνρ}〉 − i〈B̄

←−
DρσµνB{u

µ, hνρ}〉 M1B1 →M2B2

8 i〈B̄{uµ, hνρ}σµνDρB〉 − i〈B̄
←−
Dρ{u

µ, hνρ}σµνB〉 M1B1 →M2B2

9 i〈B̄uµσµνDρBhνρ〉 − i〈B̄
←−
Dρu

µσµνBhνρ〉 M1B1 →M2B2

10 i〈B̄hνρσµνDρBuµ〉 − i〈B̄
←−
Dρh

νρσµνBuµ〉 M1B1 →M2B2

11 i
(
〈B̄σµνDρB〉 − 〈B̄

←−
DρσµνB〉

)
〈uµhνρ〉 M1B1 →M2B2

12 〈B̄γ5γνB{uµuµ, uν}〉 M1B1 →M2M3B2

13 〈B̄γ5γνBuµuνuµ〉 M1B1 →M2M3B2

14 〈B̄uµγ5γνB{u
µ, uν}〉 M1B1 →M2M3B2

15 〈B̄uµuµγ5γνBuν〉 M1B1 →M2M3B2

16 〈B̄{uµuµ, uν}γ5γνB〉 M1B1 →M2M3B2

17 〈B̄{uµ, uν}γ5γνBuµ〉 M1B1 →M2M3B2

18 〈B̄uµuνuµγ5γνB〉 M1B1 →M2M3B2

19 〈B̄uνγ5γνBuµuµ〉 M1B1 →M2M3B2

20 〈B̄{uν , γ5γνB}〉〈uµuµ〉 M1B1 →M2M3B2

21 〈B̄[uν , γ5γνB]〉〈uµuµ〉 M1B1 →M2M3B2

22 〈B̄{uµ, γ5γνB}〉〈u
µuν〉 M1B1 →M2M3B2

23 〈B̄[uµ, γ5γνB]〉〈uµuν〉 M1B1 →M2M3B2

24 〈B̄γ5γνB〉〈uµuµuν〉 M1B1 →M2M3B2

25 〈B̄uµ〉〈[u
µ, uν ]γ5γνB〉 − 〈B̄[uµ, uν ]〉〈uµγ5γνB〉 M1B1 →M2M3B2

26 i〈B̄γτB{[uµ, uν ], uρ}〉εµνρτ M1B1 →M2M3B2

27 i〈B̄{[uµ, uν ], uρ}γτB〉εµνρτ M1B1 →M2M3B2

28 i〈B̄[uµ, uν ]γτBuρ〉εµνρτ M1B1 →M2M3B2

29 i〈B̄uργτB[uµ, uν ]〉εµνρτ M1B1 →M2M3B2

30 i〈B̄γτB〉〈[uµ, uν ]uρ〉εµνρτ M1B1 →M2M3B2

31 〈B̄γ5γµDνρBuµuνuρ〉+ 〈B̄
←−
Dνργ5γµBuµuνuρ〉 M1B1 →M2M3B2

32 〈B̄uµγ5γµDνρBuνuρ〉+ 〈B̄
←−
Dνρu

µγ5γµBuνuρ〉 M1B1 →M2M3B2

33 〈B̄uµuνγ5γµDνρBuρ〉+ 〈B̄
←−
Dνρu

µuνγ5γµBuρ〉 M1B1 →M2M3B2

34 〈B̄uµuνuργ5γµDνρB〉+ 〈B̄
←−
Dνρu

µuνuργ5γµB〉 M1B1 →M2M3B2

35
(
〈B̄{uµ, γ5γµDνρB}〉+ 〈B̄

←−
Dνρ{u

µ, γ5γµB}〉
)
〈uνuρ〉 M1B1 →M2M3B2

36
(
〈B̄[uµ, γ5γµDνρB]〉+ 〈B̄

←−
Dνρ[u

µ, γ5γµB]〉
)
〈uνuρ〉 M1B1 →M2M3B2
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i Oi Contributes to vertex

