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1. Introduction

Perturbative scattering amplitudes in Yang-Mills theory have remarkable properties that

are not apparent from the textbook recipes for computing them. Unexpected selection

rules for helicity amplitudes were uncovered in the earliest computation of tree level gluon

scattering [2]. Tree amplitudes in which the maximal number of gluons have the same

helicity are described by a marvelously simple formula [1, 3]. (These are known as maximal

helicity violating or MHV amplitudes.) Loop amplitudes also turn out to be unexpectedly

simple [4, 5].

Some properties of perturbative Yang-Mills theory may apparently be explained [6]

by relating this theory to the instanton expansion of a certain string theory in twistor

space [7]. In the present paper, we reconsider the tree amplitudes of perturbative Yang-

Mills theory in a way that is suggested by the twistor transform (and by our study of

differential equations obeyed by scattering amplitudes, which will appear elsewhere) and

also by the use [4, 5] of MHV tree amplitudes in calculating loop amplitudes.

Consider a theory in Minkowski space of gauge invariant local fields such as scalar

fields φi. We consider a local interaction vertex such as a polynomial interaction W =∫
d4xF (φi). A point in Minkowski space corresponds [7] to a “line” in twistor space —

that is, to a linearly embedded copy of CP1. So the interaction vertex F (φi), which is

supported on a point in Minkowski space, is supported on a line in twistor space.

As shown in [6], the tree level MHV amplitudes for scattering of any number of gluons of

positive helicity and two of negative helicity is similarly supported on a line. So we think of

this amplitude as representing, in some sense, a generalization of a local interaction vertex.
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This is in the spirit of analyses of loop diagrams [4, 5] in which, roughly speaking, MHV tree

level amplitudes are regarded as interactions and amplitudes that are rational functions

(of the spinor variables used to describe external particles) are considered to be “local.”

In this paper, we pick a specific off-shell continuation of the MHV amplitude and

consider Feynman diagrams in which the vertices are tree level MHV amplitudes — with an

arbitrary number of gluon lines — and the propagator is the standard Feynman propagator

1/p2. We call these diagrams MHV diagrams.

Our off-shell continuation of the MHV amplitude is not Lorentz-covariant, and the

sum of MHV diagrams is not manifestly Lorentz-covariant. Nevertheless, we argue that

the sum of MHV tree diagrams is covariant, and we verify, for examples with five, six, or

seven gluons, that this sum coincides with conventional Yang-Mills tree amplitudes.

Assuming that this is so to all orders, we obtain relatively short and simple expressions

for certain amplitudes, such as the helicity amplitudes − − − + + + . . .+. See [8] for

previously known formulas for these amplitudes.

In section 2, we describe our off-shell continuation. In section 3, we describe explicit

computations of some amplitudes. In section 4, we verify that MHV tree amplitudes

have the same collinear and multiparticle singularities as the standard Yang-Mills tree

amplitudes. In section 5, we prove that the sum of MHV tree amplitudes is Lorentz-

covariant. Finally, in section 6, we attempt to justify the MHV tree amplitudes as a method

of evaluating the twistor amplitudes coming from completely disconnected instantons (that

is, from collections of disjoint instantons each of which has instanton number one). This

argument is not really rigorous as the rules for what integration contours to use in twistor

space are not entirely clear.

The argument in section 6 raises a puzzle to which we do not have an answer. Other

recent results suggest that it is possible to compute the same amplitudes solely from con-

nected instantons [9]. Why might it be possible to compute the same amplitudes from

connected instantons or from completely disconnected ones? Perhaps in some topological

string theory, it is possible to choose one integration contour in field space that picks up only

the connected instantons and another one that picks up only the completely disconnected

instantons.

2. Definition of MHV tree amplitudes

We recall that in four dimensions, a momentum vector pµ can conveniently be represented

as a bispinor paȧ and that the momentum vector for a massless particle can be factored

as paȧ = λaλ̃ȧ in terms of spinors λa, λ̃ȧ of positive and negative chirality. Spinor inner

products are denoted as 〈λ, λ′〉 = εabλ
aλ′b, [λ̃, λ̃′] = ε

ȧḃ
λ̃ȧλ̃′ ḃ. If paȧ = λaλ̃ȧ, qaȧ = λ′aλ̃

′
ȧ,

then 2p · q = 〈λ, λ′〉[λ̃, λ̃′]. For more detail and references, see [6].

We will be studying tree level scattering amplitudes with n gluons. Such an amplitude

is in a natural way a sum of subamplitudes associated with different cyclic orderings of the

external gluons; we focus on the term associated with a particular cyclic ordering, say the

one for which the group theory factor is Tr T1T2 . . . Tn. We suppress this factor in writing

the amplitudes.
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A tree level scattering amplitude with n gluons more than n − 2 of which have the

same helicity vanishes. The amplitudes with n−2 gluons all of the same helicity are called

maximally helicity violating or MHV amplitudes. The MHV tree amplitude with n − 2

gluons of positive helicity are as follows [1, 3]. If the gluons of negative helicity are labeled

x, y (which may be any integers from 1 to n), the amplitude is

An =
〈λx, λy〉

4

∏n
i=1〈λi, λi+1〉

. (2.1)

(We omit the trace Tr T1 . . . Tn, a delta function (2π)4δ4(
∑

i λ
a
i λ̃

ȧ
i ) of energy-momentum

conservation, and a factor gn−2, with g the Yang-Mills coupling.)

In this paper, we will continue these “mostly plus” MHV amplitudes off-shell and use

them as vertices in tree diagrams that we will call MHV tree diagrams.1 (We do not

include additional vertices for the “mostly minus” MHV tree amplitudes; along with other

amplitudes, they are computed from trees with “mostly plus” vertices.) In the physical

amplitude (2.1), each particle is assumed to be on-shell, with lightlike momentum vector

p aȧ = λ aλ̃ȧ. To generalize the MHV tree amplitude to a vertex that can be inserted in a

Feynman diagram, we need to continue it off-shell. An off-shell field is still characterized

by a momentum vector paȧ, but what can be meant by λa if p is not lightlike?

Suppose that paȧ is lightlike. We can pick an arbitrary negative chirality spinor η ȧ and

then up to scaling we can take λa = paȧη
ȧ. In fact, if paȧ = λaλ̃ȧ, then λa = paȧη

ȧ/[λ̃, η].

