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1. Introduction

Five years ago, a new formalism for the superstring was proposed which is manifestly

super-Poincaré covariant and which can be easily quantized [1, 2]. The main new fea-

ture of the formalism is a BRST operator Q =
∫

dzλαdα constructed from the fermionic

Green-Schwarz constraint dα and a bosonic ghost λα satisfying the pure spinor constraint

λαγm
αβλβ = 0. This super-Poincaré covariant formalism has had various applications such

as quantization of the superstring in an AdS5 × S5 Ramond-Ramond background [3] and

computation of multiloop scattering amplitudes [4].

Because of the simple but unconventional form of the BRST operator, it is not obvious

how it can be obtained by gauge-fixing a reparameterization-invariant worldsheet action.

Although the matter sector of the formalism involves the standard Green-Schwarz-Siegel

worldsheet variables, the ghost sector is lacking the usual (b, c) ghosts and involves a

constrained bosonic ghost λα with ghost-number anomaly −8 whose complex conjugate

is absent from the formalism. In this paper, these mysterious features of the pure spinor

formalism will be explained.
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Following suggestions of Nekrasov and Siegel, a non-minimal set of variables which

include the complex conjugate to λα and a fermionic constrained spinor are added to the

pure spinor formalism. These non-minimal variables do not affect the BRST cohomology

but change the ghost-number anomaly from −8 to +3. The new variables are closely related

to the variables used for (β, γ) systems in the N=(0,2) models discussed in [5]. A twisted

set of ĉ = 3 N = 2 superconformal generators are then constructed out of the non-minimal

variables such that the pure spinor BRST operator is the fermionic spin-one generator.

This ĉ = 3 N = 2 superconformal field theory is then interpreted as a critical topological

string [6, 7] in which the fermionic spin-two generator plays the role of the b ghost.

In this topological string interpretation of the pure spinor formalism, the simple form

of the BRST operator and the absence of fundamental (b, c) ghosts are naturally explained.

Furthermore, it will be possible to apply standard topological string methods to compute

super-Poincaré covariant multiloop superstring amplitudes, construct a cubic superstring

field theory action, and compactify the pure spinor formalism to four dimensions.

Using the old “minimal” version of the pure spinor formalism, a multiloop ampli-

tude prescription involving picture-changing operators was proposed in [4]. Because the

picture-changing operators required choices of constant spacetime spinors and tensors, this

prescription was only Lorentz-covariant up to BRST-trivial surface terms. Using the new

“non-minimal” version of the pure spinor formalism, multiloop superstring amplitudes can

now be computed using topological string methods in which the picture-changing operators

are replaced by a regularization factor for the zero modes. This “non-minimal” prescription

is manifestly Lorentz-covariant and is expected to reproduce the “minimal” prescription in

a gauge in which the contribution from the non-minimal fields decouple.

Since the superstring amplitude prescription no longer requires picture-changing opera-

tors, the analogous open superstring field theory action does not require singular insertions

at the midpoint. Using standard topological methods, one can therefore construct a cubic

open superstring field theory action resembling the Chern-Simons action [6] which does not

suffer from contact-term or gauge invariance problems. Construction of a similar action

was attempted four years ago by Schwarz and Witten [8], but was abandoned because of

difficulties caused by the “minimal” pure spinor measure factor. It would be interesting to

generalize this construction to a closed superstring field theory action which might resemble

the Kodaira-Spencer action [7].

Critical topological strings describe Calabi-Yau compactifications to four dimensions [7,

9], so it is natural to consider a four-dimensional version of the pure spinor formalism in

which λa is a d = 4 pure spinor, i.e. a two-component chiral spinor. After including the

(xm, θa, θ
ȧ
, pa, pȧ) variables of N=1 d = 4 superspace, as well as the appropriate non-

minimal variables, one finds that the d = 4 version of the pure spinor formalism has ĉ = 0.

So after adding an N = 2 ĉ = 3 sector for the Calabi-Yau variables, one obtains a critical

topological string with manifest d = 4 super-Poincaré invariance. But unlike the d = 4

hybrid formalism [10] which is related to the RNS formalism by a field redefinition and

describes the complete superstring, this new formalism only describes the chiral sector of

d = 4 superstring theory. Note that unlike in d = 10, Q = λada has trivial cohomology in

d = 4, so the four-dimensional pure spinor formalism cannot be used to compute generic
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superstring amplitudes. Nevertheless, the formalism can be used to compute F-terms in

the spacetime action, and can be understood as a d = 4 super-Poincaré covariant version

of the ĉ = 5 topological string introduced in [11]. Hopefully, this new four-dimensional

formalism will be useful for studying the effect of Ramond-Ramond fields on the spacetime

superpotential.

In earlier papers, there have been various proposals for a more “geometric” version of

the pure spinor formalism, some of which share certain properties with the non-minimal

pure spinor formalism presented here. For example, one proposal suggests relaxing the pure

spinor constraint and adding ghosts-for-ghosts to the formalism which allows N = 2 world-

sheet supersymmetry [13]. However, the N = 2 worldsheet supersymmetry transformations

in this proposal are quite different from the N = 2 transformations in the non-minimal

pure spinor formalism, and the ghosts-for-ghosts do not play the role of non-minimal fields

since they affect the BRST cohomology.

Another proposal has been to obtain the pure spinor formalism from an extended

Green-Schwarz formalism which involves an additional fermionic spinor variable [14 – 16].

Unfortunately, the pure spinor BRST operator is obtained in this proposal by passing

through a complicated procedure which has up to now only been defined in semi-light-cone

gauge. Since the structure of the worldsheet ghosts and supermoduli in semi-light-cone

gauge is not well understood, this proposal has not yet shed much light on the pure spinor

formalism. Nevertheless, it is interesting that the non-minimal pure spinor formalism also

involves an additional fermionic spinor variable.

A third proposal has been to relate the pure spinor formalism to an N = 2 super-

embedding of the Green-Schwarz superstring [17], also known as the N = 2 twistor-string

[18], and to the d = 4 hybrid formalism [19]. Although the N = 2 twistor-string has only

been covariantly studied at the classical level, it can be quantized in a U(4)-covariant man-

ner [20] and related to the hybrid formalism for the superstring which has ĉ = 2 [21, 22].

Despite the fact that the N = 2 twistor-string and hybrid formalism have different cen-

tral charge from the non-minimal pure spinor formalism, the classical N = 2 worldsheet

supersymmetry transformations are very similar in the formalisms. It would be very in-

teresting to understand the relation between the ĉ = 3 non-minimal pure spinor formalism

which describes a critical topological N = 2 string and the ĉ = 2 hybrid formalism which

describes a critical non-topological N = 2 string.

There have also been papers which expand on the analogy with Chern-Simons in [2,

23] to find various topological properties of the pure spinor formalism [24 – 27]. These

topological properties include the construction of the Batalin-Vilkovisky action, the role

of the pure spinor measure factor, and the geometrical interpretation of picture-changing

operators in amplitude computations.

Finally, there have been versions of the pure spinor formalism which involve additional

fields such as the Y -formalism [28] and a pure spinor version [29] of the “Big Picture” for-

malism [30]. Although the additional fields in these two approaches share some properties

with the non-minimal fields used here, it is the N = (0, 2) model proposed by Nekrasov [31]

for the (λα, wα) ghosts of the pure spinor formalism which most closely resembles the non-

minimal formalism of this paper.
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In section 2 of this paper, the “minimal” pure spinor formalism will be reviewed. In

section 3, a set of “non-minimal” variables will be added to the formalism and twisted

ĉ = 3 N = 2 generators will be constructed. In section 4, this critical topological string

wil be used to compute superstring scattering amplitudes up to two loops. In section 5, a

consistent cubic open superstring field theory action will be constructed. In section 6, a

new four-dimensional version of the pure spinor formalism will be defined which computes

F-terms in the spacetime action. And in the appendix, the constrained variables of the

non-minimal pure spinor formalism will be solved in terms of U(5)-covariant free fields.

2. Review of minimal pure spinor formalism

2.1 Worldsheet variables

As in Siegel’s approach to the Green-Schwarz superstring [32], the pure spinor formalism for

the superstring is constructed using the (xm, θα) variables of d = 10 superspace where m =

0 to 9 and α = 1 to 16, together with the fermionic conjugate momenta pα. Furthermore,

one introduces a bosonic spinor ghost λα which satisfies the pure spinor constraint

λαγm
αβλβ = 0 , (2.1)

where γm
αβ are the symmetric 16 × 16 d = 10 Pauli matrices.