37
(
〈B̄γ5γµDνρB〉+ 〈B̄

←−
Dνργ5γµB〉

)
〈uµuνuρ〉 M1B1 →M2M3B2

38 i
(
〈B̄uµσλτDρB{u

ν , uρ}〉 − 〈B̄
←−
Dρu

µσλτB{uν , uρ}〉
)

εµνλτ M1B1 →M2M3B2

39 i
(
〈B̄{uµ, σλτDρB}〉 − 〈B̄

←−
Dρ{u

µ, σλτB}〉
)
〈uνuρ〉εµνλτ M1B1 →M2M3B2

40 i
(
〈B̄[uµ, σλτDρB]〉 − 〈B̄

←−
Dρ[u

µ, σλτB]〉
)
〈uνuρ〉εµνλτ M1B1 →M2M3B2

41 i
(
〈B̄σλτDρB〉 − 〈B̄

←−
Dρσ

λτB〉
)
〈uµuνuρ〉εµνλτ M1B1 →M2M3B2

42 i
(
〈B̄uµ〉〈[uν , uρ]σλτDρB〉+〈B̄

←−
Dρ[u

ν , uρ]〉〈uµσλτB〉
)

εµνλτ M1B1 →M2M3B2

43 i
(
〈B̄uµ〉〈{uν , uρ}σλτDρB〉−〈B̄

←−
Dρ{u

ν , uρ}〉〈uµσλτB〉
)

εµνλτ M1B1 →M2M3B2

44 〈B̄uµγ5γµBχ+〉 B1 →M1B2

45 〈B̄χ+γ5γµBuµ〉 B1 →M1B2

46 〈B̄uµγ5γµB〉〈χ+〉 B1 →M1B2

47 〈B̄γ5γµBuµ〉〈χ+〉 B1 →M1B2

48 〈B̄γ5γµB〉〈uµχ+〉 B1 →M1B2

49 〈B̄γ5γµB{uµ, χ+}〉 B1 →M1B2

50 〈B̄{uµ, χ+}γ5γµB〉 B1 →M1B2

51 〈B̄{χ−, γ5B}〉 B1 →M1B2

52 〈B̄[χ−, γ5B]〉 B1 →M1B2

53 〈B̄γ5B〉〈χ−〉 B1 →M1B2

54 〈B̄γµB[χ−, uµ]〉 B1M1 →M2B2

55 〈B̄[χ−, uµ]γµB〉 B1M1 →M2B2

56 〈B̄uµ〉〈χ−γµB〉 − 〈B̄χ−〉〈uµγµB〉 B1M1 →M2B2

57 〈B̄{Dµfµν
+ , γνB}〉 B1 → γB2

58 〈B̄[Dµfµν
+ , γνB]〉 B1 → γB2

59 i〈B̄γ5γνB[uµ, fµν
+ ]〉 γB1 →M2B2

60 i〈B̄[uµ, fµν
+ ]γ5γνB〉 γB1 →M2B2

61 i
(
〈B̄uµ〉〈f

µν
+ γ5γνB〉 − 〈B̄fµν

+ 〉〈uµγ5γνB〉
)

γB1 →M2B2

62 〈B̄γτB{uµ, fνρ
+ }〉εµνρτ γB1 →M2B2

63 〈B̄{uµ, fνρ
+ }γ

τB〉εµνρτ γB1 →M2B2

64 〈B̄uµγτBfνρ
+ 〉εµνρτ γB1 →M2B2

65 〈B̄fνρ
+ γτBuµ〉εµνρτ γB1 →M2B2

66 〈B̄γτB〉〈uµfνρ
+ 〉εµνρτ γB1 →M2B2

67
(
〈B̄[uµ, fνρ

+ ]σλτDµB〉 − 〈B̄
←−
Dµ[uµ, fνρ

+ ]σλτB〉
)

ενρλτ γB1 →M2B2

68
(
〈B̄σλτDµB[uµ, fνρ

+ ]〉 − 〈B̄
←−
DµσλτB[uµ, fνρ

+ ]〉
)