The factor 1/[λ̃, η] is irrelevant since tree amplitudes that we compute will always be

invariant under rescaling of the λ’s for all the off-shell, internal lines.

This leads to our definition of the off-shell continuation. We simply pick an arbitrary η ȧ

and then define λa for any internal line carrying momentum paȧ in a Feynman diagram by

λa = paȧη
ȧ . (2.2)

For example, if ηȧ = δȧ2, then the definition is λa = pa2̇. We use the same η for all

the off-shell lines in all diagrams contributing to a given amplitude. For external lines

— lines representing incoming or outgoing gluons in a scattering process – λ is defined

in the usual way in terms of the wave function of the initial or final particle. With this

understanding of what λ means for each particle, we simply take the “mostly plus” MHV

scattering amplitude (2.1) as the n-gluon vertex in our Feynman diagram, for all n ≥ 3.

(We introduce no additional vertices for the “mostly minus” MHV amplitudes. They will

be computed from tree diagrams using mostly plus vertices, as we see in the next section.)

At each interaction vertex, each gluon, understood to be incoming, is assigned a definite

helicity. This is so for both on-shell and off-shell lines. In fact, at an n-gluon vertex, n− 2

of the gluons have positive helicity and two have negative helicity; in (2.1), the two gluons

of negative helicity have been labeled x, y. If a gluon is considered to be outgoing, its

helicity label is reversed.

1A “mostly plus” MHV amplitude has two gluons of negative helicity and any number of positive

helicity. In the exceptional cases that the number of positive helicity gluons is one or two, there is not really

a majority of gluons with positive helicity.
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For the propagator of an off-shell gluon of momentum p, we take simply 1/p2. The two

ends of any propagator must have opposite helicity labels — plus at one end and minus

at the other end — because an incoming gluon of one helicity is equivalent to an outgoing

gluon of the opposite helicity.

In the next section, we give some ex-

+

+

−

−
+

+

−

+
+

−

−

−

Figure 1: A tree diagram with MHV vertices.

In this example, the number of vertices is v = 3;

they are connected by v − 1 = 2 propagators. The

vertices are respectively trivalent, four-valent, and

five-valent. Internal and external lines are labeled

by their helicity.

amples of Feynman diagrams computed

using these rules. For now, we simply

make the following observation. Consider

a tree diagram with v vertices and (there-

fore) v − 1 propagators connecting them.

(See figure 1 for an example.) Each ver-

tex has precisely two gluon lines of nega-

tive helicity emanating from it. So a total

of 2v negative helicity gluon lines emanate

from the vertices. Each of the v−1 propa-

gators connects at precisely one end to one

of these 2v lines. This leaves v + 1 nega-

tive helicity lines that must be attached

to external particles. In other words, a

tree level scattering amplitude with q ex-

ternal gluons of negative helicity must be

obtained from an MHV tree diagram with v vertices such that q = v + 1 or equivalently

v = q − 1 . (2.3)

This implies, in particular, that MHV tree diagrams with q < 2 external gluons vanish, since

they contain no vertices at all. This is in agreement with the fact that these amplitudes

vanish in Yang-Mills theory. Moreover, if q = 2, the number of vertices is v = 1, and the

MHV tree amplitude is equal by definition to the Yang-Mills tree amplitude. The first

nontrivial case of our claim is for q = 3, v = 2.

The result (2.3) is analogous to the result in [6] that a Yang-Mills tree amplitude with

q gluons of negative helicity (and any number of positive helicity) must be derived from a

curve in twistor space of degree or instanton number d = q − 1. The degree one curves in

twistor space correspond to the MHV vertices in the present approach.

3. Examples

Here we will describe examples of evaluation of MHV tree amplitudes. As just explained,

the first case to consider is that the number of negative helicity gluons is q = 3 and the

number of vertices is therefore v = 2.

We begin with the first case, the four gluon amplitude with momenta p1, . . . , p4 and

helicities + − −−. This vanishes in Yang-Mills theory; we want to verify that it also

vanishes when computed from MHV tree diagrams. As indicated in figure 2, there are

two diagrams to consider. In the first diagram, there is an internal line with momentum
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Figure 2: MHV tree diagrams contributing to the +−−− amplitude, which is expected to vanish.

Arrows indicate the momentum flow, while + and − signs denote the helicity.

q = −p1 − p2 = p3 + p4. We write λq, λ̃q for the corresponding spinors. As explained

in section 2, λq a = qaȧη
ȧ, for some arbitrary ηȧ (which we take to be the same in both

diagrams). We abbreviate λ̃i ȧη
ȧ as φi. So

λq a = −λ1aφ1 − λ2 aφ2 = λ3 aφ3 + λ4 aφ4 , (3.1)

where we have used the fact that pi aȧ = λi aλ̃i ȧ. The amplitude associated with the first

diagram in figure 2 is
〈λ2, λq〉

3

〈λq, λ1〉〈λ1, λ2〉

1

q2
〈λ3, λ4〉

3

〈λ4, λq〉〈λq, λ3〉
. (3.2)

To obtain this formula, we took the propagator to be 1/q2, and we read off the trivalent

vertices from (2.1).

From (3.1), we have 〈λ2, λq〉 = −〈2 1〉φ1, 〈λq, λ1〉 = −〈2 1〉φ2, 〈λ4, λq〉 = 〈4 3〉φ3, and

〈λq, λ3〉 = 〈4 3〉φ4. (We recall that 〈i j〉 is an abbreviation for 〈λi, λj〉.) So (3.2) becomes

φ31
φ2φ3φ4

〈2 1〉3

〈2 1〉〈1 2〉

1

q2
〈3 4〉3

〈4 3〉〈4 3〉
. (3.3)

Using q2 = (p1 + p2)
2 = 2p1 · p2 = 〈1 2〉[1 2], and 〈i j〉 = −〈j i〉, this becomes

−
φ31

φ2φ3φ4

〈3 4〉

[2 1]
. (3.4)

A very similar evaluation of the second diagram gives

−
φ31

φ2φ3φ4

〈3 2〉

[4 1]
. (3.5)

In fact, a new evaluation is not needed, since the second diagram can be obtained from

the first by exchanging particles 2 and 4. The sum of these expressions vanishes, since

momentum conservation implies that 0 =
∑

i〈3 i〉[i 1] = 〈3 2〉[2 1] + 〈3 4〉[4 1].