Because of the pure spinor constraint on λα, its conjugate momentum wα is defined

up to the gauge transformation

δwα = Λm(γmλ)α , (2.2)

which implies that wα only appears through its Lorentz current Nmn, ghost current Jλ,

and stress tensor Tλ. These gauge-invariant currents are defined by

Nmn =
1

2
wγmnλ , Jλ = wαλα , Tλ = wα∂λα . (2.3)

The worldsheet action for the left-moving matter and ghost variables is

S =

∫
d2z

(
1

2
∂xm∂xm + pα∂θα − wα∂λα

)
, (2.4)

and the right-moving variables will be ignored throughout this paper. For the Type II

superstring, the right-moving variables are similar to the left-moving variables, while for

the heterotic superstring, the right-moving variables are the same as in the RNS heterotic

formalism.

The OPE’s for the matter variables are easily computed to be

xm(y)xn(z) → −ηmn log |y − z|2 , pα(y)θβ(z) → δβ
α(y − z)−1 , (2.5)

however, the pure spinor constraint on λα prevents a direct computation of the OPE’s for

the ghost variables. Nevertheless, one can compute OPE’s involving λα and the currents

of (2.3) either by solving the pure spinor constraint in terms of U(5)-covariant free fields [1],

by using the SO(10)-covariant fixed-point techniques of [33], or by using the Y -formalism
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of [28]. The resulting OPE’s are

Nmn(y)λα(z) →
1

2
(y − z)−1(γmnλ)α , J(y)λα(z) → (y − z)−1λα ,

Nkl(y)Nmn(z) → −3(y − z)−2
(
ηn[kηl]m

)
+ (y − z)−1

(
ηm[lNk]n − ηn[lNk]m

)
,

Jλ(y)Jλ(z) → −4(y − z)−2 , Jλ(y)Nmn(z) → regular ,

Nmn(y)Tλ(z) → (y − z)−2Nmn(z) , Jλ(y)Tλ(z) → −8(y − z)−3 + (y − z)−2Jλ(z) ,

Tλ(y)Tλ(z) → 11(y − z)−4 + 2(y − z)−2Tλ(z) + (y − z)−1∂Tλ(z) . (2.6)

From the above OPE’s, one sees that the central charge contribution to the conformal

anomaly is 22, the level for the Lorentz currents is −3, and the ghost-number anomaly is

−8. So the central charge contribution from the ghost variables cancels the contribution

of +10 − 32 = −22 from the (xm, θα, pα) matter variables. Furthermore, the total Lorentz

current is Mmn = −1
2(pγmnθ) + Nmn, and since −1

2(pγmnθ) has level +4, Mmn has the

same level of +4 − 3 = 1 as the RNS Lorentz current Mmn = ψmψn. Finally, it will be

explained in the following section that after adding a set of non-minimal variables, the

ghost-number anomaly of −8 is shifted to the usual ghost-number anomaly of +3.

2.2 Physical states

Physical open string states in the pure spinor formalism are defined as ghost-number one

states in the cohomology of the nilpotent BRST operator

Q =

∫
dz λαdα , (2.7)

where

dα = pα −
1

2
γm

αβθβ∂xm −
1

8
γm

αβγmγδθ
βθγ∂θδ (2.8)

is the supersymmetric Green-Schwarz constraint. As shown by Siegel [32], dα satisfies the

OPE’s

dα(y)dβ(z) → −(y − z)−1γm
αβΠm , dα(y)Πm(z) → (y − z)−1γm

αβ∂θβ(z) ,

dα(y) f(x(z), θ(z)) → (y − z)−1Dαf(x(z), θ(z)) , (2.9)

where

Dα =
∂

∂θα
+

1

2
θβγm

αβ∂m (2.10)

is the d = 10 supersymmetric derivative, Πm = ∂xm + 1
2θγm∂θ is the supersymmetric

momentum and

qα =

∫
dz

(
pα +

1

2
γm

αβθβ∂xm +
1

24
γm

αβγm γδθ
βθγ∂θδ

)
(2.11)

is the supersymmetric generator satisfying

{qα, qβ} = γm
αβ

∫
dz∂xm , [qα,Πm(z)] = 0 , {qα, dβ(z)} = 0 . (2.12)

– 5 –
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For massless states described by V = λαAα(x, θ), QV = 0 and δV = QΩ implies

that Aα is the super-Yang-Mills spinor gauge field satisfying the linearized equation of

motion (γmnpqr)
αβDαAβ = 0 and the linearized gauge invariance δAα = DαΩ. For massive

states, the superspace description is more complicated [34], however, it has been proven by

DDF methods that the cohomology of Q at ghost-number one correctly describes the open

superstring spectrum [35].

2.3 Scattering amplitudes

To compute scattering amplitudes using the “minimal” pure spinor formalism, it is nec-

essary to introduce picture-changing operators which can absorb the zero modes of the

bosonic ghosts λα and wα. For example, N -point tree amplitudes are computed by the

correlation function

A =

〈
V1(z1)V2(z2)V3(z3)

∫
dz4U4(z4) · · ·

∫
dzNUN (zN )

11∏

I=1

YCI
(yI)

〉
, (2.13)

where YCI
= CIαθαδ(CIβλβ) are picture-lowering operators which absorb the eleven λα

zero modes, CIα are constant spinors, and Ur are dimension-one vertex operators which

are related to the unintegrated vertex operators Vr by the relation QUr = ∂Vr. This tree

amplitude prescription has been shown to coincide with the RNS prescription for massless

states with an arbitrary number of bosons and up to four fermions [36].

N -point g-loop amplitudes can also be computed in the minimal pure spinor formalism

by evaluating the correlation function

A =

∫
d3g−3τ

〈3g−3∏

j=1

(∫
dwjµj(wj)b̃Bj

(wj)

) 10g∏

P=3g−2

ZBP
(wP )

g∏

R=1

ZJ(vR) ×

×
11∏

I=1

YCI
(yI)

N∏

r=1

∫
dzr U(zr)

〉
, (2.14)

where τj are complex Teichmuller parameters and µj are the associated Beltrami differen-

tials, ZB = Bmn(λγmnd)δ(BmnNmn) and ZJ = (λαdα)δ(Jλ) are picture-raising operators

which absorb the 11g zero modes of wα, Bmn are constant tensors, and b̃B is a picture-

raised b ghost which is defined to satisfy {Q, b̃B} = TZB. Although the explicit form of b̃B

is quite complicated, this amplitude prescription has been used to prove various vanishing

theorems and to compute four-point one-loop and two-loop massless amplitudes [4, 37, 38].

Although the choices of constant spinors Cα and tensors Bmn in the picture-changing

operators YC and ZB break manifest Lorentz covariance, one can show that the dependence

on Cα and Bmn is BRST-trivial. So after integrating over the Teichmuller parameters, the

scattering amplitude is independent of the choices for Cα and Bmn. Nevertheless, it would

be more convenient if Lorentz covariance could be manifestly preserved at all stages in

the amplitude computation. As will now be shown, this is possible using a “non-minimal”

version of the pure spinor formalism in which picture-changing operators are replaced by

a regularization factor for the zero modes.
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3. Non-minimal pure spinor formalism

3.1 Worldsheet variables

Although the BRST operator in the pure spinor formalism has a simple structure, the

lack of a geometrical interpretation of the formalism makes it difficult to understand the

rules for computing scattering amplitudes. As will be explained here, after introducing

a set of non-minimal variables, the pure spinor formalism can be interpreted as a critical

topological string with the standard topological rules for computing scattering amplitudes.

The new non-minimal variables will consist of a bosonic pure spinor λα and a con-

strained fermionic spinor rα satisfying the constraints

λαγαβ
m λβ = 0 and λαγαβ

m rβ = 0 . (3.1)

In d=10 euclidean space where complex conjugation flips the chirality of spacetime spinors,

λα can be interpreted as the complex conjugate to λα. The worldsheet action for the non-

minimal pure spinor formalism is
∫

d2z

(
1

2
∂xm∂xm + pα∂θα − wα∂λα − wα∂λα + sα∂rα

)
, (3.2)

where wα and sα are the conjugate momenta for λα and rα with +1 conformal weight. As

explained in the appendix, the constraints of (3.1) can be solved in a U(5)-covariant manner

and λα and rα can be expressed in terms of eleven independent bosonic and fermionic free

fields. Note that all non-minimal variables are left-moving on the worldsheet (like λα and

θα), and that λα and rα are spacetime spinors of opposite chirality from λα and θα. It is

interesting that similar variables to λα and rα have recently been used in N=(0,2) models

for chiral (β, γ) systems [5]. However, unlike in these N=(0,2) models where the additional

variables move in the opposite direction on the worldsheet from the (β, γ) variables, the

non-minimal variables in the pure spinor formalism move in the same direction on the

worldsheet as the (λα, wα) variables.

