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a crucial role in the symmetry structure of M -theory. Recently, following the analysis of

the asymptotic behaviour of the supergravity fields near a cosmological singularity, this

question has received a new impulse. It has been argued that one way to exhibit the

symmetry was to rewrite the supergravity equations as the equations of motion of the

non-linear sigma model E10/K(E10). This attempt, in line with the established result that

the scalar fields which appear in the toroidal compactification down to three spacetime

dimensions form the coset E8/SO(16), was verified for the first bosonic levels in a level

expansion of the theory. We show that the same features remain valid when one includes

the gravitino field.
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1. Introduction

The hyperbolic Kac-Moody algebra E10, whose Dynkin diagram is given in Fig.1, has

repeatedly been argued to play a crucial role in the symmetry structure of M -theory [1 –

3].

This infinite-dimensional algebra has a complicated structure that has not been de-

ciphered yet. In order to analyse further its root pattern, it was found convenient in [4]

to introduce a “level” for any root α, defined as the number of times the simple root α0

occurs in the decomposition of α.

The roots α1 through α9 define a subalgebra sl(10). Reflections in these roots define

the finite Weyl group WA9
(' S10) of A9, which acts naturally on the roots of E10. If

we express the roots of E10 in terms of the spatial scale factors βi appearing naturally in

cosmology [5], the action of WA9
is simply to permute the β’s. The level is invariant under

WA9
. Consider the set RE8

of roots of the E8 subalgebra associated with the simple roots

α0 through α7. By acting with WA9
on RE8

, one generates a larger set R̃E8
of roots. This

set will be called the extended set of roots of E8. By construction, the roots in R̃E8
are all

α9 α8 α7 α6 α5 α4 α3 α2 α1

α0

i i i i i i i i i

i

Figure 1: The Dynkin diagram of E10.
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real and have length squared equal to 2. There is an interesting description of the roots in

R̃E8
in terms of the level. One can easily verify that all the roots at level 0, ±1 and ±2,

as well as all the real roots at level ±3 exhaust R̃E8
. This includes, in particular, all the

roots with |height| < 30.

Recently, following the analysis à la BKL [6, 7] of the asymptotic behaviour of the

supergravity fields near a cosmological singularity, the question of the hidden symmetries

of eleven-dimensional supergravity has received a new impulse [5]. It has been argued that

one way to exhibit the symmetry was to rewrite the supergravity equations as the equations

of motion of the non-linear sigma model E10/K(E10) [4].

The first attempt for rewriting the equations of motion of eleven-dimensional super-

gravity as non-linear sigma model equations of motion – in line with the established result

that the scalar fields which appear in the toroidal compactification down to three spacetime

dimensions form the coset E8/SO(16) [8] — is due to [9]. In that approach, it is the larger

infinite-dimensional algebra E11 which is priviledged. Various evidence supporting E11 was

provided in [9, 10]. Here, we shall stick to (the subalgebra) E10, for which the dynamical

formulation is clearer.

The idea of rewriting the equations of motion of eleven-dimensional supergravity as

equations of motion of E10/K(E10) was verified in [4] for the first bosonic levels in a

level expansion of the theory. More precisely, it was verified that in the coset model

E10/K(E10), the fields corresponding to the Cartan subalgebra and to the positive roots

∈ R̃E8
have an interpretation in terms of the (bosonic) supergravity fields (“dictionary”

of [4]). Furthermore, there is a perfect match of the supergravity equations of motion and

the coset model equations of motion for the fields corresponding to these real roots. This

extended E8-invariance, which combines the known E8-invariance and the manifest sl10-

invariance, is a first necessary step in exhibiting the full E10 symmetry. Further indication

on the meaning of the fields associated with the higher roots in terms of gradient expansions,

using partly information from E9, was also given in [4].