The next case is the five gluon amplitude with two gluons of positive helicity and

three of negative helicity. In general, five MHV tree diagrams contribute, as sketched in

– 5 –
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−
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+ −

− +

5− 1+

2−

3+4−

5−

1+

4−

3+ 2−

5−

4−

1+2−

3+

(a)

3

4

51

−

−

−

+2

+

(b)

Figure 3: (a) MHV tree diagrams contributing to the +−+−− amplitude. (b) This contribution

to the + +−−− amplitude is absent, as there is no + +− vertex.

figure 3a for the case of helicities +−+−−. Each diagram contains two vertices, one of them

trivalent and one four-valent. The vertices are all defined off-shell by the same procedure

as above. The sum of the five MHV tree diagrams can be shown, with the aid of symbolic

manipulation, to coincide with the standard tree level amplitude for this process, which is

[1 3]4

[1 2][2 3][3 4][4 5][5 1]
. (3.6)

For the helicity configuration + + − − −, there are only four MHV tree diagrams; there

is no contribution of the form sketched in figure 3b, since by definition each vertex in an

MHV tree diagram absorbs precisely two gluon lines of negative helicity. We have verified

with the help of symbolic manipulation that the sum of the four remaining diagrams re-

produces the standard result (which is obtained from (3.6) by simply replacing [1 3]4 in

the numerator by [1 2]4).

We have made similar verifications in a number of additional cases, including five gluon

amplitudes with helicity +−−−−, all the six gluon amplitudes with three or four gluons

of negative helicity, all the seven gluon amplitudes with three gluons of negative helicity,

and finally the + +−−−−− amplitude.
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n +

1 −

+ −
4 +

3 −

2 −

i ++i 1 +

− +

2 −
1 −

+n

3 −

4 +

i + i + 1 +

Figure 4: MHV tree diagrams contributing to the −−−++ . . .+ amplitude.

Our claim that conventional Yang-Mills tree amplitudes coincide with the amplitudes

computed from MHV tree diagrams implies surprisingly simple formulas for some ampli-

tudes. For example, consider n gluon amplitudes with precisely three gluons of negative

helicity — the next case after the simple MHV amplitudes. They come from MHV tree dia-

grams with precisely two vertices and one propagator. If the helicities are−−−+++. . .++,

i.e., the three gluons of negative helicity are consecutive (see [8] for a previous evaluation

of these amplitudes), there are precisely 2(n − 3) possible diagrams, sketched in figure 4.

They can be evaluated to give

A =

n−1∑

i=3

〈1 (2, i)〉3

〈(2, i) i+ 1〉〈i+ 1 i+ 2〉 · · · 〈n 1〉

1

q22i

〈2 3〉3

〈(2, i) 2〉〈3 4〉 · · · 〈i (2, i)〉
+

+
n∑

i=4

〈1 2〉3

〈2 (3, i)〉〈(3, i) i+ 1〉 · · · 〈n 1〉

1

q23i

〈(3, i) 3〉3

〈3 4〉 · · · 〈i− 1 i〉〈i (3, i)〉
. (3.7)

Here we define qij = pi + pi+1 + · · · + pj; the corresponding spinor λij a is defined in the

usual way as λij a = qij aȧη
ȧ, and 〈i (j, k)〉 is an abbreviation for 〈λi, λjk〉.

For other orderings of the external helicities, the number of diagrams is greater, but

grows for large n at most as n2. If S, T , and U are the number of positive helicity gluons

between successive gluons of negative helicity (so S + T +U = n− 3), then the number of

diagrams is 2(n− 3) + ST + TU + US.

– 7 –



J
H
E
P
0
9
(
2
0
0
4
)
0
0
6

The formula (3.7) is not manifestly covariant in general, but it becomes so if we pick

ηȧ to equal one of the λ̃ȧi . (We show in section 5 that the amplitude is independent of the

choice of ηȧ.) If ηȧ = λ̃ȧ2, the amplitude becomes

A =
1∏n

k=3〈k k + 1〉

[
n−1∑

i=4

〈i i+ 1〉

〈i−|q/2,i|2
−〉〈(i + 1)−|q/i+1,2|2

−〉〈2−|q/2,i|2
−〉
×

×

(
〈3 2〉3〈1−|q/2,i|2

−〉3

q22,i
+
〈1 2〉3〈3−|q/i+1,2|2

−〉3

q2i+1,2

)
+A3,n

]
(3.8)

where we have introduced the manifestly Lorentz covariant notation 〈m−|p/ |r−〉 = mapaȧr
ȧ

and used the fact that q3,i = −qi+1,2. A3,n is the contribution from the i = 3 and i = n

terms of the first and second sums in (3.7) respectively. We have to treat these terms

separately, because they have a factor of [2 η] in the denominator, which vanishes for

ηȧ = λ̃ȧ2. However, combining them and using Schouten’s identity2 one finds a factor of

[2 η] in the numerator as well. Thus, the substitution η ȧ = λ̃ȧ2 can be made to get

A3,n = −〈1 3〉
2

(
s13 + 2(s12 + s23)

[3 2][1 2]
+
〈1 2〉〈n 3〉

[1 2]〈n 1〉
+
〈3 2〉〈1 4〉

[3 2]〈3 4〉

)
(3.9)

where skm = (pk + pm)
2 = 〈k m〉[k m].

The amplitude (3.8) is manifestly Lorentz-covariant
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Figure 5: Diagrams contributing

to collinear singularities of type

(b). The shaded “blob” represents

the complete n− 1 gluon tree am-

plitude.

and bose-symmetric. Bose symmetry merely says that

the amplitude should be invariant under rotations and re-

flections of the chain that preserve the helicities. For this

particular amplitude, the only such symmetry is the re-

flection that maps particle k to particle 4−k; we have cho-

sen η in a way that preserves this symmetry. One could

also obtain different but manifestly Lorentz-covariant and

bose-symmetric expressions for the same amplitude by

averaging over the choices ηȧ = λ̃ȧk and ηȧ = λ̃ȧ4−k, for

some fixed k. (Because of Schouten’s identity, the various

spinor products are not independent, and quite different-

looking formulas can be written for the same amplitudes.)

We have verified that (3.8) agrees with the standard re-

sult for the −−−+++ amplitude.

4. Collinear and multiparticle singularities

Here we will show that MHV tree graphs generate am-

plitudes with the correct collinear and multiparticle sin-

gularities.