Just as wα can only appear in the gauge-invariant combinations

Nmn =
1

2
(wγmnλ) , Jλ = wαλα , Tλ = wα∂λα , (3.3)

the variables wα and sα can only appear in the combinations

Nmn =
1

2
(wγmnλ − sγmnr) , Jλ = wαλα − sαrα , Tλ = wα∂λα − sα∂rα ,

Smn =
1

2
sγmnλ, S = sαλα , (3.4)

which are invariant under the gauge transformations

δwα = Λ
m

(γmλ)α − φm(γmr)α , δsα = φm(γmλ)α (3.5)

for arbitrary Λ
m

and φm. Note that Jr = rαsα and Φ = wαrα are also gauge-invariant,

but they can be written in terms of the other currents as

Jr =
(λr)S − 2

3(λγmnr)Smn

(λλ)
, Φ =

(λr)(Jλ + Jr) −
2
3(λγmnr)Nmn

(λλ)
. (3.6)
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These gauge-invariant currents will be shown in the appendix to satisfy the OPE’s

Nmn(y)λα(z) →
1

2
(y − z)−1(γmnλ)α , Nmn(y)rα(z) →

1

2
(y − z)−1(γmnr)α ,

Jλ(y)λα(z) → (y − z)−1λα , Jλ(y)rα(z) → (y − z)−1rα ,

N
kl

(y)N
mn

(z) → (y − z)−1(ηm[lN
k]n

− ηn[lN
k]m

) ,

Jλ(y)N
mn

(z) → regular , Jr(y)N
mn

(z) → regular , Φ(y)N
mn

(z) → regular ,

Φ(y)λα(z) → (y − z)−1rα , Φ(y)Smn(z) → (y − z)−1Nmn , Φ(y)S(z) → (y − z)−1Jλ ,

Jλ(y)Jλ(z) → regular , Jr(y)Jr(z) → 11(y − z)−2 , Jλ(y)Jr(z) → 8(y − z)−2 ,

Nmn(y)Tλ(z) → (y − z)−2Nmn(z) ,

Jλ(y)Tλ(z) → (y − z)−2Jλ(z) ,

Jr(y)Tλ(z) → 11(y − z)−3 + (y − z)−2Jr(z) ,

Tλ(y)Tλ(z) → 2(y − z)−2Tλ(z) + (y − z)−1∂Tλ(z) . (3.7)

From the above OPE’s, one sees that the non-minimal variables do not contribute to

the conformal anomaly or to the level of the Lorentz currents. Furthermore, if the ghost

current is defined as wαλα − wαλα = Jλ − Jλ + Jr, the non-minimal variables shift the

ghost-number anomaly to −8 + 11 = +3, which is the same ghost-number anomaly as in

bosonic string theory.

3.2 ĉ = 3 N = 2 generators

In order that the non-minimal variables do not affect the cohomology, the “minimal”

pure spinor BRST operator Q =
∫

dzλαdα will be modified to the “non-minimal” BRST

operator [31]

Qnonmin =

∫
dz(λαdα + wαrα) . (3.8)

The new term
∫

dzwαrα is invariant under the gauge transformation of (3.5) and implies

through the usual quartet argument that the cohomology is independent of (λα, wα) and

(rα, sα).

In the “minimal” pure spinor formalism, one could have defined a non-covariant b ghost

satisfying {Q, b} = T as [12]

b =
CαGα

Cαλα
, (3.9)

where Cα is any constant spinor and

Gα =
1

2
Πm(γmd)α −

1

4
Nmn(γmn∂θ)α −

1

4
Jλ∂θα −

1

4
∂2θα (3.10)

satisfies {Q,Gα} = λαT . However, such a b ghost contains poles when Cαλα = 0, which

causes problems in the presence of picture-changing operators containing factors of δ(λ).

In the non-minimal pure spinor formalism, there will be no picture-changing opera-

tors and one can define a Lorentz-invariant bnonmin ghost satisfying {Qnonmin, bnonmin} =

– 8 –
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Tnonmin as

bnonmin = sα∂λα +
λαGα

(λλ)
+

λαrβH [αβ]

(λλ)2
−

λαrβrγK [αβγ]

(λλ)3
−

λαrβrγrδL
[αβγδ]

(λλ)4

= sα∂λα +
λα(2Πm(γmd)α − Nmn(γmn∂θ)α − Jλ∂θα − 1

4∂2θα)

4(λλ)
+

+
(λγmnpr)(dγmnpd + 24NmnΠp)

192(λλ)2
−

(rγmnpr)(λγmd)Nnp

16(λλ)3
+

+
(rγmnpr)(λγpqrr)NmnNqr

128(λλ)4
, (3.11)

where

Tnonmin = −
1

2
∂xm∂xm − pα∂θα + wα∂λα + wα∂λα − sα∂rα , (3.12)

and (Gα,Hαβ ,Kαβγ , Lαβγδ) are operators which were defined in [4, 28] for constructing

the picture-raised b̃B ghost and satisfy

{Q,Gα} = λαT, [Q,H [αβ]] = λ[αGβ], {Q,K [αβγ]} = λ[αHβγ] ,

[Q,L[αβγδ]] = λ[αKβγδ] , λ[αLβγδκ] = 0 . (3.13)

In addition to satisfying {Qnonmin, bnonmin} = Tnonmin, one can verify that bnonmin has no

poles with itself. Note that only the antisymmetrized components of Hαβ , Kαβγ and Lαβγδ

contribute to bnonmin, which makes the computation of coefficients in bnonmin much simpler

than in the computation of the picture-raised b̃B ghost [4, 39, 28]. Although bnonmin appears

complicated in (3.11), its construction in terms of Siegel-like constraints [32] suggests that

it may have a natural superspace interpretation.

To complete the construction of the ĉ = 3 N = 2 generators, one needs to construct

the U(1) current Jnonmin by computing the double pole of bnonmin with the integrand of

Qnonmin. The result is

Jnonmin = wαλα − sαrα − 2
λα∂λα + rα∂θα

(λλ)
+ 2

(λαrα)(λβ∂θβ)

(λλ)2
. (3.14)

The unusual non-quadratic terms in Jnonmin can be understood to be necessary for two

reasons. Firstly, the term (λαGα)/(λλ) in bnonmin has a double pole with λαwα, which

needs to be cancelled by the double pole of bnonmin with the non-quadratic terms in order

that bnonmin is a U(1) primary field. Secondly, the triple pole of Jnonmin with Tnonmin

of (3.12) is equal to −8 + 11 = +3. But the N = 2 Jacobi identities imply that this ghost-

number anomaly of +3 should be equal to the double pole of Jnonmin with itself, which gives

the value −4 + 11 = +7 if one does not include the contribution from the non-quadratic

terms.

So the twisted ĉ = 3 N = 2 generators are given by the U(1) current Jnonmin of (3.14),

the fermionic generators λαdα + wαrα and bnonmin of (3.11), and the stress tensor Tnonmin

of (3.12). Although the form of Jnonmin is complicated, it can be simplified by shifting by
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a BRST-trivial quantity as

J ′
nonmin = Jnonmin +

{
Qnonmin,−sαλα + 2

λα∂θα

(λλ)

}

= Jnonmin − wαλα + sαrα + 2
λα∂λα + rα∂θα

(λλ)
− 2

(λαrα)(λβ∂θβ)

(λλ)2

= wαλα − wαλα . (3.15)

Although J ′
nonmin has double poles with bnonmin and does not have level +3, one can easily

check that [
∫

dzJ ′
nonmin, Qnonmin] = Qnonmin and [

∫
dzJ ′

nonmin, bnonmin] = −bnonmin. Fur-

thermore, it will be shown in the appendix that the triple pole of J ′
nonmin with Tnonmin is

+3, so the ghost-number anomaly is preserved using J ′
nonmin. These are the only necessary

conditions for the ghost current in critical topological string theory, as can be seen by

comparing with the ghost current of the bosonic string, J = bc, which has double poles

with the BRST current and whose level of +1 does not coincide with its ghost-number

anomaly of +3. So there is no problem with replacing Jnonmin by J ′
nonmin in the definition

of the topological string associated to the non-minimal pure spinor formalism.

In the next section, superstring scattering amplitudes will be computed using topolog-

ical methods with the U(1) charge
∫

dzJ =
∫

dz(wαλα − wαλα), the BRST operator Q =∫
dz(λαdα +wαrα), the stress tensor T = −1

2∂xm∂xm − pα∂θα +wα∂λα +wα∂λα − sα∂rα,

and the b ghost

b = sα∂λα +
λα(2Πm(γmd)α − Nmn(γmn∂θ)α − Jλ∂θα − ∂2θα)

4(λλ)
+

+
(λγmnpr)(dγmnpd + 24NmnΠp)

192(λλ)2
−

(rγmnpr)(λγmd)Nnp

16(λλ)3
+

+
(rγmnpr)(λγpqrr)NmnNqr

128(λλ)4
. (3.16)

Note that for the rest of this paper, the subscript nonmin will be dropped from these

operators.