ενρλτ γB1 →M2B2

69
(
〈B̄uµ〉〈fνρ

+ σλτDµB〉+ 〈B̄
←−
Dµfνρ

+ 〉〈u
µσλτB〉

)
ενρλτ γB1 →M2B2

70 〈B̄{Dµfµν
− , γ5γνB}〉 γB1 →M2B2

71 〈B̄[Dµfµν
− , γ5γνB]〉 γB1 →M2B2

72 〈B̄γ5γ
τB{uµ, fνρ

− }〉εµνρτ γB1 →M2M3B2

73 〈B̄{uµ, fνρ
− }γ5γ

τB〉εµνρτ γB1 →M2M3B2

74 〈B̄fνρ
− γ5γ

τBuµ〉εµνρτ γB1 →M2M3B2
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i Oi Contributes to vertex

75 〈B̄uµγ5γ
τBfνρ

− 〉εµνρτ γB1 →M2M3B2

76 〈B̄γ5γ
τB〉〈uµfνρ

− 〉εµνρτ γB1 →M2M3B2

77 i〈B̄[uµ, fµν
− ]γνB〉 γB1 →M2M3B2

78 i〈B̄γνB[uµ, fµν
− ]〉 γB1 →M2M3B2

79 i
(
〈B̄uµ〉〈f

µν
− γνB〉 − 〈B̄fµν

− 〉〈uµγνB〉
)

γB1 →M2M3B2

80 i
(
〈B̄σνρDµB{uµ, fνρ

− }〉 − 〈B̄
←−
DµσνρB{u

µ, fνρ
− }〉

)
γB1 →M2M3B2

81 i
(
〈B̄{uµ, fνρ

− }σνρDµB〉 − 〈B̄
←−
Dµ{u

µ, fνρ
− }σνρB〉

)
γB1 →M2M3B2

82 i
(
〈B̄uµσνρDµBfνρ

− 〉 − 〈B̄
←−
DµuµσνρBfνρ

− 〉
)

γB1 →M2M3B2

83 i
(
〈B̄fνρ

− σνρDµBuµ〉 − 〈B̄
←−
Dµfνρ

− σνρBuµ〉
)

γB1 →M2M3B2

84 i
(
〈B̄σνρDµB〉 − 〈B̄

←−
DµσνρB〉

)
〈uµfνρ

− 〉 γB1 →M2M3B2

Table 3: Minimal set of linearly independent monomials of

the SU(3) chiral meson-baryon Lagrangian of O(q3). On the

third column we give the vertex with the minimal number of

mesons and photons to which each term contributes.

The list of SU(3) O(q3) monomials presented in Krause’s work [42] is neither complete

nor minimal. We have checked that 22 out of the 60 structures given in this reference can be

expressed as linear combination of those already given. This can be done by applying the

meson EOM (4.1), Cayley-Hamilton equations and the relations (4.4)–(4.10). In addition,

several monomials in table 3 are lacking in [42], namely, the ones from O7 to O10 and from

O38 to O41.

We would like to point out that the monomial O41, being of O(q3) in the covariant

counting of (3.2) and (3.3), actually starts contributing at O(q4) to meson-baryon am-

plitudes in a non-covariant chiral counting. To see this, notice that in a non-covariant

counting, the O(q3) contributions from O41 are generated when the index ρ is temporal

and λ and τ are both spatial. Then in this case one has

i
(
〈B̄σijD0B〉 − 〈B̄

←−
D0σ

ijB〉
)
〈uµuνu0〉εµνij = 0. (5.3)

We have also derived the SU(2) version of the L
(3)
MB meson-baryon Lagrangian in the

same way as we did for the O(q2) Lagrangian (5.1) and found a full agreement with the

one obtained in [44].

6. Summary and conclusions

As already mentioned in the Introduction, in the literature can be found several one loop

calculations performed in baryon CHPT employing parts of the O(q3) three flavour La-

grangian (5.2). However, in this work, we derived for the first time the complete O(q2)

and O(q3) Lorentz invariant SU(3) effective meson-baryon chiral Lagrangians, eqs. (5.1)

and (5.2), respectively. We both reduced the number of independent monomials given
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in previous studies [42, 35] and identified missing terms [42]. There is perfect agreement

between the SU(2) reduction of the O(q2) and O(q3) relativistic Lagrangians we obtained

and those of ref. [44]. We also gave L
(2)
MB and L

(3)
MB in a way that it is exactly invariant

under charge conjugation.
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A. Elimination of monomials

In this appendix we show details on how we have further reduced the number of monomials

by applying the relations (2.9) and (2.10) from right to left and then reintroducing covari-

ant derivatives. Integrating by parts and neglecting total derivatives, one then applies the

baryon EOM (4.2) and its hermitic conjugate, and checks whether such monomials are in-

dependent or a combination of other ones already considered. We have also employed (4.8)

with Γ = γ5 as explained below.