Collinear singularities arise when (for example) the

momenta of two incoming particles in a scattering ampli-

tude are proportional, so that their sum is also lightlike.

2This identity asserts that for any four spinors α, β, γ, δ, we have 〈α, β〉〈γ, δ〉+〈α, γ〉〈δ, β〉+〈α, δ〉〈β, γ〉=0.

– 8 –
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We describe a collinear singularity as a process with two particles going to one, so

we consider, for example, the collinear singularity ++ → + with two initial gluons of

positive helicity combining to one of positive helicity. Since crossing symmetry reverses the

helicity of a gluon, and our convention for vertices in a Feynman diagram is to consider all

gluons incoming, the ++ → + collinear singularity receives a contribution from a + + −

interaction vertex.

In MHV tree diagrams, a singularity when two gluons i and i + 1 develop collinear

momenta will only arise if these two gluons are attached to the same vertex in the graph.

In Yang-Mills theory, the collinear singularities are ++ → +, +− → −, +− → +, and

−− → −. (There are no ++ → − or −− → + collinear singularities, since there are

no + + + or − − − interaction vertices.) For our purposes, there are really two kinds of

collinear singularity: (a) for ++→ + and +− → −, the number of negative helicity gluons

is conserved; (b) for −− → − and +− → +, the number of negative helicity gluons is

reduced by one.

In case (a), the limit as gluons i and i + 1 become collinear is extracted by merely

taking the collinear limit of the MHV vertex to which they are attached. This MHV vertex

is a standard Yang-Mills scattering amplitude and has the standard collinear singularities.

(Our off-shell continuation of an MHV vertex is easily seen not to modify the collinear

singularities for the on-shell particles in that vertex.) Thus, it is manifest that MHV tree

diagrams have the correct collinear singularities of type (a).

For singularities of type (b), we need only to be a little more careful. Consider an

MHV tree diagram in which gluons i and i + 1, of helicities −− or +−, are attached to

a vertex with k gluons (some of which may be off-shell), for some k ≥ 3. If k ≥ 4, this

diagram will not contribute any collinear singularity of type (b), since the “mostly plus”

MHV tree amplitudes do not have any −− → − or +− → + collinear singularities.

The collinear singularities of type (b) will therefore come entirely from diagrams with

k = 3, as in figure 5. In the collinear limit, P becomes on-shell, and the spinor λP as

we have defined it (namely λP a = Paȧη
ȧ) becomes a multiple of the spinor arising in the

factorization Paȧ = λaλ̃ȧ. A rescaling of λP does not matter. So assuming inductively

that the MHV tree diagrams give correctly the n− 1 gluon tree amplitude (represented by

the “blob” in figure 5), the configuration of figure 5 manifestly gives the correct type (b)

collinear singularity.

One can see in a similar fashion that our recipe reproduces the correct multiparticle

poles in tree amplitudes. Consider an n-particle amplitude and pick some i and j such

that the set of particles i, i + 1, . . . , j and the set j + 1, j + 2, . . . , i − 1 each have at least

three elements. Let P = pi + pi+1 + · · ·+ pj. The multiparticle singularity in this channel

has an amplitude that is simply 1/P 2 times the product of the tree amplitudes in the

subchannels. It arises in our formalism from MHV tree diagrams (figure 6) with a single

offshell gluon of momentum P connecting the two clusters. The propagator of the off-shell

gluon is 1/P 2, and as P 2 → 0, the spinor λP of this gluon, as we have defined it, becomes

the standard spinor of an on-shell gluon of momentum P . So assuming inductively that

MHV tree graphs describe the lower order amplitudes correctly, they describe the correct

multiparticle poles in the n gluon amplitude.
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P

L R

P

Figure 6: MHV tree diagrams with mul-

tiparticle singularities in a particular chan-

nel that carries momentum P . The shaded

“blobs” represent subamplitudes computed

with MHV tree diagrams.

Figure 7: MHV diagrams with two vertices,

labeled L and R, connected by a propagator

that carries momentum P .

5. Covariance of the amplitudes

Here we will demonstrate that the sum of MHV tree amplitudes is Lorentz covariant. For

simplicity, we consider the case of diagrams with only one propagator (and therefore pre-

cisely three external gluons of negative helicity), but we do not believe that this restriction

is essential. We present the argument here without relation to twistor theory, because the

covariance of the sum of MHV trees is of interest irrespective of any connection to twistors.

However, the argument was suggested by a nonrigorous twistor analysis that we present in

the next section.

Consider as in figure 7 an n-gluon tree diagram with one propagator. The external

gluons are divided into two sets L and R of gluons attached to the left or right in the

diagram; the internal line carries a momentum P =
∑

i∈L pi. We have no natural way to

assign spinors λ, λ̃ to the internal line (since in general P 2 6= 0), so instead we introduce

an arbitrary λ and λ̃ associated with this line; we will integrate over λ and λ̃ in a manner

that will be described.

The gluons attached on the left vertex of figure 7 make up a set L′ consisting of L plus

the internal gluon, and similarly the gluons on the right make up a set R ′ consisting of R

plus the internal gluon. L′ and R′ each comes with a natural cyclic order. In an MHV tree

diagram, the amplitudes at the left and right vertices are

gL(λi|i∈L′) =
〈λxL , λyL〉

4

∏
i∈L′〈λi, λi+1〉

gR(λi|i∈R′) =
〈λxR , λyR〉

4

∏
i∈R′〈λi, λi+1〉

. (5.1)

xL and yL are the labels of the negative helicity gluons on the left, and xR, yR are the

analogous labels on the right. The dependence of g = gLgR on λ is extremely simple:

g =
〈λσ , λ〉

4

∏4
α=1〈λα, λ〉

g̃ , (5.2)
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where g̃ is independent of λ. Here two poles in the denominator come from gL and two

from gR; α runs over the four gluons that in the cyclic order are adjacent to the internal

line on either the left or the right. σ is the negative chirality gluon on the same side (L or

R) on which the internal line carries negative helicity. In particular, g is invariant under

scalings of λ.

Now we write down the integral that we will consider:

IΓ =
i

2π

∫
〈λ, dλ〉[λ̃, dλ̃]

1

(Paȧλaλ̃ȧ)2
g(λ;λi) . (5.3)

The integration “contour” is described momentarily. We call this integral IΓ to emphasize

the fact that it depends on the choice of a particular MHV tree graph Γ. Since g is invariant

under scalings of λ or λ̃ (and in fact is independent of λ̃), the integrand in (5.3) is also

invariant under this scaling and makes sense as a meromorphic two-form on CP1 × CP1.
Here the λa are homogeneous coordinates on one CP1, and λ̃ȧ on the second CP1.