4. Computation of scattering amplitudes

4.1 Tree amplitudes

Since the non-minimal pure spinor formalism is a ĉ = 3 N = 2 string theory, one can use

standard methods developed for critical topological strings to compute scattering ampli-

tudes. For example, N -point tree amplitudes are computed as in bosonic string theory

by the correlation function of three unintegrated vertex operators V satisfying QV = 0

and N − 3 integrated vertex operators
∫

dz U(z) satisfying QU = ∂V . As in the minimal

pure spinor formalism, functional integration over the worldsheet variables of +1 conformal

weight is straightforward using the poles in the OPE’s of (2.6) and (3.7). One is then left

with an expression A = 〈f(λ, λ, r, θ)〉 where f(λ, λ, r, θ) carries +3 U(1) charge and de-

pends only on the zero modes of λα, λα, rα and θα. Note that integration over the xm zero

modes is performed in the standard manner and will be ignored throughout this paper.
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Since λα and λα are non-compact bosonic variables, the integral over the zero modes

A =

∫
[dλ][dλ][dr]d16θf(λ, λ, r, θ) (4.1)

needs to be regularized. A useful regularization method developed by Marnelius [40] for

BRST-invariant systems involves inserting the factor N = exp({Q,χ}) into the integral

where χ is some fermionic function of the worldsheet variables. Since f(λ, λ, r, θ) is BRST-

invariant and N = 1 + · · · where · · · is BRST-trivial, the integral will be independent of

the choice of χ.

In the non-minimal pure spinor formalism, it is convenient to choose χ = −λαθα so

that

N = exp({Q,χ}) = exp(−λαλα − rαθα) . (4.2)

Treating λα as the complex conjugate of λα, the expression

A =

∫
[dλ][dλ][dr]d16θ N f(λ, λ, r, θ) (4.3)

is well-defined if one assumes that f(λ, λ, r, θ) does not diverge too fast as λλ → 0.

To determine how fast f(λ, λ, r, θ) is allowed to diverge as λλ → 0, note that the

measure factors [dλ] and [dλ] for pure spinors satisfy[4, 41]

[dλ]λβλγλδ = (εT−1)βγδ
α1...α11

dλα1 . . . dλα11 (4.4)

and

[dλ]λβλγλδ = (εT )α1...α11

βγδ dλα1
. . . dλα11

,

where (εT−1)βγδ
α1...α11

and (εT )α1...α11

βγδ are Lorentz-invariant tensors defined in [1, 4] which

are antisymmetric in [α1 . . . α11] and are symmetric and gamma-matrix traceless in (βγδ).

Up to an overall normalization constant,

(εT )α1...α11

βγδ = εα1...α16γm
α12ργ

n
α13σγp

α14τ

(
γmnp)α15α16

(δρ
(βδσ

γ δτ
δ) −

1

40
γm
(βγδρ

δ)γ
στ
m

)
. (4.5)

Furthermore, the constraint λγmr = 0 implies that the measure factor [dr] satisfies

[dr] =
(
εT−1

)βγδ

α1...α11

λβλγλδ

(
∂

∂rα1

)
. . .

(
∂

∂rα11

)
. (4.6)

So the measure factor [dλ][dλ][dr] goes like λ8λ
11

as λλ → 0, which implies that

f(λ, λ, r, θ) must diverge slower than λ−8λ
−11

in order that (4.3) is well-defined. If one

wants to compute amplitudes in which f(λ, λ, r, θ) diverges as fast as λ−8λ
−11

when λλ → 0,

an alternative regularization method for the zero modes must be found.

The restriction that f(λ, λ, r, θ) diverges slower than λ−8λ
−11

is related to the oper-

ator ξ = (λθ)/(λλ + rθ) which satisfies Qξ = 1. Since QV = 0 implies that Q(ξV ) = V ,

the existence of the operator ξ naively implies that the BRST cohomology is trivial.

For example, f = Q(ξf) where f = (λγmθ)(λγnθ)(λγpθ)(θγmnpθ) naively implies that

– 11 –



J
H
E
P
1
0
(
2
0
0
5
)
0
8
9

〈N f〉 = 〈NQ(ξf)〉 = 0. But because of the restriction that f diverges slower than λ−8λ
−11

,

〈NQ(Ω)〉 is only guaranteed to vanish if Ω diverges slower than λ−8λ
−10

as λλ → 0. When

f = (λγmθ)(λγnθ)(λγpθ)(θγmnpθ), ξf contains terms which diverge as λ−8λ
−10

(θ)16(r)10.

So ξf is not an allowable gauge parameter, which explains why 〈N f〉 6= 0.

So the regularized prescription for computing the N -point tree amplitude using topo-

logical string methods is given by the correlation function

A =

〈
N (y)V1(z1)V2(z2)V3(z3)

∫
dz4U4(z4) . . .

∫
dzNUN (zN )

〉
, (4.7)

where N (y) = exp({Q,χ(y)}) = exp(−λ(y)λ(y)− r(y)θ(y)) and y is an arbitrary point on

the worldsheet. Suppose that all external states are chosen in the gauge where the vertex

operators V and U are independent of the non-minimal fields. Then after integrating out

the variables of +1 conformal weight using the poles in their OPE’s, one obtains

A = 〈N f(λ, θ)〉 = 〈Nλαλβλγfαβγ(θ)〉 , (4.8)

which has no divergences when λλ → 0. Using the measure factors defined above, one finds

up to an overall normalization constant that

A =

∫
[dλ][dλ][dr]d16θ exp(−λαλα − rαθα)λβλγλδfβγδ(θ)

=

∫
d16θ(εT−1)βγδ

α1...α11
θα1 . . . θα11fβγδ(θ)

= εα1...α16

(
εT−1

)βγδ

α1...α11

(
∂

∂θα12

)
. . .

(
∂

∂θα16

)
fβγδ(θ) , (4.9)

which agrees with the result from the minimal pure spinor formalism.

To understand the relationship between the non-minimal and minimal computations,

note that BRST-invariance implies that the amplitude is unaffected by rescaling χ = −λαθα

to χ = −ρλαθα for any positive ρ in the definition of N . So one can take the limit

ρ → ∞ in Nρ(y) = exp(−ρ(λ(y)λ(y) + r(y)θ(y))), which is non-vanishing only when

λα(y) = λα(y) = 0. So in the limit ρ → ∞, Nρ(y) contains the same δ11(λ) dependence

as the product of eleven picture-lowering operators
∏11

I=1 YCI
(y) in the minimal formalism.

However, in addition to being manifestly Lorentz-invariant, the advantage of using N (y)

instead of picture-changing operators is that one can take the opposite limit ρ → 0 in which

Nρ(y) becomes a smooth invertible function.

After introducing the regularization factor N = exp(−λλ − rθ), one can also define

N -point tree amplitudes in a worldsheet reparameterization invariant manner as

A =

〈
N (y) V1(z1) . . . VN (zN )

∫
dz4b(z4) . . .

∫
dzN b(zN )

〉
, (4.10)

where b(z) is defined in (3.16). But since each unintegrated vertex operator V goes like

λ and each b ghost goes like λ/(λλ)4, f(λ, λ, r, θ) goes like λ3(λλ)9−3N when λλ → 0.

Since f(λ, λ, r, θ) must diverge slower than λ−8λ
−11

, a maximum of three b ghosts (or six

unintegrated vertex operators) can be allowed in computations using this regularization

method.
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4.2 Loop amplitudes

To compute N -point g-loop amplitudes, one uses the topological prescription

A =

∫
d3g−3τ

〈

N (y)

3g−3∏

j=1

(∫
dwjµj(wj)b(wj)

) N∏

r=1

∫
dzr U(zr)

〉

, (4.11)

where τj are the complex Teichmuller parameters and µj are the associated Beltrami dif-

ferentials, b(z) is defined in (3.16), and N (y) is a regularization factor for the genus g zero

modes which will be defined below. To define this regularization factor, first separate off

the zero modes of the gauge-invariant worldsheet fields of +1 conformal weight as

Nmn(z) = N̂mn(z) +

g∑

I=1

N I
mnωI(z) , Nmn(z) = N̂mn(z) +

g∑

I=1

N
I
mnωI(z) ,

Jλ(z) = Ĵλ(z) +

g∑

I=1

JI
λωI(z) , Jλ(z) = Ĵλ(z) +

g∑

I=1

J
I
λωI(z) ,

dα(z) = d̂α(z) +

g∑

I=1

dI
αωI(z) ,

Smn(z) = Ŝmn(z) +

g∑

I=1

SI
mnωI(z) , S(z) = Ŝ(z) +

g∑

I=1

SIωI(z) , (4.12)

where ωI(z) are the g holomorphic one-forms satisfying
∫
AI

dz ωJ(z) = δIJ ,
∫
AI

dz are

contour integrals around the g non-trivial A-cycles, and the hatted variables F̂ (z) of (4.12)

have no zero modes and are defined to satisfy
∫
AI

dzF̂ (z) = 0 for I = 1 to g.