In this way, by applying eq. (2.9), we can remove the following monomial

i〈B̄{[uσ, [uρ, uη]], σαβDσB}〉εαβρη . (A.1)

As an intermediate step in the elimination of this monomial, we used the identity

σαβεαβρη = 2iγ5σ
ρη

= 2γ5(g
ρη − γργη). (A.2)

This is employed in order to contract space-time indices of covariant derivatives acting on

B or B̄ with those of gρη = (γργη + γηγρ)/2 and of γργη in the second line of (A.2) and

then apply the baryon EOM (4.2).

Employing the first line of (A.2), together with the cyclic relation (4.8) with Γ = γ5,

we can relate the two monomials,

εαβσρ〈B̄{[f
σρ
+ , uν ], σαβDνB}〉 ,

εαβσρ〈B̄{[f
σν
+ , uρ], σαβDνB}〉 (A.3)

and express the latter in terms of the former, modulo terms of higher order or terms already

considered with less covariant derivatives acting on B.
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One can proceed in a similar way for the monomials involving two flavour traces,

εαβσρ

(
〈B̄σαβuη〉〈f

σρ
+ DηB〉 − 〈B̄fσρ

+ 〉〈uησ
αβDηB〉

)
,

εαβσρ

(
〈B̄σαβuη〉〈f

ησ
+ DρB〉 − 〈B̄fησ

+ 〉〈uησ
αβDρB〉

)
(A.4)

and remove the second monomial in (A.4).

The elimination of

εαβσρ〈B̄{D
νfσρ

− , σαβDνB}〉 ,

and εαβσρ〈B̄{D
ρfνσ

− , σαβDνB}〉 , (A.5)

is done in two steps. First, we write down the second monomial above in terms of the first

one and others already considered by applying (A.2) and the cyclic relation (4.8), with

Γ = γ5 as done for (A.3) and (A.4). Next, the first monomial is removed by employing

from right to left (2.10), and then applying repeatedly the baryon EOM together with (2.9)

and (4.6) .

B. Field transformations and use of EOM

In section 4 we employed baryon EOM as a mean to eliminate redundant structures in

the construction of the O(q2) and O(q3) effective meson-baryon Lagrangians. Here we

discuss the equivalence between using EOM and performing baryon field transformations

in order to minimize the number of terms in such Lagrangians. In the mesonic sector this

equivalence was demonstrated in refs. [45], while within SU(2) baryon CHPT this issue

was addressed in ref. [44].

Suppose that we are dealing with the list of O(q2) meson-baryon monomials, in which

appears an operator of the form

O = i
(
〈B̄A 6DB〉 − 〈B̄ 6

←−
DAB〉

)
Θ̃ , (B.1)

where A is ofO(q2) and can be either a single chiral field or a product or a (anti)commutator

of chiral fields. For the sake of simplicity, we take (−1)cA = (−1)hA = 1. Our goal is getting

rid of the term in eq. (B.1), which contains a structure present in the baryon EOM (4.2)

and in its hermitic conjugate. To this end, we perform the following transformation on the

baryon fields

B −→ B′ = (1−A)B ,

B̄ −→ B̄′ = B̄(1−A) ,
(B.2)

which is actually a field translation. Let us consider the effect produced by this transfor-

mation in the O(q) effective meson-baryon Lagrangian,

L
(1)
MB = 〈B̄(iγµDµ −M0)B〉+

D

2
〈B̄γµγ5{u

µ, B}〉+
F

2
〈B̄γµγ5[u

µ, B]〉 . (B.3)
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Inserting the new fields B̄′, B′, we obtain

L
(1)
MB −→ L

(1)
MB − i

(
〈B̄A 6DB〉 − 〈B̄ 6

←−
DAB〉

)
Θ̃ + 2M0〈B̄AB〉+O(q3) . (B.4)

The second term in the r.h.s. exactly cancels the operator in eq. (B.1). This elimination

corresponds to the relation (4.4) derived directly using the baryon EOM. The same proce-

dure carried out at O(q2) can be repeated similarly at O(q3) and higher. Applying then

Dirac algebra manipulations and finally the field translation (B.2), we can obtain the re-

lations (4.4)-(4.10), which allow to eliminate monomials with covariant derivatives acting

on the baryon fields in favor of terms with less covariant derivatives.