The purpose of this paper is to explicitly verify the extended E8-invariance of the

fermionic sector of 11-dimensional supergravity. This amounts to showing that up to the

requested level, the fermionic part of the supergravity Lagrangian, which is first order in

the derivatives, can be written as

iΨT MDtΨ (1.1)

where (i) Ψ is an infinite object that combines the spatial components of the gravitino field

ψa and its successive gradients

Ψ = (ψa, · · · ) (1.2)

in such a way that Ψ transforms in the representation of K(E10) that reduces to the spin

3/2 representation of SO(10); (ii) M is a K(E10)-invariant (infinite) matrix; and (iii) Dt is

the K(E10) covariant derivative. (We work in the gauge ψ′
0 = 0, where ψ′

0 is the redefined

temporal component of the gravitino field familiar from dimensional reduction [8],

ψ′
0 = ψ0 − γ0γ

aψa, (1.3)

so that the temporal component of ψµ no longer appears.)

– 2 –
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In fact, for the roots considered here, one can truncate Ψ to the undifferentiated com-

ponents ψa. The next components – and the precise dictionary yielding their relationship

with the gravitino field gradients – are not needed. In view of the fact that the undiffer-

entiated components of the gravitino field form a representation of the maximal compact

subgroup SO(16) of E8 in the reduction to three dimensions, without the need to introduce

gradients or duals, this result is not unexpected.

The crux of the computation consists in constructing the representation of K(E10) up

to the required level. This is done in the next section, where we compare and contrast the

spin 1/2 and spin 3/2 representations of K(E10). The technically simpler case of the spin

1/2 representation was investigated in [11], where it was shown that the Dirac Lagrangian

was compatible with extended E8 invariance provided one introduces an appropriate Pauli

coupling with the 3-form. Our work overlaps the work [12] on the fermionic representations

of K(E11) as well as the analyses of [13] on the maximal compact subgroups of En,n and

of [14] on K(E9).

We then investigate the conjectured infinite-dimensional symmetry E10 of the La-

grangian of [15]. We find that the fermionic part also takes the form dictated by extended

E8-invariance, with the correct covariant derivatives appearing up to the appropriate level.

As observed by previous authors and in particular in [11], there is an interesting interplay

between supersymmetry and the hidden symmetries.

2. ‘Spin 3/2’ Representation of K(E10)

2.1 Level 0

To construct the ‘spin 3/2’ representation of K(E10), we have to extend the level 0 part

which is the usual SO(10) ‘spin 3/2’ parametrized by a set of 10 spinors χm, where m =

1 . . . 10 is a space index. (The level is not a grading for KE10 but a filtration, defined

modulo lower order terms.) The so(10) generators kij act on χm as

kij.χm =
1

2
γijχm + δ i

mχj − δ j
m χi . (2.1)

The aim is to rewrite the Rarita-Schwinger term with all couplings of the fermionic field,

up to higher order fermionic terms, into the form (1.1).

2.2 Level 1

Beyond SO(10), the first level couples to F0abc. To reproduce the supergravity Lagrangian,

the level 1 generators must contain products of γ matrices where the number of matri-

ces is odd and at most five. Indeed, the matrix M in (1.1) is proportional to the an-

tisymmetric product γab (as one sees by expanding the supergravity Lagrangian L ∼

iψT
a γabψ̇b+· · · ), while F0abc is coupled to fermions, in the supergravity Lagrangian, through

terms ψT
mγmabcnψn, ψT

a γbcγnψn and ψT
a γbψc. In addition, the generators must be covariant

with respect to SO(10). This gives the general form

kabc.χm = Aγ nabc
m χn + 3Bδ[a

mγbc]nχn + 3Cγ [ab
m χc] + 6Dδ[a

mγbχc] + Eγabcχm (2.2)

– 3 –
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where A,B,C,D,E are constants to be fixed. In fact, it is well known that such generators

do appear in the dimensional reduction of supergravity. If d dimensions are reduced, the

generators mix only χm with 1 ≤ m ≤ d. Therefore we set the terms involving summation

on n on the right hand side of (2.2) equal to zero: A = B = 0.

To fix the coefficients C, D and E, we must check the commutations relations. Com-

mutation with level 0 generators is automatic, as (2.2) is covariant with respect to SO(10).