As in multiloop calculations using the minimal pure spinor formalism [4], one can use

the poles in the OPE’s of (2.6) and (3.7) for the hatted variables to perform the functional

integral over the non-zero modes. Note that the partition function for the non-zero modes

is equal to one since there are an equal number of bosons and fermions at +1 conformal

weight.

After integrating out the non-zero modes, one obtains

A =
〈
N f(λ, λ, r, θ,N I

mn,N
I
mn, JI

λ , J
I
λ, dI

α, SI
mn, SI)

〉
, (4.13)

where f is some BRST-invariant function of the zero modes with U(1) charge 3 − 3g. To

regularize this integral over the zero modes, the factor N (y) will be chosen as N (y) =

exp({Q,χ(y)}) where

χ(y) = −λα(y)θα(y) −

g∑

I=1

(
1

2
N I

mnSmnI + JI
λSI

)
. (4.14)

Using the BRST transformations

{Q,SI
mn} = N

I
mn , {Q,SI} = J

I
λ ,

[Q,N I
mn] = −

1

2

∫

AI

dzλγmnd , [Q,JI
λ ] =

∫

AI

dzλαdα , (4.15)
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one finds that

N (y) = exp(−λα(y)λα(y) − rα(y)θα(y)) × (4.16)

× exp

(
g∑

I=1

[
−

1

2
N I

mnN
mnI

−JI
λJ

I
λ−

1

4
SI

mn

∫

AI

dz λγmnd+SI

∫

AI

dzλαdα

])
.

So one needs to compute the integral over the zero modes

A =

∫
[dλ][dλ][dr]d16θ

g∏

I=1

[dwI ][dwI ][dsI ]d16dI N f . (4.17)

Using the methods of [4], one can show that the measure factors [dwI ], [dwI ], and [dsI ] are

defined as

[dwI ]λα1 . . . λα8 = Mα1...α8

m1n1...m10n10
dNm1n1I . . . dNm10n10IdJI

λ ,

[dwI ]λα1
. . . λα8

= (M−1)m1n1...m10n10

α1...α8
dN

I
m1n1

. . . dN
I
m10n10

dJ
I
λ ,

[dsI ] = Mα1...α8

m1n1...m10n10
λα1

. . . λα8

∂

∂SI
m1n1

. . .
∂

∂SI
m10n10

∂

∂SI
, (4.18)

where Mα1...α8

m1n1...m10n10
is a Lorentz-invariant tensor which is antisymmetric after switching

mj with nj, antisymmetric after switching [mjnj] with [mknk], and symmetric and gamma-

matrix traceless in (α1 . . . α8). Up to an overall normalization constant,

Mα1...α8

m1n1...m10n10
λα1

. . . λα8
ψm1n1 . . . ψm10n10 = (λγm1n1m2m3m4

λ)(λγm5n5n2m6m7
λ) ×

× (λγm8n8n3n6m9
λ)(λγm10n10n4n7n9

λ) ×

×ψm1n1 . . . ψm10n10 , (4.19)

where ψmjnj
are fermionic antisymmetric two-forms.

As long as f does not diverge too fast as λλ → 0, the regularized expression of (4.17)

is well-defined. For example, if f is assumed to be independent of SI
mn and SI , then all

11g zero modes for these fermionic variables must come from the regularization factor

N of (4.16). Each of these zero modes is multiplied by a factor of (λγmnd) or (λαdα),

so N contributes a factor which goes like λ11g as λλ → 0. Since [dλ][dλ][dr] → λ8λ
11

and
∏g

I=1[dwI ][dwI ][dsI ] → λ−8g,
∫

[dλ][dλ][dr]
∏g

I=1[dwI ][dwI ][dsI ]N goes like λ8+3gλ
11

as λλ → 0.

So f must diverge slower than λ−8−3gλ
−11

as λλ → 0 in order that (4.17) is well-

defined. Since each b ghost goes like λ/(λλ)4 as λλ → 0, the regularization method

described here is valid for three or fewer b ghosts, i.e. for amplitudes up to two loops.

To compute amplitudes with more than two loops using the topological string methods

described here, one needs to find an alternative regularization method for the zero modes.

Work is currently in progress with Nikita Nekrasov on finding such a method.

To check the consistency of this computational method, consider the zero mode struc-

ture of four-point massless one-loop and two-loop amplitudes. At one-loop, there is one

b ghost of (3.16), one unintegrated vertex operator V = λαAα(x, θ), and three integrated
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vertex operators

U =

∫
dz(∂θαAα + ΠmBm + dαW α + NmnFmn) , (4.20)

where (Aα, Bm) are the spinor and vector gauge superfields and (W α, Fmn) are the spinor

and vector field-strengths of super-Yang-Mills. To absorb the 16 dα and 11 sα fermionic zero

modes, N must contribute 11 dα and 11 sα zero modes, the b ghost must contribute 2 dα

zero modes through the term (λγmnpr)(dγmnpd)/(λλ)2, and each of the three integrated

vertex operators must contribute a dα zero mode through the term
∫

dzdαW α. After

integrating over the rα zero modes, the amplitude is proportional to

∫
d16θ(θ)10AWWW , (4.21)

where the Lorentz contractions of the spinor indices has not yet been worked out. How-

ever, by dimensional analysis, one see that (4.21) has the correct zero mode structure to

contribute an F 4 term for open strings, or an R4 term for closed strings after taking the

holomorphic square.

For four-point two-loop massless amplitudes, there are three b ghosts of (3.16) and

four integrated vertex operators of (4.20). To absorb the 32 dα and 22 sα fermionic zero

modes, N must contribute 22 dα and 22 sα zero modes, each of the three b ghosts must

contribute 2 dα zero modes through the term (λγmnpr)(dγmnpd)/(λλ)2, and each of the four

integrated vertex operators must contribute a dα zero mode through the term
∫

dzdαW α.

After integrating over the rα zero modes, the amplitude is proportional to

∫
d16θ(θ)8WWWW , (4.22)

which has the correct zero mode structure to contribute a ∂2F 4 term for open strings, or

a ∂4R4 term for closed strings after taking the holomorphic square. It should not be too

difficult to verify if the contractions of the Lorentz indices in (4.21) and (4.22) reproduce

the appropriate t8 index contractions in the R4 and ∂4R4 terms.

5. Cubic open superstring field theory

Using the RNS formalism for the superstring, cubic open superstring field theory actions

require midpoint insertions which cause contact-term divergences or gauge invariance prob-

lems. For example, in the cubic Neveu-Schwarz action of [42],

S =

〈
1

2
V QV +

1

3
V V V Z

(π

2

)〉
, (5.1)

where the open string fields V are multiplied using Witten’s star product, V is chosen in

the −1 picture, and Z(π
2 ) is the picture-raising operator inserted at the string midpoint.

Since Z(y)Z(z) is divergent when y → z, the action produces unphysical contact-term

divergences when interaction points collide [43, 44]. Alternatively, in the cubic Neveu-
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Schwarz action of [45, 46],

S =

〈(
1

2
V QV +

1

3
V V V

)
Y 2

(π

2

)〉
, (5.2)

where V is chosen in the zero picture and Y 2(π
2 ) is the square of the picture-lowering

operator inserted at the string midpoint. Although the action of (5.2) does not have

contact-term divergences, it has gauge invariance problems since the linearized equation

of motion is Y 2(π
2 )QV = 0 instead of QV = 0. Since Y 2(π

2 ) has a non-trivial kernel,

the equation Y 2(π
2 )QV = 0 has additional solutions given by V = Ker(Y 2(π

2 )). If one

projects out states in the kernel of Y 2(π
2 ) to remove these unwanted solutions from the

Hilbert space, the associativity property of the star-product is ruined and gauge invariance

is broken [47, 48].

Although these problems are avoided in the non-polynomial WZW-like action for open

superstring field theory [49] which does not require midpoint insertions, it would be useful

to have a cubic open superstring field theory action. Since the equation of motion in the

pure spinor formalism for the open superstring field V is

QV + V V = 0 , (5.3)

a natural suggestion [8] is to use the Chern-Simons-like action

S =

〈
1

2
V QV +

1

3
V V V

〉
(5.4)

of bosonic string field theory. However, using the minimal pure spinor formalism of [1], the

inner product for zero modes defined by

〈0|(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)|0〉 = 1 (5.5)

is degenerate, so the action of (5.4) does not generate the equations of (5.3). Since the

norm is degenerate, 〈A|B〉 = 0 for every string field |B〉 does not imply that |A〉 = 0. For

example, |A〉 = (θ)n|0〉 for n > 5 satisfies 〈A|B〉 = 0 for any string field |B〉. Therefore,

using the minimal inner product of (5.5), the action of (5.4) does not imply that components

of (QV + V V ) with more than five θ’s must vanish on-shell.