With the field transformation (B.2) we induce changes in higher order terms. However,

since in an effective field theory we generate the list of all possible terms obeying the

required symmetries, all these modifications only shift the values of some unknown coupling

constants, but not the structure of the corresponding monomials.

The basic motivation for employing field transformations to minimize the number of

terms in effective Lagrangians is the equivalence theorem. This theorem states that in

renormalized field theories S-matrix elements (i.e. physical observables) are independent

of the choice of the interpolating fields or, equivalently, are invariant under field trans-

formations (provided the transformations satisfy certain properties) [46]. The equivalence

theorem was extended to effective field theory in refs. [47].
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Erratum

Recently, Frink and Meißner [48] pointed out that one can further reduce the number of

monomials present in our O(q3) Lagrangian by six, passing from 84 to 78 in [48]. Here,

we discuss also the findings of [48] since some of them are not accurate. Indeed, we find

out that actually one can reduce by eight the number of independent monomials in our

Lagrangian, but in addition, two monomials were wrongly discarded which, as a result,

makes the agreement in the number of independent monomials with [48] complete.

Some Cayley-Hamilton relations involving monomials with five flavour matrices were

missed by us, as correctly noticed in [48]. The technicalities of this point are explained

in detail in the Appendix A of [48]. Along these lines, we find three Cayley-Hamilton

relations among the monomials O12 to O25 of our Lagrangian that were not taken into

account there. If these Cayley-Hamilton relations are used to discard only monomials

involving the product of two flavour traces, then one monomial between O20, O22 and O24

and two more monomials between O21, O23 and O25 can be neglected. We choose to cast

away O22, O23 and O25. Thus, we agree with [48] that Cayley-Hamilton relations can be

used to further reject three monomials from O12 to O25 in our Lagrangian. However, it is

not possible to simultaneously disregard the monomials O20, O21 and O22 from that basis.

We find two other Cayley-Hamilton relations among the monomials O31 to O37 in our

Lagrangian not considered before. They allow to discard two monomials between O35, O36

and O37, as already remarked in [48]. We choose to cast aside O35 and O36.

Another Cayley-Hamilton relation among the monomials O38 to O43 in our Lagrangian,

not used in ref. [49], is found now. This fact is not commented in [48]. In this way, one

can remove another monomial that we choose to be O43.

In [49] we used a Cayley-Hamilton relation to cast away the one flavour trace monomial,

Ô35 = i
(
〈B̄{uν , uρ}σλτDρBuµ〉 − 〈B̄

←−
Dρ{u

ν , uρ}σλτBuµ〉
)

εµνλτ , (C.1)

while all the other monomials neglected because of using the Cayley-Hamilton theorem

contained more than one flavour trace. Here, due to large Nc counting, we prefer to

neglect the two trace monomial O42 in [49] and put back Ô33 in our new basis for the

O(q3) Lagrangian.

Apart from the missed Cayley-Hamilton relations in our Lagrangian, Frink and

Meißner [48] also realized that only the symmetric combination of O9 and O10 in [49] is in-

dependent. Hence, only one of these two monomials should be considered and we keep O9.

Frink and Meißner also noticed that the index ordering in the monomials O31, O33 and

O34 in [49] do not match the conditions imposed by charge conjugation invariance. We

want to point out that the difference between the index ordering in [49] and that which is

exactly invariant under charge conjugation is O(q4). However, we prefer monomials in the

Lagrangian which are exactly charge conjugation invariant, because charge conjugation is

a symmetry of strong interactions — see our comments in [49]. Then, we now take the

ordering in the indices such that these monomials are exactly charge conjugation invariant.

c© SISSA – i –
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As pointed out in [48] the relative sign between the two flavour traces in O41 should

be plus instead of the minus in [49]. Once this is corrected O41 becomes of O(q4). Then,

the comment at the end of Section 5 of [49], though correct, is not relevant.