When we actually evaluate the integral, we will take the integration “contour” to be

a two-sphere S defined by saying that λ̃ is the complex conjugate of λ. This ensures

that the vector waȧ = λaλ̃ȧ is real, nonzero, and lightlike. It follows that if P is real

and timelike, the denominator (Paȧw
aȧ)2 in the definition of IΓ is everywhere nonzero.

The only singularities of the integrand are the simple poles of g, which do not affect the

convergence of the integral. The integral over S is hence convergent for timelike P . We use

the integral to define IΓ as an analytic function of P (and the other variables) which can

then be continued beyond the real, timelike region. In fact, our evaluation of the integral

will give such a continuation.

For the moment, however, we continue algebraically without interpreting λ̃ as the

complex conjugate of λ. As in the definition of MHV tree diagrams, we introduce an

arbitrary spinor ηȧ of negative chirality, and we find the identity

[λ̃, dλ̃]

(Paȧλaλ̃ȧ)2
= −dλ̃ċ

∂

∂λ̃ċ

(
[λ̃, η]

(Paȧλaλ̃ȧ)(Pbḃλ
bηḃ)

)
. (5.4)

Since g is independent of λ̃, it trivially follows that likewise

[λ̃, dλ̃] g(λ;λi)

(Paȧλaλ̃ȧ)2
= −dλ̃ċ

∂

∂λ̃ċ

(
[λ̃, η] g(λ;λi)

(Paȧλaλ̃ȧ)(Pbḃλ
bηḃ)

)
. (5.5)

At this point, we interpret λ̃ as the complex conjugate of λ. If λa = (1, z), then

λ̃ȧ = (1, z); the integration region S is the complex z plane including a point at infinity.

The operator dλ̃ȧ∂/∂λ̃ȧ is dz(∂/∂z), and if (5.5) were precisely true, it would follow upon

integration by parts that IΓ is identically zero. Actually, once we interpret λ̃ as the complex

conjugate of λ, the formula acquires delta function contributions, since

∂

∂z

1

z − b
= 2πδ(z − b) . (5.6)

The delta function is normalized so that
∫
|dz dz| δ(z − b) = 1. This also means that in

terms of differential forms,
∫
dz∧dz δ(z− b) = −i = −

∫
dz∧dz δ(z− b), since if z = x+ iy
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with x, y real, then dz ∧ dz = −2idx ∧ dy = −i|dz dz|. It is also convenient to write

δ(z − b) = δ(z − b)dz, and more generally, for any holomorphic function f ,

δ(f) = δ(f)df . (5.7)

(Thus δ(f) is a ∂-closed (0, 1)-form, a property that we will use in section 6.) So
∫
dz δ(z − b) = −i . (5.8)

We can write (5.6) in a more covariant form:

dλ̃ċ
∂

∂λ̃ċ

1

〈ζ, λ〉
= 2πδ(〈ζ, λ〉) , (5.9)

again assuming λ̃ = λ. The idea here is that in coordinates with λa = (1, z), λ̃ȧ = (1, z),

ζa = (1, b), (5.9) reduces to (5.6). If λa = (1, z), then 〈λ, dλ〉 = dz, so a more covariant

version of (5.8) is the statement that if B(λ) is any function that is homogeneous of degree

−1, then ∫
〈λ, dλ〉δ(〈ζ, λ〉)B(λ) = −iB(ζ) . (5.10)

In evaluating (5.5) more precisely to include such delta functions, we need not be

concerned about singularities from zeroes of Paȧλ
aλ̃ȧ, since as we have discussed, this

function has no zeroes in the integration region. However, we get a contribution that we

will call IΓ,η from the pole at

λa = Paȧη
ȧ (5.11)

that comes from the vanishing of the factor Paȧλ
aηȧ in the denominator. And we get

four contributions that we will call IΓ,α from the poles at λ = λα which are visible in the

formula (5.2) for g. The condition (5.11) should be familiar; it was used in section 2 to

make an off-shell continuation of the MHV amplitudes.

So we can schematically write

IΓ = IΓ,η +
∑

α

IΓ,α . (5.12)

To evaluate IΓ,η, and IΓ,α, we evaluate (5.5) more precisely, including the delta functions

that should be included when λ̃ is understood as the complex conjugate of λ. We have

[λ̃, dλ̃] g(λ;λi)

(Paȧλaλ̃ȧ)2
= −dλ̃ċ

∂

∂λ̃ċ

(
[λ̃, η] g(λ;λi)

(Paȧλaλ̃ȧ)(Pbḃλ
bηḃ)

)
+ (5.13)

+
2π[λ̃, η]

Paȧλaλ̃ȧ

(
−δ(Pbḃλ

bηḃ)g +
1

P
bḃ
λbηḃ

4∑

α=1

δ(〈λα, λ〉)
〈λσ, λα〉

4

∏
β 6=α〈λβ , λα〉

g̃

)
.

We can now evaluate IΓ,η, which is the contribution of the delta function that is

supported at λa = Paȧη
ȧ. At λa = Paȧη

ȧ, we have [λ̃, η]/Paȧλ
aλ̃ȧ = −1/( 12PaȧP

aȧ) =

−1/P 2. So

IΓ,η =
1

P 2
g(λP ;λi) , (5.14)

– 12 –



J
H
E
P
0
9
(
2
0
0
4
)
0
0
6

where as in section 2, λP a = Paȧη
ȧ. In other words, IΓ,η is simply the amplitude, as defined

in section 2, for the MHV tree graph Γ. Similarly,

IΓ,α =
2π[λ̃α, η]

(Paȧλaαλ̃
ȧ
α)(Pbḃλ

b
αη

ḃ)

〈λσ, λα〉
4

∏
β 6=α〈λβ , λα〉

g̃ =
2π[λ̃, η]

(Paȧλaαλ̃
ȧ
α)(Pbḃλ

b
αη

ḃ)
Resλ=λα g(λ;λi) .