What is non-trivial is commutation of the generators at level 1 with themselves. The

generators Kabc of K(E10) at level 1 fulfill

[Kabc,Kdef ] = Kabcdef − 18δadδbeKcf (2.3)

(with antisymmetrization in (a, b, c) and (b, c, d) in δadδbeKcf ) as it follows from the E10

commutation relations. In order to have a representation of K(E10), the kabc must obey

the same algebra,

[kabc, kdef ] = kabcdef − δadδbekcf . (2.4)

When all the indices are distinct, (2.4) defines the generators at level 2. One gets non

trivial constraints when two or more indices are equal. Namely, there are two relations

which must be imposed:
[

kabc, kabd
]

= −kcd (2.5)
[

kabc, kade
]

= 0 (2.6)

where different indices are supposed to be distinct. In fact, as we shall discuss in the sequel,

all other commutation relations which have to be checked for higher levels can be derived

from this ones using the Jacobi identity. One can verify (2.5) and (2.6) directly or using

FORM [16]. One finds that these two relations are satisfied if and only if

C = −
1

3
ε, D =

2

3
ε, E =

1

2
ε (2.7)

with ε = ±1. In fact one can change the sign of ε by reversing the signs of all the generators

at the odd levels. This does not change the algebra. We shall use this freedom to set ε = 1

in order to match the conventions for the supergravity Lagrangian. Putting everything

together, the level 1 generator is

kabc.χm =
1

2
γabcχm − γm[abχc] + 4δ[a

mγbχc] . (2.8)

2.3 Level 2

The expression just obtained for the level 1 generators can be used to compute the level 2

generator

kabcdef =
[

kabc, kdef
]

(2.9)

which is totally antisymmetric in its indices, as it can be shown using the Jacobi identity.

Explicitly, Eq.(2.8) gives

kabcdef .χm =
1

2
γabcdefχm + 4γ [abcde

m χf ] − 10δ[a
mγbcdeχf ] . (2.10)
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2.4 Level 3

We now turn to level 3. There are two types of roots. Real roots have generators

ka;abcdefgh =
[

kabc, kadefgh
]

(2.11)

(without summation on a and all other indices distinct). They are easily computed to act

as

ka;abcdefgh.χm =
1

2
γbcdefghχm + 2γ abcdefgh

m χa + 16δa
mγ[abcdefgχh] − 7γ [bcdefg

m χh] . (2.12)

In addition, there are generators ka;bcdefghi with all indices distinct, corresponding to null

roots. From
[

kabc, kdefghi
]

= 3k[a;bc]defghi (2.13)

(with all indices distinct) one finds

ka;bcdefghi.χm = −2
(

γ [abcdefgh
m χi] − γ bcdefghi

m χa
)

− 16
(

δ[a
mγbcdefghχi] − δa

mγ[bcdefghχi]
)

.

(2.14)

Combining these results, one finds that the level 3 generators can be written as

ka;bcdefghi.χm = −2
(

γ [abcdefgh
m χi] − γ bcdefghi

m χa
)

− 16
(

δ[a
mγbcdefghχi] − δa

mγ[bcdefghχi]
)

+ 4δa[bγcdefghi]χm − 56γm[bcdefgδâhχi] .

(2.15)

(where the hat over a means that it is not involved in the antisymmetrization). Note that

if one multiplies the generator (2.15) by a parameter µa;bcdefghi with the symmetries of the

level 3 Young tableau (in particular, µ[a;bcdefghi] = 0), the first terms in the two paren-

theses disappear. Furthermore, the totally antisymmetric part of the full level 3 generator

vanishes. The condition µ[a;bcdefghi] = 0 on µa;bcdefghi is equivalent to the tracelessness of

its dual.

2.5 Compatibility checks

Having defined the generators of the ‘spin 3/2’ representation up to level 3, we must

now check that they fulfill all the necessary compatibility conditions expressing that they

represent the K(E10) algebra up to that level (encompassing the compatibility conditions

(2.5) and (2.6) found above). This is actually a consequence of the Jacobi identity and of

the known SO(16) invariance in 3 dimensions, as well as of the manifest spatial SL(10)

covariance that makes all spatial directions equivalent.

Consider for instance the commutators of level 1 generators with level 2 generators.