In addition, we notice that two independent monomials were wrongly discarded in [49].

These monomials are

Ô32 = 〈B̄ [[uµ, uν ] , u
ρ] γ5σ

µνDρB〉 − 〈B̄
←−
Dρ [[uµ, uν ] , u

ρ] γ5σ
µνB〉 (C.2)

and

Ô33 = 〈B̄γ5σ
µνDρB [[uµ, uν ] , u

ρ]〉 − 〈B̄
←−
Dργ5σ

µνB [[uµ, uν ] , u
ρ]〉 . (C.3)

Summarizing the discussion above, we can take away from our O(q3) three-flavour

meson-baryon Lagrangian the following eight monomials: O10, O22, O23, O25, O35, O36,

O41 and O43. In addition, we exchange O42 by Ô35 and add two monomials, namely, Ô32

and Ô33, not included in [49]. We therefore end up with 78 independent monomials in the

SU(3) meson-baryon chiral Lagrangian at O(q3) and agree fully with [48]. We give the

complete list of the monomials present in the minimal SU(3) meson-baryon chiral invariant

Lagrangian in table 4.

L
(3)
MB =

78∑

i=1

hi Ôi . (C.4)

i Ôi Contributes to vertex

1 i
(
〈B̄γµDνρB[uµ, hνρ]〉+ 〈B̄

←−
DνργµB[uµ, hνρ]〉

)
M1B1 →M2B2

2 i
(
〈B̄[uµ, hνρ]γµDνρB〉+ 〈B̄

←−
Dνρ[u

µ, hνρ]γµB〉
)

M1B1 →M2B2

3 i
(
〈B̄uµ〉〈hνργµDνρB〉 − 〈B̄

←−
Dνρh

νρ〉〈uµγµB〉
)

M1B1 →M2B2

4 i〈B̄[uµ, hµν ]γνB〉 M1B1 →M2B2

5 i〈B̄γνB[uµ, hµν ]〉 M1B1 →M2B2

6 i
(
〈B̄uµ〉〈h

µνγνB〉 − 〈B̄hµν〉〈uµγνB〉
)

M1B1 →M2B2

7 i〈B̄σµνDρB{u
µ, hνρ}〉 − i〈B̄

←−
DρσµνB{u

µ, hνρ}〉 M1B1 →M2B2

8 i〈B̄{uµ, hνρ}σµνDρB〉 − i〈B̄
←−
Dρ{u

µ, hνρ}σµνB〉 M1B1 →M2B2

9 i〈B̄uµσµνDρBhνρ〉 − i〈B̄
←−
Dρu

µσµνBhνρ〉 M1B1 →M2B2

10 i
(
〈B̄σµνDρB〉 − 〈B̄

←−
DρσµνB〉

)
〈uµhνρ〉 M1B1 →M2B2

11 〈B̄γ5γνB{uµuµ, uν}〉 M1B1 →M2M3B2

12 〈B̄γ5γνBuµuνuµ〉 M1B1 →M2M3B2

13 〈B̄uµγ5γνB{u
µ, uν}〉 M1B1 →M2M3B2

14 〈B̄uµuµγ5γνBuν〉 M1B1 →M2M3B2

15 〈B̄{uµuµ, uν}γ5γνB〉 M1B1 →M2M3B2

16 〈B̄{uµ, uν}γ5γνBuµ〉 M1B1 →M2M3B2

17 〈B̄uµuνuµγ5γνB〉 M1B1 →M2M3B2
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i Ôi Contributes to vertex