(5.15)

Upon summing over all tree graphs with

L R

P

α

L R

P

α

Figure 8: The graphs contributing a pole

at λ = λα. Each vertex has a natural cyclic

order, which we take to be counterclockwise,

as indicated by the arrows. In one graph, α

is on the left, just ahead of the internal line,

and in the other graph, it is on the right, just

after it. The reversed order reverses the sign

of the residue of the pole.

the given set of external gluons, we have

∑

Γ

IΓ =
∑

Γ

IΓ,η +
∑

α

IΓ,α . (5.16)

We will see shortly that

∑

Γ

IΓ,α = 0 (5.17)

for all α. Given this, we have

∑

Γ

IΓ =
∑

Γ

IΓ,η . (5.18)

Since the left hand side is Lorentz covariant (a

statement that we explain more fully below),

it follows as we have promised that the sum of

MHV tree amplitudes is covariant.

Now we will verify (5.17). We consider

two graphs Γ1 and Γ2 — selected as in figure 8

— for which the function g has a pole at λ =

λα. They differ by whether the gluon α is in

L, just before the internal gluon (in the cyclic

order), or in R, just after it. Because of this

difference in ordering, when we evaluate g =

gLgR using (5.1), one g function contains a factor 1/〈λ, λα〉 while the other contains a

factor 1/〈λα, λ〉. The other factors in the two g functions, which we will call g1 and

g2, become equal when we set λ = λα. So Resλ=λα g1 = −Resλ=λα g2. The other factor

in (5.15) that we must consider in comparing IΓ1,α and IΓ2,α is X = 1/(Paȧλ
a
αλ̃

ȧ
α)(Pbḃλ

b
αη

ḃ).

The two graphs have different P ’s, but as the P ’s differ by Paȧ → Paȧ+λαaλ̃α ȧ, they have

the same value of X. So finally, the two graphs give equal and opposite poles at λ = λα.

All poles at λ = λα are canceled in this way among pairs of graphs.

5.1 A subtle detail

There is actually one further subtlety in this argument (which some readers may wish to

omit). Suppose that on the left of the first diagram in figure 8 there are only two external

gluons — one labeled α and one labeled, say, β. The evaluation of the diagram as above

yields a pole at λ = λα that must be canceled by a similar pole when α has moved to the

– 13 –



J
H
E
P
0
9
(
2
0
0
4
)
0
0
6

right. In that contribution, only one gluon, namely β, remains on the left (figure 9). We

therefore have to allow contributions in the present analysis in which only two gluons (one

of them off-shell) are attached to the vertex on the left. This presents a riddle, since the

MHV tree diagrams have no such divalent vertices.

Let us see examine this more closely. In

RL

P

− +−

β

Figure 9: A diagram with a divalent vertex

on the left. The two gluons entering the vertex

both have negative helicity. The external gluon

is labeled β, and its momentum pβ also equals

the momentum P of the internal gluon.

figure 9, both β and the internal gluon join-

ing to L have negative helicity (since they

are the only candidates for the two negative

helicity gluons on L). Hence in (5.2), σ and

two of the α’s are both equal to β, so g be-

comes

g = 〈λβ, λ〉
2
∏

ν

1

〈λν , λ〉
g̃ , (5.19)

where ν runs over the two neighbors of the

internal gluon in R. In particular, there is no

pole at λ = λβ (and so no need to cancel its

residue by introducing a contribution with

only one gluon attached to L).

Since P = pβ, we have Paȧ = λβ aλ̃β ȧ. The integral representation of IΓ becomes

IΓ =
i

2π

∫
〈λ, dλ〉[λ̃, dλ̃]

1

[λ̃, λ̃β]2

∏

ν

1

〈λν , λ〉
g̃ , (5.20)

where a factor of 〈λ, λβ〉
2 in the denominator has canceled such a factor in the numerator

of (5.19). This cancellation ensures that the integral for IΓ is convergent (if we integrate

symmetrically near λ̃ = λ̃β where the denominator has its strongest singularity) even

though P is lightlike.

We can evaluate the integral by a sum of residues. First consider the contribution IΓ,ν
from the pole at λ = λν (for either of the two possible values of ν). By (5.15), it is

IΓ,ν =
2π[λ̃ν , η]

(Paȧλaν λ̃
ȧ
ν)(Pbḃλ

b
νη

ḃ)
Resλ=λνg(λ;λi) . (5.21)

With only one gluon on L, we have P = pβ. So Pbḃ = λβ bλ̃β ḃ, whence

IΓ,ν =
2π[λ̃ν , η]

〈λβ, λν〉2[λ̃β, λ̃ν ][λ̃β, η]
Resλ=λνg(λ;λi) . (5.22)

From (5.19), if we write νi, i = 1, 2 for the two possible values of ν, this gives

IΓ,νi =
2π[λ̃νi , η]

[λ̃β , λ̃νi ][λ̃β , η]

g̃

〈λν
i′
, λνi〉

, (5.23)

where νi′ 6= νi. From this it follows (using the Schouten identity of footnote 2 to combine

the terms) that
∑

i=1,2 IΓ,νi is independent of η. Hence, unlike the cases with more than

two gluons attached to L, we do not have to add an additional contribution from a pole at

λa = Paȧη
ȧ to cancel the η-dependence.
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We do not want such a contribution, since, with the vertex on the left of figure 9 being

divalent, it does not correspond to anything in the MHV tree diagrams of sections 2 and

3. In more general cases with a k-valent vertex of k ≥ 3, the contribution that we called

IΓ,η arises from the singularity of

2π[λ̃, η]g(λ;λi)

(P
bḃ
λbλ̃ḃ)(Paȧλaηȧ)

(5.24)

at Paȧλ
aηȧ = 0. With Paȧ = λβ aλ̃β ȧ, this singularity would be at 〈λβ , λ〉 = 0, but in (5.24),

there is no singularity there, because g is divisible by 〈λβ , λ〉
2. Thus, configurations with

a divalent vertex have a nonvanishing IΓ,α and participate in the associated cancellation,

but have vanishing IΓ,η and do not contribute to the MHV tree diagrams.

5.2 Covariance of the amplitude

Finally, the assertion that I =
∑

Γ IΓ is Lorentz covariant needs some elaboration:

1. The integral representation (5.3) appears to show that IΓ is holomorphic in the λi
and in the λ̃i (the latter enter only via P ). Though the holomorphy in λ̃i is valid, the

holomorphy in λi fails because of the poles: the ∂ operator of λα, namely dλ
a

α ∂/∂λ
a

α,

in acting on the integrand of IΓ, produces a delta function at λ = λα. When we write

IΓ = IΓ,η+
∑

α IΓ,α, the first term IΓ,η is holomorphic in the λα, but the IΓ,α are not.