As shown in [4], the inner product for zero modes in the minimal pure spinor formalism

can be made non-degenerate by defining

〈0|f(λ, θ)|0〉 =

∫
[dλ]d16θf(λ, θ) , (5.6)

where [dλ] is defined in (4.4). This implies that

〈0|(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)
11∏

I=1

YCI
|0〉

is non-zero where YCI
= (CI

αθα)δ(CI
βλβ) is the picture-lowering operator and CI

α are con-

stant spinors for I = 1 to 11. Using this non-degenerate norm, the appropriate open
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superstring field theory action would be

S =

〈(
1

2
V QV +

1

3
V V V

) 11∏

I=1

YCI
(
π

2
)

〉

, (5.7)

where the eleven picture-lowering operators are inserted at the string midpoint. However,

in addition to causing gauge-invariance problems as in the RNS cubic action of (5.2), these

midpoint insertions break Lorentz invariance because of their explicit dependence on CI
α.

As discussed in the previous section, the non-minimal pure spinor formalism does

not require picture-changing operators but instead introduces the regularization factor

N = exp(−λλ − rθ). Since the inner product for zero modes defined by

〈0|N f(λ, λ, r, θ)|0〉 =

∫
[dλ][dλ][dr]d16θf(λ, λ, r, θ) exp(−λαλα − rαθα) (5.8)

is non-degenerate, the cubic action

S =

〈(
1

2
V QV +

1

3
V V V

)
N

(π

2

)〉
(5.9)

generates the equation of motion

N
(π

2

)
(QV + V V ) = 0 , (5.10)

where the regularization factor N (y) is inserted at the string midpoint. But unlike the

picture-lowering operator in (5.2) or (5.7), N has no kernel since N−1 = exp(λλ + rθ) is

well-defined even when acting on off-shell states. So there are no gauge invariance problems

and (5.10) implies the desired equation of motion QV + V V = 0.

Note that the action of (5.9) is manifestly Lorentz invariant, but is not manifestly

spacetime supersymmmetric because of the explicit θ dependence in the regularization

factor N = exp(−λαλα−rαθα). The action differs from the “minimal” cubic action of (5.4)

since the string field V can depend on the non-minimal variables λα and rα. Although the

linearized on-shell string field is independent of these non-minimal variables, the off-shell

dependence on the non-minimal variables is necessary for generating the (θ)n components

for n > 5 of the equation of motion QV + V V = 0.

Although the discussion of the inner product has focused up to now on the zero mode

dependence of the string field V , it is easy to see that the non-zero modes do not cause any

problems. To evaluate the cubic action of (5.9) for an arbitrary string field V , first convert

the string field to a vertex operator on the disk, and then use the conformal field theory

OPE’s of (2.6) and (3.7) for the variables of +1 conformal weight to functionally integrate

over the non-zero modes. The remaining dependence on the zero modes is integrated using

the regularization factor N = exp(−λαλα − rαθα) as in (5.8). Since the string field V will

be required to be non-singular as λλ → 0, the integral
∫
[dλ][dλ][dr]d16θ N f(λ, λ, r, θ) is

guaranteed to be well-defined.

For BRST-invariant external states, rescaling the regularization factor as

N = exp(−λλ − rθ) → Nρ = exp(−ρ(λλ + rθ))
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for any positive ρ does not affect the scattering amplitude. However, since the string field

V is off-shell, the cubic open superstring field theory action will depend on the scaling

factor ρ. To make this dependence explicit, define the BRST-invariant charge

jλ =

∫
dzJλ =

∫
dz(wαλα − sαrα) (5.11)

such that λα and rα carry +1 charge and wα and sα carry −1 charge. Since wα and sα

can only appear in the jλ-neutral combinations of (3.4) and (3.6), all states in the Hilbert

space carry non-negative jλ charge. And since [Q, jλ] = 0, the cubic action of (5.9) can be

written as S(ρ) =
∑∞

m=0 Sm(ρ) where

Sm(ρ) =

〈

1

2

m∑

p=0

VpQVm−p +
1

3

m∑

p=0

m−p∑

q=0

VpVqVm−p−q



Nρ

(π

2

)〉

(5.12)

and Vq is a string field satisfying jλ(Vq) = qVq. Under the scaling of λα → cλα and

rα → crα, one can easily verify that Nρ → Ncρ, Vq → cqVq, and the measure factor [dλ][dr]

is invariant. This implies that Sm(ρ) = ρ−mSm(1) and that the dependence of S on ρ

can be cancelled by rescaling the string field as Vq → ρqVq. Note that all propagating

on-shell string fields have zero jλ charge, so they are unaffected by the rescaling of the

regularization factor.

For closed topological strings describing Calabi-Yau three-folds, it is possible to con-

struct a cubic closed string field theory action which resembles the action for Kodaira-

Spencer gravity [7]. It would be very interesting to see if this construction for closed topo-

logical strings generalizes to the non-minimal pure spinor formalism for closed superstring

field theory. Since the closed string field theory action involves the b ghost, this general-

ization may not be straightforward because of the singularitites in the b ghost of (3.16)

when λλ → 0. However, it is encouraging that the kinetic term for the Ramond-Ramond

sector of closed superstring field theory [50] can be constructed using a set of non-minimal

variables which have some similarities with the non-minimal variables of the pure spinor

formalism.

6. Four-dimensional pure spinor formalism

6.1 Minimal d = 4 pure spinor formalism

Since topological strings are useful for computing superpotential terms in the four-dimen-

sional spacetime action [9, 7], it is natural to look for a four-dimensional version of the pure

spinor formalism. In four dimensions, the Green-Schwarz-Siegel matter variables consist

of (xm, θa, θ
ȧ
, pa, pȧ) for m = 0 to 3 and a, ȧ = 1 to 2, where pa and pȧ are the conjugate

momenta for θa and θ
ȧ
. Since a d = 4 pure spinor is simply a chiral two-component spinor

λa, the natural d = 4 version of the “minimal” pure spinor formalism is constructed from

the d = 4 Green-Schwarz-Siegel variables, a ĉ = 3 N = 2 superconformal field theory for

the six-dimensional compactification manifold, and a d = 4 pure spinor ghost λa together
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with its conjugate momentum wa. The worldsheet action for these variables is

S =

∫
d2z

(
1

2
∂xm∂xm + pa∂θa + pȧ∂θ

ȧ
− wa∂λa

)
+ SC , (6.1)

where SC is the worldsheet action for the compactification-dependent variables.

The worldsheet variables in (6.1) are the same as in the d = 4 hybrid formalism [10]

for the superstring except for the replacement of (λa, wa) with a chiral boson ρ satisfying

the OPE ρ(y)ρ(z) → − log(y − z). Recall that in the d = 4 hybrid formalism, physical

states are defined as N = 2 primary fields with respect to the ĉ = 2 N = 2 generators

J = −∂ρ + JC , G+ = eρdad
a + G+

C , G− = e−ρdȧd
ȧ

+ G−
C ,

T = −
1

2
∂xm∂xm − pa∂θa − pȧ∂θ

ȧ
−

1

2
∂ρ∂ρ + TC

= −
1

2
ΠmΠm − da∂θa − dȧ∂θ

ȧ
−

1

2
∂ρ∂ρ + TC , (6.2)

where da = pa + i
2∂xmσm

aȧθ
ȧ
− 1

4(θ)2∂θa + 1
8θa∂(θ)2, dȧ = pȧ + i

2∂xmσm
aȧθ

a − 1
4 (θ)2∂θȧ +

1
8θȧ∂(θ)2, Πm = ∂xm − i

2σm
aȧ(θ

ȧ
∂θa + θa∂θ

ȧ
), and [JC , G+

C , G−
C , TC ] are the ĉ = 3 N = 2

superconformal generators for the compactification manifold. After twisting, the N = 2

generators of (6.2) are related by a field redefinition to the RNS operators

J = bc + ηξ , G+ = jRNS
BRST G− = b , T = TRNS

matter + TRNS
ghost , (6.3)

and the N = 2 physical state condition is mapped to the usual requirement of BRST-

invariance for RNS physical states.