18 〈B̄uνγ5γνBuµuµ〉 M1B1 →M2M3B2

19 〈B̄{uν , γ5γνB}〉〈uµuµ〉 M1B1 →M2M3B2

20 〈B̄[uν , γ5γνB]〉〈uµuµ〉 M1B1 →M2M3B2

21 〈B̄γ5γνB〉〈uµuµuν〉 M1B1 →M2M3B2

22 i〈B̄γτB{[uµ, uν ], uρ}〉εµνρτ M1B1 →M2M3B2

23 i〈B̄{[uµ, uν ], uρ}γτB〉εµνρτ M1B1 →M2M3B2

24 i〈B̄[uµ, uν ]γτBuρ〉εµνρτ M1B1 →M2M3B2

25 i〈B̄uργτB[uµ, uν ]〉εµνρτ M1B1 →M2M3B2

26 i〈B̄γτB〉〈[uµ, uν ]uρ〉εµνρτ M1B1 →M2M3B2

27 〈B̄γ5γµDνρBuµuνuρ〉+ 〈B̄
←−
Dνργ5γµBuρuνuµ〉 M1B1 →M2M3B2

28 〈B̄uµγ5γµDνρBuνuρ〉+ 〈B̄
←−
Dνρu

µγ5γµBuρuν〉 M1B1 →M2M3B2

29 〈B̄uµuνγ5γµDνρBuρ〉+ 〈B̄
←−
Dνρu

νuµγ5γµBuρ〉 M1B1 →M2M3B2

30 〈B̄uµuνuργ5γµDνρB〉+ 〈B̄
←−
Dνρu

ρuνuµγ5γµB〉 M1B1 →M2M3B2

31
(
〈B̄γ5γµDνρB〉+ 〈B̄

←−
Dνργ5γµB〉

)
〈uµuνuρ〉 M1B1 →M2M3B2

32 〈B̄ [[uµ, uν ] , u
ρ] γ5σ

µνDρB〉 − 〈B̄
←−
Dρ [[uµ, uν ] , u

ρ] γ5σ
µνB〉 M1B1 →M2M3B2

33 〈B̄γ5σ
µνDρB [[uµ, uν ] , u

ρ]〉 − 〈B̄
←−
Dργ5σ

µνB [[uµ, uν ] , u
ρ]〉 M1B1 →M2M3B2

34 i
(
〈B̄uµσλτDρB{u

ν , uρ}〉 − 〈B̄
←−
Dρu

µσλτB{uν , uρ}〉
)

εµνλτ M1B1 →M2M3B2

35 i
(
〈B̄{uν , uρ}σλτDρBuµ〉 − 〈B̄

←−
Dρ{u

ν , uρ}σλτBuµ〉
)

εµνλτ M1B1 →M2M3B2

36 i
(
〈B̄{uµ, σλτDρB}〉 − 〈B̄

←−
Dρ{u

µ, σλτB}〉
)
〈uνuρ〉εµνλτ M1B1 →M2M3B2

37 i
(
〈B̄[uµ, σλτDρB]〉 − 〈B̄

←−
Dρ[u

µ, σλτB]〉
)
〈uνuρ〉εµνλτ M1B1 →M2M3B2

38 〈B̄uµγ5γµBχ+〉 B1 →M1B2

39 〈B̄χ+γ5γµBuµ〉 B1 →M1B2

40 〈B̄uµγ5γµB〉〈χ+〉 B1 →M1B2

41 〈B̄γ5γµBuµ〉〈χ+〉 B1 →M1B2

42 〈B̄γ5γµB〉〈uµχ+〉 B1 →M1B2

43 〈B̄γ5γµB{uµ, χ+}〉 B1 →M1B2

44 〈B̄{uµ, χ+}γ5γµB〉 B1 →M1B2

45 〈B̄{χ−, γ5B}〉 B1 →M1B2

46 〈B̄[χ−, γ5B]〉 B1 →M1B2

47 〈B̄γ5B〉〈χ−〉 B1 →M1B2

48 〈B̄γµB[χ−, uµ]〉 M1B1 →M2B2

49 〈B̄[χ−, uµ]γµB〉 M1B1 →M2B2

50 〈B̄uµ〉〈χ−γµB〉 − 〈B̄χ−〉〈uµγµB〉 M1B1 →M2B2

51 〈B̄{Dµfµν
+ , γνB}〉 B1 → γB2

52 〈B̄[Dµfµν
+ , γνB]〉 B1 → γB2
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i Ôi Contributes to vertex