2. The integral (5.3) defining IΓ formally has SL(2,C)× SL(2,C) symmetry, where one
SL(2) acts on spinor indices a, b and the other on spinor indices ȧ, ḃ. Thus, one

SL(2) acts on λ, λi, and the other on λ̃, λ̃i. SL(2) × SL(2) is a double cover of the

complexified Lorentz group.

3. The choice of integration contour S with λ̃ = λ breaks SL(2) × SL(2) down to the

diagonal SL(2), which is a double cover of the real Lorentz group SO(3, 1). Were there

no poles, a contour deformation argument would show that the integral possesses the

full SL(2)×SL(2) symmetry, even though the contour does not. Because of the poles,

the full SL(2) × SL(2) invariance is not restored upon doing the integral and IΓ is

only invariant under the diagonal SL(2).

4. After summing over Γ, the IΓ,α cancel, as we argued above, and hence holomorphy

in the λi is restored.

5. The sum I =
∑

Γ IΓ =
∑

Γ IΓ,η is accordingly holomorphic in the λi and λ̃i. The

real Lorentz group, or rather its double cover SL(2), acts holomorphically on these

variables leaving I invariant, and hence I is automatically invariant under the com-

plexification of this group, which is the full SL(2)× SL(2).

6. Heuristic analysis of disconnected twistor diagrams

Here we will make a nonrigorous analysis of the disconnected twistor diagrams that con-

tribute to the amplitudes studied in the last section. Interpreting the interaction vertices
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in the Feynman diagram of figure 7 as degree one instantons in twistor space, and the

line connecting the vertices as a twistor propagator, we will explain what manipulations

applied to this twistor configuration give the integral studied in the last section.

We are going to use somewhat different twistor space wavefunctions than those used

in [6]. We take our particles to have definite momenta paȧi = λai λ̃
ȧ
i in Minkowski space.

The corresponding twistor space wavefunction is3

δ(〈λ, λi〉) exp(i[µ, λ̃i]) . (6.1)

The idea here is that this wavefunction represents a particle of definite λ because the wave-

function has delta function support at λ = λi, and it has definite λ̃ because of the plane

wave dependence on µ. Choosing twistor space wavefunctions that represent momentum

space eigenstates in Minkowski space means that the twistor computation can be com-

pared directly to the standard momentum space scattering amplitudes, without needing to

perform an additional Fourier transform. It turns out that this also simplifies the compu-

tations. (The same simplification was achieved in [9] by performing a Fourier transform

prior to evaluating the twistor scattering amplitude.)

The effective action for fields in twistor space is the integral of a Chern-Simons (0, 3)-

form. The kinetic operator for these fields is the ∂ operator. The propagator is a (0, 2)-form

on CP3 × CP3 that we write as G(λ′, µ′;λ, µ), where (λ, µ) are homogeneous coordinates
for one point in CP3 and (λ′, µ′) for the other. The part of G that is a (0, 1)-form on each

copy of CP3 is the propagator for the physical fields, while as in quantization of real Chern-

Simons gauge theory [10], the terms in G that are (0, 2)-forms on one CP3 and (0, 0)-forms

on the other describe propagation of ghosts. We write the equation that should be obeyed

by G in coordinates with λ1 = λ′1 = 1:4

∂G =
1

2π
δ
(
λ′2 − λ2

)
δ
(
µ′1̇ − µ1̇

)
δ
(
µ′2̇ − µ2̇

)
. (6.2)

We can therefore take the propagator to be

G =
1

(2π)2
δ
(
λ′2 − λ2

)
δ
(
µ′1̇ − µ1̇

) 1

µ′2̇ − µ2̇
. (6.3)

This choice of G amounts to a choice of gauge.

Now consider the exchange of a twistor field between copies of CP1 that represent

instantons C and C ′ of degree one. As in figure 10, the external gluons are attached to C

and C ′. C is described by the equation

µȧ = xaȧλa , (6.4)

3The twistor space wavefunction is supposed to be a ∂-closed (0, 1)-form with values in a line bundle that

depends on the helicity. We have a ∂-closed (0, 1)-form here because δ(f), for any holomorphic function

f , is such a form. Since the line bundles in question are naturally trivial when restricted to λ = λi, we

can (at the informal level of the present discussion) write the wavefunctions without being very precise in

describing the line bundle.
4The prefactor 1/2π depends on the proper normalization of the Chern-Simons (0, 3)-form action in

twistor space. We are making a guess based on the analogous normalization for real Chern-Simons theory

at level one and will not try to prove that this is the correct normalization of the propagator.
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and C ′ by the equation

µ′ȧ = x′aȧλ′a . (6.5)

We also set yaȧ = x′aȧ − xaȧ. C
′ and C will correspond respectively to the vertices on the

left and right of figure 7.

The exponential factors in (6.1) give

C
′

C

Figure 10: Twistor diagrams corresponding to

MHV tree diagrams that were considered in sec-

tion 5. There are two disconnected instantons, la-

beled C and C ′, to which gluons are attached; they

are connected by a twistor space propagator.

an important dependence on x and x′.

Taking the product of the exponentials for

all of the external particles, we get

∏

i∈L

exp(ix′aȧp
aȧ
i )
∏

j∈R

exp
(
ix

bḃ
pbḃj

)
. (6.6)

We can also write this expression as

exp(iyaȧP
aȧ)
∏

i

exp
(
ix

bḃ
pbḃi

)
, (6.7)

where as in section 5, P =
∑

i∈L pi, and in the second factor all external particles are

included. The integral over x will give a delta function of energy-momentum conservation;

the y-dependent factor in (6.7) will also play an important role.

We will take the measure for integrating over x and y to be d4xaȧ d4ybḃ, where, for

example, d4ybḃ = dy11̇dy22̇dy21̇dy12̇.

With our choice of gauge, in coordinates with λ1 = λ′1 = 1, the twistor propagator G

is supported on pairs of points that obey λ′2 = λ2. We can more invariantly say simply that

λ′a = λa (without specializing to coordinates with λ1 = 1). In addition, as µ′ȧ−µȧ = yaȧλa,

the condition that the propagator is exchanged between points with µ′1̇ = µ1̇ means that

ya1̇λa = 0, or in other words that

λa = ya1̇ (6.8)

up to an irrelevant scaling. The propagator contains a factor 1/(µ′2̇ − µ2̇) = 1/ya2̇λa =

1/ya2̇ya
1̇. But ya2̇ya

1̇ = 1
2(y

a2̇ya
1̇ − ya1̇ya

2̇) = −yaȧyaȧ/2.