The K(E10) algebra is

[Kabc,Kdefghi] = 3K [a;bc]defghi − 5!δadδbeδcfKghi (2.16)

Thus, one must have

[kabc, kdefghi] = 3k[a;bc]defghi − 5!δadδbeδcfkghi (2.17)

– 5 –
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These relations are constraints on kabc and kdefghi when the level 3 generators are absent,

which occurs when (at least) two pairs of indices are equal. But in that case, there are

only (at most) 7 distinct values taken by the indices and the relations are then part of

the known SO(16) invariance emerging in 3 dimensions. In fact, the relations (2.17) are

known to hold when the indices take at most 8 distinct values, which allows ka;acdefghi

with a pair of repeated indices. These 8 values can be thought of as parameterizing the 8

transverse dimensions of the dimensional reduction. Note that since the index m in (2.8)

can be distinct from the 8 “transverse” indices, we have both the ‘spin 1/2’ and the ‘spin

3/2’ (i.e., the vector and the spinor) representations of SO(16), showing the relevance of

the analysis of [11] in the present context.

Similarly, the commutation of two level 2 generators read

[Kabcdef ,Kghijkl] = −6 · 6!δagδbhδciδdjδekKfl + “more” (2.18)

where “more” denotes level 4 generators. Thus, one must have

[kabcdef , kghijkl] = −6 · 6!δagδbhδciδdjδekkfl + “more” (2.19)

These relations are constraints when the level 4 generators are absent1. Now, the level 4

generators are in the representation (001000001) characterized by a Young tableau with one

9-box column and one 3-box column, and in the representation (200000000) characterized

by a Young tableau with one 10-box column and two 1-box columns [17, 18]. To get rid of

these level 4 representations, one must again assume that the indices take at most 8 distinct

values to have sufficiently many repetitions. [If one allows 9 distinct values, one can fill

the tableau (001000001) non trivially.] But then, SO(16) “takes over” and guarantees that

the constraints are fulfilled. The same is true for the commutation relations of the level 1

generators with the level 3 generators, which also involve generically the level 4 generators

unless the indices take only at most 8 distinct values (which forces in particular the level-3

generators to have one repetition, i.e., to correspond to real roots).

Finally, the level 5 generators and the level-6 generators, which occur in the commu-

tation relations of level 2 with level 3, and level 3 with itself, involve also representations

associated with Young tableaux having a column with 9 or 10 boxes [17, 18]. For these

to be absent, the indices must again take on at most 8 distinct values. The commutation

relations reduce then to those of SO(16), known to be valid.

2.6 ‘Spin 1/2’ representation

We note that if one keeps in the above generators (2.1), (2.8), (2.10) and (2.15) only the

terms in which the index m does not transform, one gets the ‘spin 1/2’ representation

investigated in [11]. A notable feature of that representation is that it does not see the

level-3 generators associated with imaginary roots, as one sees from (2.14).

1When the level 4 generators are present, the relations (2.19) are consequences of the definition of the

level 4 generators – usually defined through commutation of level 1 with level 3 –, as a result of the Jacobi

identity.
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It should be stressed that up to level 3, the commutation relations of the K(En)

subgroups are all very similar for n ≥ 8 ([12 – 14]). A more complete analysis of the ‘spin

3/2’ and ‘spin 1/2’ representations of K(E9) will be given in [19].

3. Extended E8 Invariance of Supergravity Lagrangian

The fermionic part of 11-dimensional supergravity is

e(11)(−
1

2
ψµγµρνDρψν −

1

96
ψµγµναβγδψνFαβγδ −

1

8
ψ

α
γγδψβFαβγδ) , (3.1)

where e(11) is the determinant of the spacetime vielbein and where we have dropped the

terms with four fermions. We want to compare this expression with the Lagrangian (1.1),

where the K(E10) representation is the spin 3/2 one constructed in the previous section. If

we expand the Lagrangian (1.1) keeping only terms up to level 3 and using the dictionary

of [4] for the K(E10) connection, we get (see Eq. (8.7) of [11])

−
i

2
ψT

mγmn(ψ̇n −
1

2
ωR

abk
ab.ψn −

1

3!
F0abck

abc.ψn −
e

4! 6!
εabcdp1p2···p6

F abcdkp1p2···p6
.ψn

−
e

2.2! 8!
Ca

rsε
rsbcdefghika;bcdefghi.ψn) (3.2)

where M at this level is given by γmn and where ωR
ab = −1

2(ea
µėµb − eb

µėµa). In (3.2), e is

the determinant of the spatial vielbein, e(11) = N e with N the lapse.