In the “minimal” version of the d = 4 pure spinor formalism, physical states will

instead be defined as ghost-number one states in the cohomology of the “minimal” BRST

operator

Q =

∫
dz(λada + G+

C) , (6.4)

where the ghost-number is defined by the charge

jghost =

∫
dz(waλ

a + JC) (6.5)

and [JC , G+
C , G−

C , TC ] are the twisted ĉ = 3 N = 2 superconformal generators for the

compactification manifold. To compute the cohomology of Q, it is convenient to perform

a similarity transformation on the worldsheet variables so that

da = pa , dȧ = pȧ + i∂xmσm
aȧθ

a − (θ)2∂θȧ , Πm = ∂xm − iθaσm
aȧ∂θ

ȧ
, (6.6)

as in a chiral d = 4 superspace representation. Since states in the cohomology of
∫

dz(λapa)

are independent of (θa, pa, λ
a, wa), any ghost-number one state in the cohomology of Q can

be expressed as

V = Φj(x, θ, p)ψj , (6.7)
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where Φj is a superfield depending on both zero modes and non-zero modes of (xm, θ
ȧ
, pȧ),

and ψj is a chiral primary of +1 charge with respect to the ĉ = 3 N = 2 superconformal

field theory for the compactification manifold.

Since Φj can depend on the non-zero modes of (xm, θ
ȧ
, pȧ), V describes both massive

and massless states, and the d = 4 mass-shell condition is not imposed by BRST invariance.

As will now be explained, V describes the chiral sector of open superstring field theory

which contributes to F-terms in the open superstring field theory action. So the d = 4

pure spinor formalism can be understood as a d = 4 super-Poincaré covariant version of

the ĉ = 5 topological string of [11].

When written in terms of d = 4 superspace variables using the hybrid formalism, the

open superstring field theory action [49, 48] depends on three string fields which contain

JC charge +1, 0, and −1. The string field with zero JC charge describes compactification-

independent fields like the N = 1 d = 4 super-Yang-Mills multiplet, the string field with

+1 JC charge describes compactification-dependent fields like the chiral moduli, and the

string field with −1 JC charge describes compactification-dependent fields like the anti-

chiral moduli. Although the D-term in the open superstring field theory action contains

couplings between all three string fields, the F-term only involves the string field with +1

JC charge which will be called V .

Using the language of the d = 4 hybrid formalism, V is restricted to satisfy [
∫

dzG+
4 , V ]

= 0 where G+
4 = eρdad

a, which implies that V has no poles with da. The F-term in the

open superstring field theory action is given by [49, 48]

S =

〈
1

2
V

(∫
dzG+

C

)
V +

1

3
V V V

〉

F

, (6.8)

where G+
C is the spin-one fermionic generator from the twisted ĉ = 3 N = 2 superconformal

field theory for the compactification manifold, 〈 〉F denotes the norm for F-terms defined

by 〈J+++
C (θ)2〉 = 1, and J+++

C is the spectral-flow operator with +3 JC charge for the

ĉ = 3 N = 2 superconformal field theory that describes the compactification manifold.

To understand the definition of 〈 〉F , note that the norm 〈 〉D for D-terms is defined

by 〈J+++
C e−ρ(θ)2(θ)2〉D = 1, which maps to 〈c∂c∂2cξe−2φ〉D = 1 using the field redefinition

to the RNS formalism. Since
[∫

dzG+
4 , J+++

C e−ρ(θ)2(θ)2
]

= J+++
C (θ)2 , (6.9)

one finds that 〈[
∫

dzG+
4 , A]〉F = 〈A〉D for any function A, which is the superstring general-

ization of the usual superspace relation between F-terms and D-terms that 〈DaD
aA〉F =

〈A〉D where Da are the N=1 d = 4 chiral superspace derivatives.

For example, for compactification on T 6 where the worldsheet variables are (yj , ψj) and

(yj, ψj) for j = 1 to 3, the twisted ĉ = 3 N = 2 generators for the compactification manifold

are TC = ∂yj∂yj + ψj∂ψj , G+
C = ∂yjψ

j , G−
C = ∂yjψj and JC = ψjψj. Besides depending

on chiral superfields coming from Kaluza-Klein reduction of d = 10 massive multiplets, the

string field V depends on three chiral superfields Σj(x, θ, y, y) which come from Kaluza-

Klein reduction of the d = 10 massless super-Yang-Mills multiplet. The dependence of

the string field on these superfields is given by V = Σj(x, θ, y, y)ψj , and after plugging V
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into (6.8), one obtains the expected F-term

S =

∫
d4x

∫
d6y

∫
d2θεijk Tr

(
1

2
Σi∂jΣk +

1

3
ΣiΣjΣk

)
(6.10)

for these superfields [51].

If one drops the D-term in the open superstring field theory action and keeps only the

F-term of (6.8), physical states are described by a string field V with +1 JC charge, with

no poles with da, and which satisfies the linearized equation of motion {
∫

dzG+
C , V } = 0

with the linearized gauge invariance δV = [
∫

dzG+
C ,Ω]. So physical states defined with

respect to (6.8) carry +1 JC charge, are independent of θa, and are chiral primaries with

respect to the ĉ = 3 N = 2 superconformal field theory for the compactification manifold.

Since this definition of physical states coincides with the definition of physical states in

the d = 4 pure spinor formalism, it is natural to conjecture that the d = 4 pure spinor

formalism describes the chiral sector of superstring theory which contributes to F-terms in

the superstring field theory action. Evidence for this conjecture will now be provided by

computing scattering amplitudes using the non-minimal version of the d = 4 pure spinor

formalism.

6.2 Non-minimal d = 4 pure spinor formalism

In analogy with the non-minimal version of the d = 10 pure spinor formalism, the d =

4 non-minimal variables will consist of a bosonic chiral spinor λa and fermionic chiral

spinor ra, with conjugate momentum wa and sa. Since chiral two-component spinors

are automatically d = 4 pure spinors, there are no additional constraints on λa and ra

analogous to the d = 10 constraints of (3.1). Although it might seem strange that the

d = 4 non-minimal variables have the same spacetime chirality as λa whereas the d = 10

non-minimal variables had the opposite spacetime chirality, note that in four dimensions,

complex conjugation in Euclidean space does not flip the chirality of spacetime spinors.

The worldsheet action including the non-minimal variables is

S =

∫
d2z

(
1

2
∂xm∂xm + pa∂θa + pȧ∂θ

ȧ
− wa∂λa − wa∂λa + sa∂ra

)
+ SC , (6.11)

where the barred (θ
ȧ
, pȧ) variables will be defined to carry dotted spinor indices while the

barred (λa, w
a) variables will carry undotted spinor indices.

In order that the non-minimal variables do not affect the cohomology, the “minimal”

pure spinor BRST operator Q =
∫

dz(λada + G+
C) will be modified to the “non-minimal”

BRST operator

Q =

∫
dz

(
λada + wara + G+

C

)
. (6.12)

It is straightforward to construct a b ghost satisfying {Q, b} = T and one finds

b = sa∂λa + wa∂θa + G−
C +

iλaΠ
mσȧa

m dȧ

2(λλ)
−

(εabλarb)(ε
ȧḃdȧdḃ

)

4(λλ)2
, (6.13)
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where

T = −
1

2
∂xm∂xm − pa∂θa − pȧ∂θ

ȧ
+ wa∂λa + wa∂λa − sa∂ra + TC (6.14)

= −
1

2
ΠmΠm − da∂θa − dȧ∂θ

ȧ
+ wa∂λa + wa∂λa − sa∂ra + TC , (6.15)

and da, dȧ and Πm are defined in (6.6).

One can verify that b has no poles with itself and that the double pole of b with the

BRST integrand jBRST = λada + wara + G+
C produces the U(1) generator

J = λawa + ras
a + JC . (6.16)

The generators [J, jBRST , b, T ] form a ĉ = 3 N = 2 algebra which allow the formalism to

be interpreted as a critical topological string. However, as in the d = 10 non-minimal pure

spinor formalism, it is convenient to shift the U(1) generator by a BRST-trivial quantity

{Q,−saλa} = −waλa − ras
a so that the new ghost charge is

jghost =

∫
dzJ =

∫
dz(λawa+ras

a+JC+{Q,−saλa}) =

∫
dz(λawa−λaw

a+JC) . (6.17)

The standard topological rules for computing scattering amplitudes can now be applied

using the BRST operator of (6.12), the b ghost of (6.13), the stress tensor of (6.14), and

the ghost charge of (6.17). For example, N -point tree amplitudes are computed by the

correlation function

A = 〈N (y)V1(z1)V2(z2)V3(z3)

∫
dz4U4(z4) . . .

∫
dzNUN (zN )〉 , (6.18)

where, as in (4.7), the regularization factor

N = exp({Q,−λaθ
a}) = exp(−λaλ

a − raθ
a) (6.19)

will be inserted into the correlation function.

After integrating out the worldsheet non-zero modes, the zero mode integral is

〈N f(λ, λ, r, θ, θ, ψ)〉 =

∫
d2λd2λd2rd2θd2θd3ψ exp(−λaλ

a − raθ
a)f(λ, λ, r, θ, θ, ψ) ,

(6.20)

which is well-defined as long as f(λ, λ, r, θ, θ, ψ) diverges slower than (λλ)−2 as λλ → 0.