So finally the integral representing the contribution ĨΓ to the scattering amplitude

from the instanton configuration considered in figure 10 is

ĨΓ = −
1

2π2

∫
d4ybḃ

yaȧyaȧ
exp(iycċP

cċ)g(λ;λi) , (6.9)

where λa = ya1̇, while λai are the spinors associated with external gluons. The function

g(λ;λi) arises from computing the correlation function of gluon vertex operators on C and

C ′ (and integrating over fermionic moduli) as explained in section 4.7 of [6]. It is the

same function that entered in section 5. (The factor exp(iyaȧP
aȧ) was absent in analogous

formulas in [6] because different twistor space wavefunctions were used.) Most of the

ingredients in (6.9) are Lorentz-covariant; Lorentz covariance is violated only because the

function g(λ;λi) is evaluated at λa = ya1̇, clearly a noncovariant condition.

We now have to decide how to interpret the integral in (6.9). The integrand is a

holomorphic function of y and the integral is a complex contour integral of some sort. We
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most definitely do not know any systematic theory of how to pick the contours in topological

string theory in twistor space. Here we will simply describe a recipe for interpreting this

integral that was found in an attempt to match with our results about MHV tree diagrams.

We assume, first of all, that one of the y integrals should be performed via a contour

integral around the pole at y2 = 0, and thus gives 2πi times the residue of that pole.

The integral thus becomes an integral on the quadric Q defined by y2 = 0. We write this

schematically

ĨΓ = −
i

π

∫

Q

Resy2=0
d4ybḃ

ycċycċ
exp(iyaȧP

aȧ)g(λ, λi) . (6.10)

(We will compute this residue momentarily.) Once this is done, our formula becomes

Lorentz-invariant. Indeed, at y2 = 0, we can factor yaȧ as λaλ̃ȧ, where one way to determine

λ is to say that up to an irrelevant scaling, λa = ya1̇. In fact, the formula yaȧ = λaλ̃ȧ

implies λa = ya1̇/λ̃1̇.

We actually want to decompose yaȧ a little differently. We write

yaȧ = tλaλ̃ȧ , (6.11)

where the λa are homogeneous coordinates for one copy of CP1, λ̃ȧ are homogeneous

coordinates for a second copy of CP1, and t scales with weight −1 under scaling of either

λ or λ̃. The scaling of t has been selected to ensure that y is invariant. The measure on

the quadric is determined by the symmetries to be

Resy2=0
d4y

y2
= ft dt 〈λ, dλ〉[λ̃, dλ̃] , (6.12)

for some constant f (which we will soon find to equal 1/2). The dependence on λ and λ̃

is determined from SL(2)× SL(2) invariance; the power of t can be fixed by requiring that

the measure is invariant under scaling of λ or λ̃.

To compute f , we simply compare the two measures at a convenient point P . The

differential form d4yaȧ/ybḃy
bḃ
= dy11̇dy22̇dy21̇dy12̇/2(y11̇y22̇ − y12̇y21̇) has a pole at y22̇ =

y12̇y21̇/y11̇ whose residue is the volume form Φ = dy11̇dy21̇dy12̇/2y11̇ on Q. The point P

at which the only nonzero component of y is y11̇ = 1 corresponds in the other variables to

t = 1, λa = (1, 0), λ̃ȧ = (1, 0). Expanding around this point, we take t = 1+ ε, λa = (1, β),

λ̃ȧ = (1, γ), whence to first order y11̇ = 1 + ε, y21̇ = β, y12̇ = γ. So at P , Φ = dε dβ dγ/2.

On the other hand, dt = dε, 〈λ, dλ〉 = dβ, and dλ̃ = dγ. So t dt〈λ, dλ〉[λ̃, dλ̃] = dε dβ dγ.

Comparing these formulas, we find that f = 1/2.

Our integral therefore becomes

ĨΓ = −
i

2π

∫
t dt〈λ, dλ〉[λ̃, dλ̃] exp(itλaλ̃ȧP

aȧ) g(λ;λi) . (6.13)

Again, the proper interpretation of this integral is unclear. Trying to get an answer that

makes some sense, we interpret the t integral as an integral from 0 to ∞, using

∫ ∞

0
t dt exp(iγt) = −

1

γ2
. (6.14)
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So

ĨΓ =
i

2π

∫
〈λ, dλ〉[λ̃, dλ̃]

1

(Paȧλaλ̃ȧ)2
g(λ;λi) . (6.15)

Thus we have motivated the integral that we took as our starting point in section 5.5

Integrating over t from 0 to ∞ seems rather unpalatable in the context of complex

contour integrals, since contours are normally closed cycles or cycles that run off to infinity

(rather than terminating at t = 0). The procedure that we have followed seems somewhat

more plausible in conjunction with the choice we made in section 5 of setting λ̃ = λ.

With yaȧ = tλaλ̃ȧ, the combined operation of setting λ̃ = λ and taking t to be real and

positive amounts to integrating over the future light cone in real Minkowski spacetime; this

seems like a more or less respectable integration cycle, albeit singular at the origin and

noncompact.

The proof of SL(2,C) invariance at the end of section 5 shows that integration over

the past light cone would give the same result. In fact, unlike the real light cone, which

has a future and a past, the complexified light cone is connected. We have shown that

our amplitudes, after summing over graphs, are invariant under the complexified Lorentz

group. This group can be used to rotate the future real light cone to the past real light

cone.

What shall we make of our result? If our procedure for calculating the integral is

correct, then the tree level Yang-Mills scattering amplitudes appear to come from totally

disconnected instanton configurations in twistor space. On the other hand, there appears

to be convincing evidence [9] that they can be computed from connected instantons alone.

Are there really two distinct ways to compute the same amplitudes from twistor space? For

more general amplitudes, are there more than two ways, allowing for instantons of higher

degree that are neither connected nor completely disconnected? Or is there a fault in the

way the integrals have been evaluated? Certainly, we cannot claim a firm justification

for the way that we have evaluated the integral. So in our computation, there are ample

possibilities to suppose that a more complete and rigorous evaluation of the scattering

amplitude might require including additional contributions.
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