We have explicitly checked the matching between (3.2) and (3.1). In order to make

the comparison, we

• take the standard lapse N equal to e;

• split the eleven dimensional supergravity Lagrangian (3.1) into space and time using

a zero shift (Nk = 0) and taking the so-called time gauge for the vielbeins ea
µ, namely

no mixed space-time component;

• rescale the fermions ψn → e1/2ψn as in the spin 1/2 case, so that ψn in (3.2) is e1/2ψn

in (3.1);

• take the gauge choice ψ′
0 = 0 (1.3);

• take the spatial gradient of the fermionic fields equal to zero (these gradients would

appear at higher levels);

• assume that the spatial metric is (at that order) spatially homogeneous (i.e., neglect

its spatial gradients in the adapted frames) and that the structure constants Ca
bc =

−Ca
cb of the homogeneity group are traceless (to match the level 3 representation),

Ca
ac = 0.

We have also verified that the matrix M is indeed invariant up to that level.
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As for the spin 1/2 case, the matching between (3.2) and (3.1) fully covers level 3

under the above condition of tracelessness of Ca
bc, including the imaginary roots. For the

spin 1/2 case, this is rather direct since the null root part vanishes, but this part does not

vanish for the spin 3/2. However, the dictionary of [4] is reliable only for extended E8.

Finally, we recall that the covariant derivative of the supersymmetry spin 1/2 pa-

rameter is also identical with the K(E10) covariant derivative up to level 3 [11], so that

the supersymmetry transformations are K(E10) covariant. The K(E10) covariance of the

supersymmetry transformations might prove important for understanding the K(E10) co-

variance of the diffeomorphisms, not addressed previously. Information on the diffeomor-

phisms would follow from the fact that the graded commutator of supersymmetries yields

diffeormorphisms (alternatively, the supersymmetry constraints are the square roots of the

diffeomorphisms constraints [20]).

4. Conclusions

In this paper, we have shown that the gravitino field of 11-dimensional supergravity is

compatible with the conjectured hidden E10 symmetry up to the same level as in the

bosonic sector. More precisely, we have shown that the fermionic part of the supergravity

Lagrangian take the form (1.1) with the correct K(E10) covariant derivatives as long as one

considers only the connection terms associated with the roots in extended E8, for which

the dictionary relating the bosonic supergravity variables to the sigma-model variables

has been established. The computations are to some extent simpler than for the bosonic

sector because they involve no dualization. In sigma-model terms, the supergravity action

is given by the (first terms of the) action for a spinning particle on the symmetric space

E10/K(E10), with the internal degrees of freedom in the ‘spin 3/2’ representation of K(E10)

(modulo the 4-fermion terms).

This action takes the same form as the action for a Dirac spinor with the appropriate

Pauli couplings that make it K(E10) covariant [11], where this time the internal degrees of

freedom are in the ‘spin 1/2’ representation. We can thus analyse its dynamics in terms of

the conserved K(E10) currents along the same lines as in [11] and conclude that the BKL

limit holds.

Although the work in this paper is a necessary first step for checking the conjectured

E10 symmetry, much work remains to be done to fully achieve this goal. To some extent,

the analysis remains a bit frustrating because no really new light is shed on the meaning

of the higher levels. Most of the computations are controlled by E8 and manifest sl10
covariance. In particular, the imaginary roots, which go beyond E8 and height 29, still

evade a precise dictionary. The works in [21] and in [22] are to our knowledge the only

ones where imaginary roots are discussed and are thus particularly precious and important

in this perspective.

We have treated explicitly the case of maximal supergravity in this paper, but a similar

analysis applies to the other supergravities, described also by infinite-dimensional Kac-

Moody algebras (sometimes in non-split forms [23, 24]).
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