The restriction that f(λ, λ, r, θ, θ, ψ) diverges slower than (λλ)−2 is related to the

operator ξ = (λθ)/(λλ + rθ) which satisfies Qξ = 1. Using the same argument as in the

d = 10 non-minimal pure spinor formalism, 〈N QΩ〉 is only guaranteed to vanish if Ω

diverges slower than λ−2λ
−1

as λλ → 0. This allows 〈N f〉 to be non-vanishing when

f = (θ)2(ψ)3 since although 〈N f〉 = 〈N Q(ξf)〉, ξf diverges like (θ)2(θ)2(ψ)3(λr)/(λλ)2

when λλ → 0.

Returning to the N -point tree amplitude computation, suppose that all external states

are chosen in the gauge where the vertex operators are independent of the non-minimal

fields. Then after integrating out the non-zero modes, one obtains

A =

∫
d2λd2λd2rd2θd2θd3ψ exp(−λaλ

a − raθ
a)(ψ)3f(θ) , (6.21)
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where all ghost charge in the vertex operators must come from the compactification-

dependent variables ψj since states in the cohomology are independent of λa and θa.

Integrating over λa, λa and ra, one finds

A =

∫
d2θd2θd3ψ (θ)2(ψ)3f(θ) =

∫
d2θf(θ) , (6.22)

which is the desired result for the F-term in the scattering amplitude.

One can also compute N -point tree amplitudes in a worldsheet reparameterization

invariant manner using (N − 3) b ghosts and N integrated vertex operators as

A =

〈
N (y)V1(z1) . . . VN (zN )

∫
dz4b(z4) . . .

∫
dzNb(zN )

〉
, (6.23)

where b(z) is defined in (6.13) and N is defined in (6.19). But unlike the d = 10 computa-

tion, there is no restriction on the number of b ghosts in the d = 4 computation. This is

because all ghost charge in physical states must come from the compactification-dependent

variables, so each unintegrated vertex operator contributes +1 JC charge. By charge con-

servation of JC , this implies that the only term which contributes in b(z) is the G−
C term

which carries −1 JC charge. Since G−
C has no singularities when λλ → 0, there is no

restriction on the number of b ghosts in the d = 4 pure spinor formalism.

To compute N -point g-loop amplitudes, one uses the topological prescription

A =

∫
d3g−3τ

〈

N (y)

3g−3∏

j=1

(∫
dwjµj(wj)b(wj)

) N∏

r=1

∫
dzr U(zr)

〉

, (6.24)

where τj are the complex Teichmuller parameters and µj are the associated Beltrami dif-

ferentials,

N (y) = exp({Q,χ(y)}) = exp

(
−λa(y)λa(y) − ra(y)θa(y) −

g∑

I=1

(wI
aw

aI − dI
as

aI)

)
,

(6.25)

χ(y) = −λa(y)θa(y)−
∑g

I=1 wI
as

aI , and (wI
a, w

aI , saI , dI
a, d

I
ȧ, ψ

I
j ) for I = 1 to g are the zero

modes for the variables of +1 conformal weight.

After separating off the zero modes of (wa, w
a, sa, da, dȧ, ψj) as in (4.12) and integrating

over the non-zero modes, one obtains

A =

∫
d2λd2λd2rd2θd2θd3ψ

g∏

I=1

d2wId2wId2sId2dId2d
I
d3ψ

I
×

×N f(λ, λ, r, θ, θ, ψ,wI , wI , dI , d
I
, sI , ψ

I
) , (6.26)

where f is some BRST-invariant function of the zero modes with U(1) charge 3−3g. Since

conservation of JC charge implies that only the G−
C term in the b ghost contributes to the

g-loop amplitude, f has no singularities when λλ → 0 and there is no restriction on the

number of b ghosts or on the genus g.
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One can easily check that this prescription for the closed superstring reproduces the

g-loop scattering amplitude of 2g self-dual graviphotons and an arbitrary number of chiral

superfields for the Calabi-Yau moduli [9, 7]. As in the computation using the d = 4 hybrid

formalism [22] or using the ĉ = 5 topological formalism [11], the 2g zero modes for dȧ

come from the graviphoton vertex operators, the 3g − 3 zero modes for ψj come from the

b ghosts, and the two θ
ȧ

zero modes come from the Calabi-Yau chiral superfields. The

remaining 2g zero modes for da, 2g zero modes for sa, two zero modes for ra, and two zero

modes for θa come from the regularization factor N of (6.25).

So the topological string prescription for scattering amplitudes using the d = 4 pure

spinor formalism correctly reproduces the F-term in the spacetime action. Further con-

firmation that the d = 4 pure spinor formalism describes F-terms comes from the open

string field theory action for the d = 4 pure spinor formalism. Using the construction of

section 4, the open string field theory action for the d = 4 pure spinor formalism is

S =

〈(
1

2
V QV +

1

3
V V V

)
N

(π

2

)〉
, (6.27)

where Q is defined in (6.12) and N is defined in (6.19). The action of (6.27) has the same

Chern-Simons structure as the F-term of (6.8) in the open superstring field theory action,

and it should not be difficult to prove their equivalence. It would be interesting to gen-

eralize this construction of the F-term in non-trivial closed string backgrounds involving

Ramond-Ramond fields.

A. U(5)-covariant variables for the non-minimal formalism

In this appendix, the constraints of (2.1) and (3.1) for the pure spinor ghost and non-

minimal variables will be solved in a U(5)-covariant manner in terms of free fields. The

coefficients in the OPE’s of (2.6) and (3.7) can then be computed using the free field OPE’s

of the U(5)-covariant variables.

As shown in [1], the pure spinor constraint λγmλ = 0 can be solved in terms of free

fields as

λα = (λ+, λab, λ
a) =

(
γ, γuab,−

1

8
γεabcdeubcude

)
, (A.1)

where a = 1 to 5, uab = −uba, and (λ+, λab, λ
a) describe the (1, 10, 5) components of

λα under the U(5) decomposition of the (Wick-rotated) SO(10) pure spinor. In terms of

the variables (γ, uab) and their conjugate momenta (β, vab), the gauge-invariant currents

of (2.3) are

Nab = vab ,

N b
a = −uacv

bc + δb
a

(
5

4
ηξ +

3

4
∂φ

)
,

Nab = 3∂uab + uacubdv
cd − uab

(
5

2
ηξ +

3

2
∂φ

)
,

Jλ = −
5

2
∂φ −

3

2
ηξ ,

Tλ =
1

2
vab∂uab − η∂ξ −

1

2
(∂φ∂φ + ∂2φ) −

7

2
∂(ηξ + ∂φ) , (A.2)
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where γ = ηeφ and β = ∂ξe−φ. It is straightforward to use the free field OPE’s

vab(y)ucd(z) → δ[a
c δ

b]
d (y−z)−1 , η(y)ξ(z) → (y−z)−1 , φ(y)φ(z) → − log(y−z) , (A.3)

to show that these currents satisfy the OPE’s of (2.6).

To describe the non-minimal variables (λα, rα) in terms of unconstrained U(5)-cova-

riant variables, define

λα =
(
λ+, λ

ab
, λa

)
= γ

(
1, uab,−

1

8
εabcdeu

bcude

)
,

rα = (r+, rab, ra) = γ

(
f, fab + fuab,−

1

8
εabcde

(
fubcude + 2f bcude

))
, (A.4)

which satisfy the constraints λγmλ = rγmλ = 0 of (3.1). In terms of the variables

(γ, uab, f, fab) and their conjugate momenta (β, vab, g, gab), the gauge-invariant currents

of (3.4) and (3.6) are

Nab = vab ,

N
b
a = ubcvac + f bcgac + δb

a

(
−

1

4
ηξ +

1

4
∂φ

)
,

N
ab

= uacubdvcd + uacf bdgcd + facubdgcd − fabg − uab

(
1

2
ηξ −

1

2
∂φ

)
,

Jλ = −
1

2
∂φ +

1

2
ηξ , Jr = fg +

1

2
fabgab + 8(ηξ + ∂φ) , Φ =

1

2
fabvab +

1

2
f(ηξ − ∂φ) ,

Tλ =
1

2
vab∂uab −

1

2
gab∂fab − g∂f −

1

2
(η∂ξ + ξ∂η) −

1

2
∂φ∂φ ,

S = g, Sab = uacubdgcd − uabg , Sb
a = ubcgac −

1

2
δb
ag , Sab = gab , (A.5)

where γ = ηeφ and β = ∂ξe−φ. It is straightforward to use the free field OPE’s

vab(y)ucd(z) → δc
[aδ

d
b](y − z)−1 , η(y)ξ(z) → (y − z)−1 , φ(y)φ(z) → − log(y − z) ,

g(y)f(z) → (y − z)−1 , gab(y)f cd(z) → δc
[aδ

d
b](y − z)−1 , (A.6)

to show that these currents satisfy the OPE’s of (3.7).
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