53 i〈B̄γ5γνB[uµ, fµν
+ ]〉 γB1 →M2B2

54 i〈B̄[uµ, fµν
+ ]γ5γνB〉 γB1 →M2B2

55 i
(
〈B̄uµ〉〈f

µν
+ γ5γνB〉 − 〈B̄fµν

+ 〉〈uµγ5γνB〉
)

γB1 →M2B2

56 〈B̄γτB{uµ, fνρ
+ }〉εµνρτ γB1 →M2B2

57 〈B̄{uµ, fνρ
+ }γ

τB〉εµνρτ γB1 →M2B2

58 〈B̄uµγτBfνρ
+ 〉εµνρτ γB1 →M2B2

59 〈B̄fνρ
+ γτBuµ〉εµνρτ γB1 →M2B2

60 〈B̄γτB〉〈uµfνρ
+ 〉εµνρτ γB1 →M2B2

61
(
〈B̄[uµ, fνρ

+ ]σλτDµB〉 − 〈B̄
←−
Dµ[uµ, fνρ

+ ]σλτB〉
)

ενρλτ γB1 →M2B2

62
(
〈B̄σλτDµB[uµ, fνρ

+ ]〉 − 〈B̄
←−
DµσλτB[uµ, fνρ

+ ]〉
)

ενρλτ γB1 →M2B2

63
(
〈B̄uµ〉〈fνρ

+ σλτDµB〉+ 〈B̄
←−
Dµfνρ

+ 〉〈u
µσλτB〉

)
ενρλτ γB1 →M2B2

64 〈B̄{Dµfµν
− , γ5γνB}〉 γB1 →M2B2

65 〈B̄[Dµfµν
− , γ5γνB]〉 γB1 →M2B2

66 〈B̄γ5γ
τB{uµ, fνρ

− }〉εµνρτ γB1 →M2M3B2

67 〈B̄{uµ, fνρ
− }γ5γ

τB〉εµνρτ γB1 →M2M3B2

68 〈B̄fνρ
− γ5γ

τBuµ〉εµνρτ γB1 →M2M3B2

69 〈B̄uµγ5γ
τBfνρ

− 〉εµνρτ γB1 →M2M3B2

70 〈B̄γ5γ
τB〉〈uµfνρ

− 〉εµνρτ γB1 →M2M3B2

71 i〈B̄[uµ, fµν
− ]γνB〉 γB1 →M2M3B2

72 i〈B̄γνB[uµ, fµν
− ]〉 γB1 →M2M3B2

73 i
(
〈B̄uµ〉〈f

µν
− γνB〉 − 〈B̄fµν

− 〉〈uµγνB〉
)

γB1 →M2M3B2

74 i
(
〈B̄σνρDµB{uµ, fνρ

− }〉 − 〈B̄
←−
DµσνρB{u

µ, fνρ
− }〉

)
γB1 →M2M3B2

75 i
(
〈B̄{uµ, fνρ

− }σνρDµB〉 − 〈B̄
←−
Dµ{u

µ, fνρ
− }σνρB〉

)
γB1 →M2M3B2

76 i
(
〈B̄uµσνρDµBfνρ

− 〉 − 〈B̄
←−
DµuµσνρBfνρ

− 〉
)

γB1 →M2M3B2

77 i
(
〈B̄fνρ

− σνρDµBuµ〉 − 〈B̄
←−
Dµfνρ

− σνρBuµ〉
)

γB1 →M2M3B2

78 i
(
〈B̄σνρDµB〉 − 〈B̄

←−
DµσνρB〉

)
〈uµfνρ

− 〉 γB1 →M2M3B2

Table 4: Minimal set of linearly independent monomials of

the SU(3) chiral meson-baryon Lagrangian of O(q3). On the

third column we give the vertex with the minimal number of

mesons and photons to which each term contributes.

In the previous list, the symbol Dνρ = DνDρ + DρDν .

In addition, we notice that the monomial O
(3)
40 of [48] is not exactly charge conjugation

invariant since those terms involving two covariant derivatives acting on the mesonic fields

uα are missed. These contributions, though O(q5), are needed to guarantee exact charge

conjugation invariance